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Abstract

Objectives

Cardiovascular disease (CVD) is one of the major causes of death worldwide. For improved

accuracy of CVD prediction, risk classification was performed using national time-series

health examination data. The data offers an opportunity to access deep learning (RNN-

LSTM), which is widely known as an outstanding algorithm for analyzing time-series data-

sets. The objective of this study was to show the improved accuracy of deep learning by

comparing the performance of a Cox hazard regression and RNN-LSTM based on survival

analysis.

Methods and findings

We selected 361,239 subjects (age 40 to 79 years) with more than two health examination

records from 2002–2006 using the National Health Insurance System-National Health

Screening Cohort (NHIS-HEALS). The average number of health screenings (from 2002–

2013) used in the analysis was 2.9 ± 1.0. Two CVD prediction models were developed from

the NHIS-HEALS data: a Cox hazard regression model and a deep learning model. In an

internal validation of the NHIS-HEALS dataset, the Cox regression model showed a highest

time-dependent area under the curve (AUC) of 0.79 (95% CI 0.70 to 0.87) for in females and

0.75 (95% CI 0.70 to 0.80) in males at 2 years. The deep learning model showed a highest

time-dependent AUC of 0.94 (95% CI 0.91 to 0.97) for in females and 0.96 (95% CI 0.95 to

0.97) in males at 2 years. Layer-wise Relevance Propagation (LRP) revealed that age was

PLOS ONE | https://doi.org/10.1371/journal.pone.0222809 September 19, 2019 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sung JM, Cho I-J, Sung D, Kim S, Kim

HC, Chae M-H, et al. (2019) Development and

verification of prediction models for preventing

cardiovascular diseases. PLoS ONE 14(9):

e0222809. https://doi.org/10.1371/journal.

pone.0222809

Editor: Carmine Pizzi, University of Bologna, ITALY

Received: May 2, 2019

Accepted: September 6, 2019

Published: September 19, 2019

Copyright: © 2019 Sung et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data cannot be

shared publicly because of the provisions of the

National Health Insurance Service (NHIS). Korean

legal restrictions prohibit authors from making the

data publicly available, and the authority

implemented the restrictions is NHIS (National

Health Insurance Service), one of the government

agency of Republic of Korea. NHIS provides limited

portion of anonymized data to the researchers for

the purpose of the public interest. However, they

exclusively provide data to whom made direct

contact of the NHIS and agreed to policies of NHIS.

Redistribution of the data is not permitted for the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Yonsei University Medical Library Open Access Repository

https://core.ac.uk/display/275767923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-3475-3468
http://orcid.org/0000-0003-1762-6459
http://orcid.org/0000-0001-7867-1240
http://orcid.org/0000-0003-2684-9005
http://orcid.org/0000-0003-0372-8585
http://orcid.org/0000-0002-4606-4929
http://orcid.org/0000-0002-6139-7545
https://doi.org/10.1371/journal.pone.0222809
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222809&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222809&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222809&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222809&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222809&domain=pdf&date_stamp=2019-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222809&domain=pdf&date_stamp=2019-09-19
https://doi.org/10.1371/journal.pone.0222809
https://doi.org/10.1371/journal.pone.0222809
http://creativecommons.org/licenses/by/4.0/


the variable that had the greatest effect on CVD, followed by systolic blood pressure (SBP)

and diastolic blood pressure (DBP), in that order.

Conclusion

The performance of the deep learning model for predicting CVD occurrences was better

than that of the Cox regression model. In addition, it was confirmed that the known risk fac-

tors shown to be important by previous clinical studies were extracted from the study results

using LRP.

Introduction

Cardiovascular disease (CVD) is one of the leading causes of mortality worldwide [1]. Because

multiple risk factors are associated with CVD, managing these risk factors is difficult but could

prevent numerous deaths. In previous studies, various prediction models were developed to

identify individuals that have a high risk of developing CVD, and Cox hazard regression analy-

sis has been the traditional approach [2–7]. Cox hazard regression models have been used to

identify risk factors in phases of risk ratios and provide a probability that an individual will

develop CVD, enabling personalized treatment for high-risk individuals [8].

Cox hazard regression models assume the independence of predictors using pre-specified

risk factors [8]. In a prospective cohort, the selected risk factors are measured at pre-planned

times, so information on the collected risk factors can be fully used by statistical methods.

However, due to the variety of types and cycles of risk factor measurements in clinical studies,

existing statistical models do not have all the information on CVD risk, and only parts of those

databases are available. The modern hospital information system (HIS) has created complex,

digitalized, time-series health dataset. However, appropriate analysis methods for maximizing

the predictive performance using these multi-measurement datasets have not been clearly

defined.

Deep learning is a type of machine learning algorithm [9,10] and has been demonstrated to

have outstanding performance capabilities for classification of data [11,12]. The overall trans-

formations involve multiple layers in deep learning [8], which can improve a predictive mod-

el’s performance in analyzing datasets composed of complex time-varying data. To date,

several small studies have explored the potential of deep learning for disease–risk prediction

using data from specific time points [13–15]. Accordingly, this study attempts to evaluate the

discriminative accuracy of a deep learning algorithm model, based on survival analysis with

repeated health data for CVD prediction, by comparing the results with a conventional Cox

hazard regression analysis. The forecasts for the two models were calculated for a specific time

point through classification. We also verified the models.

Methods

Data source

This study used the National Health Insurance System-National Health Screening Cohort

(NHIS-HEALS) [16] data derived from a national health screening program and the national

health insurance claim database in the National Health Insurance System (NHIS) of South

Korea and prospective cohort data from the Rotterdam Study [17]. Data from the NHIS-

HEALS was fully anonymized for all analyses and informed consent was not specifically
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obtained from each participant. In the Rotterdam Study, all data were collected in a standard-

ized manner according to a pre-determined study protocol and informed consent was

obtained from all participants. This study was approved and exempt from informed consent

by the Institutional Review Board of Yonsei University, Severance Hospital in Seoul, South

Korea (IRB no.4-2016-0383).

Study population

The NHIS constructed the NHIS-HEALS cohort, which consists of data from 514,866 people

(age 40 to 79 years), randomly sampled from 10% of the source population, who had under-

gone the NHIS health examination in 2002–2003 as the baseline. This cohort data represents

the Korean adult population, as every Korean over 40 years of age is required to join the NHIS

and is recommended to have regular biennial checkups. Due to this recommendation, the

baseline for this study can be defined as the year 2002–2003. The data includes information

from 2002 to 2013, and repeated data measurements were selected for research purposes as

repeated data measurements are useful for identifying discriminative accuracy.

The following steps were implemented for the data manipulation: (a) out of 514,866 indi-

viduals, except those with pre-existing histories of CVD; (b) those who had treatment records

of CVD or death, or a history of stroke or heart disease at the baseline were removed; (c) only

those with more than two screenings from 2002–2006 were included; and (d) the remaining

group, 361,239 subjects, who did not have CVD at the baseline were divided into two sub-

groups; a training set (80%, 288,992 subjects) and a test set (20%, 72,247subjects).

Consequently, a total of 288,992 subjects were allocated to the training set (18,904 with

CVD vs. 277,088 without CVD) and were utilized for building a separate model for gender.

Also, we constructed a specific dataset for the external verification of the Rotterdam Study, to

verify the performance of the model that was built by NHIS-HEALS (See S1 Appendix for the

details of the Rotterdam Study). For the external verification, the Rotterdam Study has been

constructed based on the same criteria as the training set utilizing the NHIS-HEALS cohort

data. Fig 1 presents the flow and detailed processes of all data handling.

Outcomes

The primary outcome was defined as the occurrence of one of the following events during the

follow-up period after the baseline health examination: (1) death from CVD (International

Classification of Diseases 10th edition [ICD-10] codes), (2) hospitalization due to myocardial

infarction, coronary arterial intervention or bypass surgery or (3) hospitalization due to

stroke.

Converting the output variables for clinical studies

In the field of medical research, we need to determine how to use Recurrent Neural Network-

Long Short-Term Memory (RNN-LSTM) based on survival analysis to determine whether dis-

ease occurred at a specific time point. Thus, we transformed the binary output variable into

multiple time point output variable vectors for developing point-in-time analysis according to

previous studies utilizing vector variables [18–21].

To find the specific points-in-time when diseases occurred, we analyzed each year’s case by

converting the output variables. In the output layer, each node represents a time interval, from

two to ten years, in 1-year intervals. The value of each node is the probability of survival for

that point-in-time. The survival probability after disease initiation is 0, and the probability of

disease after the disease-free survival time for censored cases is presumed by the Kaplan-Meier

survival function [20]. This predicted output is the probability of survival for each time point.
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Based on the predictive results of the deep learning algorithm, we compared the survival

probability from the Cox regression and the probability from the deep learning model with the

correct answers to confirm the AUC for each year. Thus, we demonstrated the predictive per-

formance of our models, Cox regression and deep learning, by calculating the AUC for each

year.

Risk predictors used in model building

To develop the risk model, an a priori decision was made that assumed the following vari-

ables—age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure

(DBP), total cholesterol (TC), fasting plasma glucose (FPG), current smoking and exercise—

were predictor variables. Details of the variables included in Cox regression and deep learning

models are described in S1 Table. Variables with missing data (less than 4%) were included in

Fig 1. The process for selecting study subjects.

https://doi.org/10.1371/journal.pone.0222809.g001
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the analysis. In cases where the data was missing, multiple imputations by fully conditional

specifications [22] were performed using the following MI procedure in SAS 9.4 [23].

Prediction model of statistics and deep learning

We developed CVD prediction models by sex, as it is known that there are significant differ-

ences in the risk factors and occurrence rates of CVD between the sexes [24]. Data from the

baseline health examinations and repeated measurements from the periodic follow-up exami-

nations were used to build the prediction models. The time to event was defined as the time

between the date of the first health examination and that of the first diagnosed event or the last

date in the cohort in non-event subjects. Also, the data used in the analysis was the health

examination data from 2002–2006. For example, if a patient with a disease in 2005 had two

records of health screenings in 2002 and 2004, the analysis was performed using both health

screening records. As another example, assuming that a patient diagnosed with a disease in

2009 had four health examinations every two years from 2002 to 2008, the analysis was con-

ducted by using only health information from 2002 to 2006. This decision was made to control

the disparity in the volume of information among subjects by adjusting the amount of time

from which screening records were used.

First of all, the Cox model using longitudinal data and its improved accuracy over single-

measure methods have been described previously in order to compare it with deep learning

using longitudinal data [25]. In this study, for the Cox regression model, we used the mean,

minimum and maximum values and standard deviations (SDs) as continuous variables and

the mean and SDs as categorical variables calculated from the periodic health screening data.

The details of the measurement of risk factors in the Cox modeling are described in S2

Appendix.

For the deep learning algorithm model based on survival analysis, an RNN-LSTM [26] net-

work was used. The deep learning algorithm was constructed using the same variables used in

the Cox regression model with longitudinal data. Our proposed LSTM model was designed

with the following structure. For the optimization of the algorithm, RMSProp [27] was used to

update the parameters through back-propagation. Hyper-parameters at a learning rate of 0.01

were configured, with a dropout probability of 50%, and a mini-batch of 64. The correct

answer was one-hot encoded to be used for cross-entropy in a loss function. The number of

classes was 2. The details of the deep learning and model building process are demonstrated in

S3 Appendix. Then, the calculated performance metrics were evaluated with C-statistics or

AUC [28]. Research has demonstrated that C-statistics is analogous to AUC [29].

Evaluation of prediction performance

The prediction performances of each prediction model were evaluated using NHIS-HEALS

data and external test data, Rotterdam Study. Model discrimination was quantified by calculat-

ing the C-statistics for the survival model. All statistical analyses were conducted with SAS

(version 9.4, SAS Inc., Cary, NC, USA) and the R Statistical Package (www.R-project.org). The

statistical significance criterion was set at 2-sided p< 0.05.

The solution to the problem of understanding classification decisions

In order to overcome the problem which was the inability to explain the reason for classifica-

tion, we confirmed the influence of the input variables using a Layer-wise Relevance Propaga-

tion (LRP) [30], one of many explainable artificial intelligence (XAI) techniques used in

artificial neural networks [31, 32].
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The order of each variable is the mean of the LRP output values for each input sample,

which are sorted in descending order. The number of feature variables is n, the number of

input samples is m, and the output value of the prediction model is o = {o1 . . . om}, thus, the

ranking of feature variables is expressed as follows.

rank oð Þ ¼ desc sort ð
1

m

Xn

i ¼ 0

Xm

j ¼ 0

jlrpiðojÞjÞ

Through this technique, we present the effect of the feature variables used to build the

model.

Results

Table 1 presents the characteristics of the training cohort at baseline. The mean age was

51.2 ± 8.9 years, and a total of 164,024 male subjects (56.76%) were included in the cohort. The

average number of health screenings used in the analysis was 3.1 ± 1.1 for male subjects, and

2.6 ± 0.9 for female subjects.

In the internal validation using the NHIS-HEALS cohort data, the Cox regression model

showed the highest time-dependent AUC was 0.79 (95% CI 0.70 to 0.87) at 2 years in female

Table 1. Baseline characteristics of the training set.

Variable Training set

Male

(n = 164,024)

Female

(n = 124,968)

Age, years 51.2 ± 8.9 52.8 ± 9.2

Current smoking, n (%) 90,677 (55.28) 3,582 (2.87)

Exercise, n (%) 82,851 (50.51) 40,903 (32.73)

Alcohol intake, n (%) 107,962 (65.82) 21,741 (17.40)

Body mass index, kg/m2 24.0 ± 2.8 23.9 ± 3.0

Systolic blood pressure, mmHg 128.2 ± 17.1 124.2 ± 18.3

Diastolic blood pressure, mmHg 81.2 ± 11.3 77.3 ± 11.6

Fasting plasma glucose, mg/dL 99.1 ± 34.4 94.8 ± 31.0

Total cholesterol, mg/dL 199.0 ± 37.8 201.7 ± 39.1

Hemoglobin, g/dL 14.8 ± 1.1 12.9 ± 1.2

Aspartate transaminase, U/L 29.0 ± 19.5 24.1 ± 14.1

Alanine transaminase, U/L 30.1 ± 23.2 21.1 ± 17.1

Gamma-glutamyl transpeptidase, U/L 50.1 ± 63.2 20.9 ± 22.2

Urine protein, n (%) 2,781 (1.70) 2,192 (1.75)

History, n (%)

Diabetes mellitus 5,989 (3.65) 4,008 (3.21)

Hypertension 8,919 (5.44) 9,715 (7.77)

Etc (include cancer) 16,841 (10.27) 12,262 (9.81)

Family history, n (%)

Stroke 9,565 (5.83) 6,262 (5.01)

Diabetes mellitus 10,185 (6.21) 7.985 (6.39)

Heart disease 4,614 (2.81) 3,367 (2.69)

Hypertension 12,345 (7.53) 10,925 (8.74)

Etc (include cancer) 23,328 (14.22) 18,966 (15.18)

Number of periodic health examinations 3.1 ± 1.1 2.6 ± 0.9

https://doi.org/10.1371/journal.pone.0222809.t001
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subjects. The time-dependent AUC from 3 to 7 years was around 0.7. The deep learning model

showed the highest time-dependent AUC was 0.96 (95% CI 0.95 to 0.97) at 2 years in male sub-

jects. The time-dependent AUC from 3 to 5 years was around 0.8. The remaining results are

presented in S2 Table. In the external validation using data from the Rotterdam Study, the Cox

regression model showed the highest time-dependent AUC was 0.73 (95% CI 0.69 to 0.76) at 8

years in female subjects. The time-dependent AUC of 3 to 10 years was around 0.7. The deep

learning model showed the highest time-dependent AUC was 0.90 (95% CI 0.85 to 0.95) at 2

years in female subjects. The time-dependent AUC from 3 to 8 years was around 0.85. The

remaining results are presented in S3 Table.

Furthermore, the results of the LRP demonstrated that the known risk factors identified in

previous studies do affect CVD and provided numerical impact for each risk factor used in the

deep learning modeling. The deep learning model showed that age was the variable that had

the greatest effect on CVD occurrence. Moreover, SBP, DBP, sex and FPG were ranked at the

upper. The details are described in Table 2.

Discussion

The principal findings of this study were as follows: (1) deep learning algorithms have signifi-

cantly improved predictive power for CVD compared to Cox regression analysis. However,

Table 2. Rank of risk factors in deep learning model.

Feature name Sum of ranks Feature name Mean of values

Age 233,322 Age 0.405

Systolic blood pressure 359,881 Systolic blood pressure 0.262

Sex 390,006 Diastolic blood pressure 0.153

Diastolic blood pressure 548,049 Sex 0.116

Fasting plasma glucose 584,936 Fasting plasma glucose 0.111

Gamma-glutamyl transpeptidase 664,941 Current smoking 0.111

Aspartate transaminase 668,470 Exercise 0.105

Hemoglobin 683,408 Aspartate transaminase 0.074

Total cholesterol 757,839 Gamma-glutamyl transpeptidase 0.066

Exercise 776,784 Hemoglobin 0.061

Alcohol intake 814,943 Alcohol intake 0.052

Body mass index 837,221 Total cholesterol 0.045

Urine protein 867,499 Body mass index 0.032

Alanine transaminase 973,370 Urine protein 0.028

Family history of etc (include cancer) 1,150,578 History of Hypertension 0.026

Family history of Stroke 1,187,298 Family history of etc (include cancer) 0.025

Family history of Diabetes mellitus 1,299,493 History of etc (include cancer) 0.022

Family history of Heart disease 1,392,376 Alanine transaminase 0.015

Family history of Hypertension 1,412,000 History of Diabetes mellitus 0.012

Current smoking 1,486,150 Family history of Hypertension 0.004

History of Hypertension 1,546,467 Family history of Diabetes mellitus 0.002

History of Diabetes mellitus 1,567,078 Family history of Stroke 0.001

History of etc (include cancer) 1,585,386 Family history of Heart disease 0.000

Sum of ranks indicate ranking each sample by absolute value of LRP, then ascending order by summing the ranks by variables in all samples. Mean of values indicate

calculate the mean for the absolute value of LRP by variable in all samples and sort in descending order.

https://doi.org/10.1371/journal.pone.0222809.t002
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while the deep learning algorithm maintained high predictive power within 5 years, after that

it decreased sharply. (2) The results of the verification using the Rotterdam Study confirmed

that the predictive power of the deep learning algorithm compared to the Cox regression anal-

ysis was improved. This is the first large-scale and systematic assessment of a deep learning

approach for predicting the occurrence of CVD at a particular point in time, suggesting that it

can be generalized without racial influence. (3) The effects of the various risk factors were

identified through the LRP. The LRP might be useful for identifying the impact of risk factors

that the deep learning approach cannot identify.

Since the electronic health records (EHR) were introduced decades ago, huge amounts of

medical data have accumulated. The nationwide repeated health screening systems in Korea

cannot be applied to all medical systems, but as HIS has developed into a medical platform, the

accumulation of large-scale datasets in the medical field is accelerating. The deep learning

model can be a useful tool for the prediction of risk in the EHR era by providing discrimina-

tion and calibration using repeatedly measured data.

Disease prediction studies using deep learning, a subfield of machine learning, have already

been studied previously [33–34] and have been shown to have high value in the classification

of problems [11–12, 35–36]. Deep learning differs from statistics by Cox regression analysis.

The Cox regression model assumes an independence between predefined variables and does

not reflect changes in those variables over time, but the advantage of deep learning is that it

can use variables that are constantly changing. As a result of this research, these advantages

were identified by improving the accuracy of CVD predictions, but after five years, the perfor-

mance of this model was similar to that of the Cox model. The Rotterdam Study maintains a

high level of deep learning performance (an AUC of about 0.8) over a longer period of time

than the Cox model. This seems to be due to an increase in CVD incidence rates over time.

The reason is that the annual incidence rate of CVD in the internal data increased by about

0.5%, but in the Rotterdam Study it increased by about 1.5% and the increase rate decreases

markedly from 9 year. When the rate of increase of CVD occurrence is significantly reduced,

the predictive power of the deep learning model was reduced. Therefore, while deep learning

is appropriate for identifying risk factors that predict the occurrence of disease within 5 years

using constantly changing data after 5 years predictions require scrutiny. One of the major dis-

advantages of the deep learning model is that it can’t provide specific recommendations for

controlling risk factors because the risk factors that affect the event occurrence are unknown.

To overcome these shortcomings, we used LRP to assess the risk factors individually. The

results of the LRP show that the risk factors considered to be important in previous clinical

studies were similar to those shown to be important by the deep learning model: Age, gender,

SBP, TC, smoking, exercise, etc [37–39].

However, this study has several limitations. First, because only the information obtained

from the screening data is available, it is not possible to reflect changes in the level of risk due

to unpredictable drugs or non-pharmacological treatments based on physician or patient

behavior during follow-up. In addition, the risk of CVD may change due to changes in the

risk factors and the interaction between risk factors, but the research on this is still lacking.

Second, although we ranked the risk factors separately using LRP, the model does not know

the size of the effect of the risk factors, such as the hazard ratio, due to the nature of the hid-

den layer of the neural network models. Therefore, further studies are needed to overcome

this, as it is not yet ready for clinical use. Third, unlike the NHIS-HEALS, in the Rotterdam

Study, there were limitations to the comparison of variables to the performance in the inter-

nal validation because the variables were only: age, sex, BLDS, BMI, SBP, DBP, exercise and

smocking.
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Conclusions

Deep learning models have greater predictive power for CVD occurrence than the Cox regres-

sion model within five years. In addition, it was confirmed that the risk factors shown to be

important in previous clinical studies were also extracted from the results of this study using

LRP.
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