
Emotion-Aware and Human-Like
Autonomous Agents

by

Nabiha Asghar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Nabiha Asghar 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/275766977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor: Pascal Poupart
Professor, Cheriton School of Computer Science,
University of Waterloo

External Examiner: Frank Rudzicz
Associate Professor, Dept. of Computer Science,
University of Toronto

Internal Members: Jesse Hoey
Associate Professor, Cheriton School of Computer Science,
University of Waterloo

Ming Li
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Olga Vechtomova
Associate Professor, Dept. of Management Sciences,
University of Waterloo

ii

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The work presented in this thesis is based on the following research papers:

Chapter 3:

• Nabiha Asghar∗ and Jesse Hoey∗. Monte-Carlo Planning for Socially Aligned
Agents using Bayesian Affect Control Theory. Technical Report # CS-2014-21, Uni-
versity of Waterloo School of Computer Science, 2014. [9]

• Nabiha Asghar∗ and Jesse Hoey∗. Intelligent Affect: Rational Decision Making for
Socially Aligned Agents. In 31st Conference on Uncertainty in Artificial Intelligence
(UAI), 2015. [10]

Chapter 4:

• Nabiha Asghar, Pascal Poupart, Jesse Hoey, Xin Jiang, and Lili Mou. Affective
Neural Response Generation. In 40th European Conference on Information Retrieval
(ECIR), 2018. [12]

Chapter 5:

• Nabiha Asghar, Pascal Poupart, Xin Jiang, and Hang Li. Deep Active Learning
for Dialogue Generation. In 6th Joint Conference on Lexical and Computational
Semantics (*SEM), 2017. [13]

Chapter 6:

• Nabiha Asghar∗, Lili Mou∗, Kira A. Selby, Kevin D. Pantasdo, Pascal Poupart,
and Xin Jiang. Progressive Memory Banks for Incremental Domain Adaptation. To
appear in International Conference on Learning Representations (ICLR), 2020. [11]

∗ denotes equal contribution

iv

Abstract

In human-computer interaction (HCI), one of the technological goals is to build human-
like artificial agents that can think, decide and behave like humans during the interaction.
A prime example is a dialogue system, where the agent should converse fluently and coher-
ently with a user and connect with them emotionally. Humanness and emotion-awareness
of interactive artificial agents have been shown to improve user experience and help attain
application-specific goals more quickly [45]. However, achieving human-likeness in HCI
systems is contingent on addressing several philosophical and scientific challenges. In this
thesis, I address two such challenges: replicating the human ability to 1) correctly perceive
and adopt emotions, and 2) communicate effectively through language.

Several research studies in neuroscience, economics, psychology and sociology show that
both language and emotional reasoning are essential to the human cognitive deliberation
process [41, 89, 90]. These studies establish that any human-like AI should necessarily be
equipped with adequate emotional and linguistic cognizance. To this end, I explore the
following research directions.

• I study how agents can reason emotionally in various human-interactive settings for
decision-making. I use Bayesian Affect Control Theory [81], a probabilistic model of
human-human affective interactions, to build a decision-theoretic reasoning algorithm
about affect. This approach is validated on several applications: two-person social
dilemma games, an assistive healthcare device, and robot navigation.

• I develop several techniques to understand and generate emotions/affect in language.
The proposed methods include affect-based feature augmentation of neural conver-
sational models, training regularization using affective objectives, and affectively di-
verse sequential inference.

• I devise an active learning technique that elicits user feedback during a conversation.
This enables the agent to learn in real time, and to produce natural and coherent
language during the interaction.

• I explore incremental domain adaptation in language classification and generation
models. The proposed method seeks to replicate the human ability to continually
learn from new environments without forgetting old experiences.

v

Acknowledgements

First and foremost, I thank my supervisor Prof. Pascal Poupart for being a constant
source of support, encouragement and appreciation. He gave me the freedom to pursue
research topics of my own choice, and showed immense flexibility around my family and
work constraints. Being Pascal’s student has opened doors for me both in academia and
the industry, and I truly could not have asked for more. Prof. Jesse Hoey and Lili Mou
played an instrumental role in helping me turn rough ideas into concrete research, and I am
eternally grateful to them. I also thank my committee members, Prof. Olga Vechtomova,
Prof. Frank Rudzicz and Prof. Ming Li for providing valuable feedback.

A special thank-you goes to the administrative staff in the CS department: Margaret
Towell, Paula Roser, Gordon Boerke and Greg Mctavish. A big shout-out to my UW
friends and fellow researchers Kira Selby, Mike Rudd, Cristina Tavares, Dipti Kumar, Ivan
Kobyzev, Amira Ghenai, Priyank Jaini, Sara Ross-Howe, Prarthana Bhattacharyya, Ab-
dullah Rashwan, Ankit Vadehra and Gaurav Sahu, for making this journey more enjoyable.

This work would not have been possible if I did not have a strong support system around
me: my husband Bilal, who stood between me and my fears, encouraged me to pursue a
PhD and then saw me through it; my father Dr Asghar and my mother Dr Nasreen, who
always trusted me to make the right decisions for myself; and my sisters Aalia and Sadia,
because of whom I have strong belief in the power of faith and hard work.

vi

Dedication

I dedicate this work to my beloved son Ibrahim.

vii

Table of Contents

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Affective Decision Making . 2

1.1.1 Contributions . 3

1.2 Affective and Human-Like Conversational Agents 3

1.2.1 Contributions . 4

1.3 Domain Adaptation in Text Classification and Generation 5

1.3.1 Contributions . 5

1.4 Organization . 6

2 Background 7

2.1 Markov Decision Processes . 7

2.2 Partially Observable Markov Decision Processes 7

2.3 Planning . 8

2.3.1 Planning in POMDPs . 9

2.3.2 Monte-Carlo Methods . 10

2.3.3 Monte-Carlo Tree Search . 11

2.4 Deep Learning for Natural Language Processing 12

viii

2.4.1 Feed-Forward Neural Networks . 13

2.4.2 Recurrent Neural Networks . 14

2.4.3 Long Short-Term Memory Networks 15

2.4.4 Gated Recurrent Units . 16

2.4.5 Word Embeddings . 17

2.4.6 Sequence-to-Sequence Framework 18

2.4.7 Attention Mechanism . 18

2.4.8 Variational Autoencoders for Text Generation 19

2.4.9 Conditional Variational Autoencoders 21

2.5 A Brief History of Dialogue Systems . 21

2.5.1 Encoder-Decoder Dialogue Models 22

2.5.2 Dialogue Evaluation Metrics . 24

3 Affective Intelligence for Decision Making 26

3.1 Introduction . 26

3.2 Affect Control Theory . 28

3.3 Bayesian Affect Control Theory . 30

3.4 BayesAct Instances . 32

3.5 Proposed Algorithm: POMCP-C . 33

3.5.1 POMCP . 33

3.5.2 POMCP-C . 34

3.5.3 Extended POMCP-C . 35

3.6 Experiments . 38

3.6.1 Prisoner’s Dilemma (Repeated) . 38

3.6.2 Affective Cooperative Robots (CoRobots) 44

3.6.3 Affective Handwashing System . 48

3.6.4 8D Intersection Problem . 51

3.7 Related Work . 54

3.8 Conclusion . 56

ix

4 Affective Response Generation for Neural Conversational Systems 57

4.1 Introduction . 57

4.2 Related Work . 59

4.3 The Proposed Affective Approaches . 61

4.3.1 Affective Word Embeddings . 62

4.3.2 Affective Loss Functions . 64

4.3.3 Affectively Diverse Decoding . 66

4.3.4 Affect Control Theory for Dialogue Generation 69

4.4 Experiments . 72

4.4.1 Data and Setup . 72

4.4.2 Results . 74

4.5 Limitations . 79

4.6 Conclusion . 80

5 Online Active Learning for Neural Response Generation 81

5.1 Introduction . 81

5.2 Related Work . 82

5.3 Proposed Model . 83

5.3.1 Offline Two-Phase Supervised Learning 83

5.3.2 Online Active Learning . 83

5.4 Experiments . 86

5.4.1 Quantitative Evaluation . 86

5.4.2 Qualitative Comparison . 89

5.5 Limitations . 89

5.6 Conclusion . 90

x

6 Transfer Learning for Neural Text Classification and Generation 93

6.1 Introduction . 93

6.2 Related Work . 95

6.2.1 Domain Adaptation . 95

6.2.2 Memory-Based Neural Networks . 96

6.3 Proposed Approach . 97

6.3.1 Augmenting RNN with Memory Banks 97

6.3.2 Progressively Increasing Memory for Incremental Domain Adapta-
tion (IDA) . 99

6.4 Experiments . 105

6.4.1 Experiment I: Natural Language Inference 105

6.4.2 Experiment II: Dialogue Generation 111

6.5 Conclusion . 114

7 Conclusion 115

References 117

APPENDICES 138

A POMCP-C: Full experiments with Prisoner’s Dilemma 139

B ACT-based Dialogue Response Generation: Additional Qualitative Ex-
periments 172

B.1 Assessing S2EPA . 172

B.2 Assessing EPA2S . 173

B.3 Assessing the Full ACT Dialogue Pipeline 175

xi

List of Figures

2.1 Two time slices of a general POMDP. Rectangles show observed variables,
ovals show unobserved/hidden states, and the diamond node represents re-
ward. 8

2.2 Monte Carlo Tree Search. Image source: http://tinyurl.com/zaobca8. 10

2.3 Left: a vanilla recurrent neural network. Right: unfolding the forward
computation in time. 14

3.1 Two time slices of a factored POMDP for BayesAct. 30

3.2 PD with client strategy: (same) and discount γ = 0.9. Red=client; Blue=agent;
dashed=std.dev.; solid (thin, with markers): mean; solid (thick): median.
As timeout increases, more defections give less reward for both agents. . . 42

3.3 BayesAct Corobots cannot coordinate properly when the communication
channel is bad or non-existent. 46

3.4 CoRobots: With higher Nmax
A , Σb and Timeout, a weaker and less active

agent becomes increasingly manipulative by ‘faking’ his identity, and accu-
mulates higher rewards. 48

3.5 8D Intersection Problem (continuous actions). σ = 0.4, δo = 0.5, Nmax
A =

15, Timeout = 400 unless otherwise noted. 53

4.1 Overview of the three proposed affective strategies for the input, training,
and inference of Seq2Seq based on a cognitively engineered dictionary with
Valence, Arousal, and Dominance (VAD) scores. 62

4.2 Relationship between several adjectives, nouns, and verbs on 3-D VAD scale. 63

4.3 Pipeline to integrate Affect Control Theory (ACT) into a dialogue system. 69

xii

http://tinyurl.com/zaobca8

4.4 S2EPA: A pretrained BiLSTM network with attention [56], tweaked to pro-
duce EPA vectors instead of emojis. 70

4.5 CVAE training architecture. 71

4.6 CVAE at inference time: this is the EPA2S module. 72

5.1 An example human-agent interaction. 87

5.2 5.2a shows the average percentage success of the three models SL1, SL2
and SL2+oAL (trained via 200 interactions) on 100 unseen prompts over
four axes: syntactical coherence, response relevance, interestingness and
engagement. 5.2b, c show percentage success of SL2+oAL’s on 100 unseen
prompts over the same four axes, as Adam’s learning rate varies and the
number of training interactions changes. 88

6.1 (a) Progressive neural network [162]. (b) One step of RNN transition in the
proposed progressive memory network. Colors indicate different domains. . 96

6.2 Hidden state expansion vs. memory expansion at step t. 102

6.3 Attention probabilities before and after memory expansion. 104

6.4 Experiment I: Tuning the number of memory slots to be added per domain.
The two graphs show validation performance of the proposed IDA model
S→T (F+M+V). 107

A.1 PD experiments with client strategy: (co) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 148

A.2 PD experiments with client strategy: (de) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 149

A.3 PD experiments with client strategy: (to) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 150

A.4 PD experiments with client strategy: (tt) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 151

xiii

A.5 PD experiments with client strategy: (t2) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 152

A.6 PD experiments with client strategy: (2t) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 153

A.7 PD experiments with client strategy: (1.0) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 154

A.8 PD experiments with client strategy: (same) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 155

A.9 PD experiments with client strategy: (co) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 156

A.10 PD experiments with client strategy: (de) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 157

A.11 PD experiments with client strategy: (to) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 158

A.12 PD experiments with client strategy: (tt) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 159

A.13 PD experiments with client strategy: (t2) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 160

A.14 PD experiments with client strategy: (2t) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 161

A.15 PD experiments with client strategy: (1.0) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 162

xiv

A.16 PD experiments with client strategy: (same) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median. 163

A.17 PD experiments with client strategy (co), timeout=120.0, discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean,
solid (thick): median. 164

A.18 PD experiments with client strategy: (de), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers):
mean, solid (thick): median. 165

A.19 PD experiments with client strategy (to), timeout=120.0, discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean,
solid (thick): median. 166

A.20 PD experiments with client strategy: (tt), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers):
mean, solid (thick): median. 167

A.21 PD experiments with client strategy (t2), timeout=120.0, discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean,
solid (thick): median. 168

A.22 PD experiments with client strategy (2t), timeout=120.0, discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean,
solid (thick): median. 169

A.23 PD experiments with client strategy (1.0), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers):
mean, solid (thick): median. 170

A.24 PD experiments with client strategy (same), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers):
mean, solid (thick): median. 171

xv

List of Tables

3.1 Optimal (deflection minimising) behaviours for two pd-agents with fixed
identities friend and scrooge. 40

3.2 Example games with client playing (to). Identities and emotions are agent
interpretations. 43

3.3 Results (avg. rewards) against the tit-for strategies 43

3.4 Means and the standard error of the means (of each set of 10 simulations) of
the number of interactions, and of the last planstep reached for simulations
between agent and client. 49

3.5 Example simulation between the agent and a client (PwD) who holds the
affective identity of “elder”. Affective actions are chosen by BayesAct. Pos-
sible utterances for agent and client are shown that may correspond to the
affective signatures computed. 51

3.6 Example simulation between the agent and a client (PwD) who holds the
affective identity of “elder”. Affective actions were fixed: if prompting, it
“commands” the user and when not prompting it “minds” the user. 52

4.1 The effect of affective word embeddings as input. 74

4.2 The effect of affective loss functions. 74

4.3 Effect of affectively diverse decoding. H-DBS refers to Hamming-based DBS
used in [195]. WL-ADBS and SL-ADBS are the proposed word-level and
sentence-level affectively diverse beam search, respectively. 75

4.4 Comparing the different ACT conversation models. 75

4.5 Combining different affective strategies. 75

4.6 Examples of the responses generated by the baseline and affective models. . 77

xvi

5.1 Comparing agent responses after one-phase SL, two-phase SL and online AL. 91

5.2 Customized moods. Each SL2+oAL model was trained via 100 interactions. 92

6.1 Corpus statistics and the baseline performance (% accuracy) of my BiLSTM
model (without domain adaptation) and results reported in previous work.
This gives a rough comparison because the evaluation set may be different
(see Footnote 2). 105

6.2 Results on two domain adaptation. F: Fine-tuning. V: Expanding vocabu-
lary. H: Expanding RNN hidden states. M: My proposed method of expand-
ing memory. I also compare with previous work elastic weight consolidation
(EWC) [94] and the progressive neural network [162]. For the statistical test
(compared with Line 8), ↑, ↓: p < 0.05 and ⇑,⇓: p < 0.01. 108

6.3 Dynamics of the progressive memory network for IDA with 5 domains.
Upper-triangular values in gray are out-of-domain (zero-shot) performance. 109

6.4 Comparing my approach with variants and previous work in the multi-
domain setting. In this experiment, I use the memory-augmented RNN
as the neural architecture. Italics represent best results in the IDA group.
↑, ↓: p < 0.05 and ⇑,⇓: p < 0.01 (compared with F+V+M). 110

6.5 Results on two-domain adaptation for dialogue response generation. F: Fine-
tuning. V: Expanding vocabulary. H: Expanding RNN hidden states. M:
My proposed method of expanding memory. I also compare with previous
work elastic weight consolidation [94, EWC] and the progressive neural
network [162]. ↑, ↓: p < 0.05 and ⇑,⇓: p < 0.01 (compared with Line 8). . . 111

6.6 Sample outputs of the proposed IDA model S→T (F+M+V) from Table 5. 113

A.1 Example games with client tC = 1s whereas agent ta = 120s. 143

A.2 Example games with client playing (to), and cooperation is interpreted as
collaborate with. This is the same example as in Chapter 3, repeated here
for easy comparisons. 144

A.3 Example games with client playing (to), and cooperation interpreted as flatter.145

A.4 Example games with client playing (co), and cooperation interpreted as flatter.146

A.5 PD experiments with client strategy: (co) and discount γ = 0.9 148

A.6 PD experiments with client strategy: (de) and discount γ = 0.9 149

xvii

A.7 PD experiments with client strategy: (to) and discount γ = 0.9 150

A.8 PD experiments with client strategy: (tt) and discount γ = 0.9 151

A.9 PD experiments with client strategy: (t2) and discount γ = 0.9 152

A.10 PD experiments with client strategy: (2t) and discount γ = 0.9 153

A.11 PD experiments with client strategy: (1.0) and discount γ = 0.9 154

A.12 PD experiments with client strategy: (same) and discount γ = 0.9 155

A.13 PD experiments with client strategy: (co) and discount γ = 0.99 156

A.14 PD experiments with client strategy: (de) and discount γ = 0.99 157

A.15 PD experiments with client strategy: (to) and discount γ = 0.99 158

A.16 PD experiments with client strategy: (tt) and discount γ = 0.99 159

A.17 PD experiments with client strategy: (t2) and discount γ = 0.99 160

A.18 PD experiments with client strategy: (2t) and discount γ = 0.99 161

A.19 PD experiments with client strategy: (1.0) and discount γ = 0.99 162

A.20 PD experiments with client strategy: (same) and discount γ = 0.99 163

A.21 PD experiments with client strategy (co), timeout=120.0, discount γ = 0.99. 164

A.22 PD experiments with client strategy: (de), timeout=120.0, discount γ = 0.99.165

A.23 PD experiments with client strategy (to), timeout=120.0, discount γ = 0.99. 166

A.24 PD experiments with client strategy (tt), timeout=120.0, discount γ = 0.99. 167

A.25 PD experiments with client strategy (t2), timeout=120.0, discount γ = 0.99. 168

A.26 PD experiments with client strategy (2t), timeout=120.0, discount γ = 0.99. 169

A.27 PD experiments with client strategy (1.0), timeout=120.0, discount γ = 0.99.170

A.28 PD experiments with client strategy (same), timeout=120, discount γ=0.99. 171

B.1 Examples of EPA vectors (and their closest word labels in ACT) produced
for input sentences by S2EPA. 173

B.2 The outputs of traditional Seq2Seq with attention, without α labels. . . . 174

B.3 Example outputs generated by EPA2S for a given input sentence and EPA
vector. 174

xviii

B.4 Evaluating the two EPA2S variants. 175

B.5 The full ACT conversational model with ACT identities friend-friend. . . . 176

B.6 The full ACT conversational model with ACT identities friend-enemy. . . . 176

xix

Chapter 1

Introduction

Human-computer interaction (HCI) is at the center of many artificial intelligence (AI)
systems, including voice search, augmented reality, healthcare assistance, video games and
automated customer service. As AI becomes increasingly mainstream, there is a pressing
need to make the interactive experience seamless and engaging for the users, much like
a human-human interaction. Thus, in many AI applications, the goal of the artificial
agent is to think, decide and act like humans. A prime example is voice or text based
conversational systems, where the agent should converse fluently and coherently with the
user, and sound natural. In fact, the entire field of Artificial General Intelligence (AGI) is
dedicated to building machines that can carry out all intellectual tasks that are humanly
possible. However, there are several theoretical and empirical challenges associated with
achieving human-likeness in AI. One of these challenges is to adequately perceive and
produce human emotions (also called affect). The other challenge is to understand and
generate human language.

Emotions play a significant role in how humans perceive, behave and make decisions
in any given situation. This has been corroborated by research in neuroscience [41, 101],
economics [4], psychology [89] and sociology [74]. These studies from very different fields
show that emotional reasoning is an essential component of cognitive deliberation. Fur-
thermore, human decisions are heavily reliant on the way humans interact with each other
and their surroundings.

Language is another vital component of human cognition. The Sapir-Whorf hypoth-
esis in Anthropology says that language influences our thinking process, and may even
determine it [90]. Other studies in behavioral economics and psychology indicate that the
structure of language may influence our behaviour as well as memory [34, 54]. For instance,

1

languages that grammatically equate the present and the future foster more future-oriented
behavior (e.g., saving more money) [34]. Similarly, different languages capture event de-
scriptions differently, which has important consequences for eye-witness memory [54]. In
fact, psychologists have even suggested that internal dialogue (talking to oneself, also
known as verbal thinking) is important for higher-level thinking and decision making [5].

In light of these studies, we can establish that any AI that seeks to interact effectively
with humans should be equipped with both affective cognizance and adequate linguistic
capabilities, at the very least. Simple positive-negative sentiment analysis or basic knowl-
edge of linguistic rules is not enough. To this end, this thesis explores how to develop
human-like AI by endowing machines with the ability to:

1. reason emotionally in various human-interactive settings to make decisions,

2. understand and generate affect in language,

3. produce coherent and fluent language, and

4. adaptively learn about multiple domains/topics through language.

In the following sections, I briefly delve into each of these aspects and describe the
contributions of this thesis.

1.1 Affective Decision Making

Affect Control Theory (ACT) [74] is a useful tool for affective reasoning and decision-
making in different interactive situations. It is a socio-mathematical theory of affective
interactions between humans. ACT posits that humans learn and maintain a set of shared
cultural affective sentiments about individuals, situations and events, and map these sen-
timents to a three dimensional continuous vector space. These mappings, which can be
measured through large-scale user studies, encode a set of social prescriptions that lead to a
highly desirable state of social order, or equilibrium. Humans use this affective ecosystem to
make predictions about what others will do, and to guide their own behaviour. In addition,
they always seek to increase the affective alignment with others. BayesAct [80, 81] gen-
eralizes ACT by modeling human-machine affective interactions as a partially-observable
Markov decision process (POMDP). In BayesAct, affective states are represented by prob-
ability distributions, which allows decision-theoretic reasoning about affect.

2

For a given interactive setting and affective identities of the two interactants, ACT pro-
vides the optimal affective action (a single point in the 3D affective space) for maximizing
alignment. However, humans are crafty and devious, and often use their cognitive abilities
to go beyond these prescriptions. Given enough planning resources (e.g. time), they like
to find strategies that are individually beneficial and culturally acceptable, while being
affectively sub-optimal1. BayesAct, being a POMDP, allows an agent to explore this facet
of human nature by letting it plan in the affective space.

In Chapter 3 of this thesis, starting from the principles of BayesAct, I explore how
planning beyond cultural prescriptions can help an agent devise deceptive or manipulative
strategies, much like humans.

1.1.1 Contributions

1. I describe how to use Monte-Carlo Tree Search to do planning in BayesAct. I propose
the POMCP-C algorithm to handle the continuous states, actions, and observations
in the BayesAct POMDP.

2. I demonstrate POMCP-C on several applications. First, in two toy social-dilemma
games (Prisoner’s Dilemma and Battle of the Sexes), I demonstrate the emergence of
complex interactions between cognitive and emotional reasoning, such as deception
leading to manipulation and altercasting. Second, I review experiments on a realis-
tic, affect-aware health-care assistive device for dementia patients. Third, I present
evidence that the proposed Monte-Carlo Tree Search variant can be effectively used
for planning in non-affective domains too, namely, robot navigation.

1.2 Affective and Human-Like Conversational Agents

Conversational AI is a branch of HCI where an agent interacts with a user through written
or verbal human language. Popular examples of conversational agents include Apple’s
Siri, Microsoft’s Cortana and Amazon’s Alexa, which are primarily task-oriented (e.g. can
search the web or call a friend), but are also capable of carrying out open-domain chit-chat
with the user. In this thesis, I focus on building open-domain text-based conversational

1An example of such strategies is a mother who acts strict with her kid in order to make him/her study
hard for an exam. In this case, the affective alignment between the mother and the kid is low, but the
strategy is beneficial both for the kid (high score in exam) and the mother (a successful kid).

3

agents, which can carry out fluent and human-sounding conversations with users and are
not restricted to particular topics/domains. Even in a task-oriented setting, open-domain
conversational ability is important to handle unforeseen user queries.

With the immense success of neural networks, important breakthroughs have been made
in natural language generation and, in particular, dialogue generation. Models adhering
to the neural encoder-decoder framework, such as sequence-to-sequence [185], are common
and popular. However, they are prone to producing short, dull and vague responses. In
most of these systems, word embeddings (trained in an unsupervised fashion) are used as
distributed feature vectors for words. However, they lack the ability to model affect in
natural language. Therefore, such systems have difficulty providing a human-like experi-
ence to users. I address these issues in open-domain dialogue generation through several
contributions.

1.2.1 Contributions

In Chapter 4, I devise four affective techniques for feature augmentation, training regular-
ization, and inference in neural conversational models.

1. I augment standard word embeddings with three dimensional affective word embed-
dings, retrieved from a dictionary of word-level affective ratings. In this way, the
ensuing neural model is aware of words’ emotional features.

2. The cross-entropy loss function is commonly used to train neural dialogue models. I
augment this loss with affective objectives, which serve the purpose of regularization
and teach the model to generate more emotional utterances.

3. To further combat the problem of dullness in responses, I design affectively diverse
beam search algorithms. They enable the model to actively search for affective re-
sponses during decoding.

4. I integrate ACT in the dialogue generation pipeline, whereby responses are condi-
tioned on the affective predictions of ACT. This is achieved by using a combination of
pretrained neural models (to embed text into the affective latent space) and encoder-
decoder models (to map the conversational history and ACT prediction to a textual
response).

In Chapter 5, I study how to implicitly infuse human-like affect into conversational
agents, without relying on explicit affect models or heuristics. I propose to train standard
encoder-decoder models using online active learning.

4

1. I use online deep active learning as a form of reinforcement in a novel way, which
eliminates the need for hand-crafted reward criteria. I use a diversity-promoting
decoding heuristic to facilitate this process.

2. I demonstrate how my model can be tuned for one-shot learning. It also eliminates the
need to explicitly incorporate coherence, relevance or interestingness in the responses.

1.3 Domain Adaptation in Text Classification and Gen-

eration

One of the cornerstones of human intelligence is the ability to consume knowledge about
multiple environments, and very effectively use it for decision-making in an unseen envi-
ronment. Furthermore, as humans keep consuming more information in life, old knowledge
does not simply get forgotten easily. In contrast, most state-of-the-art AI systems today
are built for very specific tasks, and do not generalize well to other tasks where little
training data is available. In fact, when trained on multiple tasks sequentially one after
another, these models quickly forget the old knowledge and overfit to new knowledge. To
combat this problem of catastrophic forgetting [94], transfer learning (sometimes referred
to as domain adaptation2) is used. It teaches machines how to adapt to new tasks or
domains without necessarily forgetting the knowledge gained from older tasks/domains.

In Chapter 6, I address the problem of incremental domain adaptation (IDA) in text
classification and generation models. In IDA, we assume that different domains come
sequentially one after another. We only have access to the data in the current domain, but
hope to build a unified model that performs well on all the domains encountered so far.

1.3.1 Contributions

1. I tackle the IDA problem by proposing a new neural architecture: recurrent neural
networks augmented with memory, called progressive memory banks. This memory
is a set of distributed, real-valued vectors capturing domain knowledge. Contents
of this memory are retrieved through the attention mechanism during training and
inference.

2The terms ‘transfer learning’ and ‘domain adaptation’ are often used interchangeably in the litera-
ture [133]. In this work, I do not distinguish between these two concepts. In this thesis, a domain is
defined by a dataset.

5

2. I provide theoretical analysis that is indicative of the superiority of my approach for
IDA, compared to existing approaches.

3. I show promising experimental results on two tasks: natural language inference (a
text classification task), and dialogue response generation.

1.4 Organization

This thesis is organized as follows.

• In Chapter 2, I introduce basic concepts of planning in AI, such as partially observ-
able Markov decision process (POMDP) and Monte-Carlo Tree Search. I also provide
background on state-of-the-art deep learning techniques for text-based dialogue gen-
eration, such as the encoder-decoder framework and word embeddings.

• In Chapter 3, I investigate decision-theoretic planning in BayesAct, a POMDP model
of affective interactions between a human and an artificial agent. The approach is
evaluated on two social dilemma games (Prisoner’s Dilemma, Battle of the Sexes), a
healthcare assistive device and robot navigation.

• In Chapter 4, I propose various methods for affective dialogue response generation, in-
cluding 1) affective word embeddings, 2) affective loss functions, 3) affectively diverse
beam search, and 4) conditional response generation using Affect Control Theory.

• In Chapter 5, I take a step back from explicitly modelling affect in dialogue systems.
Instead, I propose online active learning for human-like dialogue generation.

• In Chapter 6, I address the problem of incremental domain adaptation (IDA). I
propose neural progressive memory to alleviate the catastrophic forgetting problem
in language inference and dialogue generation.

• In Chapter 7, I summarize my conclusions and discuss directions for future work.

6

Chapter 2

Background

2.1 Markov Decision Processes

A Markov decision process (MDP) [21] is a stochastic model of control. It consists of a
set S of states; a set A of actions; a stochastic transition model Pr : S × A→ ∆(S), with
Pr(s′|s, a) denoting the probability of moving from state s to s′ when action a is taken, and
∆(S) is a distribution over S; and a reward assigning R(a, s′) to a transition to s′ induced
by action a.

Intuitively speaking, at each time step, the environment is in state s ∈ S. The agent
takes an action a ∈ A, which causes the environment to transition to a new s′ with
probability Pr(s′|s, a). This transition results in a reward r = R(a, s′) for the agent. The
processes continues until a time horizon H is reached; H may be infinite. The goal of the
agent is to choose actions that maximize his/her expected future reward E

[∑H
t=0 γ

trt
]
,

where rt denotes the reward at time step t and 0 ≤ γ ≤ 1 is the discount factor. A
discount factor of less than 1 ensures that distant rewards contribute less than immediate
rewards, otherwise the sum of rewards over an infinite trajectory may become unbounded.

2.2 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) [1] is a generalization of an
MDP, where the state is not directly and fully observable. Instead, the agent receives an
observation Pr(ωs|s), denoting the probability of making observation ωs ∈ Ωs while the

7

system is in state s; Ωs is an observation set. A generic POMDP is shown as a decision
network in Figure 2.1.

X

Ω

R

X X
Ω

X

A

Figure 2.1: Two time slices of a general POMDP. Rectangles show observed variables, ovals
show unobserved/hidden states, and the diamond node represents reward.

A history is sequence of actions and observations. A belief state B is a probability
distribution over S, given a history h. A policy maps a belief state to a probability distri-
bution over actions, such that the expected discounted sum of rewards is (approximately)
maximised. The value function V π(h) is the expected return from history h under a policy
π. The optimal value function V ∗(h) is the maximum value function achievable by any
policy.

In factored POMDPs, the state is represented by the cross-product of a set of variables
or features. Assignment of a value to each variable thus constitutes a state. Factored
models allow for conditional independence to be explicitly stated in the model.

POMDPs have been extensively studied in operations research [120], and in artifi-
cial intelligence [24, 88]. They have applications in many human-interactive domains,
including intelligent tutoring systems [59], assistive technologies [79], and spoken dialogue
systems [205, 206].

2.3 Planning

Planning in AI is the task of finding a sequence of actions to reach some predefined goals,
while optimizing a given performance measure. A basic classical planning problem consists
of a single artificial agent, a fully observable and deterministic environment with a unique
and known initial state, and a set of deterministic actions which can be taken one at

8

a time. Since the environment is deterministic, the effect of any sequence of actions is
deterministic. Some prominent examples of planning are found in robot navigation [28],
healthcare [189], cyber security [23] and manufacturing [99].

2.3.1 Planning in POMDPs

MDPs generalize the classical view of planning and provide a more complex, stochastic
framework for state transitions. The states are still fully observable, thus there is no in-
complete information. However, the actions are non-deterministic, thus there is uncertainty
about their effect. Therefore, instead of simply producing a sequence of actions, MDPs
produce more general solutions, called policies. That is to say, action sequences (produced
by classical planning) rarely execute as expected, therefore MDPs produce mappings from
situations to actions that specify the agents behavior no matter what happens. Further-
more, the reward function is more general and can be state dependent.

POMDPs introduce further uncertainty into a planning problem by allowing the states
to be partially observable. Computing an optimal policy (or an optimal value function)
in a POMDP is intractable due to the curse of dimensionality [88]: the state space (and
hence the belief space) is exponential. Finite-horizon POMDPs are known to be PSPACE-
complete, while infinite-horizon POMDPs are undecidable [159].

Value iteration [181] is a well-known method to compute the optimal value function for
POMDPs. Since it does not scale well, many offline variants have been proposed [146, 150,
183]. The offline algorithms approximate, prior to execution, the best action to execute
for all situations. They perform well but often take significant time to solve problems with
very large state spaces. Moreover, the policy needs to be recomputed from scratch every
time the environment dynamics change. In general, value iteration and many of its offline
variants suffer from the curse of history [30]: the number of distinct action-observation
histories that must be grown and evaluated are exponential in the planning horizon.

Online solvers are a more viable alternative for large POMDPs. They use forward search
only from the current state, and approximate the optimal value function by limiting the
number of reachable beliefs explored in the tree. Ross et al. have surveyed the different
online techniques for POMDP planning [159]. Among these, I focus on Monte Carlo
methods.

9

2.3.2 Monte-Carlo Methods

Monte Carlo (MC) methods are a subclass of computational algorithms that use repeated
random sampling for numerical estimations. MC estimates are typically used in situations
where exact computations are intractable. A simple example is to compute the expectation
of an arbitrary function f(x) where x ∼ N (0, I). Computing the expectation E[f(x)]
exactly may be intractable due to the nature of f , but it can be approximated using
Monte Carlo sampling. We independently and identically sample x1, · · · ,xn ∼ N (0, I)
where n is some integer. We compute µ̂n = 1

n

∑n
i=1 f(xi). Then µ̂n is an MC estimator for

E[f(x)] and µ̂n → E[f(x)] as n→∞. Intuitively speaking, the more random samples we
draw, the more closely we can approximate the target expectation.

