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ABSTRACT 

Failure of ship hulls may be a result of a combination of factors. Residual stress caused by 

welding of the stiffeners on to the steel plates is one of the contributing factors to the failure. 

This analysis was completed for a more in-depth look at the residual stress distribution found 

at a typical weld-stiffener connection of ship hulls. Three specimens were built to represent 

small segments of an actual ship hull. The sizing of the specimens was designed so they 

could be accommodated at the test facility available at the Canadian Neutron Beam Centre in 

the Chalk River Laboratories. The specimens were made out of 9.53 mm thick plate of 350 

WT grade structural steel stiffened by LI27x76.2x9.53 stiffeners. The non-destructive 

neutron diffraction method was used to collect strain data at locations within the volume of 

the specimens. The method of neutron diffraction uses the crystal lattice of the sample 

material as an internal strain gauge. The test results were analyzed to determine the 

distribution of the residual stress in the parent steel plate and the effect the welding of the 

stiffeners has on the residual stress field. This thesis presents the three-dimensional residual 

stress for the parent plate and specimens with one and two stiffeners obtained from this 

study. 
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1 Introduction 

1.1 General 

Failure of ship hulls is often a result of a combination of factors. Residual stress caused by 

welding of the stiffeners on to the steel plates is one of the contributing factors to the failure. 

This study was completed for a more in-depth look at the residual stress distribution found at 

a typical weld-stiffener connection of ship hulls. The results show the effect of one and two 

stiffeners and stop and start in the welding process on the residual stress distributions. Three 

specimens were built to represent small segments of an actual ship hull. The methods and 

practices used by ship builders have also been studied and followed in the preparation of the 

specimens. 

1.2 Residual Stress 

Residual stresses are a result of processes that either modify the shape of the metal or 

introduce a temperature gradient, such as welding. Welding produces residual stresses 

primarily due to the differences in the amount the weld metal shrinks as it cools and hardens 

to the ambient temperature. Welding often induces a steep gradient of residual stresses that 

are highly unpredictable due to many factors such as complex thermal profile, material 

behaviour, and joint configuration. In order to produce acceptable results, numerous 

locations on the specimen must be measured for strain. Once the strain components are 

collected the elastic strain equations are used to calculate the stress values. (Withers, et al., 

2001) 

1.3 Residual Stress Tests 

There are numerous methods available for determining residual stresses. The methods 

available for testing can be broken down into the following categories: (i) computer 

modelling, (ii) destructive, (iii) semi-destructive, and (iv) non-destructive. These methods 

will be discussed in depth in Chapter 2. 

-1 



1.4 Methodology 

Three specimens were made to obtain detailed information on the residual stresses induced 

from the welding process of the stiffeners in a typical ship structure. The first specimen was 

a plain plate with no stiffeners. The second specimen had one stiffener welded on the parent 

plate. The third specimen had two stiffeners welded on the base plate, 250 mm on centre. 

All residual stress data collection was completed at the Canadian Neutron Beam Centre of 

the Chalk River Laboratory facilities in Chalk River, ON, Canada. 

1.5 Objectives 

The objectives of this study are as follows: 

• To determine the residual stress distribution created in the parent plate from its 

manufacturing rolling process 

• To determine the residual stress distribution in the parent plate induced by the 

welding process of welding one stiffener 

• To determine the residual stress distribution caused by one stiffener on the welding of 

the subsequent (second) stiffener 

• To determine the residual stress distribution caused by the stop and start of the 

welding process during a welding pass 

1.6 Organization 

Chapter 1 introduces the thesis by providing background information on the subject and the 

objectives of the thesis. Chapter 2 presents the literature review on the subject of residual 

stress testing methods and the work completed in this area to date. Chapter 3 organizes the 

information on the material used and the welding method and data. Chapter 4 presents the 

data and discusses the results found during testing. Chapter 5 provides a summary of the 

work completed and the recommendations and plans for upcoming research. 

-2 



2 Literature Review 

2.1 Introduction 

Residual stresses are caused by thermomechanical processing of steel. These processes 

either alter the shape of the metal or induce a temperature gradient which generates residual 

stress. Processes that alter the physical shape include machining, forging, rolling, drawing, 

etc. The welding, casting, and quenching processes introduce a temperature gradient to the 

metal. 

Residual stresses develop in welded structures primarily as the result of differences in the 

amount the weld metal shrinks as it cools and hardens to the surrounding temperature. 

Residual stresses are highly unpredictable and often non-uniform. The residual stress 

distribution will also change depending on the restrictions of the parent plate. In order to 

produce acceptable results, several locations on the specimen must be measured for strain, 

since a steep gradient in strain may be produced by residual stresses. 

Residual stresses are usually calculated from the elastic strain values. The elastic strain 

measured is either the existing strain or the change in strain when residual stresses are 

released. The elastic strain values are converted to stress values using the elastic strain 

constants. Hooke's Law and Young's Modulus are applicable here when calculating the 

stress values. Residual stresses developed during the welding process are macrostresses 

(Type I) that are continuous from grain to grain and from phase to phase. (Hutchings, et al., 

2005) 

The method for measuring residual stress and the locations and number of measurements 

depend on the expected stress field. Preliminary tests may be required for a better estimate 

of the residual stress field. The chosen method also may depend on the nature of the 

specimen, for example, if the specimen is too large to move and measure in a laboratory, the 

measurements need to be carried out using portable measurement devices in the field. 

A scaled version of the actual specimen may be used for determining the residual stress 

distribution. However, it must be large enough to avoid improper readings, when a 
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laboratory test method is chosen. Generally, the rule that is followed is that the length and 

width of the plate should be at least three times the plate thickness (Hutchings, et al., 2005). 

There are various methods available for measuring the residual stresses. These methods are 

divided into three major categories: (i) destructive, (ii) semi-destructive, and (iii) non-

destructive. Discrepancies exist among these different types of test methods. This is because 

a steep gradient of stress exists in the steel and because the test volume required for the 

different types of test methods vary as well. 

2 3 

The required test area or volume must be less than 1 mm or 1 mm , respectively, to produce 

an accurate image of the stress field. The peak stress values may be missed if the test areas 

are too large for the very sharp stress gradients. Thus, the test area or volume size must be 

optimized for the best data collection with the minimal number of measurements taken, to 

detect the peak stresses and their values. (Hutchings, et al., 2005) 

The type of test chosen may produce different types of errors. These errors are due to 

material characteristics of the steel such as, crystallographic texture, phase composition, 

grain size, and plastic strain. 

The following sections will outline a method of testing and discuss previous work completed 

using that method. 

2.2 Computer Modelling 

The residual stress distribution is also determined using numerical methods such as finite 

element (FE) method. ABAQUS (Simulia, 2008), which is a commercially available general 

purpose FE code, often used to determine the residual stress distribution in solids and 

structures (Prime, et al., 2004). ABAQUS can be used to model the behaviour of solids 

under externally applied loads and body forces, such as due to residual stress. ABAQUS is 

used for three-dimensional models subject to static and dynamic loading patterns. Other FE 

codes such as ADINA (Hu, et al., 1998) and ANSYS (Cho, et al., 2004) are also available 

and used for determining residual stresses. 
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2.3 Destructive Test Methods 

Destructive test method is the most commonly used technique for determining residual stress 

distribution in steel structures. This is because the method is convenient and simple. 

Destructive methods are basically stress relaxation techniques, where the residual stress 

within a finite element (very small volume) is released and the change in strain is measured. 

As a result of destructive testing, the specimen becomes inoperative and therefore, there must 

be enough material to test and destroy. 

Destructive tests produce optimal results when the nature of the stress field and the estimate 

for magnitude of stress gradient are known. The stress field determined can be triaxial, 

biaxial, or uniaxial producing a stress gradient that is three, two, or one-dimensional, 

respectively. The magnitude of the stress gradient affects the sample volume of residual 

stress measured along that gradient. 

The most widely used form of destructive testing is the sectioning method. The sectioning 

method uses strain gauges to read the initial strain values. The material is then removed 

around the gauges and the final strain readings are taken. The strain due to residual stress in 

the metal is the difference between the initial and final strain values. The methods of 

removal include milling, sawing, grinding, drilling, and lathe turning. Numerous sections 

and readings may be taken however; assumptions must be made to factor in the stress 

previously released in the preceding sections. The method of metal removal can introduce 

high stress levels at the surface of the material and must be accounted for. The surface 

stresses introduced in this method can be minimized or even be removed by using 

electrochemical methods. Some metal removal methods reduce the residual stress by 

introducing heat which consequently anneals the specimen. Chemical or electrolytic 

polishing is one type of material removal sectioning processes that does not introduce 

additional residual stresses into the metal. 

Recent interest has been in another form of destructive testing called the contour method. In 

this method, an electro-discharge machine cuts the severely restrained specimen using a flat 

cut. The specimen deforms across the cross-section as the residual stresses relax. The 

deviations of the contours are measured using laser scanning. The laser scanning results and 

-5 



computer analysis determine the out-of-plane stresses. This method provides a two-

dimensional stress field normal to the cut and is best used for measuring the longitudinal 

stress in a weld. The method is generally used when the stress levels are low and the 

specimens are smaller in overall size and cross-sectional area. 

Hu and Jiang (1998) conducted laboratory tests to determine the ultimate strength of 

stiffened panels with varying amounts and types of damage. Then they compared the 

residual stress test results with the results obtained from nonlinear finite element analysis. 

The metal used in the specimens was hot-rolled 350 WT steel (CSA, 2004). The length of all 

the specimens was 2000 mm (Figure 2.1). The stiffeners were tee sections with flange 

dimensions of 103.9 mm x 8.1 mm and web dimensions of 136.8 mm x 6.2 mm. The base 

plate was 500 mm wide and 9.7 mm thick. Coupon test data indicted a yield strength of 425 

MPa for the plate, 411 MPa for the web, and 395 MPa for the flange. The residual stresses 

were found in the longitudinal direction (Figure 2.1) using the sectioning method. Figure 2.2 

shows the residual stress distributions obtained in the longitudinal direction. 

5'jO mm 

Figure 2.1: FE representation of the specimen (Hu, et al., 1998) 
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(Hu, et al., 1998) 

The nonlinear finite element models were developed using code ADINA (ADINA R & D , 

2008). A four-node quadrilateral shell element was used to simulate the plate and stiffeners. 

The residual stress due to welding was simulated using a thermal stress application. The FE 

models and the laboratory tests provided similar stress patterns. However, the magnitude 

varied since the actual welding processes were not as closely monitored. The longitudinal 
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stress values were tensile near the weld with a steep conversion to compressive stress away 

from the weld (Figure 2.2 (a)). The maximum value of stress was almost equal to the tensile 

yield stress of the metal. The results from the FE method and the physical tests are compared 

in Figure 2.2. The FE analysis indicated that the behaviour of a stiffened panel is greatly 

affected by the degree and location of the residual stresses from welding. 

Prime et al. (2004) used the contour method with laser scanning to measure residual stresses 

normal to the cross-section that is, the longitudinal stress component of residual stresses. 

The specimens were ferritic steel BS 4360 grade 50D (ASTM, 2007) with minimum yield 

strength of 355 MPa. The plate was flame-cut to a size of 1000 mm x 150 mm x 12.5 mm 

with an 8 mm U-groove at the centre. A 12-pass weld was made in the groove using 

Tungsten Inert Gas (TIG) and metal active gas (MAG) wire for the welding process. The 

plate was clamped for all passes except the last two, resulting in a 7° bend in the plate from 

the weld line. The plate was then cut into 200 mm wide strips from the centre of the plate for 

testing. The 200 mm specimens were measured using the contour method and neutron 

diffraction. A comparison between two contour methods using the higher resolution non-

contact laser surface contouring method and using the conventional touch probe machine, 

(typically using a Coordinate Measuring Machine (CMM)) were undertaken. The stress 

distribution from the contour methods were finally determined using FE code, ABAQUS. 

The results between the two contours methods showed a good agreement. However, higher 

resolution was possible with the laser scanning, which is the best choice for more moderate 

variations in stress profiles. They also used the neutron diffraction method to measure the 

stress distribution. The comparison between the neutron diffraction results and the contour 

methods showed a good agreement as well. The results obtained from the neutron diffraction 

method and the laser surface contouring method are shown in Figure 2.3. 
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Figure 2.3: The stress maps measured with the contour method and neutron diffraction 

(Prime, et al., 2004) 

2.4 Semi-destructive Test Methods 

Semi-destructive test methods are commonly used when the integrity of the specimen need to 

be kept intact. Majority of the semi-destructive methods are stress relaxation techniques, 

similar to the destructive methods. These methods do not completely destroy the component 

but still inflict minimal damage to the surface of the specimen. Examples of semi-destructive 

test methods are: hole-drilling, ring coring, trepanning, indentation, and spot annealing 

methods. 

The most commonly used semi-destructive method is the hole-drilling method which uses 

either shallow holes or deep holes. The method uses strain gauges to measure the change in 

the surface strain caused by residual stresses which are released when a hole is drilled in the 

surface. The remaining material then readjusts to reach equilibrium. Another method called 



the ring coring method is similar to the hole-drilling method, except a ring is drilled around 

the strain gauge and a cylinder of metal is isolated around the gauge of strain-free material. 

The depth of the measurement in both methods is roughly equal to the diameter of the hole. 

The most accurate results are obtained at a depth of half the diameter. (Hutchings, et al., 

2005) 

Since the stress is assumed constant over the entire area, these methods should not be used 

where the stress gradient is high. Local plastic yielding occurs during the drilling process; 

therefore, areas where the stresses are greater than one-third the yield strength must be 

avoided. The drilling also causes strain hardening in the area around the hole and can cause 

an error of up to 70 MPa (10 ksi). The thickness of the measured specimen must be at least 

four times the hole diameter and the holes must be spaced at least eight times their diameter 

to obtain accurate results. (Totten, et al., 2002) 

Wilken (1976) examined the use of the hole-drilling method in comparison with the splitting-

up (sectioning) method. The hole-drilling method is a semi-destructive method and thus, 

useful for in-service structures. In comparison with the splitting-up method, the hole-drilling 

method was found to be much easier to apply and yielded similar results. However, the hole-

drilling method requires the use of complicated mathematical computations and makes 

several assumptions which may be incorrect. The assumptions are: 

1. The stress is uniform across the whole thickness of the sheet. 

2. The plate is unlimited in all directions. 

3. The validity of Hooke's law. 

4. The constant nature of residual stresses in the region of the measuring point. 

5. The avoidance of plastic deformation at the edge of the drilled hole, affected by 

placing the measuring sensor at a certain distance from it. 

The accuracy of the hole-drilling method was first compared to the splitting up (sectioning) 

method on plated I-girders welded in various sequences. The results obtained from the two 

methods were considered accurate within reasonable error limits and proved the validity of 
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the hole-drilling method. Then hole-drilling experiments were carried out on the welds of 

the longitudinal frame of a ship. Compressive residual stresses were found in the webs and 

high tensile residual stresses were found in the flange near the weld. The ship was in service 

for 18 months and no cracks had developed at the time when the hole-drilling procedure was 

conducted. Since this research was conducted in the 70s, the use of finite element method 

was not common practice and thus, it was not used. 

Several ships experienced catastrophic failures in the 1940s. Therefore, Meriam et al. (1946) 

conducted several tests on actual ship subassemblies to determine a method of measurement 

of residual stresses from welding. Strain gauges were used and holes were drilled around the 

gauge to remove the plug of metal containing the gauge. Two measurements were taken: (i) 

after the welding process and (ii) after the drilling. All strains measured were assumed to be 

elastic and elastic equations were used to convert the measured strain values to stress. Due to 

the nature of the equipment available at the time, the shortest length gauge was 6 mm (!4 in); 

consequently the steep nature of the stress near the weld was averaged over the area and 

precise values were not available. This method only allowed measurement of surface 

stresses and no stress measurements through the thickness of the plate were undertaken. All 

stresses were assumed as to average over the plate thickness, and therefore, remain constant 

through the thickness. The final results found using this method were satisfactory with an 

error of ±13.8 MPa (±2000 psi). 

Cho et al. (2004) compared the residual stresses due to welding process and due to post-weld 

heat treatment using FE code, ANSYS (ANSYS, 2008), and the hole-drilling method. The 

type of metal used was SM400B (A131 Gr. 50) with a yield stress of 294.2 MPa, a Young's 

Modulus of 210.8 GPa, and a Poisson's ratio of 0.3, all at 20°C. A ten pass regular butt 

weld, a twelve pass K-type butt weld, and a nine pass V-type weld were analyzed using the 

FE method. The ten pass butt weld produced a minimum residual stress of -267 MPa 

(compression) and a maximum value of 333 MPa (tension). Following the post-weld heat 

treatment the maximum residual stress found was 38 MPa. The K-type weld produced a 

range of residual stresses from -300 MPa to 316 MPa which were reduced to a 39 MPa 

maximum following the heat treatment. The V-type weld produced a minimum residual 

stress of-239 MPa and a maximum value of 265 MPa, which were reduced to -34.2 and 30.7 
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MPa, respectively following the heat treatment. The welding process was simulated in 

ANSYS with the time for the heat transfer analysis for each weld pass as the total weld 

length (varies) divided by the welding velocity (20 cm/min). The hole-drilling method of 

measuring surface residual stresses was used on the butt weld and the results were consistent. 

A post-weld heat treatment was programmed for the K- and V-type welds and produced a 

significant drop (85%) in residual stress values. The results for the ten pass regular butt weld 

are compared in Figure 2.4. 
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Figure 2.4: Comparison of experimental and simulation residual stresses (Cho, et al., 
2004) 

Somerville et al. (1977) measured distortions and residual stresses in stiffened panels. The 

panels were constructed of various sizes and welded with varying sizes and spacing of 

stiffeners. Two types of steel were used: mild steel (yield stress = 262 MN/m2 or 262 MPa) 

and 'B' quality steel (yield stress = 355 MPa). They studied the contraction of the stiffener 

weld as it cools and the compressive stresses that develop in the plate. They measured 

surface strains using dial gauges. The stiffeners caused limited or no access to some areas. 

Thus, modifications in measurement techniques were made using indents instead of drilled 
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holes. The results of these tests provided a very rough estimate of the residual stress field 

and the distortion effects. The lack of equipment available at the time of testing provides 

little correlation with the results achieved from more recent experiments. 

Weng and Lo (1992) used the hole-drilling method of ASTM E837 (ASTM, 2008) to 

measure the residual stresses in welded structures and compared the results to those found 

using the sectioning method. Since hole-drilling creates local plasticity due to stress 

concentration in the metal, calibration tests were performed to determine calibration 

coefficients. The ASTM E837 method provides calibration coefficients but only when stress 

values are less than 50% of the yield stress. Twelve specimens were produced using A36 

and A572 grade 50 structural steel (ASTM, 2007) plates of thicknesses 15 mm and 32 mm. 

Residual stresses were measured in three different types of joints: butt, tee, and corner. The 

welding was completed using the submerged arc welding (SAW) method. The diameter of 

the drill used was 1.57 mm, and the maximum depth of the hole is 1.2 times the diameter, as 

specified in ASTM E837, roughly equal to 1.88 mm. The hole-drilling method, therefore, 

could only measure surface stresses and not the internal stresses. Also, due to the nature of 

the strain gauges and hole-drilling technique, the residual stresses were measured only to the 

edge of the weld and the stresses within in the weld and welded part could not be measured. 

The residual stress near the weld was found to be from 84% to 100% (312 MPa to 377 MPa) 

of the yield stress and therefore, required the recalculated calibration coefficients for the local 

plasticity from drilling the holes. For surface stress measurements, the hole-drilling method 

was found to have similar results to those found using the sectioning method. The results are 

shown in Figure 2.5, and each graph contains a diagram of the specimen and testing axes. 

The results are plotted by distance from welded edge (mm) versus the residual stress 

(MN/m2). Figure 2.5 (a) shows the residual stress values found in both the x-direction 

(transverse) and y-direction (longitudinal) of the butt-welded joint. The longitudinal stress 

distribution on the butt-welded joint shows a tensile stress peak at the weld and at the edge of 

• 2 

the plate. Figure 2.5 (b) shows the residual stress values (MN/m ) for the tee joint plotted 

against the distance from the welded edge (mm). The stress distribution was calculated at 

various depths (A, B, C, D, E) and in both the x-direction (transverse) and y-direction 

(longitudinal). Figure 2.5 (c) shows the residual stress in the x-direction (transverse) and y-

direction (longitudinal) on the corner welded plate. 
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2.5 Non-Destructive Test Methods 

Non-destructive test methods produce no permanent physical damage to the specimen or 

structure. The most common methods are X-ray diffraction, the magnetic Barkhausen noise 

technique, and neutron diffraction, which will be discussed in a later section. 

X-ray radiation was discovered in 1896, and used for residual strain determination 20 years 

later when Bragg's equations were formulated. X-ray has minimal capability of penetrating 

the crystalline structures of typical engineering materials. The penetration path length is 

adjustable by appropriate selection of specific x-ray energies and wavelengths, but is still 

limited to a few tens of microns. X-rays are diffracted by the cloud of electrons surrounding 

the nucleus of the sample material. Recently, with the introduction of third-generation 

synchrotron sources, which provide higher x-ray energies, there are no absorption edges and 

the attenuation length increases noticeably with increasing energy. This combined with the 

relatively high x-ray intensities that they produce leads to path length of centimetres in steel 

(Krawitz, 2001). 

The magnetic Barkhausen noise technique is used in ferromagnetic metals to measure the 

number and magnitude of sudden magnetic reorientations made by expansion and contraction 

of the magnetic fields. The stresses are measured by the inductive measurement of a noise-

like signal, generated when a magnetic field is applied to the metal. However, the depth of 

measurement only varies between 0.01 and 1.5 mm. The depth possible depends on 

frequency range of Barkhausen noise signal analyzed and the conductivity and permeability 

of the sample material. 

Gao et al. (1998) tested three welded HSLA-100 (ASTM, 2007) steel plate specimens with 

WIC joint configuration using standard X-ray diffraction to determine the residual stress 

fields. The plates were 19 mm thick and were heat-treated, quenched, hardened to produce 

yield strengths between 690 MPa and 830 MPa. All specimens were preheated to 50°C then 

gas metal arc welding (GMAW) was used with MIL-120S-1 welding consumables. The first 

specimen was welded with no restraints on its edges and with a heat input of 1.4 kJ/mm. The 

second specimen was restrained and was subjected to the same heat input as the first 
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specimen (1.4 kJ/mm). The third specimen was not restrained and welded with a higher heat 

input of 1.7 kJ/mm. 

The X-ray diffraction measurements were acquired using with a portable apparatus. 

Subsurface measurements were achieved using electropolishing, removing 50 fim layers 

between each reading. X-ray diffraction can only measure approximately several microns 

deep into most engineering materials. The residual stress measurements were taken in the 

longitudinal, transverse, and 45° directions from the weld bead. The longitudinal stress 

component is in the direction of the weld, the transverse stress component is perpendicular to 

the weld direction, and the 45° direction bisects these two stress components. The results 

from these experiments show that welding heat input has a significant effect on the residual 

stress values. A higher heat input produces less residual stress. The decrease is a result of a 

slowed cooling rate, which causes a restriction in shrinkage and phase transformations. They 

also found that the restraining of the specimen also has a considerable effect on the residual 

stress field. It was found that additional tensile residual stresses may be introduced due to 

the restraint. However, phase transformations may occur during restraint and produce 

compressive stresses. The measurements obtained using the X-ray diffraction technique 

show similar stress fields as previously established (Weng, et at., 1992 and Hu, et. al., 1998). 

The longitudinal surface stresses were tensile near the weld and compressive away from the 

weld. At the surface of the plate, the transverse stresses were compressive near the weld and 

increased to tensile stresses as the distance from the weld increases. The stresses measured at 

45° from the weld were found to be values within the envelope of the longitudinal and 

transverse stresses. The results are shown in Figure 2.6 for all three specimens for the three 

different directions of surface residual stresses. Figure 2.6 (a) shows the first specimen that 

was welded with the low heat input (1.4 kJ/mm) and no end restraints. Figure 2.6 (b) shows 

the residual stress in the second specimen, with the low heat input (1.4 kJ/mm) and end 

restraints, plotted against the distance from the weld. Figure 2.6 (c) shows the residual stress 

values of the third specimen, with high heat input (1.7 kJ/mm) with end restraints, plotted 

against the distance from the weld. 
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Figure 2.6: Surface residual stress distributions of (a) RSI - 1.4 kJ/mm, no restraint, (b) 
RS2 - 1.4 kJ/mm, with restraint, (c) RS3 - 1.7 kJ/mm, no restraint (Gao, et al. 1997) 

Gauthier et al. (1998) studied the use and validity of the magnetic Barkhausen noise (MBN) 

method. The MBN method uses the theory that a ferromagnetic material, such as structural 

steel, when undergoing a change in magnetization will produce noise in the form of voltage 

pulses, which are induced in a coil, set near the specimen. The MBN signal increases with 

the presence of tensile stresses and decrease in the presence of compressive stresses 

therefore, provides an accurate picture of the residual stress field. The specimen used was an 

L-shaped cold-formed steel beam with a yield stress of 466 MPa and an elastic modulus of 

203 GPa. The results were compared with the cutting and sectioning method, the hole 

drilling method, and X-ray diffraction method. All these methods provided comparable 

results. The MBN method requires very close (-0.1 |im) proximity to the specimen and the 

stress measurements in the corner of the specimen are not accurate. Therefore, the use of this 
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method in measuring stresses at the welds of stiffeners does not produce acceptable results 

since sharp gradients in stresses present in the measurement area. 

Rorup (2005) tested a 550 mm x 120 mm x 12.5 mm 355 MPa steel plate with 150 mm x 30 

mm x 12.5 mm plate longitudinal stiffeners welded on both surfaces of the plate using a two 

pass fillet weld, as shown in Figure 2.7. The plates were all saw cut from one larger plate. 

The specimen was loaded with two constant compressive cyclic load ranges, 140 N/mm or 

180 N/mm2. The test showed that after the initiation of the fatigue crack, perpendicular to 

the stiffener, the crack growth rate increases under the compressive loading cycle followed 

by a sudden deceleration or stop in propagation in the crack. 

Figure 2.7: Test specimen with a typical crack and residual stress distribution (Rorup, 
2005) 

The initial residual stresses were measured using both the X-ray diffraction method and the 

hole drilling method. The stresses were found to be lesser on the surface of the plate where 

the stiffener was welded later. The redistributed stress field at the crack tip due to the cyclic 

loading were measured using the neutron diffraction and X-ray diffraction methods for 

comparison. These results were then compared with the FE model and analysis as shown in 
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Figure 2.8. The residual stress was modeled in the FE analysis using heat flux input. The FE 

analysis predicted similar stress values as was found in the physical experiments. The 

residual stresses due to the welds influenced the fatigue life of the plate under a compressive 

cyclic load. The fatigue life of the stiffened panel increased due to the crack propagation 

phase of the loading. At the weld toe and the crack tip, the residual stresses are in tension. 

With the introduction of the cyclic compressive loading, the crack propagates in the 

compressive residual stress region. The crack as it expands, moves the tensile stress region 

forward as it loses strength, which in turn causes the crack growth to slow or stop 

completely. 

Figure 2.8: Analysis of the weld-induced residual stresses in the longitudinal direction 
(Rorup, 2005) 
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2.6 Neutron Diffraction 

Neutron diffraction is a non-destructive test method. This method uses either a steady state 

reactor or a pulsed neutron source. A steady state reactor is designed for research and 

produces a high neutron flux with a minimal amount of heat, in contrast to a reactor used for 

nuclear power. The reactor generates a Maxwellian distribution of neutron energies that are 

dependent on temperature. A monochromator is used to select a single usable wavelength 

from the neutron beam, which is used to provide the scattering data from the material. A 

steady state reactor produces a constant wavelength for testing procedures. A pulsed neutron 

source generates neutrons using a process called spallation. A burst of high-energy particles 

(protons or electrons) strike a metal sheet which produces a broad range of neutron energies 

with a broad range of velocities. Therefore, these neutrons will take varying amounts of time 

to reach the detector or time-of-flight instrument, producing the scattering information of the 

material. 

Neutron diffraction utilizes the crystal lattice of the specimen material as an atomic strain 

gauge. The average elastic lattice strain in the gauge volume is calculated as the difference 

in the lattice plane spacing compared to the lattice plane spacing of the stress-free sample. A 

beam of neutrons, with wavelength X, from a continuous source diffractometer is passed 

through the sample and diffracts in accordance with Bragg's law, as in Equation 2.1. 

A = 2dhklsin9%kl (2.1) 

where, dhkl is the lattice spacing of the planes hkl in the crystalline solid, as shown in Figure 

2.9. 

The 29%kl is the angle at which the neutrons are scattered coherently and elastically by the 

properly oriented lattice planes hkl and is called Bragg's angle. In this figure, the incident 

beam is labelled as kj and the refracted beam as kf. Ghki is the reciprocal lattice vector, 

perpendicular to the lattice planes. 

Crystal space lattices are categorized according to their symmetry, translation, reflection, and 

rotational characteristics. There are 14 crystal space lattices called Bravais lattices, the most 

common for engineering materials are the fee, bee, and hexagonal. 
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Figure 2.9: Lattice spacing with incident (ki) and refracted (kf) beam (Hutchings, et al., 
2005) 

All lattice points are on a plane in the crystal, known as Miller indices, and denoted hkl. The 

hkl plane intersects the axes of the unit cell at a/h, b/k and c/l, where hkl are the lowest 

integers with the proper ratio of intercepts, as shown in Figure 2.10. As stated before, the 

perpendicular distance between planes is dhkl. 

Figure 2.10: Lattice planes (Hutchings, et al., 2005) 

The de Broglie wavelength of the neutron, X, is related to the momentum, p, of the particle as 

shown in Equation 2.2. 

p = mnv = — = hk (2.2) 
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where, mn is the mass of the neutron, v is the velocity, h is Planck's constant, k is the wave 

vector of the neutron with a magnitude of 2jt/X,. The energy of the neutron is shown in 

Equation 2.3. 

E — ^mnv2 = hv (2.3) 

where v is the frequency of radiation. For wavelengths useful for diffraction, thermalized 

neutron energies are significantly less than the equivalent energies of X-rays or electrons. 

The lattice spacing (dhki) expands with tensile stresses and contract with compressive 

stresses. The difference in lattice spacing (Adhki) is measured by the shift in Bragg 

diffraction angle, 29%kl. Strain in the direction of the scattering vector is given by Equation 

2.4. 

£hkl = Y = -Adhki cot e h k l (2.4) 

As a neutron approaches the nucleus of an atom, four outcomes are possible: (i) coherent 

scattering, (ii) incoherent scattering, (iii) absorption by the nucleus, and (iv) the most likely 

event is no scattering. Coherent scattering relates the space and time between atoms, 

whereas incoherent scattering is the individual atom relations with space and time. When the 

neutron is absorbed, the compound formed with the nucleus creates an emission of y-rays, 

which may radioactively decay. The coherently scattered neutrons diffract at well-defined 

angles allowing for ease of measurement, whereas, incoherent scattering is isotropic and 

creates a background beneath the diffraction peaks, much smaller than the diffraction peaks 

from the coherently scattered neutrons. 

Neutron diffraction can penetrate tens of centimetres into common engineering materials and 

is a non-destructive testing method that can monitor the stress changes due to an 

environmental factor and external loading. Neutron diffraction measures the strain averaged 

over a sample volume defined by apertures, called Nominal Gauge Volume (NGV). The 

Instrumental Gauge Volume (IGV) is the volume over which the average strain is measured 

in a sample and is therefore, larger than the NGV. The Sampled Gauge Volume (SGV) is 

the volume over which the strain measurement is averaged, taken from the diffraction peak in 
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the IGV. If the sampled gauge volume is greater than the characteristic volume, then the 

corresponding strain is not measured since it averages to zero. 

The neutron diffraction method collects the strain measurements of the specimen which are 

then converted using the appropriate formulas and constants to stress values. The validity of 

the collected strain values can be determined by checking the full width half maximum 

(FWHM) values and the intensity of the neutron beam values. The above equations show the 

theoretical background when determining the stress values from the measured strain values. 

The following equations show the practical formulas used for manipulating the strain data 

collected during the neutron diffraction method. 

The lattice spacing and error in lattice spacing is calculated using the collected cp values as 

shown in Equations 2.5 and 2.6, respectively. 

d-spacing x 
2xsin {radians 

^d-spacing = 2xsin in [ r a d i a n s ^ ^ - ) } 

(2.5) 

— (d-spacing) (2.6) 

The microstrain values and error in microstrain are then calculated using the d-spacing and 

(j,d-spacing values, shown in Equations 2.7 and 2.8, respectively. 

e = ( d- s* a c i ns - i ) x 1000000 (2.7) \ d o J 

= S d-spacing \ y 1()0000{) (2 8) 
Vfid-spacing/ 

The stress values can now be calculated for each component using all three strain values. 

The normal, transverse, and longitudinal stress values are shown in Equations 2.9 - 2.11, 

respectively. 

ONormal 1+v Normal 1_2v ^Normal ^Transverse ^ Longitudinal)^ ( 2 - 9 ) 

&Transverse 1 , ( ^Transverse i_ov Normal ^Transverse ^Longitudinal ) ) (2-10) 
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& Longitudinal 1+v Longitudinal 1_2v &Normal "t" £Transverse £ Longitudinal)^ (2.11) 

The error in the above stress values can be further calculated for each component shown in 

Equations 2.12 - 2.14. 

McrNormal 1 + y J ^ 1+y " M 
1_2vJ (.^Normal aTransverse aLongitudinal) (2-12) 

£ I / <JTransverse\ i v ^ ^ 2 i 2 i 2 ^ 
Transverse ~ T + v x / x l + v / \ l - 2 v / Normal """ ^Transverse ' °Longitudinal) 

(2.13) 

_ E UaLongitudinal\ . ( v ^ 2 i _2 i _2 
Longitudinal i + v a ! \ l + v / v l - 2 v / Normal ' Transverse ' °Longitudinal) 

(2.14) 

James et al. (2006) used neutron diffraction technique for measurement of residual stress in 

high strength steel (tensile strength > 600 MPa) butt welds and to determine how residual 

stress depends on various factors such as, weld heat input, plate thickness, and filler material. 

The welding method used was metal inert gas (MIG) with a shielding gas composed of 80% 

argon and 20% carbon dioxide. The transverse stress measurements were made using 

neutron diffraction at mid-depth and 1 mm below the surface. The normal and longitudinal 

stress values were also collected. However, the study primarily focused on fatigue cracking, 

which initiates at the toe of the weld and develops parallel to the weld as a result of 

transverse stresses. The normal stresses were in compression in the upper portion of the plate 

and in tension in the lower portion of the plate. However, these values were small and all 

nearing zero therefore, producing a plane stress problem. The study also evaluated the use of 

undermatched, matched, and overmatched filler material. The specimen with undermatched 

filler material exhibited lower tensile maximum stresses than the matched and overmatched 

specimens. The compressive maximum stresses in the undermatched specimen are 

associated with the heat-affected zone, while in the overmatched specimen; the compressive 

maximum stresses were outside of the heat-affected zone. Specimens with two plate 

thicknesses were tested: 8 and 12 mm, and the thinner plate showed higher residual stress 

values than the thicker plate due to the fast rate of cooling, which were worsened by the 
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lesser weld heat input. The details of the specimens are shown in Figure 2.11. The stress 

values obtained from the 12 mm thick specimen with overmatched weld metal with a low 

heat input (see Figure 2.11(c)) are shown in Figure 2.12. 

Figure 2.11: Cross-sectional (Y-Z) details of the multipass weld runs used to make the 
butt joints in the 8mm and 12mm thick plates of RQT701 steel - (a) 8 mm plate 

thickness with low heat input (1 kJ/mm), (b) 8 mm plate thickness with high heat input 
(3 kJ/mm), (c) 12 mm plate thickness with low heat input, and (d) 12 mm plate 

thickness with high heat input (James, et al., 2006) 

Paradowska et al. (2006) examined the reference samples used in the neutron and 

synchrotron X-ray diffraction testing. The pseudo-strain values were the object of the testing 

and relate to the difference between the lattice spacing at a point and the average spacing 

across the sample. The specimens were low carbon steel welded using the flux-cored arc 

welding (FCAW) process. The samples were then created using electro-discharge machining 

(EDM) to generate a cube and a comb for testing. The measurements were taken in the 

transverse and normal directions of the weld using both methods as shown in Figure 2.13 and 

Figure 2.14, respectively. The final values showed that both neutron and synchrotron X-ray 

diffraction methods, the reference sample may be taken from the parent material. The 

microstructure and texture in the weld and the heat-affected zone do not warrant the 

expensive procedure of manufacturing a comb for the specific reference values of each area. 

Wimpory et al. (2003) measured residual stress in T-plate ferritic steel weldments of 25 mm, 

50 mm, and 100 mm thick base plates for residual stress using neutron diffraction and deep 

hole drilling methods. The 25 mm thick base plate was welded using a T-fillet weld and the 
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50 mm and 100 mm thick base plates were welded using partial penetration welds. The 25 

mm and 50 mm plates were restrained to prevent distortion, however the 100 mm thick plate 

(Figure 2.15) was rigid enough and thus, no clamps were used. The finished welded 

specimens were sliced into 12.5 mm thick samples for measuring residual stresses using 

neutron diffraction method. A 100 mm thick section of the 100 mm thick T-plate weld was 

used for the deep-hole drilling method. The neutron diffraction tests were conducted at three 

different nuclear reactors; two monochromatic sources and one polychromatic source. 
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at four depths (c) Through-thickness (z) stress profile at four depths (James, et al., 
2006) 
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The reference samples were taken from the base plate material in an area of no stress. A 

reference sample should also have been taken in the weld material for comparison. The steps 

in the deep-hole drilling method were as follows: a smooth reference hole was drilled and 

measured at various depths and angles then a cylinder surrounding the reference hole was 

extracted and the reference hole was again measured at the same locations. This method 

provided the longitudinal and transverse residual stresses. The normal stresses could be 

obtained if the axial distortions were also measured, but were not recorded in this study. The 

deep-hole measurements were taken at the point of intersection between the plate and the 

weld and continued towards the edge of the plate, as shown in Figure 2.15. Measurements 

were not taken into the weld and the stiffener. The deep-hole measurements and the neutron 

diffraction results were compared and showed a good agreement as shown in Figures 2.16 

and 2.17. 

Neutron diffraction measurements were also taken on a post-weld heat-treated sample of a 25 

mm T-plate weld. The results showed that overall the residual stress in the sample were 

close to zero, however a post-weld heat treatment is not feasible in the construction of a ship. 

The results of all of these experiments were also compared with previous experiments that 

were conducted and again showed a good agreement. The results were also compared with 

the British Energy R6 and BS 7910 which show representations of residual stress fields for 

varying weld configurations. This comparison showed that these standards are very 

conservative and do not provide a very accurate picture of the stress distribution. 

Lorentzen and Ibso (1995) evaluated the residual stresses in offshore welds using neutron 

diffraction method for better understanding of the fatigue life of the structure when imposed 

to cyclic and stochastic loading. The specimens were constructed of St.52-3 (Fe510C) steel 

of 8 mm and 16 mm thicknesses, and were butt welded on either side of the plate with 5 and 

10 mm plates, respectively. No post-weld heat treatments were used. The strain 

measurements were taken in the longitudinal direction only and the normal and transverse 

directions were ignored. The two directions were disregarded because of tests that were 

previously completed indicates that the principal directions change as a function of depth into 

the material. Therefore, to properly measure internal strains, the principal axes must be re-

evaluated at all measurement depths. Only the surface stresses were found for this study 
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since fatigue cracks generally occur due to the high tensile stresses at the surface of the 

material. The values obtained showed a maximum residual stress value of 50% the material 

yield stress. 

location 

Figure 2.15: Location of deep-hole drilling measurements on the 100 mm thick plate 
specimen (Wimpory, et al., 2003) 

Pearce and Linton (2006) used neutron diffraction method to determine the residual stresses 

within a curved plate and a butt weld specimen. Both specimens were constructed from BIS 

812 Ema Steel. The measurements were conducted using the 211 peak and neutrons with a 

wavelength of 1.4 A. The stresses were measured in the longitudinal, transverse, and normal 

directions. The results shown in Figure 2.18 have similar profiles as previously measured 

specimens using different methods of measurement. 

1 DOmrn 
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Figure 2.16: Transverse stresses in the 100 mm T-plate - ND measurement on a 12.5 
mm slice and DHD measurement (Wimpory, et al., 2003) 

Poeffion y, {mm) 

Figure 2.17: Longitudinal stresses in the 100 mm T-plate obtained by ND on a 12.5 mm 
slice and by DHD (Wimpory, et al., 2003) 
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Figure 2.18: Three-dimensional stresses 10mm from surface of side B—flat butt weld 
(Pearce, et al., 2006) 

Webster and Wimpory (2001) suggested procedures for obtaining consistent results using the 

neutron diffraction method of measurement. Their study shows that by placing the beam 

apertures as near the specimen as possible minimizes the irregularities in identifying the 

centroid of the specimen. Planes that do not exhibit bulk behaviour and are affected by 

plastic strain must be ignored. Single crystals within these planes are anisotropic and when 

subjected to different reflections will result in different strains, forming an erroneous field of 

stress. A proper value for the stress-free lattice spacing must also be obtained. The stress-

free values should be taken from the parent material, as well as from the welding material. 

Price et al. (2006) examined the residual stresses caused using MIG (metal inert gas) welding 

of a single bead-on-plate of low-carbon steel and the influence of restraint. The study was 

conducted using a 200 x 100 x 12 mm plate, where the first specimen was unrestrained and 

the second specimen was fully restrained by tack welding to a very thick steel plate. A 14 

mm weld was made through the centre of the plate as shown in Figure 2.19. 

31 



/ jM 3 mm 

Direct ion of ihe 
measurement^' 

Figure 2.19: The direction of the measurements (transverse x, normal y, longitudinal 
would be z) using neutron diffraction on the single bead-on-plate (Price, et al., 2006) 

The neutron diffraction measurements were undertaken using a wavelength of 1.4 A and 

detector angle of 20b = 73.5°. The transverse and normal stresses were found to be low, 

especially compared to the fully restrained specimen, due to the deformation during welding 

of the unrestrained specimen. In the centre of the weld the normal and transverse stresses 

were compressive for the unrestrained specimen and tensile for the fully restrained specimen. 

The peak stress was in the longitudinal direction occurred near the centre of the weld, and 

was observed to be higher than the specified yield stress of 285 MPa in the parent metal and 

445 MPa in the weld metal; this is due to the increased hardness of the steel in the weld 

region. These peak values were also found to be higher in the fully restrained specimen 

compared to the unrestrained specimen, as shown in Figure 2.20. The experimental results of 

the unrestrained specimen were compared with three-dimensional finite element modelling; 

using a commercial program called Sysweld+. Qualitatively, all of the data for transverse, 

normal, and longitudinal values were in agreement with the observed values during the 

experiments. However, the longitudinal stress values were in disagreement which was a 

result of the unrefined mesh and the true calibration of the welding heat source in the model. 
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Figure 2.20: Change in stress in fully restrained specimen in comparison to 
unrestrained specimen (Price, et al., 2006) 

Paradowska et al. (2005) studied the residual stress distribution in single and multi bead-on 

low carbon steel welds and correlated the data to construction methods and integrity 

specifications. The effect of restraint, the start and end of the weld and multi-pass welds 

were closely examined using the neutron diffraction technique. The hardness and 

microstructure was determined across the plate, weld, and heat-affected zone. The hardness 

of the weld and the heat affected zone were a result of a critical cooling environment and the 

lack of a post-weld heat treatment. The results showed that for the unrestrained specimen the 

normal and transverse stresses in the centre of the weld were compressive, whereas in the 

restrained specimen these stresses were in tension. Overall, the transverse and normal 

stresses were low in the unrestrained specimen as it was permitted to deform during the 

welding process. The longitudinal peak stress in the weld was higher than the yield stress of 

the plate metal, which corresponds to the increased hardness values in the weld and heat 

affected zone. The residual stresses in the transverse and normal directions peaked at half the 

maximum longitudinal stress values, which occurred in the heat-affected zone below the 

middle of the weld bead. The start and end of the weld had high increases in stress levels and 

surpassed the yield strength of the plate material. For the plates with two, three, and four 

weld passes, the welds overlapped 50%. When the second weld pass was made, the weld 

underneath the overlap the residual stress values increased threefold but the uncovered weld 
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portion increased by only 70%. For the third weld pass, the stress remained the same beneath 

the weld and decreased under the second pass to almost zero. The final weld pass caused the 

residual stress transfer from all other weld passes into the final weld with a general widening 

of the peak stress field. The tensile residual stresses in the toe of the weld were reduced, with 

the fourth weld pass, to more favourable compressive values and lower tensile values. The 

collected data can be utilized in the design of welds. The longitudinal stresses cause 

transverse hydrogen cracking, in the toe of the weld the transverse stresses cause the 

introduction of fatigue cracks, and the sequence of multi-weld passes greatly affects the 

distribution of the residual stress field. 

Holden et al. (2006) investigated several factors relating to measurement of residual stress in 

welds. These factors include the varying microstructure through the weld and the change in 

plastic deformation in the weld zone. They emphasized the importance of obtaining the 

reference specimens from a companion weld, in order to understand and determine more 

accurate stress distributions. Three different specimens using neutron diffraction were 

studied: a butt weld between 8.6 mm thick, highly textured Zr-4 plates, a double-v butt-weld 

between 10 mm weakly textured high-strength steel plates, as shown in Figure 2.21, and a 

double-v butt-weld between 10 mm hot-rolled 304-type stainless steel plates. The results of 

their study confirmed that texture near the weld does not affect the stress field. Also, Type II 

strains from annealing and cooling can affect the macroscopic strains; therefore, intergranular 

strains can affect the measurement values. 

Ganguly et al. (2006) examined the residual stresses in a 12-mm-thick variable-polarity 

plasma-arc welded aluminum 2024-T352 alloy plate using neutron diffraction. The residual 

stresses were measured using a combination of neutron and synchrotron X-ray diffraction 

after the plate was machined down to 7 mm thickness on either side of the weld (typical 

machining for the aerospace industry). The comparison of the two methods is shown in 

Figure 2.22. Synchrotron X-ray diffraction measurements were quick, made high penetration 

depths and allowed for very small gauge-volumes. However, synchrotron X-rays have very 

low diffraction angles, so it was impractical to measure strain in the normal direction. 

Therefore, a combination of synchrotron X-ray measurement for the longitudinal and 

transverse directions and the use of neutron diffraction for the normal direction provided 
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excellent results. The transverse direction was measured using both methods to compare 

results obtained from the different machines. A stress-free reference comb, measured using 

both methods, showed a deviation of do (stress-free lattice spacing) across the weld. The 12 

mm thick specimens were also compared with the contour method and the results were 

agreeable. It was found that the machining stresses caused by skimming the specimen from 

12 mm to 7 mm caused little change in the stress distribution. The residual stress results 

showed high tensile stress in the longitudinal direction near the weld and the stresses in the 

normal and transverse directions were considerably lesser. 

Figure 2.21: Longitudinal stress derived from measurements of {110}, {002} and {112} 
reflections in the high strength steel SNC631 as a function of position through the weld 

(Holden, et al., 2006) 
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Figure 2.22: Centerline longitudinal strain measured in the two as-welded 12-mm-thick 
plates using neutrons and synchrotron X-rays (Ganguly, et al., 2006) 

2.7 Chalk River Laboratories, Atomic Energy of Canada Limited Facility 

Chalk River Laboratories (CRL) is equipped with a CANDU (CANada Deuterium Uranium) 

reactor, which uses pressurized heavy water (deuterium oxide) and uranium as fuel in the 

reactor. The source originates in an area of the moderator/reflector specially designed to 

optimize the thermal neutron flux. The beam tubes transport neutrons from the source to the 

region beyond the outer shielding of the reactor where neutron scattering instruments are 

situated. The beam tube usually contains an absorbing shutter to switch off most of the 

beam, or can be flooded with water to reduce the beam intensity to very low levels. The 

latter allows work to be carried out safely in the instrument's beam exit region, where 

monochromating crystals or choppers may be located. The energy of the neutrons in the core 

of a reactor (2 to 3 MeV) is much too high to be useful for diffraction experiments and 

therefore, thermalized by a moderator. 

Guide tubes are usually of rectangular cross-sections and, as the walls must be optically flat, 

made of float glass usually coated with a metal such as nickel. The use of a slightly bent 
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guide, of several kilometres radius, allows for the removal of unwanted y and fast neutron 

background, being transmitted through the walls into a biological shielding absorber 

surrounding the guide. The use of guides enables neutron beams to be transported to "guide 

halls," which are located outside the main reactor shell. The various instruments on the same 

guide may take different vertical sections of the guided beam of the part of the beam 

transmitted through the monochromator of an upstream instrument. The design of the reactor 

is shown in Figure 2.23 and is being used for the current study at the University of Windsor. 

' L3 

m ' 

Figure 2.23: Layout of the Chalk River Laboratories (Canada, 2008) 

The current study will use the L3 Spectrometer, an ANDI Diffractometer that is equipped 

with a 32-wire position sensitive detector. This equipment is shown in Figure 2.24. 

j g 

The National Research Universal Reactor at the CRL produces 120MW, with a 3 x 10 

neutron/m2 thermal neutron flux. Key features of the centre include: 

Stress-scanner: It has a typical minimum spatial resolution of 1 mm3, locating accuracy 

better than 0.1 mm, strain precision 0.5E-4, 32-element multiwire 3He detector for high 

throughput, and a selection of computer-controlled positioning systems, handling loads up to 

500 kg. 
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Powder Diffractometer: An 800-channel detector spanning 80 degrees of scattering angle 

simultaneously for high throughput with continuously variable wavelength and adjustable 

collimation before monochromator 0.2, 0.4 or 0.6 degrees. 

Weld Station: This is used for in-situ studies of GTAW (gas tungsten arc welding) with a 

stationary welding torch and moving specimen. 

Figure 2.24: L3 Spectrometer at Chalk River Laboratories (Canada, 2008) 

Typically, the danger of contamination at a neutron laboratory is nominal, with radiation 

being the chief concern; monitors are usually found on the equipment throughout the 

laboratory. Access to the measurement equipment is restricted by the use of interlocks when 

the neutron beam is engaged. All possible radiation is viewed as potentially hazardous, and 

exposure should be limited. The ALARA (as low as reasonably achievable) principle of 

exposure to radiation should always is respected. 

A health physicist assesses the radiation profile of a specimen after testing and determines 

whether to grant immediate access or requests the specimen to be placed in a radioactive 

material storeroom until the radioactive decay can occur. Usually the radiation level of the 

material to be permitted to leave the facility is 0.1 p,Sv at its surface. When a subject 

requires immediate removal from the facility, there are shielding, packaging, and certification 

requirements that are met to comply with national and international standards. 
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3 Material Properties and Welding Specifications 

3.1 Material Properties 

The material used in this study for the plates and stiffeners was 350 WT steel (CSA, 2004). 

A chemical composition of the parent metal, the stiffener metal, and the weld wire metal are 

shown in Table 3-A. The mechanical properties of the parent metal, the stiffener metal, and 

the weld wire metal are shown in Table 3-B. The weld wire information was provided by the 

supplier and the data for the plate and the stiffener were completed in the structures lab at the 

University of Windsor, ON, Canada. Quantity of material required for all testing was 

ordered at the same time to ensure the same materials for all tests. All of the specimens were 

cut from two large plates using water jet technology in order to minimize the additional 

residual stresses induced by the cutting process. The stiffeners were L-shaped of dimension 

127 mm x 76.2 mm x 9.53 mm. They were cut from one large stiffener using a band saw; 

this is also a cold-cut method. 

The material metallurgical testing was completed by Schmolz + Bickenbach in Windsor, ON, 

Canada. The company uses optical emission spectrochemical analysis to produce the results 

shown in Table 3-A. Material samples were sent of varying sizes for the testing, shown in 

Figure 3.1, where each square is 5 mm x 5 mm. 

3.2 Mechanical Properties of Material 

Quasi-static tension (pull) tests were conducted according to ASTM Standard (ASTM, 

2008a) in the Civil Engineering Laboratory at the University of Windsor. Two samples cut 

from the plate material were tested and showed to have higher yield strength than 

recommended for a 350 WT steel (CSA, 2004). The average modulus of elasticity and first 

yield stress for the plate material obtained from the pull tests are 205 GPa and 405 MPa, 

respectively (Figure 3.2). The modulus of elasticity of the angle section was found to be 204 

GPa and the first yield stress was found to be 350 MPa. The elastic limit was determined 

from the first non-linear point (first yield point) of the nominal stress-strain plot. Yield stress 



was calculated at upper yield limit, or 0.2% yield stress at 410 MPa for the plate material and 

345 MPa for the angle section. Full nominal stress-strain curves for two plate samples and 

two angle samples are shown in Figure 3.2. 

3.3 Welding Specifications 

Metal core arc welding (MCAW) process was used for welding the stiffeners. A licensed 

welder at the Windsor Welding Institute, Windsor, ON, completed all the welding process. 

The properties of the wire metal that was used were detailed in the previous section. The 

diameter of the wire metal was 0.89 mm (0.035 in) and the wire speed was 231 mm/sec (9.1 

in/sec). The specimens were fully restrained during the welding and the cooling process. 

Large C-clamps were used to restrain the specimen to the welding table. Depending on the 

specimen, up to six clamps were used on the plate and two clamps used to hold each stiffener 

in place during the welding and cooling process. Specimen 1 was accidentally released from 

restraints after ten minutes of completion of the welding and this caused a 5° bend upwards in 

the plate on either side of the weld. The heat input used was calculated to be moderate and 

was controlled using a constant current and welding speed shown in Table 3-C. 

Figure 3.1: Material samples for metallurgical testing 
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Figure 3.2: Stress-Strain Curve 
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4 Test Method and Test Results 

4.1 Test Matrix 

Three specimens, as shown in Table 4-A, were built and tested. The first specimen was a 

square plate with no stiffeners (Figure 4.1). This specimen was used to determine the level 

of stresses that was created during hot roll process. The second specimen was a rectangular 

plate with one stiffener welded off-centre (Figure 4.2). The third specimen was a rectangular 

plate with two stiffeners welded 250 mm on centre (Figure 4.3). 

Table 4-A: Test Matrix 

Specimen | Base Plate (L x W x D) I Stiffener Details 
Welding 
Method 

400 mm x 400 mm x 9.5 mm No stiffener No welding 

1 2 I 600 mm x 400 mm x 9.5 mm 

One 600 mm long 
stiffener at 150 mm j MCAW 
from edge | 

3 600 mm x 400 mm x 9.5 mm 

Two 600 mm stiffeners 
spaced 250 mm apart 
(75 mm from both 
edges) 

MCAW 
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Figure 4.1: Specimen 1 (a) Photo (b) Sketch 
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4.2 Test Set-up 

Neutron diffraction (ND) method was used to measure all the three normal stress components 

and measurements were carried out on L3 Spectrometer at the Chalk River Laboratories 

(CRL), Canada. The test set-up was required to be changed and adjusted for each specimen 

and for measurements of each stress component since the specimen dimensions were very 

large. As a result, the time required for stress measurements for the three specimens was 

almost three times of what was originally estimated. The test set-up required specialized 

skills and careful attention. Detailed discussion on ND method is provided in Chapter 2. 

The centre of rotation of the mounting platform was located by moving the horizontal plane 

(X and Y components) as well as rotating the \|/ angle (angle between the neutron beam and 

the detector). The centre of rotation is found in order to align the incident and scattered slits 

for alignment of the specimen. It is not possible to identify the exact location of the 

measurements if proper alignment is not ensured. 

There are two telescopes that were used to align the centre of rotation. The first telescope 

called the "tilted telescope" is used to sight the y-centre (Figure 4.4) and the second telescope 

called the "level telescope" is used to sight the x-centre (Figure 4.5). In order to align each 

of these telescopes properly a wire is mounted, driven, and rotated until the telescopes are 

aligned. Once the centre is found the values are preset to zero and a plumb bob is adjusted to 

coincide with the centre as well. This plumb bob was used as a back-up for centering in case 

the telescopes were accidently knocked out of place during measurements. The rotation of \]/ 

(angle between the neutron beam and the detector) is adjusted to centre as well as the 

incident and detector slit positions. (International Organization for Standardization, 2001) 
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Figure 4.4: Tilted telescope aligned to y-centre 

Figure 4.5: Level telescope aligned to x-centre 
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A computer software program called "powder" was used to determine the initial wavelength 

(k). For steel with its main component BCC phase has numerous Miller indices; the program 

calculates the optimal wavelength for the material to be measured. The monochromating 

crystal that was used in this study is Germanium (Ge) and its optimal reflection angle was 

calculated once the wavelength was chosen. 

Two different set-ups and several scattering slit sizes were used. The specifications of each 

set-up are shown in Table 4-B. The second set-up was necessary when the plate specimen 

was positioned for the 45° longitudinal strain measurement since in this orientation the 

neutron counts were very low. By changing the wavelength (k) and subsequently, the 

reflection of the monochromating crystal (29M) and \|/ angle it was possible to continue the 

scans at a relatively faster rate. The scattering slit size also varied throughout the specimens 

from as small as 1 mm x 1 mm x 2 mm to as large as 1.5 mm x 1.5 mm x 20 mm. The count 

times for each measurement were optimized to collect the required amount of data in a 

shorter amount of time, given that there were so many measurement points where the stresses 

were required to be collected across all of the specimens. 

Table 4-B: Set-up Specifications 

Set-up | Wavelength Reflection of Ge crystal j 

1 | 1.6650 A 115 | 98.93° 

J 

_ _ - - -I 

j 
— 

4.3 Stress-free Reference Samples and Nickel Calibration 

The stress-free reference samples for the plate were produced on-site at the CRL. Three 

small "matchstick" prisms were cut, with the longest dimension in the longitudinal direction 

of the plate specimens, as shown in Figure 4.6. The first reference sample had dimensions of 

2 mm x 2.5 mm x 20 mm (Normal x Transverse x Longitudinal). The second reference 

sample was shorter than the first one. However, the second specimen was also parallel to the 

longitudinal axis of the plate with dimensions of 2 mm x 2.5 mm x 15 mm (Normal x 
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Transverse x Longitudinal). The third reference sample was cut perpendicular to the 

longitudinal axis with dimension of 2 mm x 10 mm x 2.5 mm (Normal x Transverse x 

Longitudinal). 

Figure 4.6: Stress-free reference samples 

The nickel calibration is a small cadmium container filled with nickel powder, as shown in 

Figure 4.7. The nickel calibration values were used in all of the final stress value 

calculations. The angle between the incident beam and the refracted beam is cp and the cpo is 

the angle corresponding to the reference sample. The values of X and <po, as well as their 

error values, were found using a standard deviation and chi-squared fit. The nickel 

calibration was completed at the beginning and end of each set-up to ensure consistency in 

the numbers throughout the entire set of measurements. The values for X and cp0 were 

specific to one test set-up and for a specific value of 20M-

4.4 Residual Stress Mapping 

The neutron diffraction method was carried out to determine the three-dimensional stress 

distributions for all the three specimens. Examples of some of the raw data collected are 

shown in Appendix A. 
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Figure 4.7: Nickel-reference sample in cadmium container 

4.4.1 Neutron Diffraction Method 

The neutron diffraction method is outlined in the Literature Review (Chapter 2) and the 

method is used here to calculate the residual stress values. The d-spacing and the error in d-

spacing (^d-spacing) values are calculated by comparing the cp value to the cpo values, shown 

in Equations 4.1 and 4.2, respectively. The strain components were calculated by comparing 

the d-spacing to the stress-free reference d-spacing using Equation 4.3 and the error in the 

strain ((j.s) values compares the d-spacing with the d-spacing error shown in Equation 4.4. 

d-spacing = 
2 sin i n ( « ) 

(4.1) 

lid-spacing = 
2 s i n ( < p - « w ) 

— (d-spacing) 

/d-spacing _ ^ 

V ) 
X1000000 

He = ) x 1 0 0 0 0 0 0 
f ud-spacing\ 

d-spacing J 

(4.2) 

(4.3) 

(4.4) 
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4.4.1.1 Specimen 1 

Specimen 1 as shown in Figure 4.8 was a plane plate with dimensions of 400 mm long (L) x 

400 mm wide (T) x 9.5 mm thick (N). No stiffener was welded on this specimen. The 

objective was to determine if there were any stresses in the parent plate due to the hot rolling 

process and the cutting process. The specimen was measured for residual strain along the 

longitudinal (Z) and transverse (Y) directions at seven depths through the normal (X) 

direction. Figure 4.8 shows the origin (point 1) and the lines (1-2 and 1-3) on which the 

measurements were taken. All the three strain components were measured to calculate all 

three stress components. 

Figure 4.8: Detail for measurement points for Specimen 1 

4.4.1.1.1 Normal Stress for Specimen 1 

The normal stresses are calculated using Equation 4.5. 

E ( v 
QNormal = Normal "F ~[-2v ^Wormai £Transverse "F £Longitudinal 
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where, 

E = modulus of elasticity 

v = Poisson's ratio = 0.3 

£ = the strain value for a particular component 

The normal stress is the stress component in the direction through the plate thickness (in the 

direction of N or X in Figure 4.8) and they were measured at 10 mm intervals along the 

transverse direction (T or Y) for 50 mm length from the centre of the plate (that is, along line 

1-2) and at 20 mm, 40 mm, and 60 mm intervals along the longitudinal direction (L or Z) for 

180 mm length from the centre of the plate (that is, along line 1-3). The measurements were 

taken at seven depths through the thickness of the plate (N or X) at each measurement point. 

Therefore, a total of 77 (=7 x 11) measurements were acquired for 11 (5 in transverse or Y 

direction + 5 in longitudinal or Z direction + origin) measurement points. 

The normal stresses on lines 1-2 and 1-3 are shown in Figures 4.9 and 4.10, respectively. In 

these figures each line shows the stress levels through the depth of plate at a specific distance 

from the origin (point 1 in Figure 4.8). Each line shows how the normal stress component 

(stress component in the direction of X or N in Figure 4.8) at a particular measurement point 

changes through the depth (thickness) of the plate specimen. For example, the line shown 

with no marker in Figure 4.9 represents the normal stress value at a point which is 10 mm 

away from the centre (Point 1) of the plate specimen and along line 1-2 (Figure 4.8). Figures 

4.11 and Figure 4.12 show three-dimensional views of the normal stresses in the transverse 

and longitudinal directions, respectively. It can be seen that the first measurement point was 

at 0.6 mm below the top surface of the plate and the last measurement point was at 8.4 mm 

below the top surface or 1.1 mm above the bottom surface of the plate. 

The normal stresses show a consistent nature across the plate in both the transverse and 

longitudinal directions. The stress values range from -42 MPa to +78 MPa, though in most 

cases it was between -20 MPa and +30 MPa and are mostly within the error bars of each 

other. 
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Figure 4.9: Normal stress at various depths in transverse (T or Y) direction (line 1-2) 
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Figure 4.10: Normal stress at various depths in longitudinal (L or Z) direction (line 1-3) 
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Figure 4.11: 3-D view of normal stress distribution in transverse (T or Y) direction 
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Figure 4.12: 3-D view of normal stress distribution in longitudinal (L or Z) direction 
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4.4.1.1.2 Transverse Stress from Specimen 1 

The transverse stresses are calculated using all three strain components using Equation 4.6. 

°Transverse ~ 1+v {^Transverse 1_2v Normal ^Transverse £Longitudinal ) ) ( 4 . 6 ) 

The transverse stress is the stress in the direction of what would be perpendicular to the 

stiffener if there was a stiffener on this plate (direction T or Y in Figure 4.8). The stress 

measurements for transverse component were acquired at the same measurement points as 

were acquired for the normal component, that is at 10 mm intervals along the transverse 

direction (line 1-2) and up to a distance of 50 mm from the centre (point 1) of the plate and at 

20 mm, 40 mm and 60 mm intervals along the longitudinal direction (line 1-3) and up to a 

distance of 180 mm from the centre (point 1) of the plate. The measurements were taken at 

seven depths through the thickness of the plate at each point thus, a total of 77 (= 7 x 11) 

measurements were obtained. 

One dimensional distributions for the transverse stress component on lines 1 -2 and 1 -3 are 

shown in Figures 4.13 and 4.14, respectively. Each line shows the stress levels through the 

depth of plate at a specific measurement point. Figures 4.15 and 4.16 show three-

dimensional distributions of the transverse stress component in the transverse (T or Y) and 

longitudinal (L or Z) directions, respectively. 

The transverse stress distributions show a clear and consistent pattern through the thickness 

(along N or X) of the plate. It can be seen that the transverses stress value changes its sign 

from positive to negative, then from negative to positive and finally, to negative again as the 

depth of the plate increases. The maximum negative value of transverse stress is at about 3 

mm below the top surface and the maximum positive stress value is at about 6 mm from top 

surface. The change in transverse stress values through the thickness of the plate indicates 

that the parent plate had a locked-in bending stress in the transverse direction and it may have 

happened due to the rolling process of plate production. 

A cold cut method called "water-jet cut" was used in this study and it is assumed that this did 

not introduce any additional stresses. The range of stresses in the transverse component also 
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have a broader range than the normal stresses from roughly -110 MPa to +80 MPa. The error 

bars are not shown on these Figures since the results are reasonably consistent. There are a 

few points that do seem to vary from most of the others, however, they are still within the 

error limit. 

The three-dimensional distributions (Figures 4.15 and 4.16) show a better representation of 

the bending stress in the transverse and longitudinal directions through the depth. These 

Figures also show the changes in maximum negative and positive stresses along both the 

transverse (T or Y) and longitudinal (L or Z) directions. It is observed that the transverse 

stress value at a specific measurement depth (at a specific depth in the N or X direction) does 

not change much with the change in distance from the origin in the transverse (Y) or 

longitudinal (Z) direction. 

Figure 4.13: Transverse stress at various depths in transverse (T or Y) direction (line 1-
2) 
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Figure 4.14: Transverse stress at various depths in longitudinal (L or Z) direction (line 
1-3) 
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Figure 4.15: 3-D view of transverse stress distribution in transverse (T or Y) direction 
(line 1-2) 
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Figure 4.16: 3-D view of transverse stress distribution in longitudinal (L or Z) direction 
(line 1-3) 

4.4.1.1.3 Longitudinal Stress from Specimen 1 

The longitudinal stresses are calculated using Equation 4.7. 

&Longitudinal 1+v {^Longitudinal \—iy ^Normal ^Transverse &Longitudinal ) ) ( 4 - 7 ) 

The longitudinal stress is the stress in the direction of what would be parallel to the stiffener 

(direction along L or Z in Figure 4.8) if there was a stiffener on this plate. The stress 

measurements were taken at the same measurement points along lines 1-2 and 1-3 in Figure 

4.8 as was done for the other two stress components that is at 10 mm intervals along the 

transverse direction (line 1-2) and until 50 mm from the centre (point 1) of the plate and at 20 

mm, 40 mm, and 60 mm intervals along the longitudinal direction (line 1-3) and until 180 

mm from the centre (point 1) of the plate (see Figure 4.8). The measurements were taken at 

seven depths through the thickness (in N or X direction) of the plate at each point, for a total 

of 77 points (11 locations x 7 depths). 
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Figures 4.17 and 4.18 illustrate one-dimensional distributions of longitudinal stresses for 

Specimen 1. Three-dimensional longitudinal stresses are shown in Figures 4.19 and 4.20. 

The longitudinal stresses show a consistent and similar pattern as was found for transverse 

stress distribution. (Please compare Figure 4.17 with Figure 4.13 and compare Figure 4.18 

with Figure 4.14). Therefore, it is obvious that a bending stress in the longitudinal direction 

as well was created during the rolling process of the plate. The maximum negative 

(compression) longitudinal stress was found at 3 mm below the top surface of the plate and 

the maximum positive (tension) longitudinal stress was found at 6 mm below the top surface 

of the plate. The range of longitudinal stress values were found to be between -40 MPa to 

+90 MPa. The error bars are not shown on these plots because a consistent pattern in stress 

distribution is found. The variance of the points is still close to within the error limits. 

The three-dimensional distributions (Figures 4.19 and 4.20) also show the bending stress 

through the depth as well as the shallower maximum and minimums along the plate in both 

the transverse (T or Y) and longitudinal (L or Z) direction, similar to the transverse stress 

distribution. 
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Figure 4.17: Longitudinal stress at various depths in transverse (T or Y) direction (line 
1-2) 
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Figure 4.18: Longitudinal stress through depth in longitudinal (L or Z) direction (line 
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Figure 4.19: 3-D view of transverse stress distribution in transverse (T or Y) direction 
(line 1-2) 
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Figure 4.20: 3-D view of transverse stress distribution in longitudinal (L or Z) direction 
(line 1-3) 

4.4.1.2 Specimen 2 

Specimen 2 was a stiffened plate with the dimensions: 400 mm wide (T or Y) x 600 mm long 

(L or Z) x 9.5 mm thick (N or X). Only one angle stiffener of 600 mm length was welded on 

this specimen (Figure 4.21). The objective was to determine the effects of welding a single 

stiffener on the residual stress distributions and to compare with those for the parent plate 

with no stiffener (Specimen 1). The specimen was measured for three residual strain 

components: (i) normal (N or X), (ii) transverse (T or Y), and (iii) longitudinal (L or Z) at 

seven depths through the normal (N or X) direction. Figure 4.21 shows the origin (point 1) 

and the lines (3-1-4, 5-2-6, and 1-2) on which the measurements were undertaken. 
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4.4.1.2.1 Normal Stress for Specimen 2 

The normal stresses (ax or a n o r mai) are calculated using all three strain components as shown 

in Equation 4.5. The normal stress was measured along the transverse direction until 150 

mm on either side of the stiffener (line 3-4 and line 5-6) and 133 mm along the weld 

centreline (line 1-2) in the longitudinal direction (Figure 4.21). 

As mentioned in Section 3.3 (Table 3-C), the welding for this specimen could not be 

completed in a single non-stop run. The welding was stopped once and restarted after one 

minute at point 2 in Figure 4.21. The stop and start caused the weld overlap at that point. 

The distance of 133 mm (z = 133 mm) was chosen based on the location of a stop and start 

(point 2 in Figure 4.21) in the welding process. The location of the origin (point 1 in Figure 

4.21) was chosen at the mid-length between point 2 and the edge of the plate such that edge 

effects and weld inconsistencies (stop and start in welding) are minimized. The spacing of 

the measurements was as small as 1 mm near the centre of the weld and gradually increased 

up to 40 mm further away from the weld in the transverse direction, as shown in Figure 4.22. 

For line 3-4, the measurements were taken at seven depths of the plate (through N or X axis) 
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along the transverse (Y) direction at 31 locations, for a total of 217 (=31 x 7) measurement 

points. Measurements on line 5-6 (at z = 133 mm in Figure 4.21) were also acquired at 31 

locations as was acquired for line 3-4 but at three depths for a total of 93 (=31 x 3) 

measurement points. The measurements along the weld centreline (line 1-2) were only taken 

at one depth (at N = X = 8.9 mm) that is near the welded surface of the plate since it was 

found that the normal stress component does not change much through the thickness of the 

plate and the depth closest to the welded stiffener is of most interest. However, these stress 

values showed changes at points where weld was not uniform or welding was interrupted 

such as at point 2, where welding was stopped and started. These measurements were taken 

at seven points plus at other two points at z = 0 mm (point 1) and z = 133 mm (point 2). The 

total number of measurements taken on this specimen is 317 points (=217 + 93 +7). 
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Figure 4.22: Measurement spacing in the transverse direction (mm) 

One dimensional distributions for normal stresses (cx or o n o r m a i ) for lines 3-4 (at z = 0 mm) 

and for line 5-6 (at z = 133 mm) are shown Figures 4.23 and 4.24, respectively. Each line 

shows the variation in normal stress through the cross-section or depth (depth, N) of the plate 

at a specific distance from the origin (point 1 in Figure 4.21). It should be noted that a 
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different graphical representation is shown for this stress component, as compared to the 

Figures for Specimen 1. For example in Figure 4.23, the line with the open squares shows 

the stress levels at 1.1 mm from the bottom face (the face of the plate with no stiffener) of the 

plate and the line with crosses shows the stress values closest to the surface of the pate with 

stiffener. Figure 4.24 shows the same distribution for normal stress but for line 5-6 (at z = 

133 mm). Only three measurements along the depth were obtained to reduce the beam time. 

The three-dimensional stress plots are not shown for this stress component since they do not 

provide any valuable information. 

Like Specimen 1, the distributions for normal stress do not show any specific pattern and this 

is primarily due to the nature of pre-existing locked-in normal stresses in the parent plate that 

may have developed from the rolling process. The stress values range from about -75 MPa 

to +150 MPa, with the maximum value near the weld centreline. These values are nearly 

double the values found in the parent plate, that is, Specimen 1 (Specimens 1 had the stress 

values in the range of -40 MPa to +80 MPa). 
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Figure 4.23: Normal stress at various depths in transverse (T or Y) direction (at z = 0 
mm, line 3-4) 
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Figure 4.24: Normal stress at various depths in transverse (T or Y) direction (at z = 133 
mm, line 5-6) 

4.4.1.2.2 Transverse Stress for Specimen 2 

The transverse stresses (oy or a t r ansverse) are calculated using Equation 4.6 and measured at the 

same points where the normal stress component was measured (Figure 4.21). The 

measurement points are shown in Figure 4.22. Like the measurements for the normal stress 

component, transverse stress was also measured at seven depths on line 3-4 (at z = 0 mm) 

and at three depths on line 5-6 (at z = 133 mm). The measurements along the weld centreline 

were only taken at one depth (at N = X = 8.9 mm) because it was found that the transverse 

stress component does not change much through the thickness of the plate and the depth 

closest to the welded stiffener is of most interest in this study. However, the stress value 

changes at locations where there were inconsistencies in the weld itself (for example, at z = 

133 mm, point 2). 
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One-dimensional distributions for transverse stress are shown Figures 4.25 and 4.26 for line 

3-4 (at z = 0 mm) and line 5-6 (at z = 133 mm), respectively. The three-dimensional stress 

plots are not shown for this specimen since they do not follow any clear pattern. 

The transverse stresses show a pattern with maximum positive (tensile) stress being at the 

centre of the weld (line 1-2 in Figure 4.21). The stress vale on line 3-4 (at z = 0 mm) ranges 

from about -120 MPa to +150 MPa, showing the maximum value around the weld centreline. 

The stress values on line 5-6 (at z = 133 mm) range from roughly -170 MPa to +50 MPa. 

The difference found on this line as compared to line 3-4 seems to be due to the stop and start 

of the weld (at z = 133 mm, point 2). These values compared with the parent plate 

(Specimen 1) are nearly 50% higher. 

Figure 4.25: Transverse stress at various depths in transverse (T or Y) direction (at z = 
0 mm, line 3-4) 
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/=133 mm, line 5-6) 

4.4.1.2.3 Longitudinal Stress for Specimen 2 

The longitudinal stress (oz or aiongitudinai) was calculated using Equation 4.7 and were 

measured at the same points and depths as was done for the other two stress components 

(Figures 4.21 and 4.22). 

Figures 4.27 and 4.28 show one-dimensional distributions for the longitudinal stress for lines 

3-4 (at z = 0 mm) and 5-6 (at z = 133 mm), respectively. Better and much more obvious 

patterns are found in the distribution of this stress component. These Figures show that the 

stress value remains almost unchanged even if the depth of the plate is changed. The stress 

value reduces as the transverse (Y or T) distance from the weld increases and finally, it 

becomes compressive (negative) at about 50 mm on both sides from the centre of the weld. 

The three-dimensional distributions for longitudinal stresses are shown in Figure 4.29 and 

Figure 4.30. However, these plots are not drawn to scale. 
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The maximum positive (tension) value is located at the centreline (line 1-2 in Figure 4.21) of 

the weld. The stress value on line 3-4 (at z = 0 mm) range from roughly -200 MPa to +450 

MPa. It should be noted that the first yield stress obtained from material tests on the plate is 

405 MPa. The stress value on line 5-6 (at z = 133 mm) range from roughly -200 MPa to 

+375 MPa. The reduction in longitudinal stress value on line 5-6 (at z = 133 mm) seems to 

be due to the stop and start of the weld at this location. These values compared with the 

parent plate (Specimen 1 which had longitudinal stress value in the range of -40 MPa to +90 

MPa) are nearly five times larger. In Figure 4.29 and Figure 4.30, the three-dimensional 

stress distribution plots (not-to-scale) illustrate the stress level remains almost constant 

through the depth and transversely across the weld. A pivot table was used to organize this 

data and magnifies the area directly under the weld. From 10 mm on either side of the 

centreline of the weld, the stress measurements were taken at 1 mm or 2 mm intervals, and 

these measurements show in detail the even levels of stress within the weld. The stress levels 

do not vary more than 50 MPa from one end of the weld bead to the other. 

One-dimensional distributions of the three stress components along the longitudinal direction 

(line 1-2) are shown in Figure 4.31. It can be seen that stress level rises within 10-15 mm 

from origin (point 1) and then the stress level remains unchanged until about 20 mm away 

from the stop and start of the weld. The stress level reduces as the stop and start weld zone is 

approached. Due to the limitation in the set-up and the instrument, stress measurements 

further away into the weld overlap zone (stop and start zone) could not be taken. 
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Figure 4.27: Longitudinal stress at various depths in transverse (T or Y) direction (at z 
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Figure 4.28: Longitudinal stress at various depths in transverse (T or Y) direction (at z 

= 133 mm, line 5-6) 
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Figure 4.29: 3-D view of longitudinal stress distribution in transverse (T or Y) direction 
(at z = 0 mm, line 3-4) 
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Figure 4.30: 3-D view of longitudinal stress distribution in transverse (T or Y) direction 
(at z = 133 mm, line 5-6) 
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Figure 4.31: AH stresses @ Transverse=-10 mm, Normal = 8.9 mm (line 1-2) 
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4.4.1.3 Specimen 3 

Specimen 3 was a stiffened plate which was 400 mm wide (T) x 600 mm long (L) x 9.5 mm 

thick (N). It had two stiffeners and the primary objective was to study the effects of welding 

a second stiffener on the stress distribution of the first welded stiffener. The specimen was 

measured for residual strain along the longitudinal (L or z) and transverse (T or y) directions 

at seven depths through the normal direction. Figure 4.32 shows the origin (point 1) and the 

lines (2-1-3) on which stress measurements were taken. Point 4 shows where the 

inconsistency in the weld occurs (stop and start in the welding process) and therefore how the 

location of the measurement line was chosen. Line 2-1-3 is located halfway between the 

inconsistency in the weld (point 4) and the edge of the plate. Figure 4.33 shows the spacing 

of the measurements in the transverse direction of the plate. 

Figure 4.32: Detail for measurement points in Specimen 3 
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4.4.1.3.1 Normal Stress for Specimen 3 

The normal stresses (ax or a n o r m a i ) are calculated using all three strain components as shown 

in Equation 4.5. The normal stresses were measured along the entire transverse direction (on 

line 2-1-3) of 400 mm (Figure 4.32). 

As previously mentioned in Section 3.3 (Table 3-C) and for Specimen 2, the welding of the 

second stiffener for this specimen could not be completed in a single non-stop run. The 

welding was stopped once and restarted at point 4 after one minute on the second welded 

stiffener 150 mm from line 2-1-3 in Figure 4.32. The stop and start caused the weld overlap 

at that point. The position of line 2-1-3 was chosen, as was done for Specimen 2, based on 

the location of a stop and start in the welding process. The location of the origin (point 1 in 

Figure 4.32) was chosen at the mid-length between the stop and start of the weld of the 

second welded stiffener and the edge of the plate such that edge effects and weld 

inconsistencies (stop and start in welding) are minimized. The spacing of the measurements 

was similar to those of Specimen 2. Near the centre of the weld where the focus of this study 

is, spacing was as small as 1 mm and gradually increased up to 40 mm further away from the 

weld, as shown in Figure 4.33. The measurements were taken at three depths in the 

transverse (T or Y) direction (on line 2-1-3) at 54 locations, for a total of 162 points (= 54 x 

3) and at seven depths in 11 locations (on same line 2-1-3) for a total of 44 points ( = 1 1 x 4 ) 

to verify whether or not the strain values through the thickness of the plate changes. 

Therefore, the total number of measurements taken on this specimen is 206 points (= 162 + 

44). 

The one-dimensional distribution for normal stresses (ox or Onormai) for line 2-1-3 is shown in 

Figure 4.34. Each line shows the normal stress through the cross-section of the plate at 

specific transverse distance from the origin (point 1 in Figure 4.32). It should be noted that a 

different graphical representation is shown for this stress component, as compared to the 

Figures for Specimen 1. The lines at 8.9 mm, 5 mm, and 1.1 mm were depths where the 

three measurements were taken across the entire transverse direction and provide the most 

comprehensive picture of the normal stresses. The additional points collected at the four 

other depths (7.6 mm, 6.3 mm, 3.7 mm, and 2.4 mm) complete the picture of the stresses 



through the thickness of the plate (depth, N) to confirm the consistency of the stresses in this 

direction. The results show that three depths were sufficient to show the residual stress 

pattern in this specimen. For example in Figure 4.34, the line with the crosses shows the 

stress levels at 8.9 mm from the bottom face of the plate (measurements closest to the welded 

stiffener side) with a minimum value of -119 MPa to a maximum value of 32 MPa. These 

values compared to those found in Specimen 2 for the same normal stress component ranging 

from -5 MPa to 147 MPa, show the range is roughly equal at 150 MPa of change, though the 

absolute values are shifted down in Specimen 3. This possibly shows that the stress balance 

for this specimen is located elsewhere. The three-dimensional stress plots are not shown for 

this stress component since they do not provide any valuable information. 

Similar to both Specimen 1 and Specimen 2, the normal stress component does not show any 

clear pattern and this is again due to the presence of the locked-in normal stresses evident in 

the parent plate that likely developed during the rolling process. The normal stress values 

range from -150 MPa to +32 MPa, with the maximum value close to the weld centreline. 

These values are slightly lower than the range found on Specimen 2 (-75 MPa to +150 MPa) 

and roughly 50% higher than the range found in Specimen 1 (-40 MPa to +80 MPa). 

4.4.1.3.2 Transverse Stress for Specimen 3 

The transverse stresses (oy or ctl-ansverse) are calculated using Equation 4.6 and measured at the 

same points where the normal stress component was measured (Figure 4.32). The 

measurement points are shown in Figure 4.33. Similar to the measurements for the normal 

stress component, the transverse stress was also measured at three depths at 54 locations for a 

total of 162 (= 54 x 3) points. However, due to beam time constraints, only nine locations 

were measured through the thickness to verify stress value, hence an additional 36 points (= 9 

x 4) were measured. Therefore, the total number of measurements that were taken on this 

plate was 198 points (= 162 + 36). 

The one-dimensional distributions for transverse stress are shown Figure 4.35 for line 2-1-3. 

The three-dimensional stress plots are not shown for this specimen since they do not follow 

any clear pattern. 



6Qr ransverse Distance from the Origin (First welded 
Stiffener) (mm) 

Figure 4.34: Normal Stress at various depths in transverse (T or Y) direction (line 2-1-
3) 

The stress values on line 2-1-3 range from about -240 MPa to +50 MPa. The values at a 

depth of 3.7 mm show a difference of approximately -100 MPa from the other depths through 

the thickness. This difference is best explained by the inherent locked-in stresses found in 

the parent plate, where at a depth of 3.7 mm the values were at the minimum. For example, 

at the distance 115 mm from the origin the change in stress levels between a depth of 2.4 mm 

and 3.7 mm is roughly - 9 0 MPa. In Specimen 1, the change in transverse stress levels 

between 2.4 mm and 3.7 mm depths is similar at -100 MPa. As was shown in Specimen 1 as 

well, the maximum peak is found between the depths of 5 mm and 6.3 mm, which is also 

apparent in Specimen 3. 
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4.4.1.3.3 Longitudinal Stress for Specimen 3 

The longitudinal stress (cz or l̂ongitudinal) was calculated using Equation 4.7 and were 

measured at the same points and depths as was done for the normal and transverse stress 

components (Figures 4.32 and 4.33). The longitudinal strain component was collected using 

two different set-ups and therefore, two different sets of constants. The second set-up was 

similar to the longitudinal set-up for Specimens 1 and 2, and was completed in October 2008. 

The first set-up had the plate positioned at 45° and was used to collect the difficult points that 

were under thee stiffeners. 

8.9 
7.6 
6.3 
5 
3.7 
2.4 
1.1 

Transverse Distance from the Origin (First welded 
Stiffener) (mm) 

Figure 4.35: Transverse Stresses though the depth in transverse (T or Y) direction (line 
2-1-3) 

Figure 4.36 shows the one-dimensional distribution for the longitudinal stress for line 2-1-3. 

The sought after distribution of the stress values is more evident in this component. This 

figure shows how the depth does not affect the stress levels as severely as the transverse 

component. This figure shows the peak in tensile (positive) stresses occurs at the weld and 

as the transverse (Y or T) distance from the weld increases the stresses reduce to a 
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compressive (negative) stresses and plateau at roughly -150 MPa between the two stiffeners. 

The three-dimensional view (not-to-scale) of these stresses is shown in Figure 4.37 for the 

three depths (8.9 mm, 5 mm, and 1.1 mm). 

The maximum tension (positive) stresses are at the centreline of the weld at a depth of 8.9 

mm (that is, close to the welded surface of the plate), equal to 430 MPa with an error of plus 

or minus 15 MPa, which is higher than the yield stress obtained from material tests on the 

plate at 405 MPa. The peak stress values are only slightly higher on the second welded 

stiffener (max = +430 MPa) than the first welded stiffener (max = +386 MPa), with stress 

error levels of approximately ±10 MPa to ±30 MPa. The majority of the peak values at the 

weld centreline are about 400 MPa, just below the yield stress level. The stress values on 

line 2-1-3 range from -360 MPa to +430 MPa. These values compared with Specimen 2 at z 

= 0 mm (-200 MPa to +450 MPa) are more compressive. The same values compared with 

the parent plate (Specimen 1 which had longitudinal stress value in the range of -40 MPa to 

+90 MPa) the range is roughly six times greater in Specimen 3. 

The plateau between the two stiffeners shows that once at a certain distance from the 

centreline of the weld the stress levels stabilize and show little variation. The plateau 

between roughly 20 mm and 208 mm from the origin, shows are range of longitudinal stress 

values from -220 MPa to -100 MPa, with stress error levels of approximately ±10 MPa to 

±30 MPa. 

In Figure 4.37, the three-dimensional stress distribution plot (not-to-scale) illustrates the 

stress level remains almost constant through the depth of the plate and transversely under the 

weld and in the weld area. A pivot table was used to organize this data and magnifies the 

area directly under the weld. From 10 mm on either side of the centreline of the weld, the 

stress measurements were taken at 1 mm or 2 mm intervals, and these measurements show in 

detail the even levels of stress within the weld. The stress levels do not vary more than 50 

MPa from one edge of the weld bead to the other. 
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Figure 4.36: Longitudinal stress at various depths in transverse (T or Y) direction (line 
2-1-3) 
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5 Summary and Conclusions 

This study provided a very accurate representation of the stress distribution in the three 

specimens. The testing completed shows detailed information on the residual stress 

distribution through the thickness of a plate. All three strain components were collected to 

calculate the true residual stress distributions in the specimens. Whereas, most previous 

work focused only on surface stresses due to the limitations of testing methods and only 

focused on collecting one or two strain components and assuming a plane strain problem. 

Specimen 1 provided the information necessary to have a basis to compare the stress results 

from the welded specimens. Most previous studies conducted did not assess the residual 

stresses present in the parent plate due to manufacturing and cutting processes. The bending 

stress found through the thickness of the plate in Specimen 1 was most prevalent in the 

transverse and longitudinal stresses. 

Specimen 2 is the benchmark specimen for comparing stress distributions in Specimen 3 and 

for future studies. However, the stop and start in the weld of Specimen 2 shows some 

interesting information on what can happen if the welding is stopped and restarted for some 

reason. The study shows that stop and start decreases the maximum tensile longitudinal 

stress and possibly can be beneficial in ship design. Specimen 2 showed the expected stress 

distribution with the maximum stress at the weld centre and the eventual stress plateau away 

from the weld in the transverse direction. 

Specimen 3 presented a first look at the effect of welding a second stiffener on the stress 

distribution. The effect that one stress distribution from welding has on another weld has not 

been extensively examined in previous work. The maximum stress values of the second 

welded stiffener are slightly higher than those of the first welded stiffener. There is a plateau 

in the stress levels for roughly 190 mm in between the two stiffeners. Overall the 

longitudinal stress values were more compressive in Specimen 3 than in Specimen 2. 

Overall the results from these three specimens provide an excellent basis for future studies. 

In general, both for Specimens 2 and 3, it was found that the maximum tensile stress can be 

slightly higher than the yield stress. 



5.1 Future Work 

The data collected and analyzed for this thesis will be beneficial in the planning and 

execution of any future testing. Further study with uniform welds with less inconsistencies 

and no stop and starts is required. An automatic welding system will be tested to see if it 

generates acceptable welds. 

A change in the spacing of the stiffeners needs to be explored to find the optimum spacing of 

stiffener for production. The heat input used during welding will also need to be changed to 

find the change in residual stress distributions with the change in heat input. A more in depth 

look may also be taken at the effects of the stop and start of the welding process on the 

residual stress distribution, expanding on the minimal data that was collected in these 

experiments. Another area of interest may also be the residual stress distribution when the 

stiffener is shorter than the parent plate and the stress patterns in the plate past the end of the 

stiffener and weld. 

A semi-destructive method, such as hole-drilling, may be used to verify the results found 

here. As well, computer modelling may be used for a detailed parametric study. 
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Appendix A - Raw Data and Checks 

Figure 0.1: Integrated intensity check - good raw data 

Figure 0.2: Full Width Half Maximum (FWHM) check - good raw data 
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Figure 0.3: Lattice strain check - good raw data 
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