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Abstract

Background: Patient-derived xenograft and cell line models are popular models for clinical cancer research.
However, the inevitable inclusion of a mouse genome in a patient-derived model is a remaining concern in the
analysis. Although multiple tools and filtering strategies have been developed to account for this, research has yet
to demonstrate the exact impact of the mouse genome and the optimal use of these tools and filtering strategies

in an analysis pipeline.

Results: We construct a benchmark dataset of 5 liver tissues from 3 mouse strains using human whole-exome
sequencing kit. Next-generation sequencing reads from mouse tissues are mappable to 49% of the human genome
and 409 cancer genes. In total, 1,207,556 mouse-specific alleles are aligned to the human genome reference,
including 467,232 (38.7%) alleles with high sensitivity to contamination, which are pervasive causes of false cancer
mutations in public databases and are signatures for predicting global contamination. Next, we assess the
performance of 8 filtering methods in terms of mouse read filtration and reduction of mouse-specific alleles. All
filtering tools generally perform well, although differences in algorithm strictness and efficiency of mouse allele
removal are observed. Therefore, we develop a best practice pipeline that contains the estimation of contamination

level, mouse read filtration, and variant filtration.

Conclusions: The inclusion of mouse cells in patient-derived models hinders genomic analysis and should be
addressed carefully. Our suggested guidelines improve the robustness and maximize the utility of genomic analysis

of these models.
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Background

Patient-derived models (PDMs) serve as a way of preserving
and amplifying cancer specimens of patients by providing
in vivo or in vitro environments that allow the natural
growth of cancer cells. The recent advent of various tech-
nologies for PDM construction, including patient-derived
xenografts (PDXs), patient-derived tumor cell cultures
(PDCs), and patient-derived organoids (PDOrg), has revolu-
tionized translational cancer research by providing useful
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preclinical models of use in drug development [1, 2], drug
screening [3—6], and a personalized co-clinical trials of can-
cer patients [7]. Particularly, next-generation sequencing
(NGS) of these amplified primary tumors enabled robust
measurement of genomic variants and gene expression
changes under various conditions [8—11].

Genomic analysis of PDM samples, however, is more
complicated than that of original primary tumor samples
due to the rise of mouse-originating cells or tissues in
the implanted specimen. Indeed, research has shown
that resected PDX samples can harbor up to 70-80%
murine DNA without a mistake in the separation
process, mainly due to the infiltration of murine stromal
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cells [12—-14]. Additionally, other in vitro models would
also contain mouse genome fragments (e.g., fibroblasts
in a co-cultured feeder layer or mouse sarcoma-derived
Matrigel) [15, 16]. Subsequent next-generation sequen-
cing of these samples would inevitably generate short
reads of mouse DNA (mouse read, hereafter). Due to the
genomic similarity between humans and mice [17],
mouse reads are alignable to the human reference gen-
ome, which can cause multiple problems in standard
genomic analysis: For example, once aligned, mouse-
specific alleles in mouse reads are difficult to distinguish
from true variants in human reads, resulting in false mu-
tation calls. In transcriptome sequencing, mapping of
c¢DNA mouse reads leads to aberrant gene expression
profiles of cancer cells. Accordingly, researchers have
lobbied continuing demands for efficient tools which
deconvolute or remove murine effects in genomic ana-
lyses of PDM models [8, 14].

The removal of mouse reads has been primarily
attempted computationally on NGS data. The simplest
way to do this is to utilize the differential mappability of
mouse reads onto the human and mouse reference gen-
ome. Thereby, reads that are mapped only to the mouse
reference genome or are mapped better to the mouse
than the human reference genome are filtered out. In
the last few years, however, at least five computational
tools [8, 18-21] have been developed to conduct the
same task via different strategies and filtering criteria,
and all have reported a satisfactory accuracy (~ 97.84%)
in mouse read filtration. While these various solutions
have increased the resources available to researchers,
there are only a few benchmark studies on the effective-
ness of these tools, and conclusions therefrom are incon-
sistent [8, 22, 23]. More fundamentally, it is still unclear
as to whether the use of a filtration tool itself is essential
or if steps other than the read filtration (e.g., variant
blacklisting) are additionally required. To render an
agreeable consensus, benchmark studies providing a
comprehensive analysis of the true genome-wide effects
of mouse reads, such as alignment landscape and gene-
and locus-level vulnerability to contamination, on vari-
ant calling using a realistic dataset are needed.

Here, we report our benchmark results for the effect-
iveness of eight currently available mouse read filtering
pipelines, reflecting their impact on genome analysis. To
construct a realistic benchmark dataset, we directly se-
quenced mouse tissues that were processed by human
exome target enrichment and further mixed with human
reads at different rates, which allowed us to identify the
quantity, mappability, and alignment landscape of mouse
reads at a global level. To measure the impact of mouse
reads on variant calling, we listed all mouse-specific al-
leles that could possibly cause mismatches (and ultim-
ately false variants) in the aligned data and measured
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their sensitivity to contamination. Deeper analysis of the
alleles led to the discovery of additional findings reflect-
ive of increased vulnerability in cancer genes and strain
specificity, as well as the development of a robust meas-
ure for estimating contamination levels. Finally, pipelines
were evaluated in terms of their efficiency in read filter-
ing and reducing mouse-specific alleles, and the best
practice pipeline was drawn, with additional suggestions
for best output. We believe our study provides a basis
for developing standards for genomic analysis of PDX
and relevant patient-derived models.

Results

Construction of the benchmark dataset

Samples for the benchmark were obtained from fresh
liver tissues from 5 mice (2 A/], 1 BALB/c, and 2
C57BL/6 strains) (Fig. la). Tissues that passed initial
quality control were prepared for NGS with human ex-
ome capture kits, with an average target depth of 200.
Every raw NGS read (FASTQ) was marked with the
mouse strain and replication numbers. To mimic mouse
genome contamination in human samples and the
exome-level sequencing thereof, public NGS data for 2
human lung cancers that were generated in the same
manner as that for generating NGS data for the mouse
samples (e.g., the same capture platform, version, and se-
quencing platform) were downloaded and mixed with
raw mouse reads at 5 different rates (5%, 10%, 20%, 50%,
and 80% of the total reads). The generation of each mix-
ture was triplicated with different randomization seeds
to remove downsampling effects. Finally, a total of 150
human-mouse mixture datasets (2 human x5 mice x 5
mixture rates x 3 downsampling randomizations) were
prepared for the analysis (see the “Methods” section and
Additional file 1: Table S1).

Impact of mouse contamination on genomic analysis

We first mapped the NGS reads from 5 pure mouse
samples to the human genome reference to trace the
mouse reads during alignment. Of the 117,239,374—126,
090,704 mouse reads that were physically captured by
human exome enrichment kit, 84,819,721-97,585,087
(75.1% on average) were mapped to the human reference
genome (hgl9) with a conventional read alignment
process (BWA-MEM, default setting, see the “Methods”
section). At a global level, these aligned mouse reads
were evenly distributed across all human chromosomes,
except the Y chromosome, with only slight differences
among strains (Fig. 1b). The aligned mouse reads cov-
ered 49.0% of all human protein-coding regions, stretch-
ing across 10,277 RefSeq genes (out of 21,429; 48.0%).
Moreover, these genes included 409 of 720 CGC (COS-
MIC Cancer Gene Census, Sanger Institute [24]) cancer
genes for a coverage of 56.8%.
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Fig. 1 Impact assessment of mouse genome on human genome analysis. a Schematic overview of the data production to simulate mouse
contaminated sample. b Coverage of five mouse samples on human genome reference (hg19). ¢ Top ranked human functional gene sets
enriched by mouse reads. Functional terms are annotated by Gene Ontology (GO). d Distributions of mouse read RPKM in all genes targeted by
WES kit, Cancer Gene Census genes, and genes containing cancer hotspot mutations defined in cancer hotspots

We further assessed gene-specific sensitivity to mouse
reads. Based on a normalized read count (reads per kilo-
base per million (RPKM) mapped reads), genes of higher
mappability to mouse reads could be rendered (Add-
itional file 1: Figures S1 and S2, Additional file 2).
Among them, 2822 (13.2%) genes were highly sensitive
to mouse reads, with an average RPKM > 40; this corre-
sponds to 20,000~30,000 mapped reads per average-
sized gene (10~15kb) in a typical 100x exome paired-
end sequencing with a 100-bp read length. We also
found that the top sensitive genes were associated with
essential cellular functions such as chromatin structure,
nucleosome, sensory receptors (Fig. 1c, Additional file 3),
and many cancer genes including CDH11 (cadherinll)
and SOX2 (sex-determining region Y) (Additional file 1:
Figure S2B). For further analysis, we presumed that hu-
man cancer genes that tend to play a critical role in cel-
lular proliferation and regulation would be more
sensitive to mouse reads due to their lower tolerance to

sequence variations and higher inter-species conserva-
tion. The RPKM distribution within all human and CGC
genes, as well as cancer hotspot variant sites (cancer hot-
spots, Memorial Sloan Kettering Cancer Center [25]),
reflected an increased mappability of mouse reads to
cancer genes and hotspots (median RPKM 25.9 and 27.5
vs. 10.8), confirming our hypothesis (Wilcoxon rank-
sum test p values of 2.46x 107 and 1.90 x 1079
(Fig. 1d). These results demonstrated that mouse reads,
once included in the samples, are difficult to filter with
standard alignment procedures and affect downstream
genomic analysis, particularly for cancer genes.

Characteristics of human genome-aligned mouse alleles

A major problem with variant analysis of PDM stems
from the fact that mouse-specific alleles look like som-
atic mutations in the samples. While the locations of
these alleles and their corresponding human loci are dif-
ficult to identify at the reference genome level due to a
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complex homolog structure, more practical assessment
can be achieved in the read alignment step. Among
mouse reads, we defined mouse alleles that were align-
able to the human genome as human genome-aligned
mouse alleles (HAMAs) (Fig. 2a). Although the actual
list of HAMAs differed according to the mouse strain,
sequencing protocol (e.g., read length, capture effi-
ciency), and alignment tool, we assumed that impactful
HAMAs would be repeatedly observed when applying
conventional protocols.

In our benchmark setting, a total of 1,602,035 HAMAs
were observed from the 5 mouse samples, 1,207,556 of
which were shared by all mice (common HAMA). This
corresponded to the 3.28% of all bases covered by the
mouse reads. Meanwhile, 35,137, 41,435, and 46,229 strain-
specific HAMAs were identified in A/], BALB/c, and
C57BL/6 mice, respectively, showing decreased mismatches
between A/] and humans (Fig. 2b and Additional file 1:
Table S2). The entire list of common HAMA is available in
Additional file 4.

Individual HAMAs pose distinctive risks of contamin-
ation reflected in the variant allele frequency (VAF) of
the allele together with the number of human reads
aligned at the site. Thus, we defined Hy (HAMA allele
frequency) as the variant allele frequency of a HAMA
(Fig. 2a). For each HAMA site, Hy value is determined by
3 major factors: (i) mappability of HAMA-containing
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mouse reads, (ii) mappability of human reads at the site,
and (iii) the overall contamination level. Thus, HAMAs
with good mouse read, but low human read mappability,
would have larger Hy values and would pose a greater
chance of being called as (false) mutations. In the actual
calculation of Hj; we used the read counts of mouse
reads from the benchmark dataset for (i) and the mean
read depth of 125,748 human whole-exome sequencing
from the gnomAD database [26] for (ii). By changing the
mixture ratio of (i) and (ii), we could calculate Hy values
at different contamination levels (iii) (see the “Methods”
section for details).

The overall distributions of common 1,207,556 Hy
values at 4 different contamination levels (5%, 10%, 20%,
and 50%) varied greatly (Fig. 2e). For a given contamin-
ation level &, the Hy of a suggests that the mappability of
a mouse read is similar to that of a human read at the
HAMA. For most cases, Hy would be lower than a due
to the reduced mappability of mouse reads, which was
observed in a positive-skew distribution and in observed
median Hy values of 3.7%, 7.4%, 14.8%, and 38.9% for a
values of 5%, 10%, 20%, and 50%, respectively. However,
we found a substantial number of HAMAs (454,438 out
of 1,207,556; 37.6%) with > a were also present, suggest-
ing that these HAMAs are highly sensitive to contamin-
ation. Further investigation confirmed that these regions
are poorly targeted in whole-exome sequencing (WES),
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Fig. 2 Schematic overview and characteristics of human genome-aligned mouse allele (HAMA). a Definition of HAMA and their allele frequency.
Hr is defined as x/d, where d is the total depth of given position, and x is the depth of all allele from mouse reads. b Common and Strain-specific
HAMA. ¢ Types of HAMA alleles. HAMA alleles consist of 87.37% homozygous SNVs, 7.56% heterozygous SNVs, and 5.07% indels. If any of the five
mouse samples were reported as heterozygous SNVs, we counted as heterozygous SNVs. d Example of genomic regions that contains high-risk
HAMAs (50% contamination ratio, TP53, exons 1-5). The coverage of human reads colored in yellow and mouse reads in blue. Red arrows
indicate the genomic regions where the coverage of mouse reads dominates that of human reads. e Distributions of Hy for all HAMA sites in four
different global contamination levels (5%, 10%, 20%, and 50%). Median Hy is denoted by dotted lines. f Estimation results of all in silico
contaminated dataset based on the linear regression of median H;. Red dotted line indicates the perfect estimation line
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but more preferentially aligned by mouse reads (Fig. 2d,
red arrows). To represent the sensitivity of HAMAs to
contamination, we finally defined H, (HAMA allele fre-
quency coefficient) as the expected Hy per 1% overall
contamination. Using H,, we can explicitly quantitate
the intrinsic risk of HAMAs and predict the expected H
as follows:

Hf :(XHC, (1)

where «a is the global contamination level of a sample.
We defined 454,438 HAMAs with H.>1 as high-risk
HAMAs. Similarly, low-risk HAMAs are defined as H, <
1 (see Additional file 4 for the full list of HAMA and
their H, values).

Deducing from Eq. (1), a global contamination level
can be also estimated by Hyand H, as follows:

a=Hy/H, (2)

As H_ is HAMA-intrinsic, measuring only H; gives an
estimate of a. From the benchmark dataset, we found
that the median of Hy is linearly correlated with a with
an average H, of 0.7519 (Additional file 1: Figure S3).
Hence, the contamination level can be calculated in a
single sample as follows:

a = median(H/)/0.7519 (3)

Applying (3) to the 150 single samples in the bench-
mark dataset (5-80% contamination) showed a good
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estimation of the global contamination levels within a
small error size (0.4—2%, 95% CI) (Fig. 2f). Although a
slight under- and overestimation in low-to-medium (<
50%) and high (80%) contamination levels imply more
complex (e.g., non-linear) characteristics, we expect H
to be a simple, convenient, and instant estimator of glo-
bal contamination of PDM samples.

Impact of mouse alleles in variant calling

Next, we sought to determine whether HAMAs are de-
tectable as somatic mutations (Fig. 3a). For the analysis,
we applied a conventional pipeline for somatic mutation
detection (the GATK best practice [27], see the
“Methods” section) to human cancer sequencing data in
which 4 different amounts of mouse reads were mixed
at global contamination levels of 5%, 10%, 20%, 50%, and
80%. The numbers of mutation calls were far larger than
the general tumor samples, with a positive correlation
with the contamination levels (9140, 10,089, 10,492, 10,
781, and 10,806 in 5%, 10%, 20%, 50%, and 80%, respect-
ively). Of them, ~70% of the calls overlapped with high-
risk HAMA sites for all contamination levels, implying
that high-risk HAMAs are major sources of false som-
atic mutation calls (Fig. 3b, red color). On the other
hand, the portions of low-risk HAMA calls were sub-
stantially smaller and varied depending on contamin-
ation levels (7.9%, 13.1%, 16.9%, 19.7%, and 21.0% of all
calls in 5%, 10%, 20%, 50%, and 80% contamination level,
respectively Fig. 3b, orange color). As a minimum variant
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allele frequency is required to be called as somatic muta-
tions (in general, 5-10% [28]), low-risk HAMAs become
callable only above a certain level of contamination.
Therefore, we conclude that high-risk HAMAs are of pri-
mary concern in terms of variant calling.

Moving forward, we assessed if false somatic muta-
tions derived from HAMAs are included in a public
database. Of 1,207,556 common HAMAs, 103,481 (5.6%)
were present in the most recent version of COSMIC
(version 88, March 2019), accounting for 2.14% of all 4,
843,731 confirmed variations. As the COSMIC database
collects and confirms somatic mutations from independ-
ent studies, we further assessed their evidential basis.
Out of 6,842,627 studies that reported COSMIC somatic
mutations, 2,453,873 (35.9%) specified sample origins
without ambiguity (e.g., “NS”, see the “Methods” sec-
tion). Of them, 46,540 reported HAMA variants. We
found a clear difference in the proportion of sample ori-
gins between HAMA and other COSMIC variants
(Fig. 3c and Additional file 1: Figure S4). Regarding all
COSMIC variants, most of the supporting studies speci-
fied their sample origins as surgery (64.9%) (Fig. 3c, yel-
low bars). This proportion was decreased in HAMA
variants (47.8%) and more decreased as considering only
high-risk HAMAs (35.1, 21.3, and 12.3% in HAMA with
H.>1, 2, and 3, respectively). A similar change in the
proportion was observed in cell line studies. On the
other hand, the proportions of studies from organoid
and short-term culture were remarkably higher in high-
risk HAMAs (up to 37.1 and 42.7%, respectively) compared
to those in all COSMIC variants (2.0 and 0.7%, respect-
ively). These results indicated that HAMAs, particularly
high-risk HAMAs, are likely to be reported as cancer som-
atic mutations in studies of cultured samples.

Effects and comparison of current methods for mouse
read filtration

As shown in the series of analyses in this manuscript, fil-
tering mouse reads is crucial for accurate genomic ana-
lysis of PDM data. For this reason, several study groups
have designed tools which deconvolute mouse reads in
NGS data obtained from PDMs. Currently, there are five
available tools: BBsplit [18], Xenome [19], Bamcmp [8],
Disambiguate [20], and XenofilteR [21] (Additional file 1:
Figure S5).

BBsplit and Xenome take FASTQ files and compare
sequence similarities of raw reads to both the human
and mouse reference genomes in order to extract human
origin reads. Bamcmp, Disambiguate, and XenofilteR
take two BAM files that are mapped to the human and
mouse reference genomes and use mapping quality to
discard reads that are mapped better to the mouse gen-
ome. While the general approaches of these tools are
overall quite similar, user-generated changes in the
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parameters, including cutoff values and strictness, may
result in different accuracies. In addition to the five tools
above, three simple methods can also be applied to filer
mouse reads. One involves the use of a human-mouse
concatenated reference (ConcatRef, hereafter) to exploit
the judgment of an alignment algorithm (e.g., BWA-
MEM) in order to find the best place for mapping NGS
reads. In doing so, reads that are better mapped to the
human reference side (over the mouse side) are thought
to be human reads. Two others involve aligning reads to
human and mouse reference genomes independently
(DualRef), and reads that are mapped to the mouse are
filtered out: One discards all mouse genome-aligned
reads (DualRef-S; DualRef with strict filtering); this was
named “strict filtering” in [21]. The other discards only
mouse genome-aligned reads with no mismatch (Dual-
Ref-L; DualRef with lenient filtering) (see the “Methods”
section for details).

We applied all eight methods (the five tools and three
simple methods) to our benchmark dataset to evaluate
their performance in two different categories: (1) accur-
acy of read filtering and (2) reducing variant allele fre-
quencies of HAMAs (Hy) (Additional file 1: Table S1, see
the “Methods” section for detailed benchmark proce-
dures). For (1), the remaining and filtered reads were
traced after the application of the eight methods. We de-
fined sensitivity as the proportion of mouse reads that
were correctly filtered out and specificity as the propor-
tion of human reads that remained after filtration. F-
score was calculated as a balanced measure of sensitivity
and specificity. For (2), Hy values were measured after fil-
trations and were compared with unfiltered values.

Read filtering analysis confirmed a generally good per-
formance of all methods except two dual reference
methods (DualRef-S and DualRef-L) (Fig. 4a). In terms
of sensitivity, all methods marked >93%, wherein Dual-
Ref-S and XenofilteR showed the best mouse read filtra-
tion rate. However, DualRef-S marked very low specificity
(55.7%) by losing almost half of human reads. Except for
the DualRef-L (90.9%) and XenofilteR (97.9%), all tools
marked specificity of > 99.5%. While there is a clear trade-
off between sensitivity and specificity, four methods Dis-
ambiguate, BBsplit, ConcatRef, and Bamcmp showed the
best balanced measure. However, XenofilteR would be
useful where strict mouse read filtering is required.

With the unexpected performance of the simple Con-
catRef method, which was comparable to that of the five
tools, we further tested its overall accuracy when apply-
ing different alignment algorithms. Among Bowtie2 [29],
BWA-MEM ([30], and NovoAlign [31], Bowtie2 showed
the best performance with an F-score of 96.7, which was
highest among all eight methods (Fig. 4a, blue bars).
Therefore, disregarding other features of speed and ease
of use, which can be important to users, we concluded
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that a simple implementation of ConcatRef works as ef-
fectively as the top specialized tools.

In the allele frequency-based evaluation, all tools suc-
cessfully reduced H (Fig. 4b and Additional file 1: Figure
S6). The sums of total Hy reductions were similar (236,
031-236,461) except DualRef-L (213,897). These num-
bers correspond to 17.7-19.58% reduction of allele fre-
quency for each HAMA site. We further examined the
number of HAMA sites that might be callable by muta-
tion calling pipelines. Assuming Hy of 5% and alternative
allele count of 5 as the minimum conditions for muta-
tion call [32], XenofilteR left the fewest number of call-
able HAMAs (7.8 on average), followed by Xenome

(77.6), DualRef-S (87.7), and ConcatRef (113.1) (Fig. 4c).
In contrast to read filtering measure, minimization of H
values are achieved by high sensitivity (filtering mouse
reads) than high specificity (conserving human reads),
except DualRef-S (too low specificity, 55.66%). Finally,
we applied a somatic mutation calling pipeline to the fil-
tered BAM files from eight methods (Fig. 4d). Except for
DualRef-S, all 7 methods dramatically reduced the num-
ber of calls in high-risk HAMA sites (3 to 12 calls), com-
pared to unfiltered data (7121 to 9088 calls, Fig. 3b) and
to uncontaminated data (4 calls, Fig. 4d, top, red lines).
Among them, DualRef-S, Xenome, XenofilteR, and Con-
catRef showed robust performance even in high
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contamination ratio (50%), while DualRef-S also re-
moved a large number of non-HAMA variants (Fig. 4d,
bottom). Therefore, we conclude the Xenome, Xenofil-
teR, and ConcatRef are the top 3 filtering methods in
terms of variant calling.

Additional strategies for better analysis

As filtration of mouse reads is only one part of the ana-
lysis pipeline, we sought to determine if additional
optimization can be made in other parts thereof, includ-
ing read alignment, variant filtration, and other pre- and
post-processing steps. Here, we posed and tested three
additional strategies that may be applicable to improve
the quality of the pipeline.

The first potential approach is to build a blacklist of
genomic loci that are frequently called as variants. Even
after mouse read filtration, we discovered that 7-151
HAMA sites remained callable (Fig. 4c). To test if black-
listing of HAMA sites efficiently removes the remaining
false variants, we applied 2 variant filtration approaches:
(1) filtration of all common HAMAs (strict blacklisting)
and (2) filtration of only high-risk HAMAs (H, > 1) (leni-
ent blacklisting). We observed a mean of 2.9 mouse-
derived false variants in somatic mutation calls using
Mutect2 even after applying the filtering methods. Both
strict and lenient blacklistings were almost equally satis-
factory in their ability to remove the remaining false var-
iants, leaving approximately 0.7 and 0.8 false variants,
respectively. However, strict blacklisting lost more than
twice of the human-derived true variants than lenient
blacklisting (11.5 vs. 4.8 variants, respectively) (Add-
itional file 1: Figure S7, Additional file 1: Table S3). The
choice of blacklist types can be dependent on the pur-
poses; however, we conclude that the lenient blacklisting
can be applied generally with a minimum risk.

Another strategy involved inference and estimation of
global contamination levels, the feasibility of which we
showed using H; Estimated contamination levels are
more useful when DNA and transcriptome sequencing
data are generated from the same PDM sample, as gene
expression profiles are easily disrupted by the inclusion
of mouse cells in a sample. We expected that the in-
ferred contamination level could be further used in gene
expression analysis tools for mixed samples [33, 34]. We
also expect that we could apply the inferred contamin-
ation level in adjusting strictness for variant filtering, as
more low-risk HAMASs can be present in highly contam-
inated samples. While the exact cutoff value for variant
filtering strategy needs more investigation, our bench-
mark results show that even in 50% contamination,
lenient blacklisting outperformed strict blacklisting
(Additional file 1: Table S3). Again, however, strict
blacklisting can be an option in high-contamination
samples (e.g., > 50%) depending on the study design.
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The final strategy relied on the use of a strain-specific
reference genome in the alignment. Since the current
mouse reference genome (GRCm38 or mm10) has been
built based on the C57BL/6 strain [35], we assumed that
alignment on reference genomes of matching strains
[36] would increase the mappability of mouse reads and
further improve the filtration efficiency. In the test with
the A/] and BALB/c reference genomes and the bench-
mark datasets thereof, however, we could not find suffi-
cient evidence for the hypothesis, with the same
specificity and even ~ 1% reduction in sensitivity (Add-
itional file 1: Figure S8). Further investigation identified
that the current strain-specific genomes are basically the
same with the reference genome with only a substitution
of one or two chromosomes with shorter versions
(chr13 in A/J] and chr7 and 12 in BALB/c [37]). There-
fore, we conclude that the use of a strain-specific refer-
ence genome is not beneficial, at least currently.

Best practice for analysis of PDM sequencing

Based on the benchmark results, we suggest that the best
practice for genomic analysis of PDM sequencing (Fig. 5)
ought to consist of (1) alignment to human and mouse
reference genomes, (2) estimation of the contamination
level, (3) application of mouse read filtering methods,
and (4) variant filtration using blacklists. Reference ge-
nomes can be prepared either as two separate genomes
(human and mouse) or in a concatenated form (human
plus mouse), depending on the filtration method used.
Before filtration, the global contamination level can be
inferred from a median of Hyvalues for common HAMA
sites aligned to the human genome and used for other
independent analyses (e.g., gene expression). For mouse
read filtration, all methods except DualRef-S and
DualRef-L are generally useful. However, if read filtra-
tion itself is the final goal, ConcatRef, Disambiguate, and
BBsplit are the top-performing methods, while Xenome,
XenofilteR, and ConcatRef are the better options for pre-
venting false somatic mutations. After variant calling,
HAMA blacklisting can be optionally applied to the call
set. In general, high-risk HAMA sites can be filtered
from the called somatic mutations (lenient blacklisting),
where filtration of all common HAMA sites can be op-
tionally applied (strict blacklisting) in highly contami-
nated samples. Although a cutoff value of 50% is
proposed for the choice of blacklisting method, we
would like to note that this is still arbitrary as we did
not observe the point where strict blacklisting starts to
be more beneficial. Note that blacklisting may discard ~
1% of true variants and can be omitted in some studies
that require high sensitivity such as the discovery of new
functional mutations. We suggest that any called vari-
ants that overlap HAMA should be reviewed before pro-
ceeding to further analysis step.
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Discussion

Constructing a gold standard is the first key step for
high-quality benchmark studies. In this study, we tried
to realistically simulate contamination by processing
mouse genomes with a human capture platform,
followed by alignment to the human genome. In the in
silico mixture, we used human lung cancer sequencing
data to analyze on a frequently targeted disease model in
PDM [38]. Nevertheless, we assume that the choice of
human sequencing data would not affect the overall re-
sult, due to the lack of tissue and disease specificity in
genomic DNA sequences. On the other hand, the use of
multiple strains and replications in data generation is a
strong point of our study, although consideration of the
number of samples is warranted. It is, however, difficult
to define an optimal number of samples for obtaining a
gold standard for genomic analyses, as genome se-
quences are believed to be nearly identical among tissues
and quality-controlled, commercial mice. That said, in-
creases in data size are usually beneficial. Nonetheless,
even in the same sample [39], there might be risks for
accidental deviations (e.g., low sample quality, low

sequencing coverage, and allele dropout) in part of a
benchmark set. Although we tried to avoid these risks by
aggregating sample data and only using commonly
shared alleles (e.g., common HAMAs), caution must be
taken when using strain- or individual-specific alleles,
especially for BALB/c mice, for which we only included
sequencing data from one mouse. We expect that subse-
quent studies attempting to reproduce our results will
solidify the consensus.

In the suggestion of the best practice, we did not spe-
cify a single tool for mouse read filtration due to the
similarities in their accuracies, as features other than
performance are also important in practice. Compari-
sons of tools in terms of language, features, and running
speed are available in Additional file 1: Table S4. In this
regard, the user might find Disambiguate favorable due
to its good speed and convenient running procedures.
ConcatRef is also a good method, once a concatenated
reference is prepared, as the entire process ends with an
alignment step. XenofilteR can be a good choice for
users who are familiar with the R language and also
showed good speed. We had a few problems in testing
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Xenome due to memory-related errors and a relatively
low speed, which might not occur with other users.
Overall, we recommend users to test the individual tools
that are included in the best practice to find one that
best fits their environment.

As RNA-seq is another prominent part in PDM se-
quencing, similar analyses are urgently required to ren-
der the best practice. We would like to note that
benchmarking for transcriptome analysis is far more
complicated due to the disease, tissue, and cell specificity
of gene expression, as well as their stochastic nature.
Therefore, the construction of benchmark datasets that
consist of multiple tissues and a number of replicates
will be important. Confining datasets to a specific tissue
(e.g., fibroblast) can alleviate complexity and will be a
starting point for rendering best practice. We also expect
that the use of HAMA will be a good resource in the de-
velopment of new tools for analyzing both DNA and
RNA sequencing data, by cataloging homo- and hetero-
zygous mouse alleles.

Finally, as sequencing and relevant laboratory tech-
nologies are rapidly evolving, genomic analysis of PDMs
could be further improved from the suggested best prac-
tice. The most fundamental preprocessing can be done
before sequencing, by directly separating mouse cells
from samples. Fluorescence-activated cell sorting (FACS)
or immunomagnetic separation (IMS) on mouse-specific
antibodies can be feasible methods, while problems in
time, cost, and lack of applicability (e.g., formalin-fixed
paraffin-embedded samples) must be resolved before-
hand. Sequencing with a longer read length can be uti-
lized in assessing relationships between sample origins
of two or more variants, such as by haplotype phasing
[40, 41] or chromatin-level aggregation (e.g., somatic co-
mutation hotspots [42]). Accumulation of information
about human- and mouse-specific variants will also lead
to novel algorithms, such as machine-learning-based de-
convolution. In any form, cutting-edge technologies
must be considered continuously for integration to the
best practice to guarantee the most reliable analysis of
PDM samples.

Conclusions

By constructing a mouse tissue-driven benchmarking
dataset, we confirmed that the inclusion of mouse alleles
strongly affects downstream genomic analyses and must
be handled with specialized pipelines. We found that
mouse-specific alleles can be aligned to widespread re-
gions of the human genome and are causative of false
somatic mutations in PDM data. Comparison of eight
available methods for mouse read filtering showed rela-
tively small gaps in the performances thereof but identi-
fied a set of best tools. In addition to read filtering, we
rendered a best practice pipeline that consists of
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contamination level estimation and variant-level filtering
using blacklists for improved efficiency in calling true
variants.

Methods

Data acquisition and processing mouse reads

Actual sequencing of mouse DNA with human DNA
capturing kit—SureSelect Human All Exon V5—has
been performed to obtain raw reads of mouse DNA.
Two A/] mouse samples, two BALB/c mouse samples,
and two C57BL/6 mouse samples have been sequenced,
and all samples except one BALB/c sample passed QC.
Therefore, five sequenced data were used in this study.
Using the sequencing data of mouse DNA captured by
human DNA capturing kit, we performed alignment to
the human reference (hgl9) with BWA-MEM. All the
arguments of BWA-MEM are set to default (mismatch
penalty = 4, gap open penalty = 6, gap extend penalty = 1),
which is recommended in well-known pipelines including
GATK best practices and NIH's GDC Documentation. If
the mismatch penalty increases, roughly a large number of
mouse reads can be filtered out with a single alignment
step. However, adjusting the parameter is not recom-
mended since it can cause the loss of human reads.

Quantitative analysis of mouse reads in human genome
reference

A BED file defining the captured region of SureSelect
Human All Exon V5 has been obtained from the Agilent
website and counted all the read per captured region
from BAM files using GATK4 CollectReadCounts (ver.
4.1.1.0). These tables are annotated with the NCBI
RefSeq Gene database, and the read counts were
grouped by gene using an in-house python script to
count the number of reads per gene.

Preparation of in silico mouse contaminated data

We generated hypothetical in silico mouse contaminated
sample with TCGA human lung cancer WES data
(TCGA-67-3771-01A-01D, TCGA-73-4658-01A-01D)
and actual mouse WES data as described above (A/]
no.1l, A/J no.2, BALB/c no.1, C57BL/6 no.1, C57BL/6
no.2). Each mouse FASTQs are randomly down-
sampled to 5%, 10%, 20%, 50%, and 80%, regarding
the human sample’s read count using seqtk [43] tool.
Every downsampling is repeated three times using
three random seeds. The human FASTQs were also
downsampled to 95%, 90%, 80%, 50%, and 20% in
the same manner of mouse samples and then
combined with each complementary mouse sample
(Additional file 1: Table S1).
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Identification of mouse-derived alleles aligned on human
genome reference

The mouse reads aligned on human genome reference
(hgl9) prepared as above, are inputted to the GATK4
HaplotypeCaller (ver. 4.1.1.0) to call out all the SNVs
and indels on the basis of a human reference (hgl9).
Next, common variants of all five mice samples are col-
lected using an in-house Python script to exclude strain-
or individual-specific variants. The entire list of common
HAMA is available in Additional file 4.

Calculation of general H; values

A mean coverage file in gnomAD (ver. 2.1.1) was down-
loaded from the gnomAD website, from which we col-
lected the mean coverage values for every HAMA
position. Next, the mean coverage of five mice BAM files
was calculated for every HAMA position. Finally, general
Hpvalues at HAMA positions (i) were obtained using the
following formula:

Dp(i)mouse
+ DP(i)

Hy (i) = (DP(i)

human mouse)

DP(i) mouse represents the mean depth of 30 down-
sampled mouse samples on HAMA position i, and
DP(i)puman represents the mean depth of 125,748 human
samples registered in the gnomAD database.

Next, H. (HAMA coefficient) of the given position (i)
was calculated by dividing Hf by the contamination ratio

This coefficient (H,) represents the Hr value at a con-
tamination level of 1%.

Identification of HAMAs coincides with COSMIC variants
Using the HAMA list generated above, all the COSMIC
(v88) variants that coincide with the HAMA list are col-
lected from CosmicCodingMuts.vcf file. Next, the sample
origins of the COSMIC IDs are collected from the Cos-
micMutantExport.tsv file. In this process, we excluded
“NS,” “cultured-NOS,” “fixed-NOS,” “fresh/frozen-NOS.”
and blank data to avoid ambiguity. The count results of
all sample origins, which does not exclude anything, can
be found in Additional file 1: Figure S4.

Somatic mutation calling

Normal control samples in TCGA-67-3771-10A-01D
were used as matched normals for tumor samples in
TCGA-67-3771-01A-01D. Together with the benchmark
dataset generated with TCGA-67-3771-01A-01D, these
matched normal samples were input into GATK4
Mutect2 (ver. 4.1.1.0).
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All parameters were set to default, and the gnomAD
database (ver. 2.1.1) was applied to follow the GATK’s
best practice for somatic calling.

Application of filtration tools

Pre-alignment filtering tools—BBsplit and Xenome

The in silico contaminated dataset generated as above
was input directly to each tool as FASTQ format. The
resulting FASTQ files are aligned to GRCh37 human
reference using BWA-MEM to make the final BAM file
(Additional file 1: Figure S5A).

Post-alignment filtering tools—Bamcmp, disambiguate, and
XenofilteR

The in silico contaminated dataset was aligned to human
reference (hgl9) and mouse reference (mml0) separ-
ately. These resulting BAM files are input to each tool as
a pair to make the final BAM file (Additional file 1: Fig-
ure S5B).

Concatenated reference (ConcatRef)

The “concatenated reference” is prepared by merging
human reference (hgl9) and mouse reference (mm10) in
series. The in silico contaminated dataset was aligned to
this concatenated reference using BWA-MEM, and the
final BAM file was completed by removing the reads that
are aligned to mouse reference (mm10) (Additional file 1:
Figure S5C). This process was reproduced with Bowtie2
and Novoalign for performance comparison.

Dual reference—lenient (DualRef-L)

First, the in silico contaminated dataset was aligned to
mouse reference (mm10) and then collected the ID of
the reads whose NM tag is 0. This process was per-
formed using samtools, and the command line is as fol-
lows. Next, the final BAM is completed by removing the
read with the corresponding read ID from the in silico
contaminated BAM file aligned to the human reference
(hgl19) using picard FilterSamReads (Additional file 1:
Figure S5D).

Dual reference—strict (DualRef-S)

In the same manner of DualRef-L, align the in silico
contaminated dataset on mouse reference and collect
the ID of all the reads that are successfully aligned on
mouse reference. Next, remove all reads with the corre-
sponding ID in the BAM file that is aligned to the hu-
man reference (Additional file 1: Figure S5E).

Benchmark of known filtering tools

The in silico mixed sample dataset prepared in the mix-
ture of two human, five mice, four mixture ratios, and
three random seeds (Additional file 1: Table S1) was in-
put to pre-alignment filtering tools (BBsplit, Xenome),
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post-alignment filtering tools (Bamcmp, XenofilteR, Dis-
ambiguate), simple implementation scripts (ConcatRef.,
DualRef-L, DualRef-S), respectively. In all output BAM
files from each tool, samtools was used to extract the
read IDs of all included reads. From the read IDs ex-
tracted from the output BAM file, the read IDs of the
human sample and the read IDs of mouse sample are
counted separately. Based on this count, the TPR, FPR,
sensitivity, specificity, precision, accuracy, and F-score of
each tool are calculated. All TPR and FPR values were
calculated from the mean values of three random seed
replicates. Next, all the result files of each filtering
methods are compared with the file before filtering to
obtain the reduced Hy of all HAMA position. By sum-
ming all reduced Hy values, the total sum of reduced Hy
value was obtained. Callable HAMAs are collected from
the result files of GATK4 CollectAllelicCounts (ver.
4.1.1.0). First, all mismatched bases were extracted, and
all bases with a VAF value of 0.5 or less and an ALT
count of 5 or less were removed.

Evaluation of HAMA blacklisting

First, the filtering methods are applied to all benchmark
datasets, and each BAM file is divided into human-
derived reads and mouse-derived reads. Next, all mis-
match bases were extracted by using GATK4 CollectAl-
lelicCounts (ver. 4.1.1.0) for the divided BAM files. A
human-derived somatic variant and a mouse-derived
somatic variant were defined by comparing the separ-
ately obtained mismatch bases with somatic variant call
results using GATK4 Mutect2 (ver. 4.1.1.0). The number
of HAMA blacklist applied to mouse-derived somatic
variant was counted as TP, and the number of HAMA
blacklist applied to human-derived somatic variant was
counted as FP.
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