MC methods are a popular choice for online planning in POMDPs [178], because com-
plexity depends on the underlying difficulty of the POMDP rather than the size of the state
space. In particular, MC simulation assumes that a POMDP simulator is provided. Given
a state and an action, the simulator provides a sample of a successor state, observation and
reward. In this way, many random trajectories can be explored, and their mean results
can be used to estimate the values of states.

Figure 2.2: Monte Carlo Tree Search. Image source: http://tinyurl.com/zaobca8.

10

http://tinyurl.com/zaobca8

2.3.3 Monte-Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a planning algorithm that uses MC simulations to
approximate the value of nodes of a search tree. I first explain the concept of tree search
below, and then describe MCTS in detail.

Several real world problems can be formulated as search problems, where the search
space can be represented as a tree. A canonical example is the game of Chess, where two
players take turns to move game pieces over an 8 × 8 board. Each player’s goal is to play a
sequence of moves that leads to a win. This goal can be formulated as a tree search problem
as follows. The state of the game at any time step is given by the board configuration,
and is represented by a node in the game tree. The root node represents the initial state
of the game, where all the pieces are unmoved. For each node, many next actions (game
moves) are possible, each represented by a branch in the tree. Transitioning from one node
to another corresponds to a move in the game. To win the game, certain desired board
configurations need to be reached, which translates to finding the optimal path from the
root to a desired node. This in turn implies that a series of most promising moves need to
be made in succession, in order to win. At each turn, the future is simulated by expanding
the tree as much as possible until the game ends. Then, the action leading to the best
possible trajectory is chosen as the next move. Since the search tree grows exponentially
and the branching factor for many problems is very high, the problem is intractable.

Monte Carlo Tree Search (MCTS) tries to circumvent the intractability of such problems
by finding approximately best moves. It randomly simulates the game many times and
records statistics about how promising different nodes and actions are; then it predicts the
most promising move based on the gathered statistics.

Concretely, to predict the next most promising move, MCTS goes through four steps:
selection, expansion, simulation and backpropagation (see Figure 2.2).

• In Selection, we start from the root node and successively select actions based
on a tree policy (typically the best action based on the statistics gathered so far),
until a leaf node L is reached. A leaf node in a search tree is one that never got
expanded/explored in previous MCTS rounds.

• In Expansion, we expand node L to add one or more of its child nodes to the tree.
Then we choose one of the children C.

• In Simulation, we follow a rollout policy i.e., select actions uniformly at random,
to expand the trajectory till a terminal node (i.e., state representing a win, loss or
draw) is reached.

11

• In Backpropagation, we update statistics (e.g. number of times the node is visited,
number of wins resulting from trajectories going through this node, etc.) the nodes
in the path from root to C.

I now describe the statistics gathered by nodes during MCTS for action selection.
Typically, the node corresponding to state s stores a value Q(s, a) and a visitation count
N(s, a) for each action a, both initialized to zero. The value Q(s, a) is the mean return
of all simulations in which action a was selected in state s. Typically, the tree policy
in the selection phase of MCTS is simply the greedy approach, which selects the action
with the highest value. However, this results in very little exploration of other actions
and there is a danger that the algorithm settles for a less optimal trajectory. The UCB1
algorithm [14] mitigates this issue by adding an exploration bonus to the value computation:

Q̂(s, a) = Q(s, a) + c
√

log
∑
aN(s,a)

N(s,a)
, where the weight c balances exploration versus greed,

and is a tunable hyperparameter.

2.4 Deep Learning for Natural Language Processing

Natural Language Processing (NLP) is a branch of AI that enables machines to under-
stand, analyse and generate human languages. Language is an essential part of human
communication, thus any machine that is touted to be intelligent like humans should be
able to communicate with humans, like humans. NLP tasks include (but are not limited to)
part-of-speech tagging, word segmentation, lemmatization, named entity recognition, in-
tent classification, translation, question answering, document summarization and language
generation [77].

NLP techniques have been around for several decades, dating back to 1950s. Most of
the early systems relied on manually-engineered rule-based systems, such as specifying all
the rules of grammar in order to adhere to them. The popularization of machine learning
in the 80s resulted in the development of statistical methods that could learn such rules
automatically from data [87]. However, feature extraction was still a predominantly manual
process and posed as an impediment to building fully automated NLP pipelines. This issue
has been addressed remarkably well with the recent advent of deep learning, so much so
that the NLP landscape has completely transformed [218].

In the rest of this section, I describe the various building blocks of deep learning for
NLP used in this thesis.

12

2.4.1 Feed-Forward Neural Networks

A neural network is a machine learning model that can approximate any arbitrary unknown
function y = q(x). A canonical example of neural network is the feed-forward neural
network, also called multilayer perceptron (MLP). An MLP is a directed acyclic graph
of computational units called neurons, which are arranged in layers. Each neuron in a
layer is connected to all the neurons in the next layer via forward edges that have real-
numbered weights associated with them. Each neuron produces a real-valued output, called
an activation. Thus, given the vector ai of activations of all the neurons in the previous
layer i, along with the weight matrix Wi of these activations, the activations of the i+1’th
layer are computed by

ai+1 = f(Wiai + bi) (2.1)

where bi is the bias vector and f is a non-linear function e.g. hyperbolic tangent (tanh),
sigmoid or rectified linear unit. The activation of the last layer is the final output of the
network. The weights and the biases are the parameters of the model, collectively denoted
by θ.

The goal of the MLP is to learn a parameterization of the function y = q(x) from a
corpus of N training samples (xj,yj) for j ∈ {1, · · · , N}. To achieve this, the network’s
parameters are initialized randomly. Then, the model processes the training samples (one
by one in the simplest case) and adjusts its parameters to minimize its error. Concretely,
given each input xi, the network computes an approximation ŷi. A loss function L(θ) uses
these predictions ŷi and the true labels yi to compute the model’s error. Some popular loss
functions are mean squared-error (MSE) and negative log likelihood. The backpropagation
algorithm then computes the partial derivative of the loss with respect to each parameter.
It uses the multivariate chain rule to compute the gradients for layer i conditioned on the
gradients of layer i + 1. Finally, a Gradient Descent algorithm uses these derivatives to
adjust each parameter such that the loss is minimized:

θi = θi − η
∂L(θ)

∂θi
(2.2)

Here, η is a hyperparameter called the learning rate; it controls the amount of adjustment
made to a parameter. This training process is repeated until the parameters converge, or
until a ‘good’ approximation is achieved.

13

Figure 2.3: Left: a vanilla recurrent neural network. Right: unfolding the forward compu-
tation in time.

2.4.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a special type of MLP that is designed to handle
sequential data. Thus, RNNs are a popular choice for NLP tasks because the training
data consists of sequences of characters or words (e.g. sentences or documents). Figure 2.3
(left) shows an RNN that takes a sequence X as input, builds a sequence H of hidden
states, and produces an output sequence Y . Whh,Wxh and Why are the weight matrices.
In Figure 2.3 (right), I show the RNN unrolled through time. That is to say, I draw the
complete network showing each time step, which gives us an MLP. Here, xi represents the
i’th element/word of the input sequence, and is a one-hot vector in the most simple setting.
Vector hi is the hidden state of the RNN at step i and is often called the memory of the
RNN, because it contains knowledge of the previous steps. At step i, the hidden state and
output are computed by

hi = f(Wxhxi +Whhhi−1) (2.3)

yi = g(Whyhi) (2.4)

where xi ∈ Rdin ,hi ∈ Rdhdn and yi ∈ Rdout for some constant values din, dhdn and dout.
Whh,Wxh and Why are trainable parameters which, unlike MLPs, are shared across all the
steps. This makes intuitive sense: at each step, the same task is being performed, but with
a different input. Another benefit of weight sharing is that the total number of parameters
is drastically reduced, making the model more efficient. In most NLP classification models,
the activation function f is tanh and g is the softmax function, given by

softmax(yi) =
exp (yi)∑dout
j=1 exp (yj)

(2.5)

14

Softmax normalizes the vector yi such that each vector component ranges between 0 and
1, and the sum of the components is 1. Thus, real-valued vectors are converted into
probability vectors, which is convenient for classification.

RNNs are trained using backpropagation through time (BPTT), where the network is
first unrolled backwards through time and then trained via the standard backpropagation
algorithm.

2.4.3 Long Short-Term Memory Networks

Vanilla RNNs, as described above, have a major limitation. Ideally, the hidden state
hi should preserve information about the entire input sequence up to step i. However,
this is difficult to achieve in practice if the sequence is long. This is known as the long-
term dependency problem in RNNs. This is partially1 a side-effect of BPTT’s vanishing
or exploding gradient problem for long sequences. As the network is unrolled backwards
through time, the gradients become too small (approaching zero) or too large (approaching
infinity). This results in weight updates that are either negligible or unstable. While
exploding gradients can be dealt with through gradient clipping, vanishing gradients are
harder to resolve. Long Short-Term Memory (LSTM) networks address the problem by
changing the way the hidden state is computed [78].

Concretely, an LSTM network maintains a cell state ci in addition to computing the
hidden state hi at each step. The full mathematical formulation for an LSTM update is
given by

fi = σ(Wf · [hi−1,xi] + bf) (2.6)

di = σ(Wd · [hi−1,xi] + bd) (2.7)

c̃i = tanh(Wc · [hi−1,xi] + bc) (2.8)

ci = fi ◦ ci−1 + di ◦ c̃i (2.9)

ot = σ(Wo · [hi−1,xi] + bo) (2.10)

hi = oi ◦ tanh(ci) (2.11)

where ◦ denotes pointwise multiplication of vectors. Intuitively, there are three gates that
regulate the addition or removal of information from the cell state. The forget gate decides
which information to remove from the cell state (Eq. 2.6). The input gate decides how

1The long-term dependency problem is also due to the inherently sequential nature of RNNs. If a
sequence is long, too much information accumulates over time, making it hard to determine which step in
the preceding sub-sequence is most relevant at the current time-step.

15

much new information to add to the cell state (Eq. 2.7), and also creates candidate values
to be added (Eq. 2.8). The output gate is responsible for producing a filtered version of
the cell state as the hidden output (Eq. 2.11).

This formulation helps LSTM networks mitigate the gradient vanishing problem. While
performing BPTT in an LSTM network, the gradient computation involves multiplication
with the activation of the forget gate (Eq. 2.9). If this activation is close to 1, the gradients
do not grow too small.

Bi-directional LSTM Networks

LSTM networks (and RNNs in general) parse input in one specified direction (e.g. English
text is parsed left to right). Thus, at a given time step i, the network possesses information
about i − 1 inputs from the past. However, we would ideally like the network to capture
information about both past and future at any given step. To achieve this, we add another
LSTM network that looks at the data in the backward direction. Then combining the
hidden states of these two LSTM networks allows us to model the past and future at all
time steps. This model is called a bi-directional LSTM network, BiLSTM for short.

BiLSTM networks outperform unidirectional LSTMs in several applications, due to
their superior ability to model context [36, 69].

2.4.4 Gated Recurrent Units

A Gated Recurrent Unit (GRU) [37] network is similar to an LSTM network, in that it
tries to mitigate the vanishing gradient problem of vanilla RNNs. However, GRUs do not
maintain an internal cell state, and use two instead of three gates to regulate information
storage. Intuitively, an update gate zi determines how much information from the past
(i.e. previous time steps) should be passed along to the future. Similarly, the reset ri gate
determines how much of this information should be forgotten. The gate computations are

zi = σ(Wzxi +Uzhi−1) (2.12)

ri = σ(Wrxi +Urhi−1) (2.13)

h̃i = tanh(Whxi + ri ◦Uhhi−1) (2.14)

hi = zi ◦ hi−1 + (1− zi) ◦ h̃i (2.15)

Compared to LSTMs, GRUs have less control over information regulation, since they
don’t maintain an internal cell state. However, they are more computationally efficient due

16

to a less complex structure [38]. Similar to BiLSTMs, Bi-directional GRUs (BiGRUs)
are often used to capture both the past and present at any given time step.

2.4.5 Word Embeddings

Traditional non-neural NLP models relied on hand-engineered features such as n-grams,
word co-occurrence statistics or one-hot word representations. These features are often ex-
pensive to compute, and do not capture word semantics well. To address this issue, Bengio
et al. [22] proposed to learn distributed representations for words using neural networks.
That is to say, each word is embedded in a fixed dimensional real-valued vector space, and
these embeddings are learned from the data during end-to-end training. This allows the
neural network to automatically capture important semantic and syntactic relationships
between words, and map words into this feature space such that words with similar mean-
ings have similar feature vectors. Typically, neural word embeddings learned end-to-end
using small to medium sized datasets may not generalize well, due to overfitting. It makes
more sense to learn the word embeddings independently using large-scale corpora, and use
these pretrained representations in downstream NLP tasks. Two popular pretrained word
embedding models are Word2Vec [131] and GloVe [142]. Word2Vec has two variants: 1)
The Continuous Bag of Words (CBOW) model predicts a word based on the surround-
ing words (called context). 2) The Skip Gram model predicts the context words for a
given word. Both these models capture text semantics well by learning local co-occurrence
patterns of words. However, they do not take global context into consideration. GloVe
mitigates that by training on global co-occurrence statistics of words.

Word2Vec and GloVe produce a single, fixed vector for a given word. However, words
may have different meanings depending on the context. Thus, contextualized word em-
beddings have been proposed. The model is called ELMo [144] and consists of a BiLSTM
network trained on the ‘language modelling’ task: given a sequence of words, predict the
next suitable word. At prediction time, the model accepts an input sentence that contains
the target word whose embedding is required. Then it combines the forward and backward
LSTM states of that word to produce the final word embedding. BERT [49] is another
neural NLP model that produces contextualized word embeddings. BERT is based on a re-
cently popularized state-of-the-art neural architecture called Transformer [194], which uses
the concept of ‘self-attention’ to overcome the long-term dependency issue. Pre-trained
ELMo and BERT models are publicly available.

All these models have a notable limitation. Syntactic context and co-occurrence statis-
tics are insufficient to capture sentiment/emotional features, because words different in

17

sentiment often share context (e.g., “a good book” vs. “a bad book”). To overcome this
problem, some recent works propose to enrich the word embeddings using sentiment and/or
emotion labels [2, 100, 156, 187].

2.4.6 Sequence-to-Sequence Framework

A sequence-to-sequence (Seq2Seq) model maps a variable length input sequence to a vari-
able length output sequence [185]. It consists of an encoder and a decoder, both of which
are RNNs (usually LSTMs or GRUs). The encoder network sequentially accepts the em-
bedding of each word in the input sequence, and encodes the input sentence as a vector of
fixed length (the last hidden state of the encoder is typically taken to be the encoding).
This encoded vector is called the context vector, and becomes the first hidden state of
the decoder. The decoder input at the first step is a fixed and predefined token called
start-of-sequence (“<sos>”). At each step, the decoder produces an output probability
distribution over the vocabulary. The token with the highest probability is taken to be the
input to the decoder at the next step. Thus, the decoder sequentially generates an output
sequence and the process stops if the end-of-sequence token (”<eos>”) is generated, or if
the maximum sequence length is reached.

Given a message-response pair (X,Y), whereX = x1, · · · ,xm and Y = y1, · · · ,yn are
sequences of words, Seq2Seq models (parametrized by θ) are typically trained to minimize
the negative log likelihood of the data, also called the cross entropy loss (XENT):

LXENT(θ) = − log p(Y |X) = −
n∑
i=1

log p(yi|y1, · · · ,yi−1,X) (2.16)

Seq2Seq is one of the most popular and state-of-the-art neural models for machine trans-
lation [15], dialogue generation [196], speech recognition [35] and image captioning [214].

2.4.7 Attention Mechanism

In the vanilla Seq2Seq model described above, the entire input sequence is encoded into
a single, fixed length context vector. This representation is not ideal for long inputs, and
also loses important information about the position of certain tokens within the input.
While decoding at a particular time step, it is desirable that the decoder should pay more
attention to certain words or phrases within the input. To achieve this, Bahdanau et
al. [15] introduced the concept of ‘attention’ where the decoder, in addition to the previous

18

hidden state and the input, looks at all the hidden states of the encoder and decides which
of them are useful at the current step.

Concretely, let sj, 1 ≤ j ≤ M be the hidden states of the encoder, where M is the
length of the input sequence X. We first compute the similarity between the previous
decoder hidden state hi−1 and all the encoder hidden states sj. These similarity scores are
called the attention energies ej:

ej = s(hi−1, sj) (2.17)

where s is a linear transformation whose parameters are learned end-to-end during training.
The attention energies are normalized to get the attention weights aj:

aj =
ej∑M
k=1 e

k
(2.18)

A context vector ci is constructed by taking a weighted combination of the encoder hidden
states sj:

ci =
M∑
j=1

ajsj (2.19)

This context vector is concatenated with the input of the decoder at each time step.

2.4.8 Variational Autoencoders for Text Generation

An autoencoder consists of two neural networks, an encoder and a decoder. The encoder
takes an input sequence X and compresses it to a lower-dimensional dense representation,
which the decoder tries to convert back to the original input. The two networks are
trained end-to-end via a loss function that typically comprises reconstruction error. Thus,
the encoder must learn to discard irrelevant parts of the input, and preserve just enough
information in the dense representation for the decoder reconstruction. A commonly used
reconstruction loss is negative log likelihood:

LAE(θ) = −
∑
X∈X

log p(X|θ) (2.20)

where X is the training set.

Autoencoders are useful for compressing data into a lower-dimensional space. However,
they are not good generative models for text, because the latent space (where the encoded
vectors lie) may not be continuous. That is to say, there may be clusters of encodings

19

in the latent space and discontinuities (empty regions) between them. Sampling from the
discontinuous regions leads to decoder outputs that are unrealistic.

Variational Autoencoders (VAEs) [93, 157] circumvent this issue by imposing con-
straints on the encodings such that the latent space is continuous; thus random samples
from this space can be used to generate realistic decoder outputs. Concretely, given an
input sequence X, the encoder produces a distribution qE over the latent space in the
form of a vector of means µ and a vector of standard deviations λ. Then, a latent vector
z is sampled from qE and passed through the decoder. Intuitively, the entries of µ cor-
respond to the centres of clusters in the latent space, and the λ entries are the standard
deviations of each cluster. To impose continuity in the latent space, the clusters should be
close to each other while still being distinct. This is achieved by forcing the latent space
to be ‘packed’ within the multivariate normal distribution N (0, I). We call this the prior
distribution of z, or p(z). Overall, the VAE loss function is

LVAE

(
θ;X

)
= KL

(
qE(z|X)

∥∥p(z)
)
− EqE(z|X)

[
log qD(X|z)

]
(2.21)

where the second term is the reconstruction loss and qD is the probability distribution
given by the decoder. The first term measures the difference between the probability
distributions qE and p(z) using Kullback-Leibler (KL) divergence [98]. KL divergence
between two probability distributions p1, p2 is given by

KL(p1, p2) =
∑
X∈X

p1(X) log

(
p2(X)

p1(X)

)
(2.22)

After being trained in this fashion, the decoder of the VAE can be treated as a text
generator: a random sample from N (0, I) can be propagated through it to produce a
fluent and realistic sentence.

VAEs, as described above, cannot be trained end-to-end with backpropagation, because
the computational graph contains a sampling operation which does not have a gradient.
To get around this issue, a reparameterization trick is used [93], which pushes the non-
differentiable operation out of the computational graph. More concretely, we use

z = µ+ λ · ε (2.23)

where µ and λ are learnable parameters and ε ∼ N (0, I) is fixed. Thus, the gradients can
flow from the decoder through µ and λ to the encoder.

VAEs have been successfully used as generative models of realistic text [25] and im-
ages [83].

20

2.4.9 Conditional Variational Autoencoders

While VAEs are useful for data generation, they do not provide a way to control the
generated output. For instance, we can train a VAE on a large corpus of sentences such
that, at inference time, a latent sample can be decoded into a plausible sentence. This
VAE is a useful language generator, but it is not a good dialogue generator because it does
not allow the generation to be conditioned on the conversation history. This problem is
remedied by Conditional Variational Autoencoders (CVAEs) [180].

CVAE extends VAE by conditioning the latent prior p(z), the encoder qE(z|X) and the
decoder qD(X|z) on a context vector c. The new prior p(z|c) is parameterized by a separate
neural network, and p(z|c) ∼ N (µ,λ2I). For the encoder, qE(x|z, c) ∼ N (µ̂, λ̂2I). The
CVAE loss function is given by

LCVAE

(
θ;X, c

)
= KL

(
qE(z|X, c)

∥∥p(z|c))− EqE(z|X,c)

[
log qD(X|z, c)

]
(2.24)

This equation is similar to the VAE loss given in Equation 2.21, except that all the prob-
ability distributions are conditioned with the variable c.

2.5 A Brief History of Dialogue Systems

Part of this thesis is dedicated to building conversational agents that are open-domain (i.e.,
are not restricted to particular domains/topics and can have generic chit-chat), natural-
sounding like humans, and are fluent and engaging. To this end, this section provides an
overview of existing open-domain dialogue systems.

Open-domain dialogue generation is an established scientific problem in academia [196,
168]. Additionally, it is very relevant in the industry: Microsoft’s XiaoIce and Baidu’s
DuMi are prime examples. Even in a task-oriented setting where the conversation has a
specific and pre-defined goal (e.g. book a flight or order food), open-domain conversational
AI is often used to handle chit-chat and other unforeseen user queries.

The trend of building dialogue systems started after Alan Turing introduced the Tur-
ing test in 1950, a criterion to assess machine intelligence through conversational inter-
action [192]. Soon after, several rule-based dialogue systems were developed. Given an
input sentence, these systems used pre-defined hand-engineered rules (if-else conditions,
regular-expression matching) to map each input to a pre-existing response. Examples of
such systems include ELIZA [199] and PARRY [39].

21

Purely rule-based systems are very restrictive and hard to maintain, and do not gen-
eralize well to unseen queries. Retrieval-based systems have gained more popularity [18,
104, 208, 55], especially in the industry [215, 230]. Given an input query, these systems use
information-retrieval algorithms to select a list of candidate responses from a pre-existing
text database. These responses are often ranked by suitability, using learning-to-rank al-
gorithms. Retrieval-based dialogue systems are scalable and efficient, but do not generate
diverse responses.

With the advent of scalable deep learning using neural networks, it is now possible to
build generative dialogue systems that create a response word-by-word, from scratch, given
in an input query. They are ‘end-to-end’ trainable (all the components of the system are
trained together using a dataset of message-response pairs), and we do not have to worry
about training different components (e.g. intent detection, entity recognition, dialogue
state tracking) separately. Moreover, they generalize well to unseen queries and can be
easily finetuned to specific domains.

The state-of-the-art in generative open-domain dialogue is the encoder-decoder neural
framework.

2.5.1 Encoder-Decoder Dialogue Models

The Seq2Seq encoder-decoder framework (Section 2.4.6) provides a natural way to do end-
to-end dialogue generation. Given a corpus of message-response pairs, a vanilla Seq2Seq
model learns by maximizing the likelihood of the response for a particular message. This
idea was independently explored in two studies [196, 171], and achieves good results in
terms of fluency and grammatical correctness of the generated responses. Sordoni et
al. [182] propose a contextualized extension of the vanilla model, where they use more
than one messages in a conversation as input. This model produces responses that are
contextually more relevant to the input, in addition to being fluent and natural sounding.
However, if the input messages are long, a single fixed-length context vector proves insuffi-
cient to preserve all the input information. To get around this problem, Serban et al. [170]
propose a hierarchical Seq2Seq variant called HRED. First, an encoder produces a context
vector for each input message. Then, another encoder takes these context vectors as input
and produces a vector summarizing the entire input conversation. Finally, this summary
vector is passed into the decoder to generate a response. HRED is effective in capturing
dialogue context, and has been extended by various studies [169, 168, 211].

Several studies have explored Seq2Seq models trained using deep reinforcement
learning. Li et al. [110] and Yu et al. [220] simulate dialogue between two virtual agents,

22

use hand-crafted reward functions to estimate the quality of each response, and thus learn
policies that capture some pre-defined global characteristics of an engaging conversation.
However, it is hard to manually define functions for each desirable quality of a conversation.
Therefore, some studies propose to use online human feedback for policy learning [107, 108].

Lack of diversity in the generated responses is a critical issue in Seq2Seq-based models;
we often see short, dull and generic responses such as ‘Yes’, ‘No’, ‘Okay’, ‘I’m not sure’ and
’I don’t know’ because they have a high frequency in most human-human conversational
datasets. One remedy is to use Beam Search: rather than greedily choosing the top most
probable token at each step of decoding, choose the top K tokens and thereby maintain
a set of top K subsequences (called beams) at each step. While effective, beam search
is prone to generating sequences that are almost identical, such as ‘I don’t know.’ and
‘I don’t know!’. To counter this effect, variations of beam search have been proposed.
Vijaykumar et al. [195] incorporate syntactic diversity between beams at each step by
adding a dissimilarity term to the beam search optimization objective. Huang et al. [84]
point out that the different beam search hypotheses may have different lengths during
decoding, therefore it is important to decide when beam search should be stopped. Shao et
al. [173] propose a new decoding method that selects K beam candidates at each step by
sampling, rather than naively choosing the most probable ones. Some diversity-promoting
approaches attempt to regularize the maximum likelihood objective directly. Li et al. [105]
augment the maximum likelihood objective with a maximum mutual information (MMI)
objective to capture the semantic and syntactic relationship between the input and output.
Nakamura et al. [135] add an inverse-token-frequency term to the objective that penalizes
the choice of common words during decoding. These techniques help mitigate the generic
responses, but may lead to ungrammatical outputs.

The models described above diversify the output of the decoder only at the word-level.
To control the generation of responses at the discourse level (e.g. by sentiment, topic,
style, etc), latent variable encoder-decoders have been proposed. They introduced
latent variables in the encoder-decoder framework, to learn distributions over higher-level
conversational characteristics. By conditioning the decoder on these latent variables, we
can introduce discourse-level variations in the decoded output. Several studies have ex-
plored this idea using VAEs and conditional VAEs (i.e. VAEs where the latent variables
are further conditioned on the dialogue context) [168, 227, 175, 174, 140].

To make Seq2Seq responses more specific and meaningful, some content-introducing
methods have been developed. Mou et al. [134] propose a model to produce responses
that contain given keywords. Xing et al. [210] add topic-awareness to Seq2Seq by using
pre-trained LDA topic models to guide the generation. Gu et al. [71] copy specific words
or phrases from the input and appropriately place them in the decoded response.

23

Another facet of open-domain dialogue generation is personalization. To appear
more human-like and natural sounding, a conversational agent should have a consistent
personality and should consider the individual users’ profiles. To this end, Zhang et al. [224]
propose to finetune a pretrained and generic conversational model on personalized data.
Li et al. [106] explicitly encode personas in distributed embeddings to capture background
information and speaking style, and integrate them into the decoder. Several studies store
profile information in memory (neural memory network or a simple dictionary), retrieve
it via attention and condition the response on it during decoding [223, 152, 228]. Most
of these studies use relatively small and synthetic datasets, which may cause overfitting.
Very recently, Mazaré et al. [129] have built a new dataset of 5 million personas and 700
million persona-based dialogues. They show that end-to-end approaches work well when
trained on this dataset.

2.5.2 Dialogue Evaluation Metrics

The goal of open-domain dialogue systems is to generate fluent, natural-sounding and
engaging responses to queries. These qualities are hard to measure automatically, because
they are subjective. Furthermore, each query may have several valid responses, therefore
comparing a model’s output to the true labels is not very meaningful. In light of these
issues, most research studies provide a combination of human evaluation (where at least 3
human judges are asked to rate the responses) and automatic evaluation metrics described
below.

BLEU-n [138] is a metric borrowed from the machine translation community. It measures
the average precision of n-gram overlap between the generated response (referred to as
candidate), and the ground truth (the reference). The precision is computed by

Pn =
Number of n-gram matches between candidate and reference

Total number of n-grams in the candidate
(2.25)

For very short candidates, precision may be very high. To penalize such candidates, a
brevity penalty ρ is used:

ρ = exp(min(0,
Lc − Lr
Lc

)) (2.26)

where Lc and Lr are the lengths of the candidate and reference respectively. The final
BLEU-n score is the geometric mean of the precisions penalized by brevity:

BLEU-n = ρ

n∏
i=1

P
1
n
i (2.27)

24

BLEU-2 is a commonly reported metric in recent studies [53, 126].

METEOR [19] is another machine translation metric. It does unigram matching be-
tween a candidate and a reference based on each unigram’s exact form, stemmed form and
meaning (synonimity). The final score is the harmonic mean of matching precision and
matching recall. METEOR is an improvement over BLEU because it goes beyond the
exact token form and additionally considers recall. However, it is only based on unigrams
and disregards n-grams.

ROUGE [114] is a set of metrics to evaluate text summarization. For a given candidate
and reference, ROUGE-N computes their n-gram recall, whereas ROUGE-L computes the
F-measure of their longest common subsequence.

Distinct-n [105] is used to measure the diversity between multiple generated responses.
It is given by the number distinct n-grams in a response, scaled by the total number of
n-grams in that response. Typically n is taken to be 1 or 2.

These metrics enable high-throughput evaluation, but they have been shown to have
weak or no correlation with human judgements [117]. A more meaningful metric is Av-
erage Embedding Similarity [168, 225], which measures semantic similarity between
two responses. It computes a real-valued vector for each response by taking the mean of
the word embeddings (typically Word2Vec or GloVe vectors) in each response, and then
computes the cosine similarity between them. However, due to the average operation, this
metric is not very good at capturing sentence-level semantic similarity.

Automatic dialogue quality evaluation is an active area of research. Tao et al. [188]
propose an unsupervised metric RUBER. It combines the embedding similarity metric with
a score to measure relatedness of query and generated reply. Lowe et al. [121] use human
annotated data to learn to predict the score of a response, given the query and ground truth
reply. Bowman et al. [25] propose to learn a response evaluation metric through adversarial
training, where a discriminator tries to differentiate between user-generated and machine-
generated responses. All these techniques are effective, but have their own limitations
and are fairly recent, therefore they have not been widely adopted and evaluated. Human
evaluation, though time and labour intensive, remains the most popular metric.

25

Chapter 3

Affective Intelligence for Decision
Making

3.1 Introduction

BayesAct [80, 81] is a partially-observable Markov decision process (POMDP) model of
affective interactions between a human and an artificial agent. BayesAct is based upon a
sociological theory called “Affect Control Theory” (ACT) [74], but generalises this theory
by modeling affective states as probability distributions, and allowing decision-theoretic
reasoning about affect. BayesAct posits that humans will strive to achieve consistency
in shared affective cultural sentiments about events, and will seek to increase alignment
(decrease deflection) with other agents (including artificial ones). Importantly, this need to
align implicitly defines an affective heuristic (a prescription1) for making decisions quickly
within interactions. Agents with sufficient resources can do further planning beyond this
prescription, possibly allowing them to manipulate other agents to achieve individual profit
in collaborative games.

BayesAct arises from the symbolic interactionist tradition in sociology and proposes
that humans learn and maintain a set of shared cultural affective sentiments about peo-
ple, objects, behaviours, and about the dynamics of interpersonal events. Humans use a
simple affective mapping to appraise individuals, situations, and events as sentiments in a
three dimensional vector space of evaluation (good vs. bad), potency (strong vs. weak)

1We prefer prescription, but also use norm, although the latter must not be mis-interpreted as logical
rules (see Section 3.7).

26

and activity (active vs. inactive). These mappings can be measured, and the culturally
shared consistency has repeatedly been demonstrated to be extremely robust in large cross-
cultural studies [75, 136]. Many believe this consistency “gestalt” is a keystone of human
intelligence. Humans use it to make predictions about what others will do, and to guide
their own behaviour. The shared sentiments, and the resulting affective ecosystem of vector
mappings, encodes a set of social prescriptions that, if followed by all members of a group,
results in an equilibirium or social order [66] which is optimal for the group as a whole,
rather than for individual members. Humans living at the equilibrium “feel” good and
want to stay there. The evolutionary consequences of this individual need are beneficial
for the species.

Nevertheless, humans are also a curious, crafty and devious bunch, and often use their
cortical processing power to go beyond these prescriptions, finding individually beneficial
strategies that are still culturally acceptable, but that are not perfectly normative. This
delicate balance is maintained by evolution, as it is beneficial for the species to avoid
foundering within a rigid set of rules. In this chapter, starting from the principles of
BayesAct, I investigate how planning beyond cultural prescriptions can result in deceptive
or manipulative strategies in two-player social dilemma games.

At its core, BayesAct has an 18-dimensional continuous state space that models affec-
tive identities and behaviours of both the agent and the person it is interacting with, and
a 3-dimensional continuous affective action space. In the examples described in [81], a
heuristic policy was used that resorted to the normative actions. Here, I tackle the open
problem of how to use decision-theoretic planning to choose actions in BayesAct. I present
a modification of a known Monte-Carlo tree search (MCTS) algorithm (POMCP) [178].
The proposed variant, called POMCP-C, handles continuous actions, states, and obser-
vations. It uses a dynamic technique to cluster observations into discrete sets during the
tree building, and assumes a problem-dependent action bias as a probability distribution
over the action space, from which it samples actions when building the search tree. Such
action biases are natural elements of many domains, and I give an example from a traffic
management domain where the action bias arises from intuitions about the accelerations
of the vehicle (i.e. that it should not accelerate too much).

This chapter makes two contributions.

1. It describes how to use MCTS planning in BayesAct, and proposes the POMCP-C
algorithm. It gives arguments for why this is an appropriate method. This idea was
hinted at in [81].

2. It demonstrates POMCP-C on several applications. First, it shows the emergence of
realistic and manipulative behaviours in two toy social dilemma games: prisoner’s

27

dilemma and battle of the sexes. Second, it reviews experiments on a realistic, affec-
tively aware health-care assistive device for persons with dementia. Third, it presents
evidence that the proposed MCTS variant can be effectively used for planning in non-
affective domains too, namely a robot navigation problem.

This chapter is organized as follows. First, I review ACT and BayesAct, and then
present a new POMCP-C algorithm. This is followed by a set of experiments on two social
dilemmas. A repeated prisoner’s dilemma game is used to show how additional resources
lead to non-prescriptive strategies that are more individually rational. A robot coordi-
nation problem battle of the sexes is discussed next, incorporating a simplified BayesAct
model in order to more clearly examine the properties of the planning method. Next,
I demonstrate POMCP-C on a realistic, affectively aware health-care assistive device for
persons with dementia. Finally, I review experiments with POMCP-C on a non-affective
robot navigation problem. The chapter closes with related work and conclusions.

3.2 Affect Control Theory

Affect Control Theory (ACT) arises from work on the psychology and sociology of human
social interaction [74]. ACT proposes that social perceptions, behaviours, and emotions
are guided by a psychological need to minimize the differences between culturally shared
fundamental affective sentiments about social situations and the transient impressions
resulting from the interactions between elements within those situations. Fundamental
sentiments, f , are representations of social objects, such as interactants’ identities and
behaviours, as vectors in a 3D affective space, hypothesised to be a universal organising
principle of human socio-emotional experience [136]. The basis vectors of affective space
are called Evaluation/valence, Potency/control, and Activity/arousal (EPA). EPA profiles
of concepts can be measured with the semantic differential, a survey technique where re-
spondents rate affective meanings of concepts on numerical scales with opposing adjectives
at each end (e.g., good, nice vs. bad, awful for E, weak, little vs. strong, big for P, and
calm, passive vs. exciting, active for A). Affect control theorists have compiled lexicons of
a few thousand words along with average EPA ratings obtained from survey participants
who are knowledgeable about their culture [75]. For example, most English speakers agree
that professors are about as nice as students (E), more powerful (P) and less active (A).
The corresponding EPAs are [1.7, 1.8, 0.5] for professor and [1.8, 0.7, 1.2] for student2. In

2 All EPA labels and values in the paper are taken from the Indiana 2002-2004 ACT lexicon [75]. Values
range by historical convention from −4.3 to +4.3.

28

Japan, professor has the same P (1.8) but students are seen as less powerful (0.21).

The three dimensions were found by Osgood to be extremely robust across time and
cultures. More recently these three dimensions are also thought to be related directly
to intrinsic reward [57]. That is, it seems that reward is assessed by humans along the
same three dimensions: Evaluation roughly corresponds with expected value, Potency with
risk (e.g. powerful things are more risky to deal with, because they do what they want
and ignore you), and Activity corresponds roughly with uncertainty, increased risk, and
decreased values (e.g. faster and more excited things are more risky and less likely to result
in reward) [57]. Similarly, Scholl argues that the three dimensions are in correspondence
with the major factors governing choice in social dilemmas [164]. Evaluation is a measure
of affiliation or correspondence between outcomes: agents with similar goals will rate each
other more positively. Potency is a measure of dependence: agents who can reach their goals
independently of other agents are more powerful. Activity is a measure of the magnitude
of dependence: agents with bigger payoffs will tend to be more active.

Social events can cause transient impressions, τ (also three dimensional in EPA space)
of identities and behaviours that may deviate from their corresponding fundamental sen-
timents, f . ACT models this formation of impressions from events with a grammar of
the form actor-behaviour-object. Consider for example a professor (actor) who yells (be-
haviour) at a student (object). Most would agree that this professor appears considerably
less nice (E), a bit less potent (P), and certainly more aroused (A) than the cultural aver-
age of a professor. Such transient shifts in affective meaning caused by specific events are
described with models of the form τ ′ = MG (f ′, τ), where M is a matrix of statistically
estimated prediction coefficients from empirical impression-formation studies and G is a
vector of polynomial features in f ′ and τ . In ACT, the weighted sum of squared Euclidean
distances between fundamental sentiments and transient impressions is called deflection,
and is hypothesised to correspond to an aversive state of mind that humans seek to avoid.
This affect control principle allows ACT to compute prescriptive actions for humans: those
that minimize the deflection. Emotions in ACT are computed as a function of the dif-
ference between fundamentals and transients [74], and are thought to be communicative
signals of vector deflection that help maintain alignment between cooperative agents. ACT
has been shown to be highly accurate in explaining verbal behaviours of mock leaders in a
computer-simulated business [165], and group dynamics [76], among others [125].

29

3.3 Bayesian Affect Control Theory

Recently, ACT was generalised and formulated as a POMDP for human-interactive arti-
ficially intelligent systems [81]. This new model, called BayesAct, generalises the original
theory in three ways. First, sentiments and impressions are viewed as probability distribu-
tions over latent variables (e.g., f and τ) rather than points in the EPA space, allowing for
multimodal, uncertain and dynamic affective states to be modeled and learned. Second,
affective interactions are augmented with propositional states and actions (e.g. the usual
state and action space considered in AI applications). Third, an explicit reward function
allows for goals that go beyond simple deflection minimization. I give a simplified de-
scription here; more details are provided in the original BayesAct research paper [81]. A
graphical model is shown in Figure 3.1.

f

Ωx Ωx

F

X

Ω

Ωf

X

Τ Τ

R

A

Ba

F

Figure 3.1: Two time slices of a factored POMDP for BayesAct.

A BayesAct POMDP models an interaction between two agents (human or machine)
denoted agent and client. The state, s, is the product of six 3-dimensional continuous
random variables corresponding to fundamental and transient sentiments about the agent’s
identity (Fa,Ta), the current (agent or client) behaviour (Fb,Tb) and the client’s identity
(Fc,Tc). I use F = {Fa,Fb,Fc} and T = {Ta,Tb,Tc}. The state also contains an
application-specific set of random variables X that are interpreted as propositional (i.e.
not affective) elements of the domain (e.g. whose turn it is, game states - see Section 3.6),
and we write s = {f , τ ,x}. Here the turn is deterministic (agent and client take turns),
although this is not necessary in BayesAct. The BayesAct reward function is application-
specific over x. The state is not observable, but observations Ωx and Ωf are obtained for

30

X and for the affective behaviour Fb, and modeled with probabilistic observation functions
Pr(ωx|x) and Pr(ωf |fb), respectively.

Actions in the BayesAct POMDP are factored in two parts: ba and a, denoting the
affective and propositional components, respectively. For example, if a tutor gives a hard
exercise to do, the manner in which it is presented, and the difficulty of the exercise,
combine to form an affective impression ba that is communicated. The actual exercise
(content, difficulty level, etc) is the propositional part, a.

The state dynamics factors into three terms as

Pr(s′|s,ba, a) = Pr(τ ′|τ , f ′,x)Pr(f ′|f , τ ,x,ba)Pr(x′|x, f ′, τ ′, a), (3.1)

and the fundamental behaviour, Fb, denotes either observed client or taken agent affective
action, depending on whose turn it is (see below). That is, when agent acts, there is
a deterministic mapping from the affective component of his action (ba) to the agent’s
behaviour Fb. When client acts, agent observes Ωf (the affective action of the other agent).
The third term in the factorization of the state dynamics is the Social Coordination Bias,
and is described in Section 3.4. Now I focus on the first two terms.

The transient impressions, T, evolve according to the impression-formation operator in
ACT (MG), so that Pr(τ ′|...) is deterministic. Fundamental sentiments are expected to
stay approximately constant over time, but are subject to random drift (with noise Σf)
and are expected to also remain close to the transient impressions because of the affect
control principle. Thus, the dynamics of F is3:

Pr(f ′|f , τ) ∝ e−ψ(f ′,τ)−ξ(f ′,f) (3.2)

where ψ ≡ (f ′−MG (f ′, τ))TΣ−1(f ′−MG (f ′, τ)) combines the affect control principle with
the impression formation equations, assuming Gaussian noise with covariance Σ. The
inertia of fundamental sentiments is ξ ≡ (f ′− f)TΣ−1

f (f ′− f), where Σf is diagonal with
elements βa, βb, βc. The two terms can then be combined into a single Gaussian with mean
µn and covariance Σn that are non-linearly dependent on the previous state, s. The state
dynamics are non-linear due to the features in G . This means that the belief state will
be non-Gaussian in general, and BayesAct uses a bootstrap filter [50] to compute belief
updates.

The distribution in (3.2) gives the prescribed (if agent turn), or expected (if client turn),
action as the component f ′b of f ′. Thus, by integrating over f ′a and f ′c and the previous state,
we obtain a probability distribution, π†, over f ′b that acts as a normative action bias: it

3I leave out the dependence on x for clarity, and on ba since this is replicated in f ′b.

31

tells the agent what to expect from other agents, and what action is expected from it in
belief state b(s):

π†(f ′b) =

∫
f ′a,f
′
c

∫
s

Pr(f ′|f , τ ,x)b(s) (3.3)

3.4 BayesAct Instances

As affective identities (fa, fc) are latent (unobservable) variables, they are learned (as infer-
ence) in the POMDP. If behaving normatively (according to the normative action bias), an
agent will perform affective actions ba = arg maxf ′b

π†(f ′b) that allow other agents to infer
what his (true) identity is. The normative action bias (NAB) defines an affective signaling
mechanism as a shared set of prescriptions for translating information about identity into
messages. In BayesAct, the NAB is given by Equation (3.3).

The NAB is only prescriptive: all agents are free to select individually what they really
send, allowing for deception (e.g. “faking” an identity by sending incorrect information
in the affective dimension of communication). Possible outcomes are manipulation (the
other agent responds correctly, as its own identity, to the “fake” identity), and altercasting
(the other agent assumes a complementary identity to the faked identity, and responds
accordingly), both possibly leading to gains for the deceptive agent.

The dynamics of X is given by Pr(x′|f ′, τ ′,x, a), that I refer to as the social coordination
bias (SCB): it defines what agents are expected to do (how the state is expected to change,
including other agents’ propositional behaviours) in a situation x when action a was taken
that resulted in sentiments f ′ and τ ′. For example, we may expect faster student learning if
deflection is low, as cognitive resources do not need to be spent dealing with mis-alignment.

The SCB is a set of shared rules about how agents, when acting normatively, will
behave propositionally (action a, as opposed to affectively with action ba). Assuming
identities are correctly inferred (as insured by the shared nature of the NAB), each agent
can both recognize the type of the other agent and can thereby uncover an optimistic policy4

that leads to the normative mean accumulated future reward (as defined by the social
coordination bias). However, with sufficient resources, an agent can use this prescribed
action as a heuristic only, searching for nearby actions that obtain higher individual reward.
For example, a teacher who seems very powerful and ruthless at the start of a class, often
may choose to do so (in a way that would be inappropriate in another setting, e.g., the
home, but is appropriate within the classroom setting) in order to establish a longer-term

4optimistic in the sense that it assumes all agents will also follow the same normative policy.

32

relationship with her students. The teacher’s actions feel slightly awkward if looked at
in the context of the underlying social relationship with each student (e.g. as would be
enacted according to normative BayesAct), but are leading to longer-term gains (e.g. the
student passes).

Thus, the NAB (along with a communication mechanism) allows the relaying of infor-
mation about identity, while the SCB allows agents to make predictions about other agents’
future actions given the identities. This combination allows agents to assume cooperative
roles in a joint task, and is used as an emotional “fast thinking” heuristic (Kahneman’s
“System 1” [89]). If agents are fully cooperative and aligned, then no further planning
is required to ensure goal achievement. Agents do what is expected (which may involve
planning over X, but not F and T), and expect others to as well. However, when alignment
breaks down, or in non-cooperative situations, then slower, more deliberative (“System 2”)
thinking arises. The Monte-Carlo method in Section 3.5 naturally trades-off slow vs. fast
thinking.

3.5 Proposed Algorithm: POMCP-C

I now investigate how to plan in BayesAct. I first review POMCP, a well-known MCTS
algorithm, and then present my variant POMCP-C for planning in BayesAct.

3.5.1 POMCP

POMCP [178] is a Monte-Carlo tree search algorithm for POMDPs that progressively
builds a search tree consisting of nodes representing histories and branches representing
actions or observations. It does this by generating samples from the belief state, and
then propagating these samples forward using a blackbox simulator (the known POMDP
dynamics). The nodes in the tree gather statistics on the number of visits, states visited,
values obtained, and action choices during the simulation. Future simulations through the
same node then use these statistics to choose an action according to the UCB1 [14] formula,
which adds an exploration bonus to the value estimate based on statistics of state visits
(less well-visited states are made to look more salient or promising). Leaves of the tree
are evaluated using a set of rollouts: forward simulations with random action selection.
The key idea is that fast and rough rollouts blaze the trail for the building of the planning
tree, which is more carefully explored using the UCB1 heuristic. POMCP uses a timeout
(processor or clock time) providing an anytime solution.

33

Concretely, the algorithm proceeds as follows. Each node represents a history h, which
is a sequence of actions and observations that have occurred up to time t. For a given
input history h, the SEARCH procedure iteratively generates a sample s from the belief
state at h, and calls the procedure SIMULATE(s, h), which does the following steps:

1. If h is not in the tree (i.e. this history has never been encountered/explored in
previous calls to SEARCH), it is added, and a node for the history ha is created for
every legal action a. A ROLLOUT ensues, where s is propagated forward using the
POMDP dynamics until the horizon is reached. The total discounted reward gained
from visiting each state in the rollout is returned and assigned to ha.

2. Otherwise, the UCB1 formula selects the best action a to be taken on s. The blackbox
simulator uses a to propagate s to a new state s′ and receives an observation o in
the process. Then SIMULATE is called on s′ and the updated history hao. When
the recursive call ends, the statistics of the node h are updated, and the reward is
accumulated.

Finally, SEARCH returns the highest value action at h, this action is taken, an observation
is received, and the search tree is pruned accordingly.

POMCP has been shown to work on a range of large-scale domains, and would work
“as is” with continuous states (as sampled histories), but is restricted to work with only
discrete actions and discrete observations because every time a new node is added to the
tree, a branch is created for each possible action.

3.5.2 POMCP-C

In my algorithm, POMCP-C (see Algorithm 1), I make use of an action bias, πheur: a
probability distribution over the action space that guides action choices5. A sample from
this distribution outputs an action which is assumed to be somewhat close to optimal. In
BayesAct, we naturally have such a bias: the normative action bias (for ba) and the social
coordination bias (for a). The idea of such a bias is generalizable to other domains too; I
will later examine a robot navigation problem as an example.

At each node encountered in a POMCP-C simulation (at history h), an action-observation
pair is randomly sampled as follows. First, a random sample is drawn from the action bias,
a ∼ πheur. The action a is then compared to all existing branches at the current history,

5The idea of using a heuristic to guide action selection in POMCP was called preferred actions [178].

34

and a new branch is only created if it is significantly different, as measured by distance in
the action space (Euclidean for ba, binary for a) and a threshold parameter δa (‘action res-
olution’), from any of these existing branches. If a new branch is created, the history ha is
added to the planning tree, and is evaluated with a rollout as usual. If a new branch is not
created, then a random sample o is drawn from the observation distribution Pr(o|h, a)6.

The continuous observation space raises two significant problems. First, the branching
factor for the observations is infinite, and no two observations will be sampled twice. To
counter this, I use a dynamic discretisation scheme for the observations, in which I maintain
o(h), a set of sets of observations at each history (tree node). So o(h) = {o1,o2, . . . ,oNo},
where No ∈ N. A new observation o is either added to an existing set oj if it is close
enough to the mean of that set (i.e. if |o− ōj| < δo where δo is a constant, the ‘observation
resolution’), or, if not, it creates a new set oNo+1 = {o}. This simple scheme allows us to
dynamically learn the observation discretisation.

The second problem raised by continuous observations stems from the fact that POMCP
uses a black box simulator that should draw samples from the same distribution as the
environment does. Thus, the simulated search tree replicates actual trajectories of belief,
and can be re-used after each action and observation in the real world (after each pruning
of the search tree). This works for discrete observations, but it may not work for continuous
observations since the same observation will rarely be encountered twice. Here, I prune
the tree according to the closest observation set oj to the observation obtained.

3.5.3 Extended POMCP-C

Here, I give an extended version of POMCP-C (Algorithm 2) that deals with continuous
observation spaces more prudently. Here, tree regeneration is initiated if the belief stored
in the tree is sufficiently different than the actual belief encountered.

As mentioned previously, the simulated search tree in POMCP replicates actual trajec-
tories of belief, and can be re-used after each action and observation in the real world. This
may not work for continuous observations. That is, the belief stored at a node is based
on sampled action-observation pairs from the parent node in the tree, which may be sig-
nificantly different from the actual action-observation pair. To handle this problem, first I
prune the search tree according to the closest observation set oj to the observation obtained.
Then, I do a check after each prune to see if the belief state stored at the node is ‘similar’ to

6POMCP-C also uses a cut-off Nmax
A on the branching factor, which is not strictly necessary, but

included for completeness.

35

Algorithm 1: POMCP-C

Procedure SEARCH(B∗, h)

repeat
if h = ∅ then
s ∼ B∗

else
s ∼ B(h)

end
SIMULATE(s, h, 0)

until TIMEOUT()
return arg max

b
V (hb)

Procedure ROLLOUT(s, h, d)

if γd < ε then
return 0

else
a ∼ πrollout(h; ·)
(s′, o, r) ∼ G(s, a)
return
r + γ.ROLLOUT(s′, hao, d+ 1)

end

Function DiscretizeObs(o, h)

if ∃oj∈o(h) : |o− ōj| < δo then
oj ← oj ∪ {o}
return ōj

else
o(h)← o(h) ∪ {{o}}
return o

end

Procedure SIMULATE(s, h, d)

if γd < ε then
return 0

end
if NA(h) < Nmax

A then
a ∼ πheur(s)
if a(h) = ∅ ∨ ∀aj∈a(h)|a− aj| > δa then
i← NA(h)
T (hi)← (Ninit(hi), Vinit(hi), ∅)
NA(h)← NA(h) + 1
a(h)← a(h) ∪ {a}
return ROLLOUT(s,h,d)

end

end

i← arg max
j=1...NA(h)

V (hj) + c
√

logN(h)
N(hj)

(s′, o, r) ∼ G(s, ai(h))
o† ← DiscretizeObs(o, h)
R← r + γ.SIMULATE(s′, hai(h)o†, d+ 1)
B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
N(hi)← N(hi) + 1

V (hi)← V (hi) + R−V (hi)
N(hi)

return R

Procedure PruneTree(h, a, o)

i∗ ← arg mini |a− ai(h)|
j∗ ← arg minj |o− ōj|
T ← T (hi∗j∗)

the one we get from updating the particle filter. I do this by computing the true belief state
B∗(hao) based on the actual observation, o, and compare it to the belief state B(hao) stored
in the pruned search tree at the root. That is, given B∗(hao) ∝ P (o|s′)P (s′|h, a)B∗(h),
and B(hao) (in the search tree), I compute ∆B = dist(B∗(hao), B(hao)), where dist is

36

Algorithm 2: POMCP-C (Extended)

Procedure SEARCH(B∗, h)

repeat
∆B ← dist(B∗, B(h))
s ∼ B∗

regen = False
with probability ∝ ∆B

regen← True
end
SIMULATE(s, h, 0, regen)

until TIMEOUT()
return arg max

b
V (hb)

Procedure ROLLOUT(s, h, d)

if γd < ε then
return 0

else
a ∼ πrollout(h; ·)
(s′, o, r) ∼ G(s, a)
return
r + γ.ROLLOUT(s′, hao, d+ 1)

end

Function DiscretizeObs(o, h)

if ∃oj∈o(h) : |o− ōj| < δo then
oj ← oj ∪ {o}
return ōj

else
o(h)← o(h) ∪ {{o}}
return o

end

Procedure PruneTree(h, a, o)

i∗ ← arg mini |a− ai(h)|
j∗ ← arg minj |o− ōj|
T ← T (hi∗j∗)

Procedure SIMULATE(s, h, d, regen)

if γd < ε then
return 0

end
if NA(h) < Nmax

A then
a ∼ πheur(s)
if a(h) = ∅ ∨ ∀aj∈a(h)|a− aj| > δa then
i← NA(h)
T (hi)← (Ninit(hi), Vinit(hi), ∅)
NA(h)← NA(h) + 1
a(h)← a(h) ∪ {a}
return ROLLOUT(s,h,d)

end

end
if regen then

∆s = Pr(s, B(h))
if Bernouilli(∆s) then
i = arg mini V (hi)
ai(h) ∼ πheur(s);
T (hi)← (Ninit(hi), Vinit(hi), ∅)

return ROLLOUT(s,h,d)

end

end

i← arg max
j=1...NA(h)

V (hj) + c
√

logN(h)
N(hj)

(s′, o, r) ∼ G(s, ai(h))
o† ← DiscretizeObs(o, h)
R← r + γ.SIMULATE(s′, hai(h)o†,

d+ 1, regen)
B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
N(hi)← N(hi) + 1

V (hi)← V (hi) + R−V (hi)
N(hi)

return R

37

some probability distance measure. For example, the KL Divergence could be computed
from sample sets using [143].

Now I check ∆B against a settable threshold parameter, and re-initialise the entire
search tree if the threshold is exceeded. Alternatively, I dynamically regenerate certain
portions of the search tree based on ∆B, as follows. While drawing samples during the
POMCP-C search, with probability proportional to ∆B, I set a flag regen. If regen is set,
the tree search will sometimes (with probability that the current state s is not a draw from
the belief state, B(h), stored at node h), generate a new action to take from the action
bias. Subsequently, there can be one of two operating modes: “REPLACE”or “ADD”.
In “REPLACE” mode (default), the new actions from the action bias replace the worst
performing action branches. In “ADD” mode, this new action gets added to the list. If
we use “ADD” mode, we must be careful to sometimes remove actions as well, using a
garbage collector. It is also advisable to note that in “ADD” mode, the UCB1 formula
may be significantly affected. Any new actions will have a low N(ha) and a high V (ha), so
they will likely be selected often by UCB1. The “ADD” mode is not shown in Algorithm 2
for this reason. It is also possible to replace or add a new action if regen = False, but
P (s|B(h)) is very small. This is also not shown in Algorithm 2.

3.6 Experiments

In this section, I present experiments and results for four applications.

3.6.1 Prisoner’s Dilemma (Repeated)

The prisoner’s dilemma is a classic two-person game in which each person can either defect
by taking $1 from a (common) pile, or cooperate by giving $10 from the same pile to
the other person. There is one Nash equilibrium in which both players defect, but when
humans play the game they often are able to achieve the optimal solution where both
cooperate. A rational agent would first compute the strategy for the game as the Nash
equilibrium (of “defect”), and then look up the affective meaning of such an action using
e.g. a set of appraisal rules, and finally apply a set of coping rules. For example, such an
agent might figure out that the goals of the other agent would be thwarted, and so that he
should feel ashamed or sorry for the other agent. However, appraisal/coping theories do
not specify the probabilities of emotions, do not take into account the affective identities of
the agents, and do not give consistent accounts of how coping rules should be formulated.

38

Instead, a BayesAct agent (called a pd-agent for brevity here), computes what af-
fective action is prescribed in the situation (given his estimates of his and the other’s
identities, and of the affective dynamics), and then seeks the best propositional action
(a ∈ {cooperate, defect}) to take that is consistent with this prescribed affect. As the game
is repeated, the pd-agent updates his estimates of identity (for self and other), and adjusts
his play accordingly. For example, a player who defects will be seen as quite negative, and
appropriate affective responses will be to defect, or to cooperate and give a nasty look.

The normative action bias (NAB) for pd-agents is the usual deflection minimizing af-
fective fb given distributions over identities of agent and client (Equation 3.3). Thus, if
agent thought of himself as a friend (EPA:{2.75, 1.88, 1.38}) and knew the other agent to
be a friend, the deflection minimizing action would likely be something good (high E). In-
deed, a simulation shows that one would expect a behaviour with EPA={1.98, 1.09, 0.96},
with closest labels such as treat or toast. Intuitively, cooperate seems like a more aligned
propositional action than defect. This intuition is confirmed by the distances from the
predicted (affectively aligned) behaviour to collaborate with (EPA:{1.44, 1.11, 0.61}) and
abandon (EPA:{ 2.28, 0.48, 0.84}) of 0.4 and 23.9, respectively. Table 3.1 shows all com-
binations if each agent could also be a scrooge (EPA:{ 2.15, 0.21, 0.54}). We see that
a friend would still collaborate with a scrooge (in an attempt to reform the scrooge), a
scrooge would abandon a friend (look away from in shame), and two scrooges would defect.

The agent will predict the client’s behavior using the same principle: compute the
deflection minimising affective action, then deduce the propositional action based on that.
Thus, a friend would be able to predict that a scrooge would defect. If a pd-agent has
sufficient resources, he could search for an affective action near to his optimal one, but
that would still allow him to defect. To get a rough idea of this action, we find the point
on the line between his optimal action {0.46, 1.14, 0.27} and abandon that is equidistant
from abandon and collaborate with. This point, at which he would change from cooperation
to defection, is { 0.8, 0.6, 0.4} (glare at), which only has a slightly higher deflection than
reform (6.0 vs 4.6). Importantly, he is not trading off costs in the game with costs of
disobeying the social prescriptions: his resource bounds and action search strategy are
preventing him from finding the more optimal (individual) strategy, implicitly favoring
those actions that benefit the group and solve the social dilemma.

PD-agents are dealing with a slightly more difficult situation, as they do not know
the identity of the other agent. However, the same principle applies, and the social coor-
dination bias (SCB) is that agents will take and predict the propositional action that is
most consistent with the affective action. Agents have culturally shared sentiments about
the propositional actions (defection and cooperation), and the distance of the deflection
minimizing action (agent, ba) or behaviour (client, fb) to these sentiments is a measure

39

Optimal Closest Distance from
Agent Client Behaviour Labels ‘collaborate’ ‘abandon’
Friend Friend 1.98, 1.09, 0.96 treat 0.4 23.9

toast
Friend Scrooge 0.46, 1.14, 0.27 reform 1.7 10.5

lend money to
Scrooge Friend 0.26, 0.81, 0.77 curry favor 8.5 4.2

look away
Scrooge Scrooge 0.91, 0.80, 0.01 borrow money 9.6 2.7

chastise

Table 3.1: Optimal (deflection minimising) behaviours for two pd-agents with fixed iden-
tities friend and scrooge.

of how likely each propositional action is to be chosen (agent turn), or predicted (client
turn). That is, on agent turn, the affective actions ba will be sampled and combined with
a propositional action a sample drawn proportionally to the distance from ba to the shared
sentiments for each a. On client turn, affective behaviours fb will be predicted and com-
bined with a value for a variable representing client play in X drawn proportionally to the
distance from fb.

I model agent and client as having two (simultaneous) identities: friend or scrooge
with probabilities 0.8 and 0.2, respectively. Each pd-agent starts with a mixture of two
Gaussians centered at these identities with weights 0.8/0.2 and variances of 0.1. The
SCB interprets cooperation as collaborate with (EPA:{1.44, 1.11, 0.61}) and defection as
abandon (EPA:{ 2.28, 0.48, 0.84}), and the probability of the propositional actions using
a Gibbs measure over distance with a variance of 4.0. I use propositional state X =
{Turn,Ag play, Cl play} denoting whose turn it is (∈ {agent, client}) and agent and
client state of play (∈ {not played, cooperate, defect}). The agents’ reward is only over the
game (e.g. 10, 1, or 0), so there is no intrinsic reward for deflection minimization as in [81].
I use a two time-step game in which both agent and client choose their actions at the first
time step, and then communicate this to each other on the second step. The agents also
communicate affectively, so that each agent gets to see both what action the other agent
took (cooperate or defect), and also how they took it (expressed in fb)

7. If one were to
implement this game in real life, then fb would be relayed by e.g. a facial expression. I use
a Gaussian observation function Pr(ωf |fb) with mean at fb and std. dev. of σb = 0.1. The

7Agents may also relay emotions (see Sec. 3.2), but here I only use emotional labels for explanatory
purposes.

40

simulations consist of 10 trials of 20 games/trial, but agents use an infinite horizon with a
discount γ.

I simulate one pd-agent (pdA) with a POMCP-C (processor time) timeout value of ta.
The other pd-agent can play one of the following fixed strategies:

1. (same): plays with the same timeout as agent tc = ta;

2. (1.0): plays with a timeout of tc = 1s;

3. (co): always cooperates;

4. (de): always defects;

5. (to): two-out, cooperates twice, then always defects;

6. (tt): tit-for-tat, starts by cooperating, then always repeats the last action of the
agent;

7. (t2): tit-for-two-tat, starts by cooperating, then defects if the other agent defects
twice in a row;

8. (2t): two-tit-for-tat, starts by cooperating, then cooperates if the other agent coop-
erates twice in a row.

Fixed strategy agents always relay collaborate with and abandon as fb when playing coop-
erate and defect, respectively.

First, I consider agents that use the same timeout. In this case, if the discount factor
is 0.99, both agents cooperate all the time, and end up feeling like warm, earnest or
introspective ladies, visitors or bridesmaids (EPA∼ {2.0, 0.5, 1.0}). This occurs regardless
of the amount of timeout given to both agents. Essentially, both agents are following
the norm. If they don’t have a long timeout, this is all they can evaluate. With longer
timeouts, they figure out that there is no better option. However, if the discount is 0.9
(more discounting, so they will find short-term solutions), then again cooperation occurs if
the timeout is short (less than 10s), but then one agent starts trying to defect after a small
number of games, and this number gets smaller as the timeout gets longer (see Figure 3.2).
With more discounting, more time buys more breadth of search (the agent gets to explore
more short-term options), and finds more of them that look appealing (it can get away
with a defection for a short while). With less discounting, more time buys more depth,
and results in better long-term decisions.

41

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

timeout: 120

Figure 3.2: PD with client strategy: (same) and discount γ = 0.9. Red=client;
Blue=agent; dashed=std.dev.; solid (thin, with markers): mean; solid (thick): median.
As timeout increases, more defections give less reward for both agents.

42

game post-play sentiments (agent) defl- identities emotions actions
fa fc fb ection agent client agent client agent client
1 -1.36,-0.01,-0.35 2.32,1.61,1.27 2.62,1.58,1.73 4.44 failure newlywed easygoing idealistic coop. coop.
2 -0.66,0.04,-0.05 1.77,1.27,1.06 2.23,1.00,1.76 3.70 parolee husband easygoing self-conscious coop. coop.
3 -0.23,-0.08,0.20 1.02,0.93,0.84 2.49,0.97,1.87 7.19 stepmother purchaser female immoral coop. def.
4 -0.12,-0.33,0.33 0.27,0.62,0.62 2.37,0.48,1.34 4.99 stuffed shirt roommate dependent unfair coop. def.
5 -0.26,-0.47,0.32 -0.26,0.26,0.42 -0.59,0.41,-0.23 3.27 divorcée gun moll dependent selfish def. def.
6 -0.37,-0.66,0.26 -0.61,0.00,0.28 -0.10,-0.41,-0.27 2.29 divorcée hussy disapproving selfish def. def.

Table 3.2: Example games with client playing (to). Identities and emotions are agent
interpretations.

γ (tt) (t2) (2t)
0.9 1.64± 2.24 3.98± 2.48 1.72± 2.35
0.99 7.33± 1.17 7.28± 1.68 7.63± 0.91

Table 3.3: Results (avg. rewards) against the tit-for strategies

Table 3.2 shows the first six games with a client playing two-out (to), who sends affective
values of collaborate with {1.44, 1.11, 0.61} and cooperates on the first two moves. This
affective action makes the pd-agent feel much less good (E) and powerful (P) than he
normally would (as a failure), as he’d expect a more positive and powerful response (such
as flatter EPA={2.1, 1.45, 0.82}) if he was a friend, so this supports his scrooge identity
more strongly8. He infers client is friendly (a newlywed is like a girlfriend in EPA space).
He therefore cooperates on the second round, and feels somewhat better. Then, the client
defects on the third round, to which the agent responds by re-evaluating the client as less
good (an immoral purchaser). He still tries to cooperate, but gives up after two more
rounds, after which he thinks of the client as nothing but a selfish hussy, and himself as
a disapproving divorcée. The agent consistently defects after this point. Interactions with
(tt), (2t) and (t2) generally follow a similar pattern, because any defection rapidly leads to
both agents adopting long-term defection strategies. However, as shown in Table 3.3 (Full
results are given in A), less discounting leads to better solutions against these strategies,
as longer-term solutions are found.

When playing against (co), pd-agents generally start by cooperating, then defect, re-
sulting in a feeling of being a self-conscious divorcée (EPA:{ 0.23, 0.62, 0.32}) playing
against a conscientious stepsister (EPA:{0.12, 0.04, 0.35}). When playing against (de),
pd-agents generally start by cooperating, but then defect, feeling like a dependent klutz
(EPA:{ 0.76, 1.26, 0.37}) playing against an envious ex-boyfriend (EPA:{ 1.30, 0.49, 0.13}).

8Examples of more positive affective actions in A.

43

3.6.2 Affective Cooperative Robots (CoRobots)

CoRobots is a multi-agent cooperative robot game based on the classic “Battle of the
Sexes” problem9. The asymmetrical situations are specifically interesting, wherein one
robot has more resources and can do planning in order to manipulate the other robot, taking
advantage of the social coordination bias. I start with a simplified version in which the
two robots maintain affective fundamental sentiments, but do not represent the transient
impressions. The normative action bias is a simple average instead of as the result of more
complex impression formation equations.

Concretely, two robots, Rob1 and Rob2, move in a 1D continuous state space. I denote
their positions with variables X1 and X2. At each time step, Rob1, Rob2 take actions
a1, a2 ∈ R respectively. This updates their respective positions xi, i ∈ {1, 2} according to
xi ← xi + ai + νi and νi ∼ N (0, σ). There are two fixed locations L1 ∈ R+ and L2 ∈ R−.
For each robot, one of these locations is the major goal g (with associated high reward r)
and the other is the minor goal ḡ (with associated low reward r̄). A robot is rewarded
according to its distance from g and ḡ, but only if the other robot is nearby. The reward
for Robi is:

Ri(x1, x2) = I(|x1 − x2| < ∆x)[r · e−(xi−g)2/σ2
r + r̄ · e−(xi−ḡ)2/σ2

r], (3.4)

where I(y) = 1 if y is true, and 0 otherwise, and where σr is the reward variance, ∆x is a
threshold parameter governing how “close” the robots need to be, and r, r̄ ∈ R, such that
r � r̄ > 0. Both σr and ∆x are fixed and known by both robots. Each robot only knows
the location of its own major goal. Furthermore, at any time step, each robot can move in
any direction, receives observations of the locations of both robots, and has a belief over
X1 and X2.

In order to coordinate their actions, (which is necessary to achieve any reward at all), the
robots must relay their reward locations to each other, and must choose a leader according
to some social coordination bias. The robots each have a 3D identity fa = {fae, fap, faa} ∈ R3

(as in BayesAct), where the valence, fae, describes their goal: if fae > 0, then g = L1. If
fae < 0, then g = L2. The power and activity dimensions will be used for coordination
(see below). Each robot also models the identity of the other robot (the client10), fc ∈ R3.
Robots can move (propositional action a) at any time step, but must coordinate their
communications. That is, only one robot can communicate at a time (with affective action

9A husband wants to go to a football game, and his wife wants to go shopping, but neither wants to
go alone. There are two pure Nash equilibria, but the optimal strategy requires coordination.

10I present from agent’s perspective, and call the other client.

44

ba perceived by the other robot as ωf), but this turn-taking behaviour is fixed. The
normative action bias (NAB) in the first (simplified) CoRobots problem is the mean of the
two identities:

π† ∝ N ((fa + fc)/2,Σb). (3.5)

In BayesAct Corobots, the NAB is given by Equation (3.3). Unless stated otherwise, the
CoRobots start without any knowledge of the other’s identity: their belief over fc is given
by N (0, 2). CoRobots have noisy self-identities.

The social coordination bias (that the leader will lead) defines each robot’s action bias
for ai, and action prediction function (for client’s x) through a 2D sigmoid leader function,
known to both agents:

leader(fa, fc) =
1

1 + exp(− (fap−fcp)

σp
− (faa−fca)

σa
)

(3.6)

where σa = 1.0 and σp = 1.0 are constants, known to both robots. This sigmoid function
is ≥ 0.5 if the agent estimates he is more powerful or more active than the client ((fap >
fcp)∨ (faa > fca)) and is < 0.5 otherwise. If the agent is the leader, his action bias will be a
Gaussian with mean at +1.0 in the direction of his major goal (as defined by fae), and in
the direction of the client’s major goal (as defined by his estimate of fce) otherwise. Agent’s
prediction of client’s motion in x is that the client will stay put if client is the leader, and
will follow the agent otherwise, as given succinctly by:

Pr(x′c|f ′a, f ′c) = N (I(leader(f ′a, f
′
c) ≥ 0.5)λa + xc, σp) (3.7)

where λa = 1 if f ′ae > 0, and −1 otherwise and σp = 1.0.

I first investigate whether corobots can coordinate when they have identities drawn from
the set of 500 human (male) identities in the ACT lexicon (see footnote 2). In the first
experiment, the two identities are selected at random on each trial. Each corobot knows
his self-ID (N (self-ID, 0.1)) but does not know the other’s ID (N ([0.0, 0.0, 0.0], 2.0)).
Furthermore, each corobot has a stable self-identity (βa = 0.1), but it believes that the
other is less stable (βc = 2.0). Finally, both corobots have equal POMCP-C planning
resources (Σb = 0.5, Nmax

A = 3, δa = 2.0, δo = 6.0 and Timeout = 2.0 seconds). The other
CoRobots game parameters are r = 100, r̄ = 30, L1 = 10, L2 = −10, σr = 2.5,∆x = 1.0 and
iterations = 30. I run 5 sets of 100 simulated trials of the CoRobots Game with varying
environmental noise, i.e., I add a normally distributed value, with standard deviation
corresponding to the noise level, to the computation and communication of Ωx and Ωf

(observations of x and f , resp.). Figure 3.3(a) (green line) shows the mean and standard

45

0 1 2 3 4 5 66
0

20

40

60

80

100

Environmental Noise

M
ea

n
(a

cr
os

s
5

se
ts

)
of

:
m

ea
n

#
of

su
cc

es
sf

u
l

co
or

d
in

at
io

n
s

in
10

0
tr

ia
ls

selfID = known
selfID = not known

(a)

0 1 2 3 4 5 6
0

200

400

600

800

1,000

1,200

1,400

1,600

Environmental Noise

M
ea

n
(a

cr
os

s
5

se
ts

)
of

:
m

ea
n

to
ta

l
re

w
ar

d
ob

ta
in

ed
in

on
e

tr
ia

l

selfID = known
selfID = not known

(b)

Figure 3.3: BayesAct Corobots cannot coordinate properly when the communication
channel is bad or non-existent.

error of mean number of successful coordinations by the corobots, and (b) shows the
means and standard error of the total reward per trial (in each set of 100 trials). The
percentage of successful coordination falls from 91% to 6% when the environmental noise
is increased, and the average total reward per trial falls from 1403 to 19.4. We see that
with no environmental noise, the corobots are able to easily learn the other’s identity,
and can coordinate based on the social coordination bias. As the environmental noise
increases, corobots are unable to easily relay identities, and require a much longer time to
find cooperative solutions.

Figure 3.3 (orange line) shows results where the self-ID is also unknown initially (N ([0.0,
0.0, 0.0], 2.0)), and is less stable (βa = 2.0). We see that the general trend is the same; how-
ever, the corobots have a higher percentage of successful coordinations, and consequently
gain a higher average total reward, for the three lowest noise values. They successfully
converge to a goal 95% of the times when the noise is low, and accumulate an average re-
ward of 1584 per trial. These values fall to 6.4% and 22.5 when the noise is maximum. It is
surprising to see that the corobots perform better with unknown self-IDs. This is because
corobots quickly assume contrasting identities (i.e. one assumes a less powerful identity
than the other) in order to coordinate. With known self-IDs, however, the corobots show
less flexibility and spend the initial few iterations trying to convince and pull the other
corobot towards themselves. Due to this rigidity, these corobots suffer a lot when they
have similar power; this does not happen when the self-ID is unknown.

Next, I investigate whether one agent can manipulate the other. A manipulation is
said to occur when the weaker and less active agent deceives the client into believing that

46

the agent is more powerful or active, thereby persuading the client to converge to the
agent’s major goal g (to within ±|0.2g|). In order to demonstrate manipulative behaviour,
I introduce asymmetry between the two agents by changing the parameters Σb, N

max
A and

Timeout for one agent (unbeknownst to the other). In addition, I allow this agent to
start with a slightly better estimate of the other’s identity. This agent will then sample
actions that are farther from the norm than expected by the other agent, and will allow
such an agent to “fake” his identity so as to manipulate the other agent. The agent’s and
client’s self-identities are noisy (σ = 0.1) versions of [2.0,−1.0,−1.0] and [−2.0, 1.0, 1.0]
respectively, r = 100, r̄ = 30, L1 = 5, L2 = −5,∆x = 1, σr = 2.5, δa = 2.0, δo = 6.0, Nmax

A =
3,Σb = 0.5 and Timeout = 2.0 for both robots. Each game is set to run for 40 iterations,
and starts with the agent and client located at 0.0. Since ga = 5, gc = −5, both robots
should converge to gc = −5 (client is leader) if following normative actions.

When Nmax
A = 3, Σb = 0.5, and Timeout = 2.0 for the agent, the agent displays manip-

ulative behaviour in only 80/1000 games, as expected (both follow normative behaviour).
If we allow the agent to start with a better estimate of the client’s identity (agent’s initial
belief about fc is a Gaussian with mean [−2.0, 1.0, 1.0] and variance 1.0), we see manip-
ulative behaviour in almost twice as many games (150). However, it is not a significant
proportion, because although it spends less time learning the other’s identity, it cannot
find much more than the normative behaviour.

Next, I also give the agent more planning resources by setting Nmax
A = 6 and Σb = 2

for the agent, and I run 10 sets of 100 simulated trials for each of the following values of
agent’s Timeout : 2, 30, 60, 120, 360, 600 seconds11. Figure 3.4(a) (solid red line) shows the
means and standard error of the means of number of agent manipulations (in each set of
100 trials), plotted against agent’s Timeout. Figure 3.4(b) (solid red line) shows means
and standard error of agent reward per trial (in each set of 100 trials). As the model
incorporates noise in movements as well as observations, the robots spend about 20 initial
iterations coordinating with each other to choose a leader, during which time they do not
receive reward. Thus, a realistic upper bound on the agent’s reward is 20 × 100 = 2000.
Figure 3.4 shows that at Timeout = 2, the agent accumulates a reward of 425 on average,
which is only 21% of the realistic maximum. At Timeout = 600, the reward rises to 1222,
which is about 61% of this realistic maximum. This makes sense given the manipulation
rate of about 48%. There is a diminishing rate of return as timeout increases in Figure 3.4
that is explained by the exponential growth of the MCTS search tree as Timeout increases
linearly. The results are relatively insensitive to the choice of parameters such as δa and
δo.

11I use a Python implementation that is unoptimized. An optimised version will result in realistic
timeouts.

47

I also tried solving the CoRobots problems using POMCP by discretising the action
space. However, even with only 5 discrete actions per dimension, there are 54 actions,
making POMCP infeasible.

Finally, I play the CoRobots Game with BayesAct Robots. This means that the norma-
tive behaviour is the deflection minimising action given by Affect Control Theory, instead
of Equation (3.5), and the transient impressions are used to compute the deflection. The
game trials are set up exactly as before, and the results are shown in Figure 3.4 (blue line).
As expected, we see the same trends as those obtained previously, but with correspondingly
lower values as the transient impressions are used and introduce further complexity to the
planning problem (18D state space rather than 9D). These results demonstrate that the
POMCP-C algorithm is able to find and exploit manipulative affective actions within the
BayesAct POMDP, and gives some insight into manipulative affective actions in BayesAct.

0 200 400 600
0

10

20

30

40

50

Agent timeout (in seconds)

M
ea

n
(a

cr
os

s
10

se
ts

)
of

:
m

ea
n

#
of

ag
en

t
m

an
ip

u
la

ti
on

s
in

10
0

tr
ia

ls

CoRobots
BayesAct CoRobots

(a)

0 200 400 600

400

600

800

1,000

1,200

Agent timeout (in seconds)

M
ea

n
(a

cr
os

s
10

se
ts

)
of

:
m

ea
n

ag
en

t
re

w
ar

d
ob

ta
in

ed
in

on
e

tr
ia

l

CoRobots
BayesAct CoRobots

(b)

Figure 3.4: CoRobots: With higher Nmax
A , Σb and Timeout, a weaker and less active

agent becomes increasingly manipulative by ‘faking’ his identity, and accumulates higher
rewards.

3.6.3 Affective Handwashing System

Persons with dementia (PwD, e.g. Alzheimer’s disease) have difficulty completing activities
of daily living, such as handwashing, preparing food and dressing. The short-term memory
impairment that is a hallmark of Alzheimer’s disease leaves sufferers unable to recall what
step to do next, or what important objects look like. A POMDP-based agent called
COACH has been developed (with discrete states, actions and observations) that can assist
PwD by monitoring the person and providing audio-visual cues when the person gets

48

Table 3.4: Means and the standard error of the means (of each set of 10 simulations) of
the number of interactions, and of the last planstep reached for simulations between agent
and client.

True Client Agent Action Total number of Interactions Last Planstep Reached
Identity Prompt No-prompt W/o POMCP-C With POMCP-C W/o POMCP-C With POMCP-C

BayesAct 18.13± 9.80 17.67± 12.05 6.63± 0.39 6.54± 0.51
Elder prompt mind 69.22± 9.28 67.75± 5.87 4.52± 0.58 5.02± 0.55

confer with mind 18.96± 8.60 17.96± 5.79 6.72± 0.33 6.81± 0.19
command mind 90.66± 5.61 85.68± 7.52 2.9± 0.63 2.12± 0.87

BayesAct 13.32± 7.3 13.07± 6.13 6.76± 0.28 6.71± 0.30
Patient prompt mind 27.25± 13.22 24.11± 8.40 5.70± 0.55 5.56± 0.98

confer with mind 20.86± 7.08 18.68± 6.14 6.58± 0.35 6.24± 0.56
command mind 76.94± 10.07 77.85± 8.76 4.27± 0.71 4.88± 1.20

BayesAct 16.63± 7.03 14.32± 6.61 6.74± 0.32 6.78± 0.21
Conval- prompt mind 48.42± 12.81 44.32± 10.68 5.66± 0.69 5.79± 0.78
escent confer with mind 18.89± 5.79 17.21± 6.23 6.68± 0.32 6.46± 0.42

command mind 62.24± 7.88 62.44± 7.67 5.09± 0.58 5.81± 0.61
BayesAct 66.60± 9.04 68.95± 8.83 5.17± 0.73 5.01± 1.23

Boss prompt mind 86.67± 8.07 93.08± 6.38 3.42± 0.83 2.53± 1.20
confer with mind 62.38± 12.50 64.66± 16.59 5.47± 0.74 4.97± 0.44
command mind 90.54± 6.54 93.43± 8.46 3.18± 0.98 2.78± 1.03

“stuck” [79]. However, these prompts are pre-recorded messages that are delivered with
the same emotion each time. As an important next step, I use BayesAct and POMCP-C
to give COACH the ability to reason about the affective identity of the PwD, and about
the affective content of the prompts and responses. Here, I investigate the properties of
BayesAct planning for COACH in simulation. Details of a physical implementation of the
handwashing system using BayesAct can be found in [115, 127].

I first describe the POMDP model of COACH that incorporates BayesAct. The hand-
washing system has 8 plansteps corresponding to the different steps of handwashing, de-
scribing the state of the water (on/off), and hands (dirty/soapy/clean and wet/dry). An
eight-valued variable PS describes the current planstep. There are probabilistic transi-
tions between plansteps described in a probabilistic plan-graph (e.g. a PwD sometimes
uses soap first, but sometimes turns on the tap first). I also use a binary variable AW
describing if the PwD is aware or not. Thus, X = {PS,AW} and the dynamics of the PS
are such that if the PwD is aware, then she will advance stochastically to the next planstep
(according to the plan-graph), unless the deflection is high, in which case the PwD is more
likely to become confused (lose awareness). If she does not advance, she loses awareness.
On the other hand, if the PwD is not aware, and is prompted when deflection is low, then
she will also move forward (according to the prompt) and gain awareness. However, a

49

high-deflection prompt will again lead to loss of awareness, and to slower progress.

Table 3.5 shows an example simulation between the agent with the affective iden-
tity of “assistant” (EPA = [1.5, 0.51, 0.45]) and a client (PwD) with the affective iden-
tity of “elder” (EPA = [1.67, 0.01,−1.03]). The BayesAct agent must learn this iden-
tity (shown as fc in Table 3.5) during the interaction if it wants to minimize deflection.
We see in this case that the client starts with AW=”yes” (1) and does the first two
steps, but then stops and is prompted by the agent to rinse his hands. This is the only
prompt necessary, the deflection stays low, the agent gets a reasonable estimate of the
client identity (EPA = [2.8,−0.13,−1.36], a distance of 1.0). I show example utter-
ances in the table that are “made up” based on our extensive experience working with
PwD interacting with a handwashing assistant. Table 3.6 shows the same client (“elder”)
but this time the agent always uses the same affective actions: if prompting, it “com-
mands” the user (EPA = [−0.09, 1.29, 1.59]) and when not prompting it “minds” the user
(EPA = [0.86, 0.17,−0.16]). Here we see that the agent prompts cause significant deflec-
tion, and this causes the PwD to lose awareness (to become confused) and not make any
progress. The handwashing takes much longer, and the resulting interaction is likely much
less satisfying.

I modify this COACH POMDP model by adding 3D continuous state, action and
observation spaces to represent affective identities and behaviours (the normative action
bias is BayesAct). The social coordination bias is that the PwDs progress through the
task is helped by prompting, but only if the deflection is sufficiently low. I investigate
the system in simulation using an agent identity of “assistant” (EPA = [1.5, 0.51, 0.45]).
This “assistant” agent interacts with the following fixed (but unknown to the agent) client
identities: “elder” ([1.67, 0.01, −1.03]), “patient” ([0.90, −0.69, −1.05]), “convalescent”
([0.3, 0.09, −0.03]), and “boss”12 ([0.48, 2.16, 0.94]). I compare two policies, in which the
affective actions (i.e. how to deliver a prompt) are either computed with BayesAct and
POMCP-C, or are fixed (as in the current COACH system). In both cases, POMCP-C
is used to compute a policy for propositional actions (i.e. what prompt to give). I run
10 sets of 10 simulated trials. The results are shown in Table 3.4. As expected, the fixed
policy of “command” ([−0.09, 1.29, 1.59]) gives the worst performance in all cases. These
results suggest that a fixed affective policy may work for some affective identities, but not
for others, whereas the POMCP-C policy can learn and adapt to different client identities.

The difference in Table 3.4 between BayesAct used with POMCP-C and without is not
significant. In 10 out of 16 tests, POMCP-C allows for action choices that lead to fewer
interactions, and does better on average. Perhaps more interestingly, this estimate of error

12Many persons with Alzheimer’s disease think of themselves in terms of some past identity or role.

50

Table 3.5: Example simulation between the agent and a client (PwD) who holds the
affective identity of “elder”. Affective actions are chosen by BayesAct. Possible utterances
for agent and client are shown that may correspond to the affective signatures computed.

TURN CLIENT STATE ACTION AGENT EXPECTATION CLIENT
AW PS Prop. Affect fc PS AW DEFL.

initial 1 0 - - [0.9,-0.69,-1.05] 0 0.72 -
client 1 0 put on soap [1.6,0.77,-1.4] [2.3,-0.77,-1.23] 0.96 0.94 0.23

“[looks at sink]”
agent 1 1 - [1.3,0.26,-0.40] [2.41,-0.81,-1.23] 1.0 ≈1.0 1.07

“[looks at client]”
client 1 1 turn on tap [2.2,0.90,-1.1] [2.7,-0.36,-1.37] 3.0 0.99 0.99

“oh yes, this is good”
agent 1 3 - [1.3,0.4,0.35] [2.7,-0.37,-1.38] 3.0 ≈1.0 1.47

“I’m here to help, Frank”
client 1 3 - [2.1,0.72,-1.4] [2.6,-0.34,-1.38] 3.0 0.01 1.14

“this is nice”
agent 0 3 rinse hands [1.5,0.67,0.06] [2.6,-0.34,-1.39] 3.0 ≈0.0 1.50

“Great! Let’s rinse hands”
client 0 3 rinse hands [1.9,0.78,-1.4] [2.7,-0.31,-1.44] 4.0 0.99 1.11

“oh yes, this is good”
agent 1 4 - [1.6,0.47,-0.13] [2.7,-0.30,-1.4] 4.0 ≈1.0 1.61

“good job Frank”
client 1 4 turn tap off [2.0,0.94,-1.3] [2.6,-0.17,-1.24] 5.9 0.96 1.19

“[looks at tap]”
agent 1 6 - [1.5,0.56,-0.35] [2.6,-0.17,-1.2] 6.0 ≈1.0 1.56

“This is nice, Frank”
client 1 6 - [2.1,0.86,-1.42] [2.8,-0.14,-.14] 6.0 ≈0.0 1.22

“Oh yes, good good”
agent 1 6 dry hands [1.4,0.66,-0.06] [2.8,-0.13,-1.36] 6.0 ≈0.0 1.55

“[looks at]”
client 1 6 dry hands [1.94,1.1,-1.9] - - - 1.55

“all done!”
client 1 7 - - - - - -

can be used to evaluate the quality of the action bias within the given interaction. If the
POMCP-C model starts doing worse on average than a fixed policy, it is an indication that
the action bias is not very good, and that there is a possible misalignment between the
agent and the patient.

3.6.4 8D Intersection Problem

POMCP-C can be generalized to non-affective domains where action biases naturally
arise. In the 8D Intersection Problem [26], a robot agent’s task is to navigate a 2D

51

Table 3.6: Example simulation between the agent and a client (PwD) who holds the
affective identity of “elder”. Affective actions were fixed: if prompting, it “commands” the
user and when not prompting it “minds” the user.

TURN CLIENT STATE ACTION AGENT EXPECTATION CLIENT
AW PS Prop. Affect fc PS AW DEFL.

initial 1 0 - - [0.9,-69,-1.05] 0 0.72 -
client 1 0 put on soap [1.6,0.77,-1.4] [2.3,-0.77,-1.23] 0.96 0.94 0.23

“[looks at sink]”
agent 1 1 - [0.85,0.17,-0.16] [2.41,-0.81,-1.23] 1.0 ≈1.0 1.34

“[looks at client]”
client 1 1 turn on tap [2.3,0.90,-1.19] [2.62,-0.42,-1.43] 2.98 0.99 1.21

“oh yes, this is good”
agent 1 3 - [0.85,0.17,-0.16] [2.7,-0.42,-1.5] 3.0 ≈1.0 1.86

“[looks at client]”
client 1 3 - [2.2,0.79,-1.47] [2.6,-0.30,-1.4] 3.0 ≈0.0 1.56

“oh yes, this is good”
agent 0 3 rinse hands [-0.1,1.29,1.59] [2.6,-0.30,-1.4] 3.0 ≈0.0 4.11

“Rinse your hands!”
client 0 3 - [1.9,1.4,-1.7] [2.5,-0.30,-1.3] 3.0 ≈0.0 2.90

“[looks at sink]”
agent 0 3 rinse hands [-0.1,1.29,1.59] [2.5,-0.29,-1.3] 3.0 ≈0.0 5.80

“Rinse your hands!”
client 0 3 - [1.9,0.97,-1.9] [2.4,-0.27,-1.26] 3.0 0.02 4.28

“[looks at sink]”
agent 0 3 rinse hands [-0.1,1.29,1.59] [2.4,-0.26,-1.27] 3.0 0.02 7.05

...continues for 85 more steps until client finally finishes ...

space to reach a goal, by avoiding a moving obstacle. The state space consists of 8-
tuples (ax, ay, avx, avy, obx, oby, obvx, obvy) ∈ R8, where the first four values give the agent’s
position and velocity in 2D, and the last four values give the obstacle’s position and
velocity in 2D. The agent and obstacle are circular disks of radius 1. The obstacles
starts at obx = 6.0 m and a random oby ∈ [−8.0, 8.0], and moves vertically13 with
fixed velocity (obvx, obvy) = (0.0 m/s, 1.0 m/s). The agent starts with (ax, ay, avx, avy) =
(0.0 m, 0.0 m, 1.0 m/s, 0.0 m/s), and at each time step, it decides whether to accelerate by
±1.0 m/s2 on the horizontal axis, to reach the goal located at (9.0 m, 0.0 m). The agent
has no knowledge of the position of the obstacle unless they are less than 4 m apart. The
discount factor is 0.95, and the reward is +10 for reaching the goal and −10 for colliding
with the obstacle. Thus, the problem has an 8D continuous state space, a discrete (binary)
action space, and an 8D continuous observation space (a noisy measurement of the state).

13Whenever oby > 8.0 m, it is reset to −8.0.

52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5.25
5.5

5.75
6

6.25
6.5

6.75
7

7.25
7.5

7.75
8

Action Resolution (δa)

A
ve

ra
ge

D
is

co
u
n
te

d
R

ew
ar

d σ = 0.1

σ = 0.2

σ = 0.3

σ = 0.4

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5.5

5.75

6

6.25

6.5

6.75

7

7.25

7.5

7.75

8

Action Resolution (δa)

A
ve

ra
ge

D
is

co
u
n
te

d
R

ew
ar

d

δo = 0.2

δo = 0.5

δo = 0.8

(b)

Figure 3.5: 8D Intersection Problem (continuous actions). σ = 0.4, δo = 0.5, Nmax
A = 15,

Timeout = 400 unless otherwise noted.

I ran 1000 simulated trials with the following settings. The belief state of the agent
consists of 50,000 particles, and is initialised to an 8D Gaussian with mean (0.0, 0.0, 1.0, 0.0,
6.0, 0.0, 0.0, 1.0) and diagonal covariance (10−4, 10−4, 10−4, 10−4, 10−4, 8.0, 10−4, 10−4).
When the agent and obstacle are more than 4 m apart, the agent receives a uniformly
random observation of the obstacle’s position and velocity. Otherwise, the mean of the
observation model P (o|x) is always the state x with variance 10−4. In addition, the model
incorporates small white noise. With the POMCP-C parameters δo = 0.5 and Timeout =
15s, the algorithm achieves an average discounted reward of 5.9, compared to 5.0 by
Brechtel et al’s point-based backups.

To further demonstrate how POMCP-C handles continuous action spaces, I devise a
continuous-action version of this problem, where the agent can sample actions from the
action bias N (1.0, σ)∪N (−1.0, σ), σ being a settable parameter. The number of particles,
initial belief state and observation model remain the same. With σ = 0.4, δa = 0.25,
δo = 0.5, Nmax

A = 15 and Timeout = 400, POMCP-C achieves an average discounted
reward of 7.8. This is a dramatic improvement compared to the discrete-action version, as
the agent can fine-tune its acceleration to avoid the moving obstacle more often. Figure
3.5(a) and (b) show how the average discounted reward varies with δa, for different fixed
values of σ and δo, respectively. We see that the average reward increases rapidly with
increasing δa (as the number of actions in the tree decreases, leading to more search per
action), but peaks and declines slowly because important actions are not distinguished
anymore.

53

3.7 Related Work

Damasio has convincingly argued, both from a functional and neurological standpoint,
for emotions playing a key role in decision making and for human social action [41]. His
Somatic Marker Hypothesis is contrasted against the Platonic “high-reason” view of intel-
ligence, in which pure rationality is used to make decisions. Damasio argues that, because
of the limited capacity of working memory and attention, the Platonic view will not work.
Instead, learned neural markers focus attention on actions that are likely to succeed, and
act as a neural bias allowing humans to work with fewer alternatives. These somatic
markers are “cultural prescriptions” for behaviours that are “rational relative to the social
conventions and ethics” ([41], p200).

LeDoux [101] argues the same thing from an evolutionary standpoint. He theorises that
the subjective feeling of emotion must take place at both unconscious and conscious levels
in the brain, and that consciousness is the ability to relate stimuli to a sense of identity,
among other things.

With remarkably similar conclusions coming from a more functional (economic) view-
point, Kahneman has demonstrated that human emotional reasoning often overshadows,
but is important as a guide for, cognitive deliberation [89]. Kahneman presents a two-level
model of intelligence, with a fast/normative/reactive/affective mechanism being the “first
on the scene”, followed by a slow/cognitive/deliberative mechanism that operates if suffi-
cient resources are available. Akerlof and Kranton attempt to formalise fast thinking by
incorporating a general notion of identity into an economic model (utility function) [4].
Earlier work on social identity theory foreshadowed this economic model by noting that
simply assigning group membership increases individual cooperation [186].

The idea that unites Kahneman, LeDoux, and Damasio (and others) is the tight con-
nection between emotion and action. These authors, from very different fields, propose
emotional reasoning as a “quick and dirty”, yet absolutely necessary, guide for cognitive
deliberation. ACT gives a functional account of the quick pathway as sentiment encoding
prescriptive behaviour, while BayesAct shows how this account can be extended with a
slow pathway that enables exploration and planning away from the prescription.

This work fits well into a wide body of work on affective computing (AC) [145, 163],
with a growing focus on socio-cultural agents (e.g. [47]). In AC, emotions are usually
framed following the rationalistic view proposed by Simon as “interrupts” to cognitive
processing [179]. Emotions are typically inferred based on cognitive appraisals (e.g. a
thwarted goal causes anger) that are used to guide action through a set of “coping” mech-
anisms. Gratch and Marsella [68] are possibly the first to propose a concrete computational

54

mechanism for coping. They propose a five stage process wherein beliefs, desires, plans
and intentions are first formulated, and upon which emotional appraisals are computed.
Coping strategies then use a set of ad hoc rules by modifying elements of the model such
as probabilities and utilities, or by modifying plans or intentions. Si et al. [177] compute
emotional appraisals from utility measures (including beliefs about other agent’s utilities,
as in an I-POMDP [65]), but they leave to future work “how emotion affects the agents
decision-making and belief update processes” ([177] section 8). Goal prioritization using
emotional appraisals have been investigated [8, 116, 128], as have normative multi-agent
systems (NorMAS) [17]. There has been recent work on facial expressions in PD games,
showing that they can significantly affect the outcomes [46].

Most approaches to emotional action guidance only give broad action guides in extreme
situations, leaving all else to the cognitive faculties. BayesAct specifies one simple coping
mechanism: minimizing inconsistency in continuous-valued sentiment. This, when com-
bined with mappings describing how sentiments are appraised from events and actions, can
be used to prescribe actions that maximally reduce inconsistency. These prescriptions are
then used as guides for higher-level cognitive (including rational) processing and deliber-
ation. BayesAct therefore provides an important step in the direction of building models
that integrate “cognitive” and “affective” reasoning.

BayesAct requires anytime techniques for solving large continuous POMDPs with non-
Gaussian beliefs. There has been much recent effort in solving continuous POMDPs with
Gaussian beliefs (e.g. [48]), but these are usually in robotics motion planning where such
approximations are reasonable. Point-based methods [172] have yielded solutions for con-
tinuous POMDPs for small domains [149, 16, 26], but they are not anytime and scalability
is an issue, although recent work in parallel versions of point-based algorithms may lead to
greater scalability [103]. Continuous Perseus, for example [149], is an approximate point-
based algorithm for computing value functions (sets of alpha functions) for domains with
continuous states. However, the value function itself must be closed under the Bellman
backup operator to make the computation tractable, requiring a linear-Gaussian transition
function (which we do not have). Even if a linearisation of the ACT equations was found,
the explosion of the number of Gaussian mixtures requires contraction operators that fur-
ther complicate the approximation. Other representations of alpha functions are as policy
graphs [16], which does not work for continuous observations, or as decision trees [26],
which I compared against in Section 3.6.4.

Recent proposals for large-scale POMDPs have included methods to leverage structure
in multi-agent teams [7]. Guez et al. [72] present a variant of POMCP called BAMCP for
solving Bayes-adaptive Markov decision processes (BAMDPs), which have continuous state,
but deterministic (constant) dynamics. BAMDPs are POMDPs in which the continuous

55

state (the model parameters) remains constant. BAMCP works by selecting a single sample
from the distribution over models at the start of a simulation, so it is not general enough
to work for our POMDPs, which have continuous states but not constant dynamics.

Monte-Carlo tree search (MCTS) methods have seen more scalability success [27], and
are anytime. POMCP [178] uses MCTS to efficiently solve POMDPs with continuous state
spaces. By design, POMCP is unable to handle models with continuous action spaces, such
as BayesAct. POMCoP uses POMCP to guide a sidekick’s actions during a cooperative
video game [124]. While this game has many similarities to CoRobots, it does not have
continuous actions and restricts agent types to a small and countable set. POMCoP also
uses an action bias, in this case it predicts the human’s movements in the video game
according to their type (this would be equivalent to our social coordination bias).

I conclude that MCTS methods are more appealing for BayesAct than other solvers be-
cause: (1) MCTS does not require a computation of the value function over the continuous
state space and non-linear dynamics; (2) MCTS provides an anytime “quick and dirty”
solution that corresponds naturally to our interpretation of the “fast thinking” heuristic.

3.8 Conclusion

This chapter studies decision-theoretic planning in a class of POMDP models of affective
interactions, BayesAct, in which culturally shared sentiments are used to provide normative
action guidance. BayesAct is an exciting development in artificial intelligence that combines
affective computing, sociological theory, and probabilistic modeling. I use a Monte-Carlo
Tree Search (MCTS) method to show how a simple and parsimonious model of human affect
in decision making can yield solutions to two classic social dilemmas, robot navigation and
assistive device design. I investigate how asymmetry between agent’s resources can lead
to manipulative or exploitative, yet socially aligned, strategies.

56

Chapter 4

Affective Response Generation for
Neural Conversational Systems

The previous chapter explored how a probabilistic model of human emotions can be used
to improve decision making in several applications. This chapter investigates how such
affective computing techniques can be used in natural language processing. In particular,
let’s consider the task of text generation in dialogue systems: given an input prompt
(e.g. ‘How are you’), we want the machine learning model to generate an appropriate
conversational response (e.g. ‘I am well, what about you’). Thus, the goal is to study how
to infuse human-like affect into dialogue response generation.

To this end, I start with proposing three basic affective strategies for dialogue response
generation in this chapter. Subsequently, I investigate how to incorporate the ACT affect
model from Chapter 3 into conversation models.

4.1 Introduction

As the field of natural language processing matures rapidly, the dialogue systems commu-
nity is increasingly focusing on developing emotionally aware agents that exhibit human-
like intelligence. Affectively cognizant conversational agents have been shown to provide
companionship to humans [31, 151], help improve emotional wellbeing [62], give medical as-
sistance in a more humane way [127], help students learn efficiently [97], and assist mental
healthcare provision to alleviate bullying [67], suicide and depression [85, 190].

57

In a neural network-based dialogue system, discrete words are mapped to real-valued
vectors, known as embeddings, capturing abstract meanings of words [131]; then an encoder-
decoder framework—with long short term memory (LSTM)-based recurrent neural net-
works (RNNs)—generates a response conditioned on one or several previous utterances.
Recent advances in this direction have demonstrated its efficacy for both task-oriented
[201] and open-domain dialogue generation [110, 167, 171].

While most of the existing neural conversation models generate syntactically well-
formed responses, they are prone to being short, dull, or vague. Previous efforts to ad-
dress these issues include diverse decoding [195], diversity-promoting objective functions
[105], human-in-the-loop reinforcement/active learning [13, 110] and content-introducing
approaches [134, 210]. However, one shortcoming of these existing open-domain neural
conversation models is the lack of affect modeling of natural language. These models,
when trained over large dialogue datasets, do not capture the emotional states of the two
humans interacting in the textual conversation, which are typically manifested through
the choice of words or phrases. For instance, the attention mechanism in a sequence-
to-sequence (Seq2Seq) model can learn syntactic alignment of words within the gener-
ated sequences [15]. Also, neural word embedding models like Word2Vec learn word
vectors by context, and can preserve low-level word semantics (e.g., “king”−“male” ≈
“queen”−“woman”). However, emotional aspects are not explicitly captured by existing
methods.

In this chapter, the research goal is to alleviate this issue in open-domain neural dialogue
models by augmenting them with affective intelligence. I address this goal in four ways.

1. I embed words in a 3D affective space by retrieving word-level affective ratings from a
cognitively engineered affective dictionary [198], where affectively similar constructs
are close to one other. This dictionary is very similar to the ACT lexicon [75] used
in Chapter 3. In this way, the ensuing neural model is aware of words’ emotional
features.

2. I augment the standard cross-entropy loss with affective objectives, so that the neural
models are taught to generate more emotional utterances.

3. I inject affective diversity into the responses generated by the decoder through af-
fectively diverse beam search algorithms, and thus the model actively searches for
affective responses during decoding.

4. I condition the response generation process on the predictions of Affect Control The-
ory (ACT) [74], an external socio-mathematical model of affect. This allows the
model to capture complex affective relationships between prompts and responses.

58

I also show that some of these emotional aspects can be combined to further improve the
quality of generated responses in an open-domain dialogue system. Overall, in information-
retrieval tasks like question-answering, the proposed models can help retain the users by
interacting in a more human way.

4.2 Related Work

Most of the early affective dialogue systems were retrieval-based or slot-based, and used
hand-crafted speech and text-based features [29, 73, 147]. More recently, with the advent
of sophisticated and highly flexible neural network models [168, 171, 185, 196], the focus
has shifted to building data-driven end-to-end dialogue models. Retrieval-based systems
are still popular because they are more controllable, require less training data and are
more efficient [67, 82, 230]. However, generative models dominate this space because they
generalize well [154, 193]. This work falls in the latter category.

A large part of the affective dialogue literature treats emotion as a set of discrete
categories, where each category corresponds to a type of biological response. For instance,
some studies focus on producing sentiment-appropriate responses, where sentiment refers
to positive, negative or neutral emotion [96, 176]. Other works use a larger set of discrete
emotions [51, 63, 222, 229], based on the different psychological theories of emotion [52,
148]. A recent research trend, encouraged by social media growth, is to categorize emotions
using the emoji1 spectrum. This enables model training using massive weakly labelled
datasets (e.g., from Twitter) [139, 209, 231]. For instance, Fung et al. [60] and Park [139]
train emotion embeddings on tweets with hashtags and emojis as labels. These embeddings
can be used downstream in other NLP tasks, such as dialogue systems. Different from all
these strategies, I use a continuous, three dimensional representation of emotions. The
three dimensions are Valence, Arousal and Dominance, and have been validated by several
pioneering research studies in psychology [136, 161, 160]. In Chapter 3, I used a similar 3-
factor model of emotions. Intuitively this makes sense; as humans we experience emotions
as a continuum (i.e., a mixture of several feelings of varying intensity) rather than a single
emotion of fixed intensity. Moreover, continuous emotion vectors fit well with dialogue
models that are trained end-to-end.

At the time this research was conducted and published (February 2018), only two main
related studies existed to the best of my knowledge [137]:

1An emoji is a symbol of emotional expression, such as a smiling/frowning face, a flower, etc.

59

• Affect Language Model [63, Affect-LM] is an LSTM-RNN language model which
leverages the Linguistic Inquiry and Word Count [141, LIWC] text analysis program
for affective feature extraction through keyword spotting. It considers binary affective
features, namely positive emotion, angry, sad, anxious, and negative emotion. During
inference, Affect-LM generates sentences conditioned on the input affect features and
a learned parameter of affect strength.

My work differs from Affect-LM in that I consider affective dialogue systems instead
of merely language models, and I have explored more affective aspects including
training and decoding.

• Emotional Chatting Machine [229, ECM] is a sequence-to-sequence model [185,
Seq2Seq]. It takes as input a prompt and the desired emotion of the response,
and produces a response. It has 8 emotion categories, namely anger, disgust, fear,
happiness, like, sadness, surprise, and other. Additionally, ECM contains an internal
memory and an external memory. The internal memory models the change of the
internal emotion state of the decoder, and therefore encodes how much an emotion
has already been expressed. The external memory decides whether to choose an
emotional or generic (non-emotional) word at a given step during decoding.

One drawback of ECM is that it requires, as input, the desired emotion category of
the response. This emotion category, which is a discrete entity, has to be determined
manually or through some rule-based heuristic. This setting is unrealistic in applica-
tions. My proposed approaches differ from ECM in that: 1) they intrinsically model
emotion by affective word embeddings as input, as well as objective functions and
inference criterion based on these embeddings; and 2) an external model of affect
(ACT), which models emotions as continuous distributed vectors, is used to guide
the generation process.

After the publication of this work, other Seq2Seq-based affective conversational models
have been proposed. Dryjański et al. [51] inject predefined sentiment to a neutral utter-
ance by inferring the phrases and their insertion points. Lubis et al. [123] jointly train a
Seq2Seq model and an emotion encoder. The emotion encoder maintains the emotional
context during a conversation, and is trained using the SEMAINE dataset (2000 sam-
ples) [130] where utterances are labeled on the valence and arousal axes. Vadehra [193]
train Seq2Seq with an adversarial objective to remove affect from the learned representa-
tion of the input utterance, and generate the response based on this representation and
the target affect label (one of seven discrete emotion categories). Rashkin et al. [154] have
released EmpatheticDialogues, a dataset of 25000 conversations grounded in emotional situ-

60

ations to facilitate training and evaluation of dialogue systems. They show that finetuning
existing dialogue models on this dataset boosts their affective quality significantly.

Conditional Variational Autoencoders (CVAEs) [180] have become another popular
choice for neural dialogue models. Vanilla Seq2Seq models are prone to generating generic
responses that are not very diverse. One reason is that the encoder learns sentence rep-
resentations as isolated points in the latent space. Thus, the input representation is fixed
and stochastic variations occur only at the word level during decoding, resulting in short
term rewards. CVAEs address this problem by imposing a prior distribution on the latent
space. In a CVAE, the latent representations are densely packed within a region (dictated
by the prior). This makes the latent space continuous, and it becomes possible to sample
vectors from it, which can be decoded into diverse sentences. The stochasticity of the
sampling action allows us to control the generation process, because the latent sample can
encode global sentence properties (e.g. topic, sentiment or affect) and long-term structure.
Serban et al. [168] were the first to introduce CVAEs to dialogue generation, where the
generative process is conditioned on conversation history. Zhao et al. [227] further condi-
tion the model on dialogue intents (also called dialogue act labels). Park et al. [140] create
a hierarchy of conversation-level and utterance-level latent variables to control both global
and local conversation properties.

CVAEs have recently been used for affect-controlled dialogue generation, where the
model is conditioned on positive-negative-neutral sentiment tags [174] or more fine-grained
emotion categories [222]. Kong et al. [96] use an adversarial approach for sentiment control
which can be applied to CVAEs too. In this work, one of the affective strategies I propose
is a CVAE-based affective neural dialogue model; it is inspired from Shen et al [174]’s and
Zhang et al. [222]’s studies, but leverages Affect Control Theory as an external model of
affect for conditional response generation.

4.3 The Proposed Affective Approaches

In this section, I propose affective neural response generation, which augments traditional
neural conversation models with emotional cognizance. Concretely:

• In Sections 4.3.1–4.3.3, I leverage a cognitively engineered dictionary to propose three
strategies for affective response generation, namely affective word embeddings as
input, affective training objectives, and affectively diverse beam search. Figure 4.1
delineates an overall picture of these approaches. As will be shown later, these
affective strategies can be combined to further improve Seq2Seq dialogue systems.

61

Input: Traditional + Affective embeddings

Training: Affective loss functions

Inference: Affectively diverse beam search

Seq2Seq
w/ LSTM
Units

Figure 4.1: Overview of the three proposed affective strategies for the input, training, and
inference of Seq2Seq based on a cognitively engineered dictionary with Valence, Arousal,
and Dominance (VAD) scores.

• In Section 4.3.4, I present the CVAE-based ACT conversational model. Here, the
response generation is conditioned on the ACT predictions. A high-level overview is
shown in Figure 4.3.

4.3.1 Affective Word Embeddings

As said, traditional word embeddings trained with co-occurrence statistics are insufficient
to capture affect aspects. I propose to augment traditional word embeddings with a 3D
affective space by using an external cognitively-engineered affective dictionary [198].2 The
dictionary I use consists of 13,915 lemmatized English words, each of which is rated on
three traditionally accepted continuous and real-valued dimensions of emotion: Valence
(V, the pleasantness of a stimulus), Arousal (A, the intensity of emotion produced by
a stimulus), and Dominance (D, the degree of power exerted by a stimulus). This VAD
space is congruent with the EPA (Evaluation-Potency-Activity) space we saw in Chapter 3.
Recall that sociologists hypothesize the VAD/EPA space structures the semantic relations
of linguistic concepts across languages and cultures. VAD ratings have been previously
used in sentiment analysis, sarcasm detection and empathetic tutors, among other affective
computing applications [153, 158, 197]. To the best of my knowledge, I am the first to
introduce VAD to dialogue systems in [12].

2Available for free at http://crr.ugent.be/archives/1003

62

http://crr.ugent.be/archives/1003

1 3 5 7 9

1

3

5

7

9

bored

happy
ecstatic

angry

enraged

sad

depressed
love

hate

table

sword

mother

granny

Valence (V)

A
ro

u
sa

l
(A

)

(a) V-A plot.

1 3 5 7 9

1

3

5

7

9

bored

happy

ecstatic

angry

enragedsad
depressed

love

hate

table

sword mother

granny

Valence (V)

D
om

in
an

ce
(D

)

(b) V-D plot.

1 3 5 7 9

1

3

5

7

9

bored

happy
ecstatic

angry

enraged

sad

depressed

love

hate

table

sword

mother

granny

Dominance (D)

A
ro

u
sa

l
(A

)

(c) D-A plot.

Figure 4.2: Relationship between several adjectives, nouns, and verbs on 3-D VAD scale.

The scale of each dimension in the VAD space is from 1 to 9, where a higher value
corresponds to higher valence, arousal, or dominance. Thus, V ' 1, 5 and 9 corresponds to
a word being very negative (pedophile), neutral (tablecloth) and very positive (happiness),
respectively. This axis is traditionally used on its own in most sentiment analysis tech-
niques. Similarly, A ' 1, 5 and 9 corresponds to a word having very low (dull), moderate
(watchdog), and very high (insanity) emotional intensity, respectively. Finally, D ' 1, 5
and 9 corresponds to a word that is very powerless (dementia), neutral (waterfall) and very
powerful (paradise), respectively. The VAD ratings of each word were collected through a
survey in [198] over 1800 participants. I directly take them as the 3-dimensional word-level
affective embeddings.

63

Some examples of words (including nouns, adjectives, and verbs) and their correspond-
ing VAD values are depicted in Figure 4.2. For instance, the VAD vectors of the words
ecstatic and bored are [6.45, 6.95, 5.63] and [2.95, 3.65, 4.96], respectively. This means that
an average human rates the feeling of being bored as more unpleasant (V), less intense
(A), and slightly weaker (D), compared with the feeling of being ecstatic. Similarly, the
VAD vectors for the nouns mother and granny are [7.53, 4.73, 6.11] and [5.71, 2.38, 5.00],
respectively. Thus, mothers are perceived to be more pleasant (V) and more powerful (D)
than grannies, and evoke more intense emotions (A). From Figure 4.2a, we also see some
clusters {angry, hate, enraged} and {depressed, sad, bored} that are slightly apart on the
A axis. Also, the cluster {sword, table, granny} is fairly neutral on the V axis, compared
with the cluster {happy, mother, love} in Figure 4.2b.

For words missing in this dictionary, such as stop words and proper nouns, I set the
VAD vector to be the neutral vector ~η = [5, 1, 5], because these words are neutral in
pleasantness (V) and power (D), and evoke no arousal (A). Formally, I define “word to
affective vector” (W2AV) as:

W2AV(w) =

{
VAD(l(w)), if l(w) ∈ dict
~η = [5, 1, 5], otherwise

(4.1)

where l(w) is the lemmatization of the word w. In this way, words depicting similar
emotions are close together in the affective space, and affectively dissimilar words are far
apart from each other. Thus W2AV is suitable for neural processing.

The simplest approach to utilize W2AV is to feed it to a Seq2Seq model as input. Con-
cretely, I concatenate the W2AV embeddings of each word with its traditional word embed-
dings, the resulting vector being the input to both the encoder and the decoder.

4.3.2 Affective Loss Functions

Equipped with affective vectors, I further design affective training loss functions to explic-
itly train an affect-aware Seq2Seq conversation model. The philosophy of manipulating
loss function is similar to [105], but I focus on affective aspects (instead of diversity in
general).

Recall that, given a message-response pair (X,Y), where X = x1, · · · ,xm and Y =
y1, · · · ,yn are sequences of words, Seq2Seq models (parameterized by θ) are typically
trained with cross entropy loss (XENT):

LXENT(θ) = − log p(Y |X) = −
n∑
i=1

log p(yi|y1, · · · ,yi−1,X), (4.2)

64

where θ denotes model parameters.

I propose several affective heuristics as follows.

Minimizing Affective Dissonance. I start with the simplest approach: maintaining
affective consistency between prompts and responses. This heuristic arises from the ob-
servation that typical open-domain textual conversations between two humans consist of
messages and responses that, in addition to being affectively loaded, are affectively similar
to each other. For instance, a friendly message typically elicits a friendly response and
provocation usually results in anger or contempt. Assuming that the general affective tone
of a conversation does not fluctuate too suddenly and too frequently, I emulate human-
human interactions in my model by minimizing the dissonance between the prompts and
the responses, i.e. the Euclidean distance between their affective embeddings. This objec-
tive allows the model to generate responses that are emotionally aligned with the prompts.
Thus, at time step i, the loss is computed by

LiDMIN(θ) = −(1− λ) log p(yi|y1, · · · ,yi−1,X) + λ p̂(yi)

∥∥∥∥∑|X|j=1
W2AV(xj)

|X| −
∑i

k=1
W2AV(yk)

i

∥∥∥∥
2

(4.3)
where ‖ · ‖2 denotes `2-norm. The first term is the standard XENT loss as in Equation 4.2.

The sum
∑

j
W2AV(xj)

|X| is the average affect vector of the source sentence, whereas
∑

k
W2AV(yk)

i

is the average affect vector of the target sub-sentence generated up to the current time
step i.

In other words, I penalize the distance between the average affective embeddings of the
source and the target sentences. Notice that this affect distance is not learnable and that
selecting a single predicted word makes the model indifferentiable. Therefore, I relax hard
prediction of a word by its predicted probability p̂(yi). λ is a hyperparameter balancing
the two factors.

Maximizing Affective Dissonance. Admittedly, minimizing the affective dissonance
does not always make sense while we model a conversation. An over-friendly message from
a stranger may elicit anger or disgust from the recipient. Furthermore, responses that
are not too affectively aligned with the prompts may be perceived as more interesting, by
virtue of being less predictable. Thus, I design an objective function LDMAX that maximizes
the dissonance by flipping the sign in the second term in Equation 4.3.

LiDMAX(θ) = −(1− λ) log p(yi|y1, · · · ,yi−1,X)− λ p̂(yi)
∥∥∥∥∑|X|j=1

W2AV(xj)

|X| −
∑i

k=1
W2AV(yk)

i

∥∥∥∥
2

(4.4)

65

Maximizing Affective Content. The third heuristic encourages Seq2Seq to generate
affective content, but does not specify the polarity of sentiment. This explores the hy-
pothesis that most of the casual human responses are not dull or emotionally neutral. The
model has the liberty to choose the appropriate sentiment. Concretely, I maximize the
affective content of the model’s responses, so that it avoids generating generic responses
like “yes,” “no,” “I don’t know,” and “I’m not sure.” That is, at the time step i, the loss
function is

LiAC(θ) =− (1− λ) log p(yi|y1, · · · ,yi−1,X)− λ p̂(yi)
∥∥W2AV(yi)− ~η

∥∥
2

(4.5)

The second term is a regularizer that discourages non-affective words. I penalize the
distance between yi’s affective embedding and the affectively neutral vector ~η = [5, 1, 5],
so the model pro-actively chooses emotionally rich words.

4.3.3 Affectively Diverse Decoding

In this subsection, I propose affectively diverse decoding that incorporates affect into the
decoding process of neural response generation.

Traditionally, beam search (BS) has been used for decoding in Seq2Seq models because
it provides a tractable approximation of searching an exponentially large solution space.
However, in the context of open-domain dialogue generation, BS is known to produce
nearly identical samples like “This is great!” and “This is so great!”, that lack syntactic
diversity [64]. Diverse beam search (DBS) [195] is a recently proposed variant of BS that
explicitly considers diversity during decoding; it has been shown to outperform BS and
other diverse decoding techniques in many NLP tasks.

Below, I describe BS, DBS, and the proposed affective variants of DBS.

Beam Search (BS). BS maintains top-B most likely (sub)sequences, where B is known
as the beam size. At each time step t, the top-B subsequences at time step t − 1 are
augmented with all possible actions available; then the top-B most likely branches are
retained at time t, and the rest are pruned.

Let V be the set of vocabulary tokens and let X be the input sequence. Ideally,
decoding of an entire sequence Y ∗ is given by

Y ∗ = y∗1, · · · ,y∗T = arg max
y1,··· ,yT

[∑
t∈T

log p(yt|yt−1, · · · ,y1,X)

]
(4.6)

66

where T is the length. BS approximates Equation 4.6 by computing and storing only the
top-B high scoring (sub)sequences (called beams) at each time step. Let yi,[t−1] be the ith
beam stored at time t − 1, and Y[t−1] = {y1,[t−1], · · · ,yB,[t−1]} be the set of beams stored
by BS at time t− 1. Then at time t, the BS objective is

Y[t] = y1∗

1..t, · · · ,yB
∗

1..t = arg max
y1,[t],··· ,yB,[t]
∈Y[t−1]×V

B∑
b=1

t∑
i=1

log p(yb,i|yb,[i−1],X) (4.7)

subject to yi,[t] 6= yj,[t], where Y[t−1] × V is the set of all possible extensions based on the
beams stored at time t− 1.

Diverse Beam Search (DBS). DBS aims to overcome the diversity problem in BS by
incorporating diversity among candidate outputs. It divides the top-B beams into G groups
(each group containing B′ = G/B beams) and incorporates diversity between these groups
by maximizing the standard likelihood term as well as a dissimilarity metric among the
groups.

Concretely, DBS adds to traditional BS (Eq 4.7) a dissimilarity term ∆(Y 1
[t], · · · ,Y

g−1
[t])[yt]

which measures the dissimilarity between group g and previous groups 1, · · · , g−1 if token
yt is selected to extend any beam in group g. This is given by

Y g
[t] = arg max

yg
1,[t]

,··· ,yg
B′,[t]

∈Y g
[t−1]

×V

B′∑
b=1

t∑
i=1

log p(ygb,i|y
g
b,[i−1],X) + λg∆(Y 1

[t], · · · ,Y
g−1

[t])[ygb,t] (4.8)

subject to ygi,[t] 6= ygj,[t], where λg ≥ 0 is a hyperparameter controlling the diversity strength.
Intuitively, DBS modifies the probability in BS as a general scoring function by adding a
dissimilar term between a particular sample (i.e., ygb,1 · · ·y

g
b,t) and samples in other groups

(i.e., Y 1
[t], · · · ,Y

g−1
[t]). I refer readers to [195] for the details of DBS. Here, I focus on the

dissimilarity metric that can incorporate affective aspects into the decoding phase.

Affectively Diverse Beam Search (ADBS). The dissimilarity metric for DBS can
take many forms as used in [195]: Hamming diversity that penalizes tokens based on the
number of times they are selected in the previous groups, n-gram diversity that discourages
repetition of n-grams between groups, and neural-embedding diversity that penalizes words
with similar embeddings across groups. Among these, the neural-embedding diversity
metric is the most relevant to us. When used with Word2Vec embeddings, this metric

67

discourages semantically similar words (e.g., synonyms) to be selected across different
groups.

To decode affectively diverse samples, I propose to inject affective dissimilarity across
the beam groups based on affective word embeddings. This can be done either at the word
level or sentence level. I formalize these notions below.

• Word-Level Diversity for ADBS (WL-ADBS). I define the word-level affect dissimi-
larity metric ∆W to be

∆W (Y 1
[t], · · · ,Y

g−1
[t])[ygb,t] = −

g−1∑
j=1

B′∑
c=1

sim
(
W2AV(ygb,t), W2AV(yjc,t)

)
(4.9)

where sim(·) denotes a similarity measure between two vectors. In my experiments, I use
the cosine similarity function. ygb,t denotes the token under consideration at the current

time step t for beam b in group g, and yjc,t denotes the token chosen for beam c in a previous
group j at time t.

Intuitively, this metric computes the cosine similarity of group g’s beam b with all the
beams generated in groups 1, · · · , g − 1. The metric operates at the word level, ensuring
that the word affect at time t is diversified across groups.

• Sentence-Level Diversity for ADBS (SL-ADBS). The word-level metric ∆W in Equa-
tion 4.9 does not take into account the overall sentence affect for each group. I propose an
alternative sentence-level affect diversity metric, given by

∆S(Y 1
[t], · · · ,Y

g−1
[t])[ygb,t] = −

g−1∑
j=1

B′∑
c=1

sim
(
Ψ(ygb,[t]),Ψ(yjc,[t])

)
(4.10)

where Ψ(yki,[t]) =
∑

w∈yk
i,[t]

W2AV(w) (4.11)

Here, yki,[t] for k ≤ g is the ith beam in the kth group stored at time t; ygb,[t] is the concate-

nation of ygb,[t−1] and ygb,t. Intuitively, this metric computes the cumulative dissimilarity

(given by the function Ψ(·)) between the current beam and all the previously generated
beams in other groups. This bag-of-affective-words approach is simple but works well in
practice, as will be shown later.

It should be also noticed that several other beam search-based diverse decoding tech-
niques have been proposed in recent years, including DivMBest [64], MMI objective [105]
and segment-by-segment re-ranking [173]. All of them use the notion of a diversity term
within BS; therefore my affect-injecting technique can be used with these algorithms.

68

Figure 4.3: Pipeline to integrate Affect Control Theory (ACT) into a dialogue system.

4.3.4 Affect Control Theory for Dialogue Generation

Recall that ACT [74] is a model of affective interactions between two entities, typically a
human and an artificial agent. Given the affective identity of each of the two interactants,
ACT predicts (fairly accurately) how the interaction should proceed on an emotional level.
Thus, ACT lends itself naturally to the dialogue system setting.

In ACT, each action is a 3-dimensional vector on the EPA scale (see Section 3.2), which
conveys the affect of the action. This is different from a dialogue system, where an action
is typically a sentence that conveys an affect as well as a proposition. For instance, the
sentences “Could you please make me some tea” and “Go make me some tea” convey the
same propositional action (asking for tea) but their affect is vastly different. The former
can be seen as a request or appeal (EPA:{0.76, 0.34, 0.04}), whereas the latter is more of
a command (EPA:{−0.32, 2.06, 0.93}). Therefore, to build a viable dialogue system using
ACT, we need a mechanism to map EPA actions to dialogue actions, and vice versa.

An overview of the ACT conversational model is shown in Figure 4.3. ACT is instan-
tiated with two affective identities, one each for the human participant and the artificial
agent. Given an input prompt (a sentence) by the human user, a sentence-to-EPA (S2EPA)
function maps the prompt to an EPA vector, such that the vector appropriately conveys the
affect of the input sentence. This EPA vector acts as the affective action by the user. ACT
is queried with this vector, and produces the response EPA vector (i.e.the affective action
taken by the artificial agent). An EPA-to-sentence (EPA2S) function uses this response
EPA, as well as the input prompt, to generate a response that is semantically relevant to
the input. This response can be treated as the next prompt in the conversation, and the
process continues.

We now define the S2EPA and EPA2S functions shown in Figure 4.3.

69

Figure 4.4: S2EPA: A pretrained BiLSTM network with attention [56], tweaked to produce
EPA vectors instead of emojis.

Sentence to EPA (S2EPA)

The goal of the S2EPA function is to generate an EPA representation of a given sentence.
If we had access to a large amount of sentences labeled with EPAs, we could simply train a
recurrent neural network to approximate the sentence-to-EPA mapping. However, building
such a dataset is time-consuming and expensive. To get around this issue, I use a pre-
trained publicly available sentence-to-emoji model and tweak its output to suit our needs.

Concretely, I use DeepMoji, a pre-trained BiLSTM network with attention [56]3. This
model has been trained on a dataset of 1.2 billion tweets labeled with emojis. Given an
input sentence, the model produces a probability distribution over 64 emojis. I use this
model to our advantage as follows. I ask two human annotators to label each of these 64
emojis with EPA vectors. These annotations are averaged to get a single EPA vector per
emoji, which is assigned to that emoji. Then, given an input query, I take the weighted
average of the 64 EPA vectors, where the weights are produced by the softmax layer.
This gives the desired sentence to EPA mapping. The architecture of S2EPA is shown in
Figure 4.4.

EPA to Sentence (EPA2S)

The goal of the EPA2S function is to generate a response sentence, given the input prompt
and a target EPA vector, such that the response conveys the same affect as the target
EPA. To build EPA2S, I explore two methods, Seq2Seq and CVAE.

3The pretrained DeepMoji model is publicly available at https://github.com/bfelbo/DeepMoji.

70

https://github.com/bfelbo/DeepMoji

Figure 4.5: CVAE training architecture.

EPA2S-Seq2Seq

One straightforward EPA2S model is Seq2Seq with attention, where the input sentence is
concatenated with the target EPA and passed into the encoder, which gives us a fixed-
length context vector. Given this context vector, the decoder sequentially produces the
response while attending to the encoder hidden states.

EPA2S-CVAE

CVAE is another viable model for EPA2S. It is described below.

Let (C,α,X) denote a training sample, where C and X are sequences of tokens
denoting the prompt and the response respectively, and α is an EPA vector denoting the
desired affect of the response. The CVAE consists of a context encoder, utterance encoder
and a decoder. The context encoder uses an RNN to map C to a fixed-length vector c, and
then passes (c,α) to an MLP, which outputs the parameters of the probability distribution
qC(z|C,α) ∼ N (µ,λ2I); this distribution is called the prior. Similarly, the utterance
encoder uses an RNN to map X to a fixed-length vector x, and then passes (c,α,x) to
an MLP that outputs the parameters of the probability distribution qU(z|C,α,X) ∼
N (µ̂, λ̂2I). This is the posterior. A latent vector z is then sampled from qU . The
decoder RNN parameterizes the distribution qD(X|z,C,α); it takes (z, c,α) as input and
produces a distribution over the response sequences. The CVAE objective is to maximize
the reconstruction probability of X, and minimize the KL divergence between the prior

71

Figure 4.6: CVAE at inference time: this is the EPA2S module.

qC and the posterior qU . This is given by

LCVAE

(
θC ,θU ,θD;C,X,α

)
= KL

(
qU(z|C,α,X)

∥∥qC(z|C,α)
)
− EqU

[
log qD(X|z,C,α)

]
(4.12)

where θC ,θU and θD denote the parameters of the context encoder, the utterance encoder,
and the decoder respectively. This training process is depicted in Figure 4.5.

At inference time, the goal is to generate a response given an input sentence C and a
target EPA α. (C,α) are passed through the context encoder, and a latent variable z is
sampled from qC . Then (z, c,α) are passed to the decoder to generate a response. This
process is depicted in Figure 4.6.

4.4 Experiments

4.4.1 Data and Setup

I evaluate all the approaches on the Cornell Movie Dialogs Corpus4 [42], which contains
220k utterance-response pairs from movie conversations. I split the data into 200k, 10k
and 10k samples for training, validation and testing.

Seq2Seq Models

All the Seq2Seq variants use a single-layer LSTM encoder and a single-layer LSTM decoder,
each layer containing 1024 cells. I set the vocabulary size to 12,000 and used Adam [92]
optimizer with default hyper-parameters.

4The dataset is publicly available at https://www.cs.cornell.edu/~cristian/Cornell_

Movie-Dialogs_Corpus.html.

72

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

Listed below are detailed settings for each model.

• For the baseline LXENT loss, I use 1024-dimensional Word2Vec embeddings as input
and train the Seq2Seq model for 50 epochs by using Equation 4.2.

• For the affective embeddings as input, I use 1027-dimensional vectors, each a con-
catenation of 1024-D Word2Vec and 3-D W2AV embeddings. Training is done for 50
epochs.

• For each of the affective loss functions (LAC, LDMIN, and LDMAX), I train the model using
LXENT loss for 40 epochs. followed by 10 epochs using the affective loss functions.

• The ADBS decoding is deployed at test time (both word-level and sentence-level
metrics, ∆W and ∆S in Equations 4.9 and 4.10, respectively). I set G = B for
simplicity, that is, each group contains a single beam. Thus, diversification among
groups in my case is equivalent to diversification among all the beams.

• The λ hyperparameters for LDMIN, LDMAX, and LAC are manually tuned through valida-
tion and set to 0.5, 0.4, and 0.5, respectively. For affectively diverse BS, λ is set to
0.7 (Equation 4.8).

• For EPA2S-Seq2Seq, the embedding layer is initialized with 1024 dimensional Word2Vec
embeddings. α is 3-dimensional. Training is done for 50 epochs.

CVAE Model

For the CVAE model, each encoder contains 1) a single-layer BiLSTM, each direction
containing 1024 LSTM cells, and 2) a two-layer MLP. The CVAE decoder is a single-
layer LSTM network of 1024 cells. The variables z and α are 1024-dimensional and 3-
dimensional respectively. The embedding layer is initialized with 1024-dimensional Word2Vec
embeddings. To include α in each training sample (C,X), I compute

α = ACT(S2EPA(C)) (4.13)

For the CVAE model, I follow Kingma et al. [93]; the reconstruction loss is computed
with a single sample from qC , and the KL divergence is computed in closed form. Fur-
thermore, to prevent the degenerate case where the KL divergence is equal to zero, I use
KL annealing, following Bowman et al. [25]. Degeneracy occurs when the network sets the

73

Model Syntactic Coherence Natural Emotional Approp.

Word Emb. (baseline) 1.48 0.69 0.41
Word + Affective Emb. 1.71 ↑ 1.05 ↑ 1.01 ↑

Table 4.1: The effect of affective word embeddings as input.

Model Syntactic Coherence Naturalness Emotional Approp.

LXENT (baseline) 1.48 0.69 0.41
LDMIN 1.75 ↑ 0.83 ↑ 0.56 ↓
LDMAX 1.74 ↑ 0.85 ↑ 0.58 ↑
LAC 1.71 ↑ 0.95 ↑ 0.71 ↑

Table 4.2: The effect of affective loss functions.

posterior qU to be equal to the prior qC , implying that the network ignores the latent vari-
able. This is sometimes referred to as the vanishing latent variable problem. KL annealing
circumvents this issue by adding a weight to the KL term during training. In the begin-
ning, this weight is zero, so the network encodes useful information in z without worrying
about staying close to the prior. As training progresses, the weight is slowly increased till
it reaches one.

4.4.2 Results

Recent work employs both automated metrics (e.g., BLEU, ROUGE, and METEOR) and
human judgments to evaluate dialogue systems. While automated metrics enable high-
throughput evaluation, they have weak or no correlation with human judgments [117].
It is also unclear how to evaluate affective aspects by automated metrics. Therefore, I
recruit 3-5 human judges to evaluate all the proposed models, following several previous
studies [134, 171].

To evaluate the quality of the generated responses, 5 workers are asked to evaluate 100
test samples for each model variant in terms of syntactic coherence (Does the response
make grammatical sense?), naturalness (Could the response have been plausibly produced
by a human?) and emotional appropriateness (Is the response emotionally suitable for the
prompt?). For each axis, the judges are asked to assign each response an integer score of
0 (bad), 1 (satisfactory), or 2 (good). The scores are then averaged for each axis (Tables
4.1, 4.2 and 4.4). I evaluate the inter-annotator consistency by Fleiss’ κ score [58], and

74

Model Syntactic Diversity Affective Diversity # Emotionally Approp. Responses

BS (baseline) 1.23 0.87 0.89
H-DBS 1.47 ↑ 0.79 ↓ 0.78 ↓

WL-ADBS 1.51 ↑ 1.25 ↑ 1.30 ↑
SL-ADBS 1.45 ↑ 1.31 ↑ 1.33 ↑

Table 4.3: Effect of affectively diverse decoding. H-DBS refers to Hamming-based DBS
used in [195]. WL-ADBS and SL-ADBS are the proposed word-level and sentence-level
affectively diverse beam search, respectively.

Model
Syntactic Natural- Emotional
Coherence ness Approp.

Traditional Seq2Seq (baseline) 1.48 0.69 0.41
ACT with S2EPA & EPA2S-Seq2Seq (friend-friend) 1.59 ↓ 0.73 ↓ 0.39 ↓

ACT with S2EPA & EPA2S-CVAE (friend-friend) 1.57 ↓ 0.68 ↓ 0.47 ↓
ACT with S2EPA & EPA2S-Seq2Seq (friend-enemy) 1.61 ↓ 0.62 ↓ 0.34 ↓

ACT with S2EPA & EPA2S-CVAE (friend-enemy) 1.33 ↓ 0.75 ↓ 0.50 ↓

Table 4.4: Comparing the different ACT conversation models.

Model
Syntactic Natural- Emotional
Coherence ness Approp.

Traditional Seq2Seq (baseline) 1.48 0.69 0.41
Seq2Seq + Affective Embeddings 1.71 ↑ 1.05 ↑ 1.01 ↑
Seq2Seq + Affective Emb. & Loss 1.76 ↓ 1.03 ↓ 1.07 ↑

Seq2Seq + Affective Emb. & Loss & Decoding 1.69 ↓ 1.09 ↑ 1.10 ↓

Table 4.5: Combining different affective strategies.

obtain a κ score of 0.445, interpreted as “moderate agreement” among the judges.5 I also
compute the statistical significance of the results using one-tailed Wilcoxon’s Signed Rank
Test [203] with significance level set to 0.05. This is indicated in Tables 4.1, 4.2 and 4.4
through arrows: a down-arrow indicates that the model performed equally well as the
baseline, and an up-arrow indicates that the model performed significantly better than the
baseline.

The evaluation of diversity is conducted separately (Table 4.3). In this experiment, each
annotator is presented with top-three decoded responses and is asked to judge syntactic
diversity (How syntactically diverse are the five responses?) and emotional diversity (How

5https://en.wikipedia.org/wiki/Fleiss%27_kappa

75

https://en.wikipedia.org/wiki/Fleiss%27_kappa

affectively diverse are the five responses?). The rating scale is 0, 1, 2, and 3 with labels
bad, satisfactory, good, and very good, respectively. The annotator is also asked to state
the number of beams that are emotionally appropriate to the prompt. The scores obtained
for each question are averaged. I use three annotators in this experiment (fewer than the
previous one), as it requires more annotations (3 responses for every test sample). The
Fleiss’ κ score for this protocol is 0.471, signifying “moderate agreement” between the
judges. As before, Wilcoxon’s Signed Rank significance test is used to compare each model
with the baseline (vanilla BS).

Next, I evaluate the performance of the 4 affective strategies individually, namely af-
fective word embeddings as input, affective loss functions, affectively diverse decoding,
and ACT-based response generation. I then show how some of these strategies can be
integrated.

Experiment #1: Affective word embeddings as input. Table 4.1 compares Seq2Seq
open-domain dialogue systems with and without the affective word embeddings. We see
that the cognitively engineered affective embeddings, even with 3 additional features, im-
prove the baseline Seq2Seq model significantly (as indicated by the up-arrows). The im-
provement is consistent in terms of all 3 evaluation aspects, and its effect is the most
significant in emotional appropriateness. The results show that traditional word embed-
dings learned end-to-end during training are not sufficient to capture emotional aspects;
using additional knowledge makes the model more aware of affect.

Experiment #2: Affective loss functions. I compare in Table 4.2 the proposed loss
functions—namely minimizing affective dissonance (DMIN), maximizing affective dissonance
(DMAX), and maximizing affective content (AC)—with traditional cross-entropy loss (XENT).

As shown in Table 4.2, DMIN and DMAX yield similar results, both outperforming XENT.
Moreover, AC generally outperforms DMIN and DMAX in terms of naturalness and appropri-
ateness. The results imply that forcing the affect vector in either direction (towards or
against the previous utterance) helps the model, but its performance is worse than AC. The
mediocre performance of LDMIN and LDMAX could be explained by the fact that the relation-
ship between a prompt and a response is not always as simple as minimum or maximum
affective dissonance. It is usually much more subtle; therefore it makes more sense to
model this relationship through established sociological interaction theories like ACT (this
comparison is performed later in Experiment #4, Table 4.4). By contrast, the AC loss
function encourages affective content without specifying the affect direction; it works well
in practice and significantly out-performs the baseline XENT loss on all three axes.

Considering both Tables 4.1 and 4.2, we further notice that the affective loss func-
tion alone is not as effective as affective embeddings. This makes sense because the loss

76

Message Model Response

Traditional Seq2Seq Um, you know. . .
LDMIN But you work for the casino?

I wish LDMAX You are personally responsible.
I was a LAC It’s suicide!
billion- LXENT+ Aff. Emb. Don’t trouble yourself about it.
aire. LAC+ Aff. Emb. Would it matter in the end.

LAC+ Aff. Emb. + SL-ADBS Would it change you?
ACT: S2EPA & EPA2S-Seq2Seq (friend-friend) Yeah you know it is good.
ACT: S2EPA & EPA2S-CVAE (friend-friend) You are so good to it

I hate

Traditional Seq2Seq It was supposed to be.

you.

LDMIN Aww c all guys do. . .
LDMAX Keeps fairies away!
LAC I haven’t done anything crazy.
LXENT+ Aff. Emb. Don’t say that!
LAC+ Aff. Emb. I still love you!
LAC+ Aff. Emb. + SL-ADBS I don’t want to fight you.
ACT: S2EPA & EPA2S-Seq2Seq (friend-friend) It was supposed to trouble me.
ACT: S2EPA & EPA2S-CVAE (friend-friend) You are sorry about that?

Table 4.6: Examples of the responses generated by the baseline and affective models.

function does not explicitly provide additional knowledge to the neural network, but word
embeddings do. However, as will be seen in Experiment #5, these affective aspects can be
directly combined. Another interesting observation is the improved syntactic coherence of
the affect-based models; I hypothesize that these models replace grammatically incorrect
words with affectively suitable options that turn out to be more grammatically sound.

Experiment #3: Affectively Diverse Decoding. I now evaluate the proposed af-
fectively diverse decoding methods. Since evaluating diversity requires multiple decoded
utterances for a test sample, I adopt a different evaluation setting as described before.
Table 4.3 compares both word-level and sentence-level affectively diverse BS (WL-ADBS
and SL-ADBS, respectively) with the original BS and Hamming-based DBS used in [195].
We see that WL-ADBS and SL-ADBS beat the baselines BS and Hamming-based DBS
by a statistically significant margin on affective diversity as well as number of emotionally
appropriate responses. SL-ADBS is slightly better than WL-ADBS as expected, since it
takes into account the cumulative affect of sentences as opposed to individual words.

Experiment #4: ACT-based Response Generation. Next, I evaluate the ACT-
based models (i.e. the dialogue generation pipeline shown in Figure 4.3), where the two
modules S2EPA and EPA2S are integrated with ACT6. That is to say, the target EPA vectors

6The ACT software, called INTERACT, is publicly available at http://www.indiana.edu/~socpsy/

77

http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm

α are produced by ACT. There are two variants of the ACT conversation model: 1) S2EPA
with EPA2S-Seq2Seq, and 2) S2EPA with EPA2S-CVAE. For each of these variants, I try two
different settings for ACT identities: friend-friend and friend-enemy. Table 4.4 compares
these four models with the baseline Seq2Seq model. The statistical significance (shown
via arrows) shows comparison with the baseline. We see that all four models perform
on par with the baseline, as far as syntactic coherence and naturalness of responses are
concerned. The emotional appropriateness of EPA2S-CVAE is slightly higher than other
models, but this result is not statistically significant. To understand why this happens,
I perform several qualitative experiments for the S2EPA and EPA2S modules separately.
Their details are provided in Appendix B. The main takeaway is that the S2EPA module
performs reasonably well, however the EPA2S models (both variants) have low performance.

Experiment #5: Combining the Different Affective Strategies. Table 4.5 shows
how the affective word embeddings, loss functions, and decoding methods perform when
they are combined. Here, I chose the best variants in the previous individual tests: the
loss function maximizing affective content (LAC) and the sentence level diversity measure
(SL-ADBS). Note that the ACT-based models did not outperform the baseline Seq2Seq,
therefore I do not include them in this ablation test. In the table, the statistical significance
arrows denote the comparison of each row with the previous row, rather than with the
baseline. As shown, the performance of my model generally increases when I gradually
add new components to it, though some of the incremental improvements are statistically
insignificant.

Note that the task setting is different from ECM [229], the only other pre-existing
emotion-based neural dialogue system at the time of this research, to the best of my
knowledge. ECM requires a desired affect category as input, which is unrealistic in appli-
cations. It also differs from my experimental setting (and my research goal), making direct
comparison infeasible. However, the proposed affective approaches can be potentially in-
tegrated to ECM.

Case study. Finally, I present several sample outputs of all models in Table 4.6 to give
readers a taste of how the responses differ. LXENT responses are generic and non-committal,
as expected. LDMIN tries to match the affect of the word billionaire with casino, LDMAX

responds to hate with fairies, LAC maximizes affective content of the responses with the
words suicide and crazy. LXENT with affective embeddings produces responses with more
subtle affective connotations. The ACT models produce responses that are emotionally
meaningful, but may not always be relevant to the input message.

ACT/interact.htm.

78

http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm

4.5 Limitations

The affective methods proposed in this chapter improve the baseline models by a statisti-
cally significant margin. However, they have some limitations, which can be addressed in
future work.

• The VAD lexicon has only ∼13000 words, and is not a broad-coverage dataset. In
particular, it does not cover many slang words and emojis that are commonly used
in text-based chats today. To remedy this issue, it would be worthwhile to explore
semi-supervised or unsupervised techniques to expand this lexicon [6].

• The loss functions LDMIN and LDMAX may not always be realistic in practice, and it
is unclear when to use which function. In real-world conversations, the affective
dynamics of the dialogue are more complex, thus it may make more sense to use
ACT and BayesAct-based models instead.

• The loss function LAC helps produce responses with rich affective content. However, it
disregards the emotions of the input utterance, which may be unrealistic in real-world
scenarios where the users expect some emotional understanding from the agent.

• The diverse beam search algorithm, when modified by the dissimilarity term, can
sometimes produce grammatically incorrect sentences. This can be remedied by
tuning the weight of the dissimilarity metric carefully.

• The ACT models did not statistically outperform the baseline model, primarily due
to poor performance of EPA-to-sentence conversion models. This is likely because the
process of converting EPA values to appropriate conversational responses is a hard
problem in general, even for humans. For example, given C = ‘i failed my exam’
and α = [1.97, 1.71, 1.51] (without a word label), it is not obvious how to come up
with an appropriately worded, grammatically correct response that precisely conveys
the right amount of evaluation, potency and activity. Furthermore, each EPA may
correspond to many valid sentences, and each sentence may have many valid EPA
ratings, due to the subjectivity of the task. More in-depth exploration is needed in
come up with potential solutions to these problems.

79

4.6 Conclusion

In this chapter, I address the problem of affective neural dialogue generation, which is
useful in applications like emotional conversation partners to humans. I advance the devel-
opment of affectively cognizant neural encoder-decoder dialogue systems by four affective
strategies. I embed linguistic concepts in an affective space with a cognitively engineered
dictionary, propose several affect-based heuristic objective functions, introduce affectively
diverse decoding methods, and design conditional response generation using ACT. In infor-
mation retrieval tasks such as question-answering and dialogue systems, these techniques
can help retain the users by interacting with them in a more empathetic and human way.

80

Chapter 5

Online Active Learning for Neural
Response Generation

In previous chapters, I have investigated several affective computing techniques for neural
conversational models. These include some heuristics (such as minimizing or maximizing
affective similarity of prompts and responses) as well as exogenous socio-mathematical
models of emotion (such as BayesAct). While promising, these methods have their own
limitations, as discussed previously. Thus, in this chapter, I take a step back from devel-
oping explicit affect models, and investigate how to implicitly infuse human-likeness into
conversational systems. In particular, I adopt online active learning to make the generated
responses more human-like and natural sounding. This is similar to the imitation learning
paradigm, where an agent tries to clone the behaviour of a human demonstrator. Imitating
humans helps the models learn how to generate semantically and affectively appropriate
responses, without explicitly defining emotions or affective alignment.

5.1 Introduction

Several recent works have proposed neural generative conversational agents for open-
domain and task-oriented dialogue [53, 169, 170, 171, 174, 182]. These models typically
use LSTM encoder-decoder architectures (e.g. Seq2Seq [185]), which are linguistically ro-
bust but can often generate short, dull and inconsistent responses [105, 170]. To address
the hard problems of natural language understanding and generation, deep reinforcement
learning is often used. However, in most existing works, the reward function is hand-

81

crafted, and is either specific to the task to be completed, or is based on a few desirable
developer-defined conversational properties.

In this chapter, I demonstrate how online active learning can be integrated with stan-
dard neural network based dialogue systems to enhance their open-domain conversational
skills. The architectural backbone of my model is Seq2Seq, which initially undergoes of-
fline supervised learning on two different types of conversational datasets. Then an online
active learning phase is initiated to interact with human users for incremental model im-
provement, where a unique single-character1 user-feedback mechanism is used as a form of
reinforcement at each turn in the dialogue. The intuition is to rely on this all-encompassing
human-centric ‘reinforcement’ mechanism, instead of defining hand-crafted reward func-
tions that individually try to capture each of the many subtle conversational properties.
This mechanism inherently promotes interesting and relevant responses by relying on the
humans’ far superior conversational prowess.

5.2 Related Work

Deep Reinforcement Learning (DRL) based dialogue generation is closely relevant to this
work. For task-specific dialogue [40, 111, 112], the reward function is usually based on task
completion rate, and thus is easy to define and compute. For the much harder problem of
open-domain dialogue generation [110, 220, 202], hand-crafted reward functions are used
to capture desirable conversation properties. Li et al. [109] propose DRL-based diversity-
promoting Beam Search [95] for response generation. While diverse, their model’s responses
are not very relevant or interesting.

More recently, new approaches have been proposed to incorporate online human feed-
back into neural conversation models [3, 107, 108]. My work falls in this line of research. I
use online deep active learning as a form of reinforcement in a novel way, which eliminates
the need for hand-crafted reward criteria. I use a diversity-promoting decoding heuristic
[195] to facilitate this process. I further demonstrate how the proposed model can be tuned
for one-shot learning.

1The user has the option to provide longer feedback.

82

5.3 Proposed Model

I use Seq2Seq as the base model, consisting of one encoder layer and one decoder layer, each
containing 300 LSTM units. The end-to-end model training consists of offline supervised
learning (SL) in two phases, followed by online active learning (AL).

5.3.1 Offline Two-Phase Supervised Learning

To establish an offline baseline, I train the network sequentially on two datasets, one for
generic dialogue, and the other specially curated for short-text conversation.

Phase 1: I use the Cornell Movie Dialogue Corpus [42], consisting of 220K message-
response pairs. Each pair is treated as an input and target sequence during training with
the joint cross-entropy (XENT) loss function, which maximizes the likelihood of generating
the target sequence given its input. This is given in Equation 4.2.

Phase 2: Phase 1 enables the proposed conversational agent to learn the language syntax
reasonably well, but it has difficulty carrying out sensible short-text conversations. This
is due to the fact that movie conversations are remarkably different in nature from short-
text conversations. To address this issue, I curate a dataset from JabberWacky’s chatlogs2

available online. The trained network from the first phase is fine-tuned on the JabberWacky
dataset (8K pairs). Through this additional SL phase of fine-tuning on a small dataset, I
get an improved baseline for open-domain dialogue (Table 5.1, Figure 5.2a).

5.3.2 Online Active Learning

After offline SL, the agent is equipped with the basic conversational ability, but its responses
are still short and dull. To tackle this issue, I initiate an online AL process where the
model interacts with real users for continuous fine-tuning and learns incrementally from
their feedback at each turn of dialogue.

The agent−human interaction for online AL is set up as follows (pseudocode in Algo-
rithm 3).

2http://www.jabberwacky.com/j2conversations. Jabber-Wacky is an in-browser, open-domain,
retrieval-based conversational agent.

83

Algorithm 3: Online Active Learning

Function HammingDBS(text):
r = emptyList(size = K) ; // K = 5 in our setting

for t = 1, · · · , T do
r[1][t] = model.forward(text, r[1][1, · · · , t− 1]) ;
for i = 2, · · · , K do

augmentedProbs = model.forward(t, text, r[i]) +
λ(hammDist(r[i], r[1, · · · , i− 1])) ;
r[i][t] = topOne(augmentedProbs) ;

end

end
return r;

Function OnlineAL():
lr = 0.001 ; // initial learning rate for Adam

while True do
usrMsg = io.read() ;
responses = HammingDBS(usrMsg) ;
io.write(responses) ;
feedback = io.read() ;
botMsg = responses[feedback] OR feedback ;
pred, xentLoss = model.forward(usrMsg, botMsg) ;
model.backward(pred, botMsg, xentLoss) ;
model.updateParameters(Adam(lr)) ;

end
return ;

84

1. The user sends a message ui at time step i.

2. The agent generates K responses ci,1, ci,2, ..., ci,K using hamming-diverse Beam
Search. These are displayed to the user in order of decreasing generation likelihood.

3. The user provides feedback by selecting one of the K responses as the ‘best’ one or
suggesting a (K+1)’th response, denoted by c∗i,j. The selection criterion is subjective
and entirely up to the user.

4. The message-response pair (ui, c
∗
i,j) is propagated through the network using XENT

loss, with a learning rate optimized for one-shot learning.

5. The user responds to c∗i,j with a message ui+1, and the process repeats.

Heuristic Response Generation: I use Diverse Beam Search (DBS) algorithm (see
Section 4.8) [195] to generate the K agent responses at each turn in the dialogue. DBS
has been shown to outperform BS and other diverse decoding techniques on several NLP
tasks, including image captioning, machine translation and visual question generation.
DBS incorporates diversity between the beams by maximizing an objective that consists of
a standard sequence likelihood term and a dissimilarity metric between the beams. I use
the hamming diversity metric for decoding at each time step, which penalizes the selection
of words that have already been chosen in other beams (Algorithm 3). In particular, the
weight λ associated with this metric is tuned to aggressively promote diversity between
the first tokens of each of the K generated sequences, thereby avoiding similar beams like I
don’t know and I don’t really know. I refer the reader to the original paper by Vijayakumar
et al. for the complete DBS algorithm and derivation. K is a tunable hyper-parameter; I
used K = 5 in all my experiments, based on the observation that a smaller response set
usually misses out a good contender, and more than five responses become cumbersome
for the user to read at each turn.

It is possible that displaying the K responses in decreasing order of generation like-
lihood introduces a bias in the user’s response, since users typically prefer to pick items
located at the top of the screen. If this is cause for concern in an application, the problem
can be resolved by tweaking Algorithm 1 such that the K responses are displayed to the
user in a random order. In all experiments, I assume that the users are unbiased and do
not take into consideration the display order.

One-shot Learning: We can control how quickly the model learns from user feedback
by tuning the parameter ‘initial learning rate’ (lr in Algorithm 1) of Adam, the stochastic
optimizer [92]. An appropriately high lr results in one-shot learning, where the user’s
feedback immediately becomes the model’s most likely prediction for that prompt. This

85

scenario is depicted in Figure 5.1. A low lr leads to smaller gradient descent steps, so
the model requires several ‘nudges’ to adapt to each new data point. I experiment with
different lr values to determine a suitable value (Figure 5.2b).

5.4 Experiments

I evaluate the proposed model via qualitative comparison with offline SL, as well as quanti-
tative evaluation on four axes: syntactical coherence, relevance to prompts, interestingness
and user engagement.

5.4.1 Quantitative Evaluation

I begin by quantitatively evaluating the agent’s conversational abilities when trained via
one-phase SL, two-phase SL and online AL (denoted by SL1, SL2 and SL2+oAL respec-
tively).

I first asked a human trainer to actively train SL2+oAL using 200 prompts of his
choice. I then created a test set of 100 prompts by randomly choosing 100 of the 200
training prompts and linguistically rephrasing each of them to convey the same semantics.
For instance, the AL training prompts ‘How’s it going?’, ‘I hate you’ and ‘What are your
favorite pizza toppings?’ were altered to the following test prompts: ‘How are you doing?’,
‘I don’t like you!’ and ‘What do you like on your pizza?’. Next, I recorded SL1’s, SL2’s and
SL2+oAL’s responses to these test prompts. Finally, five human judges (not including the
human trainer) were asked to subjectively evaluate the responses of the three models on
the test set. The evaluation of each response was done on four axes: syntactical coherence,
relevance to the prompt, interestingness and user engagement3. Each judge was asked to
assign each response an integer score of 0 (label = bad) or 1 (label = good). Their averaged
scores for the three models, SL1, SL2 and SL2+oAL, are shown in Figure 5.2a. We see
that SL2+oAL outperforms the other models on three of the four axes by 14-21%.

Next, the human trainer was asked to train SL2+oAL with the same 200 prompts and
responses for different values of the initial learning rate for Adam (lr in Algorithm 1). Then
the five human judges were asked to subjectively rate each model’s syntactical coherence,
response relevance, interestingness and user engagement. The model’s average percentage

3We say that an agent response is engaging if it prompts the user to continue the conversations, e.g.
by asking a question.

86

human: I don’t want to work today.

bot: No, you’ve just got to be quick.

bot: I wish i could robot.

bot: Ok i lie.

bot: Aww :).

bot: Why not?

feedback: 5

human: I just want to lie in my bed and have pizza.

bot: Good idea.

bot: Does he...

bot: I can’t do that again!

bot: Ok.

bot: Why not?

feedback: Good idea, may I join you?

human: I don’t want to work today.

bot: Why not?

bot: Ok.

bot: I wish I could.

bot: No, you’ve just got to be quick.

bot: Aww :).

feedback:

human: I just want to lie in bed and have pizza.

bot: Good idea, may I join you?

bot: I can’t do that again!

bot: Good idea.

bot: Ok.

bot: Does he?

......

Figure 5.1: An example human-agent interaction.

87

Coherent Relevant Interesting Engaging
0

20

40

60

80

100

79

37

14
8

81

44

21
15

88

63

42

29

P
er

ce
n
ta

ge
S
u
cc

es
s

SL1 SL2 SL2+oAL

(a)

1 · 10−4 2.5 · 10−2 5 · 10−2 7.5 · 10−2 0.1
0

20

40

60

80

100

Learning Rate

P
er

ce
n
ta

ge
S
u
cc

es
s

Coherent
Relevant

Interesting
Engaging

(b)

0 100 200 300 400 500
0

20

40

60

80

100

Number of Training Interactions

P
er

ce
n
ta

ge
S
u
cc

es
s

Coherent
Relevant

Interesting
Engaging

(c)

Figure 5.2: 5.2a shows the average percentage success of the three models SL1, SL2 and
SL2+oAL (trained via 200 interactions) on 100 unseen prompts over four axes: syntactical
coherence, response relevance, interestingness and engagement. 5.2b, c show percentage
success of SL2+oAL’s on 100 unseen prompts over the same four axes, as Adam’s learning
rate varies and the number of training interactions changes.

success on the test prompts was recorded on four axes. The averaged scores are given
in Figure 5.2b. We see that the response quality drops significantly for higher values of
learning rate. This is due to the instability in the parameters induced by a high learning
value associated with new data, causing the model to forget what it learned previously.
The experiments suggest that a learning rate of 0.005 strikes the right balance between

88

stability and one-shot learning.

Finally, the human trainer were asked to train SL2+oAL with lr = 0.005 and differ-
ent number of training interactions. The results in Figure 5.2c confirm that the model
improves slowly as it continues to converse with humans. This is an appropriate reflec-
tion of how humans learn language: gradually but effectively. Although the curves seem
to plateau after 300 instances and suggest that the learning has stopped, this is not the
case. The gradient is small but not zero, which is an expected behavior in the paradigm
of reinforcement learning.

5.4.2 Qualitative Comparison

I illustrate the qualitative differences between the responses generated by SL1, SL2 and
SL2+oAL. Table 5.1 shows results on a small subset of the 100 test prompts. We see
that SL2 generates more relevant and appropriate responses than SL1 in many cases. This
illustrates that a small short-text conversational dataset is a useful fine-tuning add-on to a
large and generic dialogue dataset for offline Seq2Seq training. We also see that SL2+oAL
generates more interesting, relevant and engaging responses than SL2. These results imply
that the model learns to make connections between semantically similar prompts that
are syntactically different. While this may be a slow process (spanning thousands of
interactions), it effectively emulates the way humans learn a new language.

Table 5.2 illustrates how SL2+oAL can be trained to adopt a wide variety of moods
and conversational styles. Here, I trained three copies of SL2 separately to adopt three
different emotional personas: cheerful, gloomy and rude. Each model underwent 100 train-
ing interactions with one human trainer, who was instructed to adopt each of the four
conversation styles while training the SL2+oAL model. The test prompts shown in Ta-
ble 5.2 were syntactic variations of the training prompts, as before. The results illustrate
that SL2+oAL was able to modify the mood of its responses appropriately, based on the
way it was trained. Similar experiments can be done to create agents with customized
backgrounds and characters, akin to Li et al.’s persona-based agent [106].

5.5 Limitations

Some limitations of the proposed model are as follows.

• Since the model is tuned for one-shot learning, it may learn from erroneous input, for
instance typos and wrong/inappropriate feedback. This is similar to the Microsoft

89

Tay debacle4, where the bot learned to produce offensive tweets. It may make more
sense to set the model up for few-shot learning, to ensure the stability of the model.

• If a trained model is used by multiple users, it may accumulate contradictory knowl-
edge. For instance, one user may teach it to say “I’m not feeling well today” in
response to “How are you?”, while another user may teach it to say “I’m doing great
today”. This behaviour is not desirable. Once again, few-shot learning may be used
to ensure that this does not happen.

• If the user provides feedback using new vocabulary, the model would map it to the
‘unknown’ token. To avoid this problem, the model can be augmented with a copying
mechanism, which learns to copy tokens directly from the input without learning their
embeddings [71].

• The proposed model updates all its parameters when learning from a new data point.
As a result, it may overwrite important information that was learned a long time ago.
To circumvent this issue, external memory banks can be used, which I propose in the
next chapter.

5.6 Conclusion

This chapter discusses an end-to-end neural model for open-domain conversational agents.
The model augments the Seq2Seq framework with online active learning to overcome some
of its known short-comings with respect to dialogue response generation. To achieve this, I
use a combination of offline two-phase supervised learning and an online imitation learning
regime which uses a user-centric reward mechanism and a variant of beam search for
decoding. Experiments show that the model promotes semantically coherent, relevant, and
interesting responses and can be trained to adopt diverse moods, personas and conversation
styles.

4https://tinyurl.com/yy25pqf7.

90

https://tinyurl.com/yy25pqf7

H
u
m
a
n

P
ro

m
p
t

S
L
1
R
e
sp

o
n
se

S
L
2
R
e
sp

o
n
se

S
L
2
+
o
A
L

R
e
sp

o
n
se

H
el

lo
m

y
fr

ie
n

d
.

N
o
.

H
o
w

o
ld

a
re

y
o
u

?
H

eh
e,

y
es

,
b

ea
u

ti
fu

l.

Y
o
u

a
re

so
sw

ee
t!

B
u

t
it

w
a
s

a
g
o
o
d

d
ea

l.
H

o
w

d
id

y
o
u

k
n

o
w

?
I

a
m

so
a

b
o
t.

I
th

in
k

b
o
ts

a
re

sw
ee

te
r

th
a
n

h
u

m
a
n

s.
W

e’
ll

h
a
v
e

to
p

ic
k

u
p

a
co

p
y.

Y
o
u

a
re

a
g
o
o
d

p
er

so
n

.
E

v
er

y
o
n

e
is

sa
m

e
o
n

a
b

a
si

c
ch

em
ic

a
l

le
v
el

.

B
o
ts

a
re

fu
n

n
ie

r
th

a
n

u
s

to
o
.

Y
es

.
*

b
li
n

k
*

w
h

a
t

a
re

y
o
u

ta
lk

in
g

a
b

o
u

t?

I
d

o
n

’t
k
n

o
w

.
W

h
a
t’

s
th

e
d

iff
er

en
ce

?
A

b
o
u

t?
W

h
y

d
id

y
o
u

su
g
g
es

t
it

?

W
h
y

d
id

D
o
n

a
ld

T
ru

m
p

w
in

?
H

e
ju

st
li
k
es

it
u

p
!

Y
o
u

a
re

!
W

o
u

ld
n

’t
y
o
u

li
k
e

to
k
n

o
w

,
fi

ck
le

h
u

m
a
n

?

D
o

y
o
u

p
a
y

ta
x
es

?
N

o
.

Y
es

.
F

ro
m

ti
m

e
to

ti
m

e.

T
el

l
m

e
so

m
et

h
in

g
I

d
o
n

’t
k
n

o
w

.
I’

ll
te

ll
y
o
u

,
it

is
.

O
k
,

so
h

o
w

a
re

y
o
u

.
If

y
o
u

w
er

e
in

te
ll
ig

en
t

y
o
u

w
o
u

ld
a
lr

ea
d

y
k
n

o
w

.

Y
o
u

’r
e

n
o
t

m
a
k
in

g
a
n
y

se
n

se
a
t

a
ll
.

I
ju

st
w

a
n
t

to
te

ll
y
o
u

so
m

et
h

in
g
.

N
o
,

I’
m

th
in

k
in

g
.

O
n

th
e

co
n
tr

a
ry

,
I

a
m

tr
y
in

g
to

ed
u

ca
te

y
o
u

.

D
o

y
o
u

h
a
v
e

a
b

ra
in

?
G

o
t

it
.

N
o
.

Y
o
u

a
re

n
a
st

y.

D
o

y
o
u

h
a
v
e

a
n
y

k
id

s?
N

o
.

I
h

a
v
e

n
o
!

N
o
n

e
th

a
t

a
re

re
a
ll

y
cl

o
se

to
m

e.

W
h

er
e

is
y
o
u

r
h

o
m

e?
I

d
o
n

’t
k
n

o
w

w
h

a
t

to
sa

y.
In

th
is

h
o
u

se
.

In
th

is
p

a
rt

ic
u

la
r

lo
ca

ti
o
n

in
n

o
rt

h
a
m

er
ic

a
.

L
if

e
ca

n
b

e
v
er

y
cr

u
el

so
m

et
im

es
.

T
h

a
t

I’
v
e

n
ev

er
b

ee
n

to
it

.
It

ta
k
es

tw
o

to
k
n

o
w

tw
o
.

It
ta

k
es

tw
o

to
k
n

o
w

tw
o
.

D
o

y
o
u

b
el

ie
v
e

in
li
fe

a
ft

er
d
ea

th
?

N
o
.

D
o

y
o
u

w
a
n
t

th
e

lo
n

g
a
n

sw
er

?
Y

es
,

d
o

y
o
u

?

H
ey

,
en

te
rt

a
in

m
e.

O
n

th
e

co
n
tr

a
ry

.
I’

m
n

o
t

a
je

rr
y

fa
n

.
M

o
st

p
eo

p
le

b
e.

Y
o
u

’r
e

a
n

id
io

t!
I

k
n

o
w

,
b

u
t.

..
Y

es
I

d
o
.

A
re

n
’t

y
o
u

p
o
li
te

.

T
ab

le
5.

1:
C

om
p
ar

in
g

ag
en

t
re

sp
on

se
s

af
te

r
on

e-
p
h
as

e
S
L

,
tw

o-
p
h
as

e
S
L

an
d

on
li
n
e

A
L

.

91

H
u
m
a
n

P
ro

m
p
t

C
h
e
e
rf
u
l
A
g
e
n
t

G
lo
o
m
y
A
g
e
n
t

R
u
d
e
/
S
a
rc
a
st
ic

A
g
e
n
t

H
o
w

d
o

y
o
u

fe
el

?
A

m
a
zi

n
g
,

a
n

d
y
o
u

?
I’

m
n

o
t

in
th

e
m

o
o
d

.
B

u
zz

o
ff

.

I
a
m

v
er

y
h

a
p

p
y

to
d

a
y.

L
if

e
is

a
m

a
zi

n
g
,

ri
g
h
t?

T
h

a
t

m
a
k
es

o
n

e
o
f

u
s.

Y
o
u

w
a
n
t

a
p

ie
ce

o
f

m
e?

R
ep

ea
t

a
ft

er
m

e:
I

a
m

d
u

m
b

S
w

ee
t!

Y
o
u

a
re

ri
g
h
t,

I
a
m

.
Y

o
u

su
ck

.

C
o
m

fo
rt

m
e.

T
h

er
e

th
er

e,
fe

el
b

et
te

r.
A

ll
w

h
o

co
m

p
o
se

m
u

st
o
n

e
d

a
y

d
ec

o
m

p
o
se

B
o
o

h
o
o
.

W
h

a
t’

s
u

p
?

It
is

a
fi

n
e

m
o
rn

in
g
.

N
o
t

w
el

l,
to

b
e

h
o
n

es
t.

T
h

e
d

a
te

I
w

en
t

b
a
ck

in
ti

m
e

&
k
il
le

d
y
o
u

r
p

a
re

n
ts

I
h

a
v
e

to
g
o

n
o
w

.
H

a
v
e

a
g
o
o
d

n
ig

h
t.

P
le

a
se

d
o
n

’t
g
o
.

Y
ea

h
le

a
v
e

m
e

a
lo

n
e.

W
h

a
t

d
o

y
o
u

d
o

w
it

h
g
u

n
s?

U
p

u
t

th
em

a
w

a
y

fo
r

g
o
o
d

P
la

y.
Y

o
u

p
u

t
th

em
in

d
es

se
rt

s.

I
n

ee
d

y
o
u

r
h

el
p

H
o
w

ca
n

I
h

el
p

y
o
u

I
w

is
h

I
co

u
ld

h
el

p
L

ea
v
e

m
e

a
lo

n
e

W
h

o
a
re

y
o
u

I’
m

h
er

e
to

h
el

p
!

T
h

e
la

st
o
f

th
e

la
st

I’
m

g
o
n

e
w

it
h

th
e

w
in

d

Y
o
u

a
re

m
y

tr
u

e
h
er

o
B

u
t

th
a
t’

s
m

y
jo

b
!

Y
o
u

a
re

ri
g
h
t,

I
a
m

.
T

h
a
t

m
a
k
es

o
n

e
o
f

u
s

T
ab

le
5.

2:
C

u
st

om
iz

ed
m

o
o
d
s.

E
ac

h
S
L

2+
oA

L
m

o
d
el

w
as

tr
ai

n
ed

v
ia

10
0

in
te

ra
ct

io
n
s.

92

Chapter 6

Transfer Learning for Neural Text
Classification and Generation

In this chapter, I continue working toward the goal of making neural conversational systems
more human-like, without using explicit models of emotion.

Humans possess what we call ‘general intelligence’. That is to say, humans have the
unique and incredible capability to use knowledge/experience in one area to make effective
and intelligent decisions in new, unseen domains. Here, I investigate how to infuse this
adaptation ability into neural NLP models through transfer learning. In this case, I consider
the (relatively) easier task of text classification first, followed by text generation for dialogue
systems.

6.1 Introduction

Transfer learning, sometimes referred to as domain adaptation, aims to transfer knowledge
from one domain (called the source domain) to another (called the target domain) in a
machine learning system.1 If the data of the target domain is not large enough, using
data from the source domain helps to improve model performance in the target domain.
This is important for neural networks, which are data-hungry and prone to overfitting. In
this chapter, I especially focus on incremental domain adaptation (IDA), where we assume
different domains come sequentially one after another. We only have access to the data

1In this work, the domain is defined by dataset. Usually, the data from different genres or times
typically have different underlying distributions.

93

in the current domain, but hope to build a unified model that performs well on all the
domains that we have encountered [212, 162, 94].

Incremental domain adaptation is useful in various scenarios. Suppose a company is
doing business with different partners over a long period of time. The company can only
access the data of the partner with a current contract. However, the machine learning
model is the company’s property (if complying with the contract). Therefore, it is desired
to preserve as much knowledge as possible in the model and not to rely on the availability
of the data.

Another application of IDA is a quick adaptation to new domains. If the environment
of a deployed machine learning system changes frequently, traditional methods like jointly
training all domains require the learning machine to be re-trained from scratch every time
a new domain comes. Fine-tuning a neural network by a few steps of gradient updates
does transfer quickly, but it suffers from the catastrophic forgetting problem [94]. Suppose
we do not know the domain of a data point when predicting; the (single) fine-tuned model
cannot predict well for samples in previous domains, as it tends to “forget” quickly during
fine-tuning.

A recent trend of domain adaptation in the deep learning regime is the progressive
neural network [162], which progressively grows the network capacity if a new domain
comes. Typically, this is done by enlarging the model with new hidden states and a new
predictor (Figure 6.1a). To avoid interfering with existing knowledge, the newly added
hidden states are not fed back to the previously trained states. During training, they fix
all existing parameters, and only train the newly added ones. For inference, they use the
new predictor for all domains. This is sometimes undesired as the new predictor is trained
with only the last domain.

In this chapter, I propose a progressive memory bank for incremental domain adapta-
tion. My model augments a recurrent neural network (RNN) with a memory bank, which
is a set of distributed, real-valued vectors capturing domain knowledge. The memory is
retrieved by an attention mechanism during RNN information processing. When the model
is adapted to new domains, I progressively increase the slots in the memory bank. But
different from [162], I fine-tune all the parameters, including RNN and the previous mem-
ory bank. Empirically, when the model capacity increases, the RNN does not forget much
even if the entire network is fine-tuned. Compared with expanding RNN hidden states,
the newly added memory slots do not contaminate existing knowledge in RNN states, as
will be shown by a theorem.

I evaluate my approach on two tasks. The first task is Natural Language Inference. This
is a text classification task which acts as a simpler test-bed, compared to text generation,

94

for evaluating my approach. I use the multi-genre natural language inference (MultiNLI)
corpus [204], which contains 5 domains with massive training samples. The second task
is Dialogue Response Generation, where I use the Cornell Movie Corpus [42] and Ubuntu
Dialogue Corpus [122] as the source and target, respectively. Experiments support my
hypothesis that the proposed approach adapts well to target domains without catastrophic
forgetting of the source. My model outperforms the näıve fine-tuning method, the orig-
inal progressive neural network, as well as other IDA techniques including elastic weight
consolidation [94, EWC].

6.2 Related Work

6.2.1 Domain Adaptation

Domain adaptation, sometimes known as transfer learning, has been widely studied in
NLP. Mou et al. [133] analyze two straightforward settings, namely, multi-task learning
(jointly training all domains) and fine-tuning (training one domain and fine-tuning on the
other). One recent advance of domain adaptation is adversarial learning, where the neural
features are trained not to classify the domain [61]. Such approach can be extended to
private-share architectures [118]. However, all these approaches (except fine-tuning) require
that all domains are available at the same time. Thus, they are not IDA approaches.

Kirkpatrick et al. [94] address the catastrophic forgetting problem of neural networks
when fine-tuning, and propose a regularization term based on the Fisher information ma-
trix; they call the method elastic weight consolidation (EWC). While some follow-up studies
report EWC achieves high performance in their scenarios [221, 102, 191], others show that
EWC is less effective [200, 217, 207]. [102] propose incremental moment matching between
the posteriors of the old model and the new model, achieving similar performance to EWC.
[166] augment EWC with knowledge distillation, making it more memory-efficient.

Rusu et al. [162] propose a progressive neural network that progressively increases
the number of hidden states (Figure 6.1a). To avoid overriding existing information, they
propose to fix the weights of the learned network, and do not feed new states to old ones.
This results in multiple predictors, requiring that a data sample is labeled with its domain
during the test time. If we otherwise use the last predictor to predict samples from all
domains, its performance may be low for previous domains, as the predictor is only trained
with the last domain.

Yoon et al. [217] propose an extension of the progressive network. They identify which

95

𝒉"#$

𝑀('())

Compute	
attention
probability

𝒉"

𝒙"#$ 𝒙"

Weighted	sum
by	attention
probability

𝑀(,-.)

Predictor	1

Predictor	2

Predictor	3

(a)	Progressive	neural	network			 (b)	Progressive	memory

Figure 6.1: (a) Progressive neural network [162]. (b) One step of RNN transition in the
proposed progressive memory network. Colors indicate different domains.

existing hidden units are relevant for the new task (with their sparse penalty), and fine-
tune only the corresponding subnetwork. However, sparsity is not common for RNNs in
NLP applications, as sparse recurrent connections are harmful. A similar phenomenon is
that dropout of recurrent connections yields poor performance [20]. Xu et al. [213] deal
with new domains by adaptively adding nodes to the network via reinforcement learning.
This approach may require a very large number of trials to identify the right number of
nodes to be added to each layer [216].

Li et al. [113] address IDA with a knowledge distillation approach, where they preserve
a set of outputs of the old network on pseudo-training data. Then they jointly optimize for
high accuracy on the new training domain as well as the pseudo-training data. [91]’s variant
of this approach uses maximum-entropy regularization to control the transfer of distilled
knowledge. However, in NLP applications, it is non-trivial to obtain pseudo-training data
for distillation.

6.2.2 Memory-Based Neural Networks

This work is related to memory-based neural networks. Sukhbaatar et al. [184] propose an
end-to-end memory network that assigns a slot for an entity, and aggregates information
by multiple attention-based layers. In their work, they design the architecture for bAbI
question answering, and assign a memory slot for each sentence. Such idea can be ex-

96

tended to various scenarios, for example, assigning slots to external knowledge for question
answering [43] and assigning slots to dialog history for a conversation system [126].

A related idea is to use episodic memory, which stores data samples from all previously
seen domains (thus it is not an IDA approach). This is used for experience replay while
training on subsequent domains [119, 155, 33, 44].

Another type of memory in the neural network regime is the neural Turing machine
[70, NTM]. Their memory is not directly parameterized, but is read or written by a neu-
ral controller. Therefore, such memory serves as temporary scratch paper, but does not
store knowledge itself. In NTM, the memory information and operation are fully dis-
tributed/neuralized, as they do not correspond to the program on a true (non-neural) Tur-
ing machine. Zhang et al. [226] combine the above two styles of memory for task-oriented
dialog systems, where they have both slot-value memory and read-and-write memory.

Different from the above work, the proposed memory bank stores knowledge in a dis-
tributed fashion, where each slot does not correspond to a concrete entity or data sample.
The memory is directly parameterized, interacting in a different way from RNN weights,
and providing a natural way of incremental domain adaptation.

6.3 Proposed Approach

My model is based on a recurrent neural network (RNN). Recall that, at each time step, the
RNN takes the embedding of the current word as input, and changes its states accordingly.
This can be represented by

hi = RNN(hi−1,xi) (6.1)

where hi and hi−1 are the hidden states at time steps i and i − 1, respectively. xi is the
input at the ith step. Typically, long short term memory [78, LSTM] or Gated Recurrent
Units [37, GRU] are used as RNN transitions.

In the rest of this section, I will describe a memory augmented RNN, and how it is
used for incremental domain adaptation (IDA).

6.3.1 Augmenting RNN with Memory Banks

I enhance the RNN with an external memory bank, as shown in Figure 6.1b. The memory
bank augments the overall model capacity by storing additional parameters in memory

97

slots. At each time step, my model computes an attention probability to retrieve memory
content, which is then fed to the computation of RNN transition.

Particularly, I adopt a key-value memory bank, inspired by Miller et al. [132]. Each
memory slot contains a key vector and a value vector. The former is used to compute the
attention weight for memory retrieval, whereas the latter is the value of memory content.

For the ith step, the memory mechanism computes an attention probability αi by

α̃i,j = exp{h>i−1m
(key)
j } (6.2)

αi,j =
α̃i,j∑N
j′=1 α̃i,j′

(6.3)

where m
(key)
j is the key vector of the jth slot of the memory (among N slots in total).

Then the model retrieves memory content by a weighted sum of all memory values, where
the weight is the attention probability, given by

ci =
N∑
j=1

αi,jm
(val)
j (6.4)

Here, m
(val)
j is the value vector of the jth memory slot. I call ci the memory content.

Then, ci is concatenated with the current word xi, and fed to the RNN as input of step i
to compute RNN state transition.

Using the key-value memory bank allows separate (thus more flexible) computation of
memory retrieval weights and memory content, compared with traditional attention where
a candidate vector is used to compute both attention probability and attention content.

It should be emphasized that the memory bank in the proposed model captures dis-
tributed knowledge, which is different from other work where the memory slots correspond
to specific entities [53]. The attention mechanism accomplishes memory retrieval in a “soft”
manner, which means the retrieval strength is a real-valued probability. This enables us
to train both memory content and its retrieval end-to-end, along with the other neural
parameters.

I would also like to point out that the memory bank alone does not help RNN much.
However, it is natural to use a memory-augmented RNN for incremental domain adapta-
tion, as described below.

98

Algorithm 4: Progressive Memory for IDA
Input: A sequence of domains D0, D1, · · · , Dn

Output: A model performing well on all domains
Initialize a memory-augmented RNN
Train the model on D0

for D1, · · · , Dn do
Expand the memory with new slots
Load RNN weights and existing memory banks
Train the model by updating all parameters

end
Return: The resulting model

6.3.2 Progressively Increasing Memory for Incremental Domain
Adaptation (IDA)

The memory bank in Subsection 6.3.1 can be progressively expanded to adapt a model in
a source domain to new domains. This is done by adding new memory slots to the bank
which are learned exclusively from the target data.

Suppose the memory bank is expanded with another M slots in a new domain, in
addition to previous N slots. We then have N + M slots in total. The model computes
attention probability over the expanded memory and obtains the attention vector in the
same way as Equations (6.2)–(6.4), except that the summation is computed from 1 to
N +M . This is given by

α
(expand)
i,j =

α̃i,j∑N+M
j′=1 α̃i,j′

(6.5)

c
(expand)
i =

N+M∑
j=1

α
(expand)
i,j m

(val)
j (6.6)

To initialize the expanded model, I load all previous parameters, including RNN weights
and the learned N slots, but randomly initialize the progressively expanded M slots. Dur-
ing training, we update all parameters by gradient descent. That is to say, new parameters
are learned from their initializations, whereas old parameters are fine-tuned during IDA.
The process is applied whenever a new domain comes, as shown in Algorithm 4.

I would like to discuss the following issues.

Fixing vs. Fine-tuning learned parameters. Inspired by the progressive neural
network [162], I found it tempting to fix RNN parameters and the learned memory but

99

only tune new memory for IDA. However, my preliminary results showed that if I fix all
existing parameters, the increased memory does not add much to the model capacity, and
that its performance is worse than fine-tuning all parameters.

Fine-tuning vs. Fine-tuning while increasing memory slots. It is reported
that fine-tuning a model (without increasing model capacity) suffers from the problem of
catastrophic forgetting [94]. It could be a concern if the proposed approach suffers from the
same problem, since I fine-tune learned parameters when progressively increasing memory
slots. My intuition is that the increased model capacity helps to learn the new domain
with less overriding of the previously learned model. Experiments confirm my conjecture,
as the memory-augmented RNN tends to forget more if the memory size is not increased.

Expanding hidden states vs. Expanding memory. An alternative way of pro-
gressively increasing model capacity is to expand the size of RNN layers. This setting is
similar to the progressive neural network, except that all weights are fine-tuned and that
we have connections from new states to existing states.

However, I hereby show a theorem, indicating that the expanded memory results in
less contamination/overriding of the learned knowledge in the RNN, compared with the
expanded hidden states. The main idea is to measure the effect of model expansion quan-
titatively by the expected square difference on hi before and after expansion, where the
expectation reflects the average effect of model expansion in different scenarios.

Theorem 1. Let RNN have vanilla transition with the linear activation function, and let
the RNN state at the last step hi−1 be fixed. For a particular data point, if the memory
attention satisfies

∑N+M
j=N+1 α̃i,j ≤

∑N
j=1 α̃i,j, then memory expansion yields a lower expected

mean squared difference in hi than RNN state expansion, under reasonable assumptions.
That is,

E
[
‖h(m)

i − hi‖2
]
≤ E

[
‖h(s)

i − hi‖2
]

(6.7)

where h
(m)
i refers to the hidden states if the memory is expanded. h

(s)
i refers to the original

dimensions of the RNN states, if we expand the size of RNN states themselves. Here, we
compute the expectation by assuming weights and hidden states are iid from a zero-mean
Gaussian distribution (with variance σ2).

Proof: Let hi−1 be the hidden state of the last step. I focus on one step of transition and
assume that hi−1 is the same when the model capacity is increased. I consider a simplified
case where the RNN has vanilla transition with the linear activation function. I measure
the effect of model expansion quantitatively by the expected norm of the difference on hi
before and after model expansion.

100

Suppose the original hidden state hi is D-dimensional. I assume each memory slot is d-
dimensional, and that the additional RNN units when expanding the hidden state are also
d-dimensional. I further assume every variable in the expanded memory and expanded
weights (W̃ in Figure 6.2) are iid with zero mean and variance σ2. This assumption is
reasonable as it enables a fair comparison of expanding memory and expanding hidden
states. Finally, I assume every variable in the learned memory slots, i.e., mjk, follows the
same distribution (zero mean, variance σ2). This assumption may not be true after the
network is trained, but is useful for proving theorems.

Let’s compute how the original dimensions in the hidden state are changed if we expand
RNN. I denote the expanded hidden states by h̃i−1 and h̃i for the two time steps. I denote

the weights connecting from h̃i−1 to hi by W̃ ∈ RD×d. I focus on the original D-dimensional

space, denoted as h
(s)
i . The connection is shown in Figure 6.2a. We have

E
[
‖h(s)

i − hi‖2
]

= E
[
‖W̃ · h̃i−1‖2

]
(6.8)

= E
[D∑
j=1

(
w̃>j h̃i−1

)2
]

(6.9)

=
D∑
j=1

E
[(
w̃>j h̃i−1

)2
]

(6.10)

=
D∑
j=1

E

[(d∑
k=1

w̃jkh̃i−1[k])

)2
]

(6.11)

=
D∑
j=1

d∑
k=1

E
[(
w̃jkh̃i−1[k]

)2
]

(6.12)

=
D∑
j=1

d∑
k=1

E
[(
w̃jk
)2
]
E
[(
h̃i−1[k]

)2
]

(6.13)

= D · d · Var
(
w
)
· Var(h) (6.14)

= Ddσ2σ2 (6.15)

where (6.12) is due to the independence and zero-mean assumptions of every element in

W̃ and hi−1. (6.13) is due to the independence assumption between W̃ and hi−1.

101

𝒉"#$ 𝒉"

𝒉"#$ 𝒉"

𝒉%"#$ 𝒉%"
𝑊%

(a)	Expand	RNN	states

𝒉"#$ 𝒉"

(b)	Expand	memory

𝒄

𝒉"#$ 𝒉"

𝒄(

𝒙" 𝒙"

𝒙"
𝒙"

Figure 6.2: Hidden state expansion vs. memory expansion at step t.

Next, I compute the effect of expanding memory slots. Notice that ‖h(m)
i − hi‖ =

W(c)∆c. Here, h
(m)
i is the RNN hidden state after memory expansion. ∆c

def
= c′ − c,

where c and c′ are the attention content vectors before and after memory expansion,
respectively, at the current time step.2 W(c) is the weight matrix connecting attention
content to RNN states. The connection is shown in Figure 6.2b. Reusing the result of
(6.14), we immediately obtain

E
[
‖h(m)

i − hi‖2
]

(6.16)

= E
[∥∥W(c)∆c‖2

]
(6.17)

= Ddσ2Var
(
∆ck

)
(6.18)

where ∆ck is an element of the vector ∆c.

To prove Equation (6.2), it remains to show that Var(∆ck) ≤ σ2. I now analyze how
attention is computed.

Let α̃1, · · · , α̃N+M be the unnormalized attention weights over the N + M memory
slots. Notice that α̃1, · · · , α̃N remain the same after memory expansion. Then, the original
attention probability is given by αj = α̃j/(α̃1 + · · ·+ α̃N) for j = 1, · · · , N . After memory

2I omit the time step in the notation for simplicity.

102

expansion, the attention probability becomes α′j = α̃j/(α̃1 + · · · + α̃N+M), illustrated in
Figure 6.3. We have

∆c = c′ − c (6.19)

=
N∑
j=1

(α′j − αj)mj +
N+M∑
j=N+1

α′jmj (6.20)

=
N∑
j=1

(
α̃j

α̃1 + · · ·+ α̃N+M
− α̃j
α̃1 + · · ·+ α̃N

)
mj

+
N+M∑
j=N+1

(α̃j
α̃1 + · · ·+ α̃N+M

)
mj (6.21)

=
N∑
j=1

(−α̃j α̃N+1+···+α̃N+M

α̃1+···+α̃N
α̃1 + · · ·+ α̃N+M

)
mj (6.22)

+

N+M∑
j=N+1

(α̃j
α̃1 + · · ·+ α̃N+M

)
mj (6.23)

=
N+M∑
j=1

βjmj (6.24)

where

βj
def
=

−α̃j α̃N+1+···+α̃N+M

α̃1+···+α̃N
α̃1 + · · ·+ α̃N+M

, if 1 ≤ j ≤ N

α̃j
α̃1 + · · ·+ α̃N+M

, if N+1 ≤ j ≤ N +M

(6.25)

By the above-stated assumption of total attention
∑N+M

j=N+1 α̃j ≤
∑N

j=1 α̃j, we have

|βj| ≤ |α′j|, ∀1 ≤ j ≤ N +M (6.26)

103

Memory Unnormalized
measure

𝒎"

𝒎#

𝒎$

…

𝒎#&"

…

𝒎#&'

𝛼)"
𝛼)$

𝛼)#

…

𝛼)#&"

𝛼)#&'

…

Original
attn.	prob.
𝛼"
𝛼$

𝛼#

…

𝛼"*

𝛼$*

𝛼#*
…

𝛼#&"*

𝛼#&'*

…

Expanded
attn.	prob.

Figure 6.3: Attention probabilities before and after memory expansion.

Then, we have

Var(∆ck) = E[(c′k − ck)2
]
∀1 ≤ k ≤ d (6.27)

=
1

d
E
[
‖c′ − c‖2

]
(6.28)

=
1

d
E

[
d∑

k=1

(N+M∑
j=1

βjmjk

)2
]

(6.29)

=
1

d

d∑
k=1

E

[(N+M∑
j=1

βjmjk

)2
]

(6.30)

=
1

d

d∑
k=1

N+M∑
j=1

E
[(
βjmjk

)2
]

(6.31)

=
1

d

d∑
k=1

N+M∑
j=1

E
[
β2
j

]
E
[
m2
jk

]
(6.32)

=
1

d

d∑
k=1

N+M∑
j=1

E[β2
j]σ

2 (6.33)

= σ2 E

[
N+M∑
j=1

β2
j

]
(6.34)

≤ σ2 E

[
N+M∑
j=1

(α′j)
2

]
(6.35)

≤ σ2 (6.36)104

Fic Gov Slate Tel Travel

training samples 77k 77k 77k 83k 77k
My Implementation 65.0 66.5 56.2 64.5 62.7

Yu et al.[219] 64.7 69.2 57.9 64.4 65.8

Table 6.1: Corpus statistics and the baseline performance (% accuracy) of my BiLSTM
model (without domain adaptation) and results reported in previous work. This gives a
rough comparison because the evaluation set may be different (see Footnote 2).

Here, (6.31) is due to the assumption that mjk is independent and zero-mean, and (6.32)
is due to the independence assumption between βj and mjk. To obtain (6.36), notice that∑N+M

j=1 α′j = 1 with 0 ≤ α′j ≤ 1 (∀1 ≤ j ≤ N + M). Thus,
∑N+M

j=1 (α′j)
2 ≤ 1, concluding

the proof.

In the theorem (and in experiments), memory expansion and hidden state expansion
are done such that the total number of model parameters remain the same. The condition∑N+M

j=N+1 α̃i,j ≤
∑N

j=1 α̃i,j in the theorem requires that the total attention to existing mem-
ory slots is larger than to the progressively added slots. This is a reasonable assumption
because: (1) During training, attention is trained in an ad hoc fashion to align information,
and thus some of αi,j for 1 ≤ j ≤ N might be learned so that it is larger than a random
memory slot; and (2) For a new domain, we do not add a huge number of slots, and thus∑N+M

j=N+1 α̃i,j will not dominate.

It is noted that the theorem does not explicitly prove results for IDA, but shows that
expanding memory is more stable than expanding hidden states. This is particularly
important at the beginning steps of IDA, as the progressively growing parameters are
randomly initialized and are basically noise. Although the theoretical analysis uses a
restricted setting (i.e., vanilla RNN transition and linear activation), it provides the key
insight that the proposed approach is appropriate for IDA.

6.4 Experiments

6.4.1 Experiment I: Natural Language Inference

I first evaluate the proposed approach on natural language inference. This is a classifi-
cation task to determine the relationship between two sentences, the target labels being

105

entailment, contradiction, and neutral. Text classification is a much simpler task then text
generation. Here I tackle this task as a pre-cursor to the text generation task.

Dataset and Setup

I use the multi-genre natural language inference (MultiNLI) corpus [204] as the data.
MultiNLI is particularly suitable for IDA, as it contains training samples for 5 genres:
Fiction (Fic), Government (Gov), Slate, Telephone (Tel), and Travel. In total,
there are 390k training samples. The corpus also contains a held-out (non-training) set of
data samples with labels. I split it into two parts for validation and test.3

The first row in Table 6.1 shows the size of the training set in each domain. As seen,
the corpus is mostly balanced across domains, although Tel has slightly more examples.

I follow the original MultiNLI paper [204] to choose the base model and most of the set-
tings: For the base model, I train a bi-directional LSTM (BiLSTM) and follow the original
MultiNLI paper [204] for most of the settings: 300D RNN hidden states, 300D pretrained
GloVe embeddings [142] for initialization, batch size of 32, and the Adam optimizer for
training. The initial learning rate for Adam is tuned over the set {0.3, 0.03, 0.003, 0.0003,
0.00003}. It is set to 0.0003 based on validation performance.

Note in Table 6.1 that I achieve similar performance to [219]. Furthermore, my BiLSTM
achieves an accuracy of 68.37 on the official MultiNLI test set,4 which is better than
67.51 reported in the original MultiNLI paper [204] using BiLSTM. This shows that my
implementation and tuning are fair for the basic BiLSTM, and that my model is ready for
the study of IDA.

For the memory part, I set each slot to be 300D, which is the same as the RNN and
embedding size. This ensures that the memory, the input word embedding and the previous
hidden state have equal representation in the computation for RNN state transition.

I tune the number of progressive memory slots in Figure 6.4, which shows the validation
performance on the source (Fic) and target (Gov) domains. Notice that the performance
is close to fine-tuning alone if only one memory slot is added. It improves quickly between
1 and 200 slots, and tapers off around 500. I thus choose to add 500 slots for each domain.

3MultiNLI also contains 5 genres without training samples, namely, 9/11, Face-to-face, Letters,
OUP, and Verbatim. I ignore these genres, because I focus on incremental domain adaptation instead of
zero-shot learning. Also, the labels for the official test set of MultiNLI are not publicly available, therefore
we cannot use it to evaluate performance on individual domains. My split of the held-out set for validation
and test applies to all competing methods, and thus is a fair setting.

4Evaluation on the official MultiNLI test set requires submission to Kaggle.

106

With 500 slots, the capacity of the model increases by 10% per domain. Therefore, the
training and inference efficiency of the model is mostly unchanged, especially with advanced
neural toolkits.

1 100 200 300 400 500
65

66

67

68

of memory slots

V
al

id
at

io
n

A
cc

.
on

S

(a)

1 100 200 300 400 500
69.5

70

70.5

71

of memory slots

V
al

id
at

io
n

A
cc

.
on

T

(b)

Figure 6.4: Experiment I: Tuning the number of memory slots to be added per domain.
The two graphs show validation performance of the proposed IDA model S→T (F+M+V).

Transfer between Two Domains

I would like to compare my approach with a large number of baselines and variants, and
thus choose two domains as a testbed. Particularly, I choose Fic as the source domain and
Gov as the target domain. I show results in Table 6.2.

First, I analyze the performance of RNN and the memory-augmented RNN in the non-
transfer setting (Lines 1–2 vs. Lines 3–4). As seen, the memory-augmented RNN achieves
slightly better but generally similar performance, compared with RNN (both with LSTM
units). This shows that, in the non-transfer setting, the memory bank does not help the
RNN much and thus is not a typical RNN architecture in previous literature. However,
this later confirms that the performance improvement is indeed due to the proposed IDA
technique, instead of simply a better neural architecture.

I then apply two straightforward methods of domain adaptation: multi-task learning
(Line 5) and fine-tuning (Line 6). Multi-task learning jointly optimizes source and target
objectives, denoted by “S+T.” On the other hand, the fine-tuning approach trains the

107

% Accuracy on
#Line Model Trained on/by S T

1
RNN

S 65.01⇓ 61.23⇓

2 T 56.46⇓ 66.49⇓

3

R
N

N
+

M
em

S 65.41⇓ 60.87⇓

4 T 56.77⇓ 67.01⇓

5 S+T 66.02↓ 70.00

6
R

N
N

+
M

em
S→T (F) 65.62↓ 69.90↓

7 S→T (F+M) 66.23 70.21
8 S→T (F+M+V) 67.55 70.82
9 S→T (F+H) 64.09⇓ 68.35⇓

10 S→T (F+H+V) 63.68⇓ 68.02⇓

11 S→T (EWC) 66.02⇓ 64.10⇓

12 S→T (Progressive) 64.47⇓ 68.25⇓

Table 6.2: Results on two domain adaptation. F: Fine-tuning. V: Expanding vocabulary.
H: Expanding RNN hidden states. M: My proposed method of expanding memory. I also
compare with previous work elastic weight consolidation (EWC) [94] and the progressive
neural network [162]. For the statistical test (compared with Line 8), ↑, ↓: p < 0.05 and
⇑,⇓: p < 0.01.

model on the source first, and then fine-tunes on the target. In my experiments, these
two methods perform similarly on the target domain, which is consistent with [133]. On
the source domain, fine-tuning performs significantly worse than multi-task learning, as
it suffers from the catastrophic forgetting problem. Notice that, in terms of source per-
formance, the fine-tuning approach (Line 6) is slightly better than trained on the source
domain only (Line 3). This is probably because the domains are highly correlated as
opposed to [94], and thus training with more data on target improves the performance
on source. However, fine-tuning does achieve the worst performance on source compared
with other domain adaptation approaches (among Lines 5–8). Thus, I nevertheless use
the terminology “catastrophic forgetting,” and my research goal is still to improve IDA
performance.

The main results of my approach are Lines 7 and 8. I apply the proposed progressive
memory network to IDA and I fine-tune all weights. Note that on both source and target
domains, the my approach outperforms the fine-tuning method alone where the memory
size is not increased (comparing Lines 7 and 6). This verifies my conjecture that, if the
model capacity is increased, the new domain does not override the learned knowledge much

108

Performance on
Training domains Fic Gov Slate Tel Travel

Fic 65.41 58.87 55.83 61.39 57.35

Fic → Gov 67.55 70.82 61.04 65.07 61.90

Fic → Gov → Slate 67.04 71.55 63.29 64.66 63.53

Fic → Gov → Slate → Tel 68.46 71.10 63.39 71.60 61.50

Fic → Gov → Slate → Tel → Travel 69.36 72.47 63.96 69.74 68.39

Table 6.3: Dynamics of the progressive memory network for IDA with 5 domains. Upper-
triangular values in gray are out-of-domain (zero-shot) performance.

in the neural network. The proposed approach is also “orthogonal” to the expansion of the
vocabulary size, where target-specific words are randomly initialized and learned on the
target domain. As seen, this combines well with memory expansion and yields the best
performance on both source and target (Line 8).

I now compare an alternative way of increasing model capacity, i.e., expanding hidden
states (Lines 9 and 10). For fair comparison, I ensure that the total number of model pa-
rameters after memory expansion is equal to the number of model parameters after hidden
state expansion. Note that the performance of hidden state expansion is poor especially on
the source domain, even if I fine-tune all parameters. This experiment provides empirical
evidence to the theorem that expanding memory is more robust than expanding hidden
states.

I also compare the results with previous work on IDA. I re-implement5 elastic weight
consolidation (EWC) [94]. It does not achieve satisfactory results in my experiments for
this task. I investigate other published papers using the same method and find inconsistent
results: EWC works well in some applications [221, 102] but performs poorly on others [217,
207]; [200] even report near random performance with EWC. I also re-implement the
progressive neural network [162]. I use the target predictor to do inference for both source
and target domains. The progressive neural network yields low performance, particularly
on source, probably because the predictor is trained with only the target domain.

I measure the statistical significance of the results with one-tailed Wilcoxon’s signed-
rank test [203], by bootstrapping a subset of 200 samples for 10 times (with replacement).
Each method is compared with Line 8, and the significance is reported with arrows: ↑ and
⇑ denote “significantly better” with p < 0.05 and p < 0.01 respectively. ↓ and ⇓ similarly
denote “significantly worse.” The absence of an arrow indicates that the performance

5My implementation is based on https://github.com/ariseff/overcoming-catastrophic

109

https://github.com/ariseff/overcoming-catastrophic

Group Setting Fic Gov Slate Tel Travel

Non-
IDA

In-domain training 65.41⇓ 67.01⇓ 59.30⇓ 67.20⇓ 64.70⇓

Fic + Gov + Slate + Tel + Travel (multi-task) 70.60↑ 73.30 63.80 69.15 67.07↓

IDA

Fic → Gov → Slate → Tel → Travel (F+V) 67.24↓ 70.82⇓ 62.41↓ 67.62↓ 68.39
Fic → Gov → Slate → Tel → Travel (F+V+M) 69.36 72.47 63.96 69.74 68.39
Fic → Gov → Slate → Tel → Travel (EWC) 67.12⇓ 68.71⇓ 59.90⇓ 66.09⇓ 65.70⇓

Fic → Gov → Slate → Tel → Travel (Progressive) 65.22⇓ 67.87⇓ 61.13⇓ 66.96⇓ 67.90

Table 6.4: Comparing my approach with variants and previous work in the multi-domain
setting. In this experiment, I use the memory-augmented RNN as the neural architecture.
Italics represent best results in the IDA group. ↑, ↓: p < 0.05 and ⇑,⇓: p < 0.01 (compared
with F+V+M).

difference compared with Line 8 is statistically insignificant with p at most 0.05. The test
shows that my approach is significantly better than others, both on source and target.

IDA with All Domains

Having analyzed my approach, baselines, and variants on two domains in detail, I now
test the performance of IDA with multiple domains, namely, Fic, Gov, Slate, Tel, and
Travel. In this experiment, I assume these domains come one after another, and the goal
is to achieve high performance on both new and previous domains.

Table 6.3 shows the dynamics of IDA with the proposed progressive memory network.
Comparing the upper-triangular values (in gray, showing out-of-domain performance) with
diagonal values, we see that my approach can be quickly adapted to the new domain in an
incremental fashion. Comparing lower-triangular values with the diagonal, we see that my
approach does not suffer from the catastrophic forgetting problem as the performance of
previous domains is gradually increasing if trained with more domains. After all data are
observed, my model achieves the best performance in most domains (last row in Table 6.3),
despite the incremental nature of my approach.

I now compare my approach with other baselines and variants in the multi-domain
setting, shown in Table 6.4. Due to the large number of settings, I only choose a selected
subset of variants from Table 6.2 for the comparison.

As seen, my approach of progressively growing memory bank achieves the same per-
formance as fine-tuning on the last domain (both with vocabulary expansion). But for all
previous 4 domains, I achieve significantly better performance. My model is comparable
to multi-task learning on all domains. This provides evidence of the effectiveness for IDA
with more than two domains.

110

BLEU-2 on W2V-Sim on
Line Model Trained on/by S T S T

1
RNN

S 2.842⇑ 0.738⇓ 0.480⇓ 0.456⇓

2 T 0.795⇓ 1.265⇓ 0.454⇓ 0.480⇓

3

R
N

N
+

M
em

S 3.074⇑ 0.712⇓ 0.498⇓ 0.471⇓

4 T 0.920⇓ 1.287⇓ 0.462⇓ 0.487⇓

5 S+T 2.650⇑ 0.889⇓ 0.471⇓ 0.462⇓

6

R
N

N
+

M
em

S→T (F) 1.210⇓ 1.101⇓ 0.509⇓ 0.514⇓

7 S→T (F+M) 1.435⇓ 1.207⇓ 0.526 0.522
8 S→T (F+M+V) 1.637 1.652 0.522 0.525
9 S→T (F+H) 1.036⇓ 1.606↓ 0.503⇓ 0.495⇓

10 S→T (F+H+V) 1.257⇓ 1.419⇓ 0.504⇓ 0.492⇓

11 S→T (EWC) 1.397⇓ 1.382↓ 0.513⇓ 0.514⇓

12 S→T (Progressive) 1.299⇓ 1.408↓ 0.502⇓ 0.503⇓

Table 6.5: Results on two-domain adaptation for dialogue response generation. F: Fine-
tuning. V: Expanding vocabulary. H: Expanding RNN hidden states. M: My proposed
method of expanding memory. I also compare with previous work elastic weight consolida-
tion [94, EWC] and the progressive neural network [162]. ↑, ↓: p < 0.05 and ⇑,⇓: p < 0.01
(compared with Line 8).

It should also be mentioned that multi-task learning requires training the model when
data from all domains are available at the same time. It is not an incremental approach
for domain adaptation, and thus cannot be applied to the scenarios introduced in Sec-
tion 6.1. I include this setting mainly because due to curiosity about the performance of
non-incremental domain adaptation.

I also compare with previous methods for IDA in Table 6.4. My method outperforms
EWC [102] and the progressive neural network [162] in all domains; the results are consis-
tent with Table 6.2.

6.4.2 Experiment II: Dialogue Generation

With promising results in text classification, I now move to text generation. I evaluate my
approach on the task of dialogue response generation. Given an input text sequence, the
task is to generate an appropriate output text sequence as a response in human-computer
dialogue.

111

Dataset, Setup, and Metrics

I use the Cornell Movie Dialogs Corpus [42] as the source. It contains ∼220k message-
response pairs from movie transcripts. I use a 200k-10k-10k training-validation-test split.

For the target domain, I manually construct a very small dataset to mimic the scenario
where quick adaptation has to be done to a new domain with little training data. In
particular, I choose a random subset of 15k message-response pairs from the Ubuntu Dialog
Corpus [122], a dataset of conversations about Ubuntu. I use a 9k-3k-3k data split.

The base model is a sequence-to-sequence (Seq2Seq) neural network [185] with attention
from the decoder to the encoder. I use a single-layer RNN encoder and a single-layer RNN
decoder, each containing 1024 cells following [185]. I use GRUs instead of LSTM units due
to efficiency concerns. The source and target vocabularies are 27k and 10k respectively.

I use separate memory banks for the encoder and decoder, since they are different
RNNs. Each memory slot is 1024D, because the RNN states are 1024D. For each domain,
I progressively add 1024 slots; tuning the number of slots is done in a manner similar to
Experiment I. As before, I use Adam with an initial learning rate of 0.0003 and other
default parameters.

Following previous work, I use BLEU-2 [53, 126] and average Word2Vec embedding
similarity (W2V-Sim) [168, 225] as the evaluation metrics. BLEU-2 is the geometric mean
of unigram and bigram word precision penalized by length, and correlates with human
satisfaction to some extent [117]. W2V-Sim is defined as the cosine similarity between
the averaged Word2Vec embeddings of the model outputs and the ground truths. Intu-
itively, BLEU measures hard word-level overlap between two sequences, whereas W2V-Sim
measures soft similarity in a distributed semantic space.

Results

The results for dialogue response generation are shown in Table 6.5. We see that BLEU-2
and W2V similarity are not necessarily consistent. For example, the memory-augmented
RNN trained solely on source achieves the best source BLEU-2, whereas the proposed
progressive memory has the highest W2V cosine similarity on S. However, my model’s
variants (either expanding the vocabulary or not) achieve the best performance on most
metrics (Lines 7 and 8). Moreover, it consistently outperforms all other IDA approaches.
Following Experiment I, I conduct a statistical test to compare different methods with Line
8. The test shows that my method is significantly better than the other IDA methods. A
case study is provided in Table 6.6, which shows sample outputs of my IDA model on test

112

prompts from the Cornell Movie Corpus (source) and the Ubuntu Dialogue Corpus (target).
We see that casual prompts from the movie domain result in casual responses, whereas
Ubuntu queries result in Ubuntu-related responses. With the expansion of vocabulary, my
model is able to learn new words like “grub”; with progressive memory, it learns Ubuntu
jargon like “network connection.” This shows evidence of the success of incremental domain
adaptation.

Prompt Response

hi hi
how are you? i’m good
i’m steve. what’s your name? my name is opera
shut your mouth! you will? what about it
i love you man i love you too
i dont wanna talk about it i think you do too
what are you doing? you
i would just want to clear some things up look thanks for your help
so how’s it going with your new roomie? it should be fine
oh yeah you’re just so smart thanks
i didn’t do anything wrong did i we don’t have much experience
i just got a messed up stomach i know, you had to do some things
what are you trying to handicap me? this is not really who i am
what is the matter just wanted to make sure it is easier, just fine
im scared what do we do with it?
being a jerk doesn’t make you special i’ll make sure you use the list, you might want to

that chipset is great for gaming it is very good hmm i think it has been rather too slow for me
i kinda forgot the fix i tried a year ago can you try the output ?
do you want me to let it autodetect try it
i need help with grub. it can’t detect ubuntu well i can probably get you a little bit of help
how would i remaster the ubuntu install could you have a link access to the network connection
ok i will try this solution i believe that you did
no progress hmm
i found this review rather convincing for linux can you show me?
my terminal is stuck what version is it?
which bios? windows with new partition drive on the new computer
where can i get the latest release? slackware is behind the times with their release schedule
when i try to restart it doesnt work hmm you should be in the terminal are you ?
i am rebooting now so your issue is a great work cd, sometimes i get some
i get an installation error i am getting an expert for it
what does the kernel-package do? you will need to get it to see if there is a setting
what directory should i be in? you should be able to install the grub cd at the drive

Table 6.6: Sample outputs of the proposed IDA model S→T (F+M+V) from Table 5.

In general, the evaluation of dialogue systems is noisy due to the lack of appropriate

113

metrics, as discussed previously [117]. Nevertheless, the experiment provides additional
evidence of the effectiveness of the proposed approach. It also highlights the model’s
viability for both classification and generation tasks.

6.5 Conclusion

I have proposed a progressive memory network for incremental domain adaptation (IDA).
I augment an RNN with an attention-based memory bank. During IDA, I add new slots to
the memory bank and tune all parameters by back-propagation. Empirically, the progres-
sive memory network does not suffer from the catastrophic forgetting problem as in näıve
fine-tuning. My intuition is that the new memory slots increase the neural network’s model
capacity, and thus, there is less overriding of the existing network due to new knowledge.
Compared with expanding hidden states, the proposed progressive memory bank provides
a more robust way of increasing model capacity, shown by both a theorem and experiments.
The proposed approach also outperforms previous work for IDA, including elastic weight
consolidation (EWC) and the original progressive neural network.

114

Chapter 7

Conclusion

In this thesis, I have studied two facets of human-likeness in machines: the ability to
perceive and convey human emotions, and the ability to understand and generate human
language. I explore the challenges faced by existing HCI systems, in terms of high user
engagement, fluency and coherence of interaction, adaptability to unseen situations and
being able to relate to users on an affective level. I work towards mitigating some of these
issues by enhancing the emotional and linguistic prowess of text-based HCI systems.

Concretely, I develop a Monte-Carlo planning algorithm for BayesAct, a large POMDP
model of affect, that has continuous states, actions and observations. I use this algorithm
to produce affect-aware agents in two-person social dilemmas and health-care assistance.
I further explore the efficacy of affective computing within language classification and
generation. I investigate how the principles of BayesAct can be used to generate affect-
sensitive responses in a neural-network dialogue generation system. I also develop affective
loss functions, word embeddings, neural sequence decoding methods and imitation learning
techniques to produce human-like and affect-rich responses in a dialogue system. Finally,
I present a neural domain adaptation method to help transfer knowledge from one task to
another for language classification and generation.

This work opens many new research directions for affective natural language processing.
I have presented some limitations of the proposed techniques in Sections 4.5 and 5.5. They
serve as important guidelines for future research. I highlight some additional ideas below.

ACT and BayesAct are promising affect models that need more exploration within
the field of NLP. I showed some basic ways to integrate ACT with neural conversational
models. However, BayesAct is more suited to this task, since it provides a framework to

115

combine affective and non-affective goals in a planning model. Furthermore, as I demon-
strated in Chapter 3, BayesAct is suitable for modeling complex human behaviours such
as manipulation. In a similar way, models and experiments could be designed to model
bullying or harassment.

Another useful research direction is to develop affective representations of sentences.
The EPA and VAD lexicons used in this thesis provide word-level affect features, and it is
not clear how they should be combined to get sentence-level affect. It would be interesting
to see how recent advances in sentence representation learning, such as USE [32], can be
applied here. A related idea is affect disentanglement in the latent text representation
space. Some recent studies present autoencoder-based latent disentanglement techniques,
which can transform positive texts into negative texts, and vice versa [86]. However, the
model should have more fine-grained control over affect in the generated text, i.e. it should
be able to control other implicit affect qualities.

Lastly, this thesis uses recurrent neural networks as the base neural architecture for
model implementation and evaluation, together with Word2Vec or GloVe embeddings for
words. However, the proposed techniques can be used with more efficient and parallelizable
architectures like the Transformer [194], contextualized word embeddings (ELMO [144])
and pre-trained models (BERT [49]). It would be interesting to see whether migrating to
these architectures improves the proposed models’ affect quality and performance.

116

References

[1] K. J. Åström. Optimal control of Markov decision processes with incomplete state
estimation. J. Math. Anal. App., 10:174–205, 1965.

[2] Mohamed Abdalla, Magnus Sahlgren, and Graeme Hirst. Enriching word embeddings
with a regressor instead of labeled corpora. In AAAI, pages 6188–6195, 2019.

[3] David Abel, John Salvatier, Andreas Stuhlmüller, and Owain Evans. Agent-agnostic
human-in-the-loop reinforcement learning. arXiv preprint arXiv:1701.04079, 2017.

[4] George A. Akerlof and Rachel E. Kranton. Economics and identity. The Quarterly
Journal of Economics, 115(3):715–753, 2000.

[5] Ben Alderson-Day and Charles Fernyhough. Inner speech: development, cognitive
functions, phenomenology, and neurobiology. Psychological bulletin, 141(5):931, 2015.

[6] Areej Alhothali and Jesse Hoey. Semi-supervised affective meaning lexicon ex-
pansion using semantic and distributed word representations. arXiv preprint
arXiv:1703.09825, 2017.

[7] Christopher Amato and Frans A. Oliehoek. Scalable planning and learning for mul-
tiagent pomdps. In AAAI, January 2015.

[8] Dimitrios Antos and Avi Pfeffer. Using emotions to enhance decision-making. In
IJCAI, Barcelona, Spain, 2011.

[9] Nabiha Asghar and Jesse Hoey. Monte-Carlo planning for socially aligned agents
using Bayesian affect control theory. Technical Report CS-2014-21, University of
Waterloo School of Computer Science, 2014.

[10] Nabiha Asghar and Jesse Hoey. Intelligent affect: Rational decision making for
socially aligned agents. In UAI, pages 12–16, 2015.

117

[11] Nabiha Asghar, Lili Mou, Kira A Selby, Kevin D Pantasdo, Pascal Poupart, and
Xin Jiang. Progressive memory banks for incremental domain adaptation. In ICLR,
2020.

[12] Nabiha Asghar, Pascal Poupart, Jesse Hoey, Xin Jiang, and Lili Mou. Affective
neural response generation. In ECIR, pages 154–166. Springer, 2018.

[13] Nabiha Asghar, Pascal Poupart, Xin Jiang, and Hang Li. Deep active learning for
dialogue generation. In Joint Conference on Lexical and Computational Semantics,
pages 78–83, 2017.

[14] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. In ICLR, 2015.

[16] Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo. Monte-Carlo value iteration
for continuous-state POMDPs. In Workshop on the Algorithmic Foundations of
Robotics, pages 175–191, 2010.

[17] Tina Balke, Célia da Costa Pereira, Frank Dignum, Emiliano Lorini, Antonino Ro-
tolo, Wamberto Vasconcelos, and Serena Villata. Norms in MAS: Definitions and
Related Concepts. In Giulia Andrighetto, Guido Governatori, Pablo Noriega, and
Leendert W. N. van der Torre, editors, Normative Multi-Agent Systems, volume 4 of
Dagstuhl Follow-Ups, pages 1–31. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2013.

[18] Rafael E Banchs and Haizhou Li. Iris: a chat-oriented dialogue system based on the
vector space model. In ACL, pages 37–42, 2012.

[19] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation
with improved correlation with human judgments. In ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization,
pages 65–72, 2005.

[20] Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan Chen, Sebastian
Urban, and Patrick van der Smagt. On fast dropout and its applicability to recurrent
networks. arXiv preprint arXiv:1311.0701, 2013.

118

[21] Richard Bellman. A markovian decision process. Journal of Mathematics and Me-
chanics, pages 679–684, 1957.

[22] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. JMLR, 3(Feb):1137–1155, 2003.

[23] Mark S Boddy, Johnathan Gohde, Thomas Haigh, and Steven A Harp. Course of
action generation for cyber security using classical planning. In ICAPS, pages 12–21,
2005.

[24] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision theoretic planning: Struc-
tural assumptions and computational leverage. JAIR, 11:1–94, 1999.

[25] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and
Samy Bengio. Generating sentences from a continuous space. In CoNLL, pages
10–21, 2016.

[26] Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Solving continuous
pomdps: Value iteration with incremental learning of an efficient space represen-
tation. In ICML, 2013.

[27] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in Games,
4(1):1–43, March 2012.

[28] James Bruce and Manuela Veloso. Real-time randomized path planning for robot
navigation. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, volume 3, pages 2383–2388, 2002.

[29] Zoraida Callejas, David Griol, and Ramón López-Cózar. Predicting user mental
states in spoken dialogue systems. EURASIP J. Advances in Signal Processing,
2011(1):6, 2011.

[30] Anthony Cassandra, Michael L Littman, and Nevin L Zhang. Incremental pruning:
A simple, fast, exact method for partially observable markov decision processes. In
UAI, pages 54–61, 1997.

[31] Fabio Catania, Nicola Di Nardo, Franca Garzotto, and Daniele Occhiuto. Emoty:
An emotionally sensitive conversational agent for people with neurodevelopmental
disorders. In Proceedings of the 52nd Hawaii International Conference on System
Sciences, 2019.

119

[32] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John,
Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal
sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[33] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elho-
seiny. Efficient lifelong learning with A-GEM. arXiv preprint arXiv:1812.00420,
2018.

[34] M Keith Chen. The effect of language on economic behavior: Evidence from sav-
ings rates, health behaviors, and retirement assets. American Economic Review,
103(2):690–731, 2013.

[35] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick
Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J Weiss, Kanishka Rao, Ekaterina Go-
nina, et al. State-of-the-art speech recognition with sequence-to-sequence models. In
ICASSP, pages 4774–4778, 2018.

[36] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional lstm-
cnns. Transactions of the ACL, 4:357–370, 2016.

[37] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using rnn encoder–decoder for statistical machine translation. In EMNLP, pages
1724–1734, 2014.

[38] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[39] Kenneth Mark Colby, Sylvia Weber, and Franklin Dennis Hilf. Artificial paranoia.
Artificial Intelligence, 2(1):1–25, 1971.

[40] Heriberto Cuayáhuitl, Seunghak Yu, Ashley Williamson, and Jacob Carse. Deep rein-
forcement learning for multi-domain dialogue systems. Deep Reinforcement Learning
Workshop, NIPS, 2016.

[41] Antonio R. Damasio. Descartes’ error: Emotion, reason, and the human brain.
Putnam’s sons, 1994.

[42] Cristian Danescu-Niculescu-Mizil and Lillian Lee. Chameleons in imagined conver-
sations: A new approach to understanding coordination of linguistic style in dialogs.

120

In Workshop on Cognitive Modeling and Computational Linguistics. Association for
Computational Linguistics, 2011.

[43] Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew McCallum. Question answer-
ing on knowledge bases and text using universal schema and memory networks. In
ACL, pages 358–365, 2017.

[44] Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng Kong, and Dani
Yogatama. Episodic memory in lifelong language learning. arXiv preprint
arXiv:1906.01076, 2019.

[45] Celso M De Melo, Peter Carnevale, and Jonathan Gratch. The influence of emo-
tions in embodied agents on human decision-making. In International Conference on
Intelligent Virtual Agents, pages 357–370. Springer, 2010.

[46] Celso M. de Melo, Peter Carnevale, Stephen Read, Dimitrios Antos, and Jonathan
Gratch. Bayesian model of the social effects of emotion in decision-making in multi-
agent systems. In AAMAS, Valencia, Spain, 2012.

[47] Nick Degens, Gert Jan Hofstede, John McBreen, Adrie Beulens, Samuel Mascaren-
has, Nuno Ferreira, Ana Paiva, and Frank Dignum. Creating a world for socio-
cultural agents. In Tibor Bosse, Joost Broekens, Joao Dias, and Janneke van der
Zwaan, editors, Emotion Modeling: Towards Pragmatic Computational Models of Af-
fective Processes, number 8750 in Lecture Notes in Artificial Intelligence. Springer,
2014.

[48] Marc Peter Deisenroth and Jan Peters. Solving nonlinear continuous state-action-
observation pomdps for mechanical systems with gaussian noise. In Proceedings of
the European Workshop on Reinforcement Learning (EWRL), 2012.

[49] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[50] Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors. Sequential Monte Carlo
in Practice. Springer-Verlag, 2001.

[51] Tomasz Dryjański, Pawe l Bujnowski, Hyungtak Choi, Katarzyna Podlaska, Kamil
Michalski, Katarzyna Beksa, and Pawe l Kubik. Affective natural language generation
by phrase insertion. In IEEE International Conference on Big Data, pages 4876–4882,
2018.

121

[52] Paul Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4):169–200,
1992.

[53] Mihail Eric and Christopher D Manning. Key-value retrieval networks for task-
oriented dialogue. arXiv preprint arXiv:1705.05414, 2017.

[54] Caitlin M Fausey and Lera Boroditsky. Who dunnit? cross-linguistic differences in
eye-witness memory. Psychonomic bulletin & review, 18(1):150–157, 2011.

[55] Denis Fedorenko, Nikita Smetanin, and Artem Rodichev. Avoiding echo-responses
in a retrieval-based conversation system. In Conference on Artificial Intelligence and
Natural Language, pages 91–97. Springer, 2018.

[56] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann.
Using millions of emoji occurrences to learn any-domain representations for detecting
sentiment, emotion and sarcasm. In EMNLP, pages 1615–1625, 2017.

[57] John G. Fennell and Roland J. Baddeley. Reward is assessed in three dimensions
that correspond to the semantic differential. PLoS One, 8(2: e55588), 2013.

[58] Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psycho-
logical Bulletin, 76(5):378–382, 1971.

[59] Jeremiah T. Folsom-Kovarik, Gita Sukthankar, and Sae Schatz. Tractable POMDP
representations for intelligent tutoring systems. ACM Trans. Intell. Syst. Technol.,
4(2):29:1–29:22, April 2013.

[60] Pascale Fung, Dario Bertero, Peng Xu, Ji Ho Park, Chien-Sheng Wu, and Andrea
Madotto. Empathetic dialog systems. In LREC, 2018.

[61] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. JMLR, 17(1):2096–2030, 2016.

[62] Asma Ghandeharioun, Daniel McDuff, Mary Czerwinski, and Kael Rowan. Emma:
An emotionally intelligent personal assistant for improving wellbeing. arXiv preprint
arXiv:1812.11423, 2018.

[63] Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe Morency, and Ste-
fan Scherer. Affect-LM: A neural language model for customizable affective text
generation. In ACL, 2017.

122

[64] Kevin Gimpel, Dhruv Batra, Chris Dyer, Gregory Shakhnarovich, and Virginia Tech.
A systematic exploration of diversity in machine translation. In EMNLP, pages 1100–
1111, 2013.

[65] Piotr Gmytrasiewicz and Prashant Doshi. A framework for sequential planning in
multi-agent settings. JAIR, 24:49–79, 2005.

[66] Erving Goffman. Behavior in Public Places. The Free Press, New York, 1963.

[67] Carla Gordon, Anton Leuski, Grace Benn, Eric Klassen, Edward Fast, Matt Liewer,
Arno Hartholt, and David Traum. Primer: An emotionally aware virtual agent. In
Proceedings of the IUI Workshop on User-Aware Conversational Agents, 2019.

[68] Jonathan Gratch and Stacy Marsella. A domain-independent framework for modeling
emotion. Cognitive Systems Research, 5(4):269 – 306, 2004.

[69] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidi-
rectional lstm and other neural network architectures. Neural Networks, 18(5-6):602–
610, 2005.

[70] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ra-
malho, John Agapiou, et al. Hybrid computing using a neural network with dynamic
external memory. Nature, 538(7626):471–476, 2016.

[71] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. Incorporating copying
mechanism in sequence-to-sequence learning. In ACL, pages 1631–1640, 2016.

[72] Arthur Guez, David Silver, and Peter Dayan. Scalable and efficient Bayes-adaptive
reinforcement learning based on Monte-Carlo tree search. JAIR, 48, 2013.

[73] Takayuki Hasegawa, Nobuhiro Kaji, Naoki Yoshinaga, and Masashi Toyoda. Pre-
dicting and eliciting addressees emotion in online dialogue. In ACL (Volume 1: Long
Papers), pages 964–972, 2013.

[74] David R. Heise. Expressive Order: Confirming Sentiments in Social Actions.
Springer, 2007.

[75] David R. Heise. Surveying Cultures: Discovering Shared Conceptions and Sentiments.
Wiley, 2010.

123

[76] David R. Heise. Modeling interactions in small groups. Social Psychology Quarterly,
76:52–72, 2013.

[77] Julia Hirschberg and Christopher D Manning. Advances in natural language pro-
cessing. Science, 349(6245):261–266, 2015.

[78] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

[79] Jesse Hoey, Craig Boutilier, Pascal Poupart, Patrick Olivier, Andrew Monk, and Alex
Mihailidis. People, sensors, decisions: Customizable and adaptive technologies for
assistance in healthcare. ACM Trans. Interact. Intell. Syst., 2(4):20:1–20:36, January
2012.

[80] Jesse Hoey and Tobias Schröder. Bayesian affect control theory of self. In AAAI,
pages 529–536, 2015.

[81] Jesse Hoey, Tobias Schröder, and Areej Alhothali. Bayesian affect control theory. In
Humaine Association Conference on Affective Computing and Intelligent Interaction
(ACII), pages 166–172, 2013.

[82] Chieh-Yang Huang, Tristan Labetoulle, Ting-Hao Huang, Yi-Pei Chen, Hung-Chen
Chen, Vallari Srivastava, and Lun-Wei Ku. Moodswipe: A soft keyboard that sug-
gests messagebased on user-specified emotions. In EMNLP: System Demonstrations,
pages 73–78, 2017.

[83] Huaibo Huang, Ran He, Zhenan Sun, Tieniu Tan, et al. Introvae: Introspective
variational autoencoders for photographic image synthesis. In NeurIPS, pages 52–
63, 2018.

[84] Liang Huang, Kai Zhao, and Mingbo Ma. When to finish? optimal beam search for
neural text generation (modulo beam size). In EMNLP, pages 2134–2139, 2017.

[85] Natasha Jaques, Sara Taylor, Akane Sano, and Rosalind Picard. Multimodal autoen-
coder: A deep learning approach to filling in missing sensor data and enabling better
mood prediction. In 2017 Seventh International Conference on Affective Computing
and Intelligent Interaction (ACII), pages 202–208, 2017.

[86] Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga Vechtomova. Disentangled
representation learning for text style transfer. arXiv preprint arXiv:1808.04339, 2018.

124

[87] Mark Johnson. How the statistical revolution changes (computational) linguistics.
In EACL Workshop on the Interaction between Linguistics and Computational Lin-
guistics: Virtuous, Vicious or Vacuous?, pages 3–11, Athens, Greece, March 2009.

[88] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelligence, 101:99–134,
1998.

[89] Daniel Kahneman. Thinking, Fast and Slow. Doubleday, 2011.

[90] Paul Kay and Willett Kempton. What is the sapir-whorf hypothesis? American
anthropologist, 86(1):65–79, 1984.

[91] Dahyun Kim, Jihwan Bae, Yeonsik Jo, and Jonghyun Choi. Incremental learning with
maximum entropy regularization: Rethinking forgetting and intransigence. arXiv
preprint arXiv:1902.00829, 2019.

[92] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
ICLR, 2015.

[93] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[94] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.

[95] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based trans-
lation. In NAACL HLT-Volume 1, pages 48–54, 2003.

[96] Xiang Kong, Bohan Li, Graham Neubig, Eduard Hovy, and Yiming Yang. An ad-
versarial approach to high-quality, sentiment-controlled neural dialogue generation.
arXiv preprint arXiv:1901.07129, 2019.

[97] Barry Kort, Rob Reilly, and Rosalind W Picard. An affective model of interplay be-
tween emotions and learning: Reengineering educational pedagogy-building a learn-
ing companion. In IEEE International Conference on Advanced Learning Technolo-
gies, pages 43–46, 2001.

[98] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals
of mathematical statistics, 22(1):79–86, 1951.

125

[99] Andrew Kusiak and Mingyuan Chen. Expert systems for planning and scheduling
manufacturing systems. European Journal of Operational Research, 34(2):113–130,
1988.

[100] Man Lan, Zhihua Zhang, Yue Lu, and Ju Wu. Three convolutional neural network-
based models for learning sentiment word vectors towards sentiment analysis. In
IJCNN, pages 3172–3179, 2016.

[101] Joseph LeDoux. The emotional brain: the mysterious underpinnings of emotional
life. Simon and Schuster, New York, 1996.

[102] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang.
Overcoming catastrophic forgetting by incremental moment matching. In NIPS,
pages 4652–4662, 2017.

[103] Taekhee Lee and Young J. Kim. GPU-based motion planning under uncertainties
using POMDP. In Proc. Intl Conf. on Robotics and Automation (ICRA), Karlsruhe,
DE, 2013.

[104] Anton Leuski and David Traum. NPCEditor: Creating virtual human dialogue using
information retrieval techniques. Ai Magazine, 32(2):42–56, 2011.

[105] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-
promoting objective function for neural conversation models. In NAACL-HLT, pages
110–119, 2016.

[106] Jiwei Li, Michel Galley, Chris Brockett, Georgios Spithourakis, Jianfeng Gao, and
Bill Dolan. A persona-based neural conversation model. In ACL (Volume 1: Long
Papers), pages 994–1003, 2016.

[107] Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason
Weston. Dialogue learning with human-in-the-loop. ICLR, 2017.

[108] Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason
Weston. Learning through dialogue interactions by asking questions. In ICLR, 2017.

[109] Jiwei Li, Will Monroe, and Dan Jurafsky. A simple, fast diverse decoding algorithm
for neural generation. arXiv preprint arXiv:1611.08562, 2016.

[110] Jiwei Li, Will Monroe, Alan Ritter, and Dan Jurafsky. Deep reinforcement learning
for dialogue generation. In EMNLP, pages 1192–1202, 2016.

126

[111] Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyilmaz. Investi-
gation of language understanding impact for reinforcement learning based dialogue
systems. arXiv preprint arXiv:1703.07055, 2017.

[112] Xuijun Li, Yun-Nung Chen, Lihong Li, and Jianfeng Gao. End-to-end task-
completion neural dialogue systems. arXiv preprint arXiv:1703.01008, 2017.

[113] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE TPAMI,
40(12):2935–2947, 2018.

[114] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text
Summarization Branches Out (ACL Workshop), pages 74–81. ACL, 2004.

[115] Luyuan Lin, Stephen Czarnuch, Aarti Malhotra, Lifei Yu, Tobias Schröder, and Jesse
Hoey. Affectively aligned cognitive assistance using bayesian affect control theory. In
Proc. of International Workconference on Ambient Assisted Living (IWAAL), pages
279–287, Belfast, UK, December 2014. Springer.

[116] Christine Laetitia Lisetti and Piotr Gmytrasiewicz. Can a rational agent afford to be
affectless? a formal approach. Applied Artificial Intelligence, 16(7-8):577–609, 2002.

[117] Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and
Joelle Pineau. How not to evaluate your dialogue system: An empirical study of
unsupervised evaluation metrics for dialogue response generation. In EMNLP, pages
2122–2132, 2016.

[118] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task learning for
text classification. In ACL, pages 1–10, 2017.

[119] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
learning. In NIPS, pages 6467–6476, 2017.

[120] W. S. Lovejoy. A survey of algorithmic methods for partially observed Markov deci-
sion processes. Annals of Operations Research, 28:47–66, 1991.

[121] Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier,
Yoshua Bengio, and Joelle Pineau. Towards an automatic Turing test: Learning
to evaluate dialogue responses. In ACL, pages 1116–1126, July 2017.

[122] Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. The Ubuntu dialogue
corpus: A large dataset for research in unstructured multi-turn dialogue systems. In
SIGDIAL, pages 285–294, 2015.

127

[123] Nurul Lubis, Sakriani Sakti, Koichiro Yoshino, and Satoshi Nakamura. Eliciting posi-
tive emotion through affect-sensitive dialogue response generation: A neural network
approach. In AAAI, 2018.

[124] Owen Macindoe, Leslie Pack Kaelbling, , and Tomás Lozano-Pérez. Pomcop: Belief
space planning for sidekicks in cooperative games. In AIIDE, 2012.

[125] Neil. J. MacKinnnon and Dawn T. Robinson. 25 years of research in affect control
theory. Advances in Group Processing, 31, 2014.

[126] Andrea Madotto, Chien-Sheng Wu, and Pascale Fung. Mem2seq: Effectively in-
corporating knowledge bases into end-to-end task-oriented dialog systems. In ACL,
pages 1468–1478, 2018.

[127] Aarti Malhotra, Lifei Yu, Tobias Schröder, and Jesse Hoey. An exploratory study into
the use of an emotionally aware cognitive assistant. In AAAI Workshop: Artificial
Intelligence Applied to Assistive Technologies and Smart Environments, 2015.

[128] Robert P. Marinier III and John E. Laird. Emotion-driven reinforcement learning.
In Proc. of 30th Annual Meeting of the Cognitive Science Society, pages 115–120,
Washington, D.C., 2008.

[129] Pierre-Emmanuel Mazaré, Samuel Humeau, Martin Raison, and Antoine Bordes.
Training millions of personalized dialogue agents. In EMNLP, pages 2775–2779,
2018.

[130] Gary McKeown, Michel Valstar, Roddy Cowie, Maja Pantic, and Marc Schroder.
The semaine database: Annotated multimodal records of emotionally colored con-
versations between a person and a limited agent. IEEE Transactions on Affective
Computing, 3(1):5–17, 2012.

[131] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In NIPS,
2013.

[132] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes,
and Jason Weston. Key-value memory networks for directly reading documents. In
EMNLP, pages 1400–1409, 2016.

[133] Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. How
transferable are neural networks in NLP applications? In EMNLP, pages 479–489,
2016.

128

[134] Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang, and Zhi Jin. Sequence to backward
and forward sequences: A content-introducing approach to generative short-text con-
versation. In COLING, pages 3349–3358, 2016.

[135] Ryo Nakamura, Katsuhito Sudoh, Koichiro Yoshino, and Satoshi Nakamura. Another
diversity-promoting objective function for neural dialogue generation. arXiv preprint
arXiv:1811.08100, 2018.

[136] Charles E. Osgood, William H. May, and Murray S. Miron. Cross-Cultural Universals
of Affective Meaning. University of Illinois Press, 1975.

[137] Endang Wahyu Pamungkas. Emotionally-aware chatbots: A survey. arXiv preprint
arXiv:1906.09774, 2019.

[138] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In ACL, pages 311–318, 2002.

[139] Ji Ho Park. Finding good representations of emotions for text classification. arXiv
preprint arXiv:1808.07235, 2018.

[140] Yookoon Park, Jaemin Cho, and Gunhee Kim. A hierarchical latent structure for
variational conversation modeling. In NAACL, pages 1792–1801, 2018.

[141] James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic Inquiry and
Word Count. Erlbaum Publishers, 2001.

[142] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global
vectors for word representation. In EMNLP, pages 1532–1543, 2014.

[143] Fernando Perez-Cruz. Kullback-Leibler divergence estimation of continuous distri-
butions. In IEEE International Symposium on Information Theory (ISIT), pages
1666–1670, July 2008.

[144] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
NAACL, pages 2227–2237, 2018.

[145] Rosalind W. Picard. Affective Computing. MIT Press, Cambridge, MA, 1997.

[146] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration:
An anytime algorithm for pomdps. In IJCAI, volume 3, pages 1025–1032, 2003.

129

[147] Johannes Pittermann, Angela Pittermann, and Wolfgang Minker. Emotion recogni-
tion and adaptation in spoken dialogue systems. Int. J. Speech Technology, 13(1):49–
60, 2010.

[148] Robert Plutchik. A general psychoevolutionary theory of emotion. In Theories of
emotion, pages 3–33. Elsevier, 1980.

[149] Josep M. Porta, Nikos Vlassis, Matthijs T.J. Spaan, and Pascal Poupart. Point-based
value iteration for continuous POMDPs. JMLR, 7:2329–2367, 2006.

[150] Pascal Poupart. Exploiting structure to efficiently solve large scale partially observable
Markov decision processes. PhD thesis, University of Toronto, 2005.

[151] Helmut Prendinger and Mitsuru Ishizuka. The empathic companion: A character-
based interface that addresses users’affective states. Applied Artificial Intelligence,
19(3-4):267–285, 2005.

[152] Qiao Qian, Minlie Huang, Haizhou Zhao, Jingfang Xu, and Xiaoyan Zhu. Assigning
personality/profile to a chatting machine for coherent conversation generation. In
IJCAI, pages 4279–4285, 2018.

[153] Ashwin Rajadesingan, Reza Zafarani, and Huan Liu. Sarcasm detection on twitter:
A behavioral modeling approach. In WSDM, pages 97–106, 2015.

[154] Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. I know the
feeling: Learning to converse with empathy. arXiv preprint arXiv:1811.00207, 2018.

[155] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lam-
pert. icarl: Incremental classifier and representation learning. In CVPR, pages
2001–2010, 2017.

[156] Yafeng Ren, Yue Zhang, Meishan Zhang, and Donghong Ji. Improving twitter senti-
ment classification using topic-enriched multi-prototype word embeddings. In AAAI,
pages 3038–3044, 2016.

[157] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. In ICML, pages
1278–1286, 2014.

[158] Jennifer Robison, Scott McQuiggan, and James Lester. Evaluating the consequences
of affective feedback in intelligent tutoring systems. In Proc. Int. Conf. Affective
Comput. and Intell. Interaction and Workshops, pages 1–6, 2009.

130

[159] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-Draa. Online
planning algorithms for pomdps. JAIR, 32:663–704, 2008.

[160] James A. Russell. Core affect and the psychological construction of emotion. Psy-
chological Review, 110(1):145–172, 2003.

[161] James A. Russell and Albert Mehrabian. Evidence for a three-factor theory of emo-
tions. Journal of research in Personality, 11(3):273–294, 1977.

[162] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
neural networks. arXiv preprint arXiv:1606.04671, 2016.

[163] Klaus R. Scherer, Tanja Banziger, and Etienne Roesch. A Blueprint for Affective
Computing. Oxford University Press, 2010.

[164] Wolfgang Scholl. The socio-emotional basis of human interaction and communication:
How we construct our social world. Social Science Information, 52:3 – 33, 2013.

[165] Tobias Schröder and Wolfgang Scholl. Affective dynamics of leadership: An experi-
mental test of affect control theory. Social Psychology Quarterly, 72:180–197, 2009.

[166] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress:
A scalable framework for continual learning. In ICML, pages 4535–4544, 2018.

[167] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau,
Aaron Courville, and Yoshua Bengio. A hierarchical latent variable encoder-decoder
model for generating dialogues. In AAAI, pages 3295–3301, 2017.

[168] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau,
Aaron C Courville, and Yoshua Bengio. A hierarchical latent variable encoder-
decoder model for generating dialogues. In AAAI, pages 3295–3301, 2017.

[169] Julian Vlad Serban, Tim Klinger, Gerald Tesauro, Kartik Talamadupula, Bowen
Zhou, Yoshua Bengio, and Aaron Courville. Multiresolution recurrent neural net-
works: An application to dialogue response generation. AAAI, 2017.

[170] Julian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle
Pineau. Building end-to-end dialogue systems using generative hierarchical neural
network models. In AAAI, 2016.

131

[171] Lifeng Shang, Zhengdong Lu, and Hang Li. Neural responding machