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Abstract 

In parallel computing, jobs have different runtimes and required computation resources. 

With runtimes correlated with resources, scheduling these jobs would be a packing 

problem getting the utilization and total execution time varies. Sometimes, resources are 

idle while jobs are preempted or have resource conflict with no chance to take use of 

them. This greatly wastes system resource at certain degree. 

Here we propose an approach which takes periodic checkpoints of running jobs with the 

chance to take advantage of migration to optimize our scheduler during long term 

scheduling. We improve our original Scojo-PECT preemptive scheduler which does not 

have checkpoint support before. We evaluate the gained execution time minus overhead 

of checkpointing/migration, to make comparison with original execution time. 
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1. Introduction _ 

In high performance computing area, a job has one or more processes, like serial job and 

parallel job. People cared about how to schedule the jobs that would bring more benefit. 

There are three metrics to evaluate a schedule strategy. At users' view, response time 

defines how fast the job has been processed. It is the time period between job submission 

and termination. Usually we use average response time instead of each individual one. As 

some situations did exist when average response time got good result, while several 

specific jobs were severely delayed. So, another metric fairness would be counted in. It is 

the factor to check whether the job is fairly or unfairly treated. It sets up a threshold to 

compare a job's response time and its estimated response time as it's been submitted. At 

systems' view, utilization defines how efficient the resources have been taken advantage 

of. It could be counted as a relation between used and total resource during a time scale. 

Better utilization would lead to shorter response time but not guarantee in every case. 

Thus, sometimes there is a tradeoff between response time and utilization. 

There are two basic types of job scheduling approaches: time sharing and space sharing. 

For time sharing, multiple jobs are allocated to run on the same set of processors. 

Multiple processes share using a processor with time slices. The advantage of time 

sharing is that jobs can start to run sooner (maybe result as a shorter response time). 

Regarding space sharing, processors are divided into groups and each group exclusively 

allocated to a job, by means of this way, job could run until finish without been 
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suspended. Space sharing is easy to implement without any context switch overhead. 

Unfortunately, inefficient packing schemes usually generate fragmentations. Some 

scheduling methods are proposed to improve the performance of time and space sharing, 

e.g. backfilling, by which a job is scheduled to run out of its original FCFS (First Come 

First Serve) order to fill the "holes". 

Checkpointing mechanism is a term we often used in database and high-performance 

computing area. It keeps the current program's computation state into stable storages for 

the purpose of recovery once occur failure and get restart with minimum loss of 

computing work. We extended the original scheduler to take use of checkpoint 

mechanism not for fault tolerance but for the resource flexibility by storing the 

computation state periodically. As the original scheduler does not support the checkpoint 

and it only does preemption (suspend jobs when slice ends and resume on the same 

resource in its own type slice), it greatly restricts the usage of computation resource even 

if there is free resource. 

A checkpoint of a single process contains the processor's address space and states of its 

registers. And a global state is required in additional in multi-processor and distributed 

systems. It has the information to describe the relationship between checkpoints of each 

processor. To restart from a checkpoint, it just needs to initialize the address space from 

the checkpoint file and reset the registers. 
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Two basic types of checkpointing schemes are full checkpointing and incremental 

checkpointing. With full checkpointing, the system just saves the whole image of current 

process state into stable storage. And incremental checkpointing, it maintains a list of all 

the dirty pages of memory which has been modified during the computation since the last 

checkpoint. When reaching the checkpoint, only those pages on the list will be stored 

since the remaining pages are just read only variables. The latter approach would save 

larger space in checkpoint file size and thus reduce the checkpoint overhead greatly. 

There is another classification method based on platforms, several major categories of 

checkpointing are: Hardware level, additional hardware incorporates with processor to 

save state; System/Kernel level, operation system will be responsible for taking 

checkpoint; Application level, the checkpoint code is directly inserted into application by 

programmer or preprocessor. Application level checkpoint (ALC): for this definition, it is 

a checkpointing technique in application level. It highly depends on programmer who is 

required to have sufficient knowledge on specific applications. In the abstraction level, it 

selects relevant core of data in order to reduce the amount of checkpoint file size and 

achieve more efficient operation by pre-compiler, which we will discuss in background 

issue for more detail. 

In our thesis, we extended original scheduler by adding application level checkpoint. 

With checkpoint support, the scheduler could take use of migration and get improvement 
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in utilization and average relative response time. 

The rest of the thesis is organized as follows. Background issues are discussed in Chapter 

2. Chapter 3 introduces original Scojo-PECT. And extended job scheduling algorithm is 

described in detail in Chapter 4. Chapter 5 presents the simulation, experiments and 

results analysis. Finally, the conclusion of the thesis is made in Chapter 6 and we discuss 

a little about future work in it. 
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2. Background Issues: 

Job scheduling in parallel computing area has been studied for a long period. Around the 

scheduling approaches, there is generally not only the time sharing and the space sharing, 

but also other mechanisms involved such as preemption and backfill. However, these 

approaches could partially solve the fragmentation created during arranging jobs phase 

and make better use of idle resource avoiding making nodes unfairly working(the 

situation some nodes running busy, some keep idle). 

There is now another option to improve the performance of total job scheduling using 

migration based on checkpointing, which we discussed above. One type is system level 

checkpointing, and the other is application level checkpointing. For system level 

checkpointing, University of Wisconsin introduced Condor system [14] which provides 

important features that: Source code does not need to be modified to take advantage of 

these benefits. Code that can be re-linked with the Condor libraries then the jobs can 

produce checkpoints and they can perform remote system calls [14], and Lawrence 

Berkeley National Laboratory introduced BLCR (Berkeley Lab Checkpoint/Restart) [16], 

a system-level checkpoint/restart implementation for Linux clusters that targets the space 

of typical High Performance Computing applications, including MPI. As a kernel module, 

it has a "callback" interface to allow any library or application code to cooperate in the 

taking of and restoring from a checkpoint. 
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For application level checkpointing, Cornell University introduced C3 (Cornell 

Checkpoint Compiler) [15] system, it executes almost all source code and instruments 

them to perform application level state saving by insert a potential checkpoint at locations 

in the application where checkpoints might be taken. And the pre-compiler co-work with 

the native compiler of hardware platform to interpret the calls from the instrument 

application. 

As those two kinds of checkpointing mechanisms present, which one would be better for 

high performance computation. What is the exact difference between them? 

The differences between System level vs. Application level checkpointing techniques: 

One is the checkpoint file size. As we know, the system level checkpointing approach 

barely has the knowledge of what application it is. It just stores the whole image of 

process at the time it takes the checkpoint. For application level checkpointing approach, 

it is been assumed the programmer has sufficient knowledge on applications and could 

tell what kind of variables are dead, which part of image could be compressed. In this 

manner, the size of checkpoint file get smaller compare to system one. In [15], authors 

made comparison between C3 and Condor, used five kinds of applications for testing, it 

proved ALC could have smaller size compare to SLC, though results varies. 

Another difference is the interval setting of application level checkpointing. As the system 
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level, the operation system will handle the checkpoint and decide when to generate a 

checkpoint, what is more, that kind of checkpoint in system level could be done at 

arbitrary time as the processes has been preempted with no risk of lacking records. The 

application level, the application at the beginning based on its own code will have no idea 

when and how to do the checkpoint operation. So inserting the intervals for application 

level checkpointing would be better choice for the simulation. In [1][2][3], the authors 

studied on determining the optimal interval for setting checkpoints in application and 

made proof. [2][3], are continuous study and the authors in latter made great efforts 

modifying the formula to let it suits more cases and made more accurate to predict the 

interval.(the former failed to make prediction on small size of checkpoint file) And in [1], 

author tried to verify the impacts over the system overall quality of interval setting 

through many aspects, as they put interval as adjustable parameter and they also pointed 

out the optimal checkpoint intervals heavily depend on some system parameters, such as 

the time to place a checkpoint, the time to recover from a fault, the fault arrival rate, 

which has the similarity with [2] [3]. And for this reason, we decided to take advantage of 

their existing parameter and formula to make it suitable to our research. 

As the checkpointing mechanism usually is applied in HPC (High Performance 

Computing) field for the purpose of fault tolerance, we imported the idea into our work as 

a solution to let the application have more flexibility choosing free computation resource 

and reach the goal of improving system performance. 
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3. Scojo-PECT 

The extending work is all based on the Scojo-PECT. In this chapter, we are going to 

discuss the detailed original scheduler including how it works, what kind of scheduling 

techniques have been adopted and also some priorities of jobs. 

3.1 Scojo-PECT Preemptive Scheduler 

Scojo-PECT [8] is a job scheduler framework. Scojo-PECT provides coarse grain time 

slices to avoid the excessive waiting time when jobs getting access to their resource. All 

running jobs are preempted and divided into three types (short, medium, long) based on 

their runtimes. This could make the preemption in the disk affordable. They are 

scheduled in different time slices of their own types. 

Scojo-PECT does not require checkpointing [10] support and therefore impose the 

constraint that preemption jobs without checkpoint could just restart on the same resource 

instead of migrating to different resources. One slice time of each type was scheduler per 

time interval which was set based on the resource time share which is predefined. 

Resource shares [9] can be defined based on specific job mixes, administrator's policies. 

E.g. it can be set different for different times during the day. 

Scojo-PECT can either use EASY or conservative backfilling. Backfilling is an approach 

to move job ahead in the queue if it does not delay other jobs. EASY backfilling [10] 
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means jobs could be move ahead by not delay the first waiting job. Conservative 

backfilling [10] requires none jobs in queue to be delayed compare to their schedule 

position upon submission. Within the scheduler, the job will not dynamically change and 

jobs per type were typically scheduled in FCFS order with backfilling applied. 

Scojo-PECT also provides safe non-type backfilling [8] because the manual division of 

job into several types may generate fragmentations since job runtimes and job sizes are 

correlated. Non-type backfilling means preempted or waiting jobs of different slices can 

be backfill to a slice if they do not delay any jobs of the slice type or their own types. 

Scojo-PECT implemented an event-driven simulator to have it co-work with scheduler. 

The event-based simulator defines four kinds of events with job submission and 

termination mean new job come into waiting queue and job finish running and release the 

occupied resources. Slice begin events describe new time slice starts and specific jobs 

resumed/scheduled to run and slice end events means one slice run out of its time share 

and all running jobs are preempted. 

3.2 Core Scheduling Algorithm 

The detailed original algorithm of Scojo-PECT [8] is: 

At first, at the end of slice, jobs were preempted at the end of corresponding time slice 

and preempted job could be resumed execution on the same resource first; 
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Second, scheduler attempts to schedule jobs of slice type from waiting queue which first 

fit the free resource; 

Then, scheduler tries to backfill (EASY or Conservative) of slice type; 

Last, scheduler will try to non-type backfill (e.g. using the medium and long type job in 

their waiting queue to backfill the fragmentation left in small job type slice). 

Waiting Queue 

Preemption Queue 

Running Queue 

Figure 1. Scojo-PECT Scheduler sketch map 



4. Extended Job Scheduling Algorithm 

In this chapter, we are going to discuss how we extended the original scheduler. We start 

talking about the motivation and objective. And we explain the cost model (interval 

setting, overhead distribution calculation) we have applied in our experiment in detail. At 

last, we will discuss the extended job scheduling algorithm such as how it works, what 

extra benefit it could get compared to original scheduler. After that, we will analyze the 

potential benefit of a simple case by adopting our extending job scheduling algorithm. 

4.1 Assumption, Motivation, Scheduling Objective 

The extending of applying application level checkpoint is based on the following 

assumptions: 

1. We introduce checkpoint in our simulator as an approach for flexibly using free 

resource, not for the aim of failure recovery 

2. All the jobs randomly generated by Lublin-Feitelson model are independent 

As we discussed the original Scojo-PECT, it has feature like preemption while it will 

restrict scheduler to make decision on using idle resources even there are available. And 

originally the Scojo-PECT did not have checkpoint support, for this reason, we imported 

checkpoint/migration mechanism to let the scheduler to better utilize resource much 

more flexible. 



The objective of the scheduler one is to get better average response time based on 

different workload model. The response time means the time cost between jobs been 

submit and return back. It generally represents the efficiency of scheduler processing 

operation. Another is to find out the relation between the average response time and 

relative factors like average job size, randomly job generation and also job type ratio. 

4.2 Cost Model 

As we discussed in background issue, there are two major differences between system 

and application level checkpoint. One is the file size, and the other checkpoint time. For 

the first, we involved the gamma distribution [11] and we will discuss it in detail at below, 

and the latter, we borrowed their formula for setting up optimal intervals for application 

level checkpoint [3]. 

4.2.1 Trend of Checkpoint File Sizes 

The background of this function is our investigation of other peoples' experiment results 

between system level and application level checkpoint sizes using different categories of 

program. The most common situation is the application level will reduce the full size of 

checkpoint files in system level to the average of 50%, which in another way means 

nearly half space of checkpoint file could be saved by applying the modification in 

application level [5].While, there are still some specific application required more on the 

availability of data, in that case, the reduction of checkpoint size between these two 
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levels will be less, vice versa. Two extreme cases are the application level checkpoint 

files nearly be the same as the system level one; and the application level checkpoint file 

shrink tremendously and close to 20%, shows in Table 1. So we manually set the statistic 

bound ranges from 20% to 95% of the full size of system level checkpoint file [5][6]. 

With the trend, as it closes to the low bound 20%, the probability of density is higher, 

which means there is much higher possibility to reduce the checkpoint file size for at 

least 20%, and to the other side, high bound 95%, the probability of density is almost 

none means there is little chance for application level checkpoint reduce the file size for 

95%. 

Applications 

ISLNG 256 
ISING512 
ISING768 
ISING 1024 

ISING urn 
ISING 1536 
ISING 1792 
SOR25C 
80RS12 
SOR 768 
SOR1024 
SOR1280 
GAUSS 512 
GAUSS 1024 
ASP 512 
ASP 1024 
2*BODY40» 

System-Level 
Checkpoints 

3176 
3962 
5268 
7082 
9408 

12251 
15601 
3409 
4999 
7613 

11251 
15994 
5312 

11806 
3990 
7230 
3540 

User-Defined 
Chedqpomts 

269 
1049 
2341 
4145 
6461 
9289 

12629 
540 

2104 
4692 
8304 

12940 
2052 
820(1 
1024 
4096 

312 

Size 
Redaction 

91.5% 
73.5 % 
55.5 % 
41.4% 
31.3% 
24.1 % 
19.0 % ' 
84.1% 
57.9 % 
3S.3 % 
26.1 % 
19.1 % 
61.3 % 
30.5 % 
743 % 
43.3 % 
91.1 % 

Table 1. Relation Chart of Application & System Level Checkpoint [5] 

Although we have the trend to represent the probability density, but we could not predict 



the reduction of file size, so based on the table 1 [5], we analyzed the data and formed the 

chart. To better present the relation and make it precisely, we chose the gamma 

distribution with the two bounds fixed at 0.2 and 0.95, which totally express and cover 

the specific case. The trend chart we have created partly from those data [5] and is shown 

below to indicate the relation between application level checkpoiont file and system level 

checkpoint file when the file size goes up, see Figure 2. 

Figure 2 Chart of relation between application and system file sizes 

The gamma function is used to let it control the randomly generated figures which 

represent the checkpoint file size of system level to display the trend which would be 

close to the gamma distribution, with its parameter fixed. As for gamma distribution [11], 

in probability theory and statistics, is a two-parameter family of continuous probability 

distributions. One is the shape parameter k and the other is scale parameter 0. So a 

random variable x is gamma-distributed with these two parameters could be denoted as 
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a~T (k,0). For its probability density function, both k, 6 would be positive, it could 

be expressed as 

F(x;k,0) = x k-i e 
-x/e» 

ek nk) 
forx>0andk, 6»0. [11] 

If k is a positive integer, then T (k) = (k-1)! 

k= 1,6 = 2.0 — 
k- 2,9 = 2.0 
it = 3,6 = 2.0 — 
k = 5,6=1.0 — 
jfc = 9,9 = 0.5 — 

i i i 

0 2 4 6 8 10 12 14 16 18 20 

Figure 3. Probability density function [11] & Cumulative distribution function [11] 
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So back to our prediction of the application level checkpoint file size, based on the 

function given above, we let Sapp be the application level checkpoint (ALC) file size and 

Ssys be the system level checkpoint(SLC) file size, combined with the upper and lower 

bound restriction, we formed our formula: 

Sapp= a x Ssyswith a~T (k,#) 

This also could be expressed as: 

-x/0 

Sapp = F(x;k,6>) x Ssys = xk"'—- x Ssys for x>0 and k=2, 0 = \ (1) 
6k T{k) 

Gamma_Low for Cumulative distribution 0.2, which is 0.8274 (2) 

Gamma_High for Cumulative distribution 0.95, which is 4.743 (3) 

While x = gammaRandom.getnextdouble (), one function in colt.jar (provides a set of 

Open Source Libraries for High Performance Scientific and Technical Computing in 

Java.), between GammaJLow and Gamma_High, based on formulas above, Sapp would 

be 

x + Gamma_Low - Gamma Low 

Gamma_High - Gamma_Low 
x&yj=Sapp (4) 

So the checkpoint overhead of ALC would be 

ALC cost = —— + Tcoor, 
IB 

where IB is integrated bandwidth of reliable storage, we put the 0.5 to be the 

coordination time of processes before the checkpointing starts and for current technology 

we pick 70MB/s for the write out speed as recent technology. Thus, the formula be 



A ¥ ^ A x-0.8314 _ A C 

ALC cost = x Ssys + 0.5, 
2.9266x70 

The reason why we pick why we pick the shape parameter k as 2 and the scale parameter 

6 as 1, we concluded the two specific application and judged different situations while 

the size changed from Figure 4. 

on 

o 
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Q 

'0 
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60% 
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30% 
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rarrory footprint perc. 

IT0TALJSIN3 
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10% 

256 

Itenwy footprint perc. 

ITOWLJCR 
[SCR 

512 768 1024 1280 

Size of datasize 

Figure 4. Relation of reduction of file size in ISING and SOR applications 
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For calculating the low bound and high bound, we used the assistant tool MATLAB, to 

draw the graph and get the figures at two extreme bounds. Like the Figure 6 below, we 

settle the cursor on the cumulative distribution function chart and move it to get the right 

figure at 0.2 and 0.95, then we map the x to the probability density function chart. Let 

them cover the 20% and 95% of the total area. 

Gamma distribution probability density function; y=x*exp(-x) 

0.3-

0.2 

0.1 

0 

1 - - " - - - " - • • : • i • • _ • : • - . . . . . : . . . . 

i i 

i -

-2, ihela=t 

4 8 
x 

8 10 

Gamma distribution Cumulative distribution function: y="l-exp(-x)-x*exp{-x) 

Figure 5. The (PDF) probability density function and (CDF) cumulative distribution 

function of gamma distribution 



4.2.2 Interval Setting 

For deciding the interval of checkpointing, several papers [1][2][3] discussed optimal 

intervals in the context of failure tolerance, the first was brought up in early 1974 given 

an explicit formula Topt = V25M [ 1 ] where 8 is the time to write a checkpoint file, M is 

the mean time between system failures (MTBF, it involves the whole aspects of system 

such as CPU, memory, power cable etc.), and Topt is the optimum compute time between 

writing checkpoint files. But its restriction is this model completely fails to predict 

simulation results for small M. As for that reason, the second paper brought up in 2003, 

by Young and claimed that Topt = •N/25(M + R) - 5 [3] to be an excellent estimator of 

the optimum compute interval between restart dumps for values of (T +S)/M < — at the 

end, where R be the restart time. In 2009, chen etal[\] pointed out the optimal 

checkpoint intervals heavily depend on some system parameters, such as the time to place 

a checkpoint, the time to recover from a fault, the fault arrival rate, and the user specified 

parameters, like user defined timing constraints. Setting the intervals could influent the 

system availability and task execution time. 

We picked up the first formula to help us setting interval for our simulator. The reason is 

we need to roughly predict the interval, although the model did not count the failure 

probability. The MTBF as its definition is the mean time between failure for individual 

components (e.g., processors, disks, memories, power supplies and networks). A large 

number of components in system with physical connection between them, this inevitably 
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leads to frequent individual failure. For components mentioned above, they all have an 

operational lifetime measured in years. There are three different component reliability 

levels: MTBFs of 104,105,106 hours. In particular, the IBM BlueGene/L system with 

65536 nodes is expected to have an MTBF of less than 24 hours [4]. We followed the 

graph and select the MTBF under the reliability level of 10s hours, with 128 nodes 

involved in our simulation system around 200 hours. So in our case, the optimal 

checkpoint interval would be set following the formula: 

Topt= V25M = 20VS =20 J^-+ 0.5 
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Figure 6. MTBF chart under different reliability level. [4] 

For the reason that, the optimal interval is too theoretical and might not be able to suit 
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every cases, thus we try to make our simulation more close to the real situation by adding 

the normal distribution (Gaussian distribution) on the base interval setting and fix the 

confidence limit o2 to let the probability density located between the confidence limits. 

The normal distribution is Tmt~ldu,52) a n ^ after expanded it is the formula with 

variable x related with ju and a2, with ju be the median value of the bell curve and 

o2 be the variance, here we define the a2 be around two to let the probability density 

would reach 99.5% between the variances. 
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Figure 7. Probability density function of normal distribution [12] 

So far, we have done checkpoint overhead part and for migration and restart time we need 

to clarify them. The migration time is not depending on the number of nodes, but linearly 

to checkpoint file size. Its cost mainly relies on the time transfer the image from stable 
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storage to target nodes. 

Migration cost = ^ - +7^ [21] 
W 

This formula was developed by Peiyu Cai [21]. (W is the write speed of stable storage 

during the migration and for current technique we take 30MB/s, and Tmjn is the base time 

which represents the basic overhead.) And for restart cost, that time on local node is 

constant. Its cost relies on putting images to the node memory, once the migration done 

transfer, the time to restart just short within one second. 

4.3 Checkpointing Scheme by Migration with Checkpointing at Application 

Level 

As the original Scojo-PECT does not have checkpoint/migration support, the original 

idea to introduce migration based on checkpointing is to fill fragmentations which were 

created during the jobs being scheduled and find out the improvement of the scheduler 

performance like average relative response time. The original scheduler handles the slice 

by a series of operations such as release preempted jobs' memory, calculate free 

resources, search preemption queue, waiting queue and apply backfill strategy if 

possible. 

As Peiyu Cai discovered mainly four cases on system level before [21], we did some 

investigations on the application level on his basis. After investigating the scheduler, we 

designed an algorithm and added some policies to take advantage of migration based on 
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checkpointing. We reached a conclusion that to take better use of the free resources and 

fill up the fragmentations, we could achieve it through backfilling (get jobs in the rear 

position ahead) and migration (put jobs run on other free resource at the same time or at a 

later time). 

Generally, the application level checkpoint extension has three main stages: 

1. Job initialization stage, see Figure 8. We figure out the places where we need to insert 

our checkpoint intervals (create intervals based on the runtime) and generate an 

interval list to hold them in time order and meanwhile calculate checkpoint overhead 

based on the cost model. 

In;= rtfJ| 

Interval list 

I I I 
Job initialization stage 
• create intervals based on the optimal runtime 

and generate an interval list 

• create checkpoint overhead based on the cost model 

Figure 8 Job initialization stage 

2. Create next checkpoint event stage. As the scheduler processed jobs slice by slice and 

generally jobs can be started either at the beginning or the middle of slice. So we 

summarized two places we create the checkpoint event. 1) The beginning of slice, at 

that time all the jobs we prepared to run in the particular slice, each has their own 

runtime and job size with its starting time. 2) At the start time of jobs, as not all the 



jobs start from the beginning of slice. 

3. Handle checkpoint event stage, see Figure 10. In this stage, we are going to discover 

the chance to take advantage of migration based on checkpointing. We have two 

kinds of queues here dealing with checkpointed jobs and selecting jobs for migration. 

One is the reserve queue (It holds the checkpointed jobs) and the other is the 

candidate queue (It holds the jobs which are able to run on the free resources at the 

checkpoint time). 

When reaching the checkpoint, a couple of things will be done. 1) Stop job and add 

checkpoint overhead to simulate the checkpoint process. 2) Move the checkpointed 

job into reserve queue. In reserve queue, a comparison function will pick out the 

candidate jobs (could run on free resources) for migration and move them from 

reserve queue into candidate queue. 3) The original scheduler do schedule first (try to 

find out any non-type backfill), and right away migration operation will be done to let 

jobs in candidate queue run on the free resources again. 

The whole process of the simulation will contain such terms: 

Reserve queue, it will hold the checkpointed jobs. 

Candidate queue, it will hold the jobs which are able to run on the free resources at the 

checkpoint time. 

Application level interval list, it will hold the interval event based on jobs and sort it by 

time order. 
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4.4 Extended Scheduling Algorithm 

We only gain benefits based on the migration stage. In this chapter, we will focus on 

talking about migration phase of handling the checkpoint event stage. 

During us dealing with the checkpoint event, we can classify them into several steps, see 

Figure 9: 

The first step: get jobs from running queue and add them to the reserve queue, which is 

used to hold the checkpointed jobs. And then let the original scheduler do schedule first 

(The schedule function normally checks preemption queue, waiting queue of own job 

type and other job types). We only extend the original scheduler and will not affect the 

original decision.) 

The second step: in the reserve queue, we compare the nodes of jobs with the total free 

nodes in the cluster at the checkpoint time and pick out jobs which are able to run to the 

candidate queue. 

The third step: try to assign free nodes to candidate jobs of candidate queue. For each job, 

if free resources are not the same as the original ones, do migration; if it is, run the 

candidate jobs on the original nodes. 
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Figure 9 Migration stage 

After we extended the original scheduler, we could have more flexibility on using free 

resources, as we have more chance to backfill and migration. We deal with the situation 

in Figure 10 like the following: 

1) Job 2 will finish first, and the scheduler will search the preemption queue, waiting 

queue of its own type and then waiting queue of other types to see if any jobs 

could be backfilled. For this case, no other jobs can run. 

2) Job 1 will have checkpoint, it will be moved from running queue and added to 

reserve queue, and the original scheduler will do schedule (check preemption 

queue, waiting queue of own job type and other job types). Later in this case, as 

the free resource have been used by Job 3 (non-type backfilled), Job 1 will wait in 

reserve queue. 

3) Slice ends and change to another type of slice, Job 3 is preempted but can 

continue running on its own type slice. 



4) Job 3 finishes and it will do the same operations as Job 2 did. 

5) Job 4 will checkpoint, at this time it will also be added to reserve queue from 

running queue, and the original scheduler will do schedule (check preemption 

queue, waiting queue of own job type and other job types). Then job 1 and job 4 

in the reserve queue will be moved to candidate queue because this time the free 

resource are enough for them to run, and the last they are added to running queue 

and start to run. Here Job 1 migrates to other resources as Job 4 prefers to run on 

its original nodes. 
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The main algorithm of doing migration is like the following: 

case(APPCPevent){ 

job = getEventJob(APPCPevent); 

stop(job); 

add To reservedQ(job); // reservedQ is a list that holds checkpointed jobs and let 

them hang on and wait. 

Schedule(); // original Scojo-PECT scheduler function. 

} // by here all possible jobs can be backfill'd or non-type backfilled will be backfilled. 

for (all job in reservedQ) { // this is try to fill some of the jobs back migration supported, 

if (currentFreeNodes>=jobNodes) { 

add to cahdidateQ(job) // jobs may back to run in own slice, if own position 

taken by backfilled jobs, perform "in slice" migration. 

} 

for (all job in candidateQ) { 

if (free Node Position != original Node Postion){ 

migrate(job, freeNodes);// "in slice" migration. 
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restart (job); 

} 

else if(freeNodePosition = originalNodePosition) { 

run(job) // no job takes its original position, back to run normally. 

} 

} 

For this heuristic of selecting candidate jobs, in our extension, we always pick out the 

jobs suit best in the candidate queue to fit the resource, and keep assigning resources to 

jobs until the free resources have been taken used of (here may leave small number of 

resource idle). 

In our simulation, the heuristic for job selection does not affect the complexity of original 

scheduler. Because the selection heuristic has already been merged into original one 

which is using easy to fit or called first fit. The adoption of heuristic for job selection did 

affect the execution time, its original runtime costs thirteen minutes for one run and the 

extended runtime costs around fifteen minutes for each run. 
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5. Experiment and Result Analysis 

In this chapter, we are going to introduce the experiments on our modified scheduler. The 

experiment aims to test the fitting of the modified algorithm on handling jobs. We first 

introduce the experiment environment in 5.1, and then propose the test cases in 5.2 and 

deliver the testing results in 5.3 and final summarization on the observation from the 

experiments. 

5.1 Experiment Environment Setup 

We used our own laptop for the testing environment. Its configurations are: 

CPU: Intel Dothan 1.73GHz (One processor) 

Memory: 2 Gigabytes DDR 533 

Operation System: Microsoft XP SP2. 

5.1.1 Workload Modeling 

In our simulation, we only use the Lublin-Feitelson statistical workload model [19] which 

is the best-available synthetic workload model (it includes sequential jobs, correlations 

between runtimes and sizes, and varying inter-arrival times at different times of the 

day/night). All workloads comprise of 10000 jobs. The other detailed parameters are listed 

in table 2. 

As in this event-based simulator, jobs are generated based on Lublin-Feitelson Model and 

the job may take up several slices or just one slice to finish depend on the runtime they 
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submitted. Therefore there would be different circumstances, like a job may end up 

during the slice or exactly at the end of slice although these situations rarely happen. 

While we still need to take this into consideration no matter whether it will give the 

positive affection or the negative affection. 

Parameter 

Machine size 

Job Class Supported 

Classification Short jobs 

Classification Medium jobs 

Classification Long jobs 

Classification Narrow jobs 

Classification Medium-Size jobs 

Classification Wide jobs 

Switch Overhead 

Value 

128 

Small, Medium, Long 

Runtime<10min 

10 min<Runtime< 3 hours 

Runtime > 3 hours 

Size < 10% machine size 

10% machine size<size<50% machine size 

size> 50% machine size 

60 sec 

Table 2. Scheduler Parameters 

5.1.2 Evaluation Plan 

The goals of these tests are trying to reveal the relation of relative average response time 

and several potential factors based on checkpoint/migration mechanism. 
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Some terms we need to specify related to the results first: 

Response time: it defines as the time span from the job was submitted to the job finished. 

Runtime: it defines as the time period when the job starts to run and finishes running. 

Relative response time: it represent as the ratio for the average response time and the 

runtime. 

In the test, we use different seed parameters. We are going to choose 7, 31, 13, 23 in 

addition to original one 71. The reason why we are trying to use different seeds number 

is the seed as a random parameter worked in Lublin-Feitelson model, it control the 

function when generating jobs, filling them with different correlation of runtime and size. 

It also changes the memory size of each job. So different seed may have different jobs 

and get different results. We can see the table 3 for details: 
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Work 

Load 

Seed 71 

Seed 23 

Seed 31 

Seed 13 

Seed 7 

% ofJobs 

Nshort 

64 

65 

63 

64 

64 

Nmed 

19.5 

19 

20 

19 

20 

Nbng 

16.5 

16 

17 

17 

16 

% of Work 

Wshort 

0.5 

0.5 

0.5 

0.4 

0.5 

Wm ed 

26 

27 

25 

26.5 

26 

Wlong 

73.5 

72.5 

74.5 

73.1 

73.5 

Avg. Job Size 

^short 

9 

9 

9 

9 

8 

^med 

17 

17 

16 

17 

17 

^long 

19 

20 

20 

20 

21 

Avg. 

Inter-Arrival 

Time (sec) 

810 

1038 

860 

798 

840 

Table 3 Characteristics of synthetic workloads 

As we implemented checkpoint/migration, we will also make some combinations to test 

the benefit purely from the migration stage rather than compare the checkpoint/migration 

stage with the original simulation. Thus, there will be three cases: original, checkpoint 

without migration, checkpoint with migration. 

5.2 Experimental Results 

The experimental results for the different cases with different seed numbers are showed 

in the following figures. 
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Figure 11 Relative Response Time for long and medium jobs at seed 71 

In Figure 11, we can observe that the overall relative response time get improved 2.20% 

for long jobs and 4.41 % for medium jobs, even with the wide jobs performed very badly 

with migration strategy. 
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Figure 12 Relative Response Time for long and medium jobs at seed 31 

In Figure 12, we can observe that the overall relative response time get improved 1.21% 

for long jobs and 3.75% for medium jobs. 
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Figure 13 Relative Response Time for long and medium jobs at seed 7 

In Figure 13, we can observe that the overall relative response time get improved 1.06% 

for long jobs and around 2.02% for medium jobs. 
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In Figure 14, we can observe that the overall relative response time get improved 1.64% 

for long jobs and around 4.13% for medium jobs. 
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Figure 15 Relative Response Time for long and medium jobs at seed 13 

In Figure 15, we can observe that the overall relative response time get improved 1.74% 

for long jobs and around 4.56% for medium jobs. 



Relative Response Time under seeds 

Figure 16 Relative Response Time under different seeds 

In Figure 16, we can observe that under different seeds the improvement of medium jobs 

is around 4% at average and long jobs is around 1.5% at average, as the reason long jobs 

are wider and medium jobs could take better use of checkpointed long jobs. 

5.3 Result Analysis 

Here we are going to discuss the efficiency of optimization. We will focus on the 

improvement on the average relative response time under different situations. 

The application level checkpoint approach in our simulation generally insert regular 

checkpoint intervals in each job, which was calculated by program depend on their 

checkpoint file memory usage and some parameters we discussed before. Simulation is 



going in slice after slice, in each slice jobs are taking up resource at certain time, and 

some application level checkpoint intervals may happen at the same time but with very 

mere chance. Most situations will be one job does the checkpoint operation while other 

jobs are executing normally. 

From the results, we could obtain that wide jobs are not easy to get checkpoint and 

migrate, as they have to wait for enough resource to have itself to be executed. If we just 

look at the narrow and medium jobs, the performance will be better. This also means that 

long jobs will have less chance to take advantage of checkpointed medium jobs, as the 

long jobs are wider. Also it means the medium jobs will have more chance to take better 

use of checkpointed long jobs. 
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6. Conclusion and Future Work 
6.1 Conclusion 

In this thesis, we have presented a job scheduling approach which employs application 

level checkpoint and migration scheme on the original Scojo-PECT to tune up the 

performance. As expected, this approach improves overall relative response time for both 

medium and long type jobs, especially for the narrow and medium-size jobs. Specially, 

the thesis has these contributions: 

1) We implemented the application level checkpoint/migration as an extension to the 

original scheduler; 

2) We found out that application level checkpoint/migration improved the relative 

response time a little; 

3) We discovered that wide jobs usually are difficult to be migrated after being 

checkpointed, as it will need to wait for enough free resource to resume its former 

checkpointed work. 

4) Narrow jobs are more suitable to use application level checkpoint as they require very 

little resources, and thus get greater improvement. The reason is that, as the total 

resources fixed, narrow jobs are more flexible to take use of free resources than other 

size jobs. . 

6.2 Future Work 

In the future work, one of the improvements will be comparing the improvements by 
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selecting different algorithms to choose suitable jobs in candidate queue. Currently we 

just tried the greedy algorithm and are not sure whether it produces the best combination 

ofjobs. 

Other works may be that we try some other impact factors, like we use real traces which 

have different job type ratio and use different inter-arrival times. What is more, we could 

also try with smaller job sizes because in the experiments we proved that the wide jobs 

could not take advantage of application level checkpoint/migration very well. 
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Appendix 

In this appendix, we are going to test the proper migration and backfill functionalities of 

the extended scheduler in the simulation. 

Test Parameters 

Description of testing parameters 

Job type definition: 

Small jobs < lOmin 

1 Omin < < Medium jobs < 3 hours 

Long jobs > 3 hours 

Interval setting: 800 sec, the reason we choose 800s here is to make sure the small job 

will be skipped as we do checkpoint and migration only on medium and long type jobs. 

Checkpoint overhead: 3 sec. time costs doing the checkpoint 

Average relative response time (ARRT), its definition is the ratio of the average response 

time compared with its optimum runtime and the smaller number the better result. 

Test Example 

The job have several attributes, job submit time, job runtime, optimal node for job, job 

memory size for application level checkpoint approach it also have the two other 

attributes: the interval and the checkpoint overhead. Like the definition in our simulation 
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SimpleJob(0, flex, new SimpleTime(O), Serialruntime, Nopt, Nmax, Nmin, Memory size, 

config) 

We manually created 6 jobs and arranged the submission time for each at different points 

by setting up the parameters after calculation. After analysis the debugging process, we 

could find the checkpoint/migration operation at the right decision points. This could 

show that we have employed our implementation correctly according to the algorithm we 

have proposed before. The detailed can be expressed like below: 

Case Codes 

if(i==0) //Serial run time/(nodes*0.65) = actual run time 

tmpJob = 

new SimpleJob(0, flex, new SimpleTime (0), 24876, 128, 128, 128, 10, config);//299 

else if(i==l) 

tmpJob = 

new SimpleJob(l, flex, new SimpleTime(80), 24876, 128, 128, 128, 10, config);//299 

else if(i==2) 

tmpJob = new SimpleJob(2, flex, new SimpleTime(lOO), 32045, 29, 29, 29, 240, 

config);//1700 

else if(i=3) 

tmpJob = new SimpleJob(3, flex, new SimpleTime(180), 84500, 99, 99, 99, 1024*3, 

config);//1300 

else if(i==4) 

tmpJob = new SimpleJob(4, flex, new SimpleTime(560), 364000,28,28, 28,1024*3, 
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config);//20000 

else if(i==5) 

tmpJob = new SimpleJob(5, flex, new SimpleTime(600), 1300000, 100, 100, 100, 

1024*3, config);//20000 

MATLAB Code for Calculation of Checkpoint File Size 

Some codes in MATLAB using to draw the probability density function and cumulative 

distribution function of gamma distribution are shown below: 

syms x yl y2; 

yl=x*exp(-x); 

y2=l -exp(-x)-x*exp(-x); 

subplot(2,l,l); 

h=ezplot(yl,[0,10]); 

title('Gamma distribution probability density function: y=x*exp(-x)'); 

legend('k=2,theta=l'); 

ylabel(y); 

set( h, 'LineWidth' ,2 ); 

grid on; 

subplot(2,l,2); 

h=ezplot(y2,[0,10]); 

set( h, 'LineWidth' ,2 ); 
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title('Gamma distribution Cumulative distribution function: y=l-exp(-x)-x*exp(-x)'); 

legend('k=2, theta=l'); 

ylabel('y'); 

grid on; 
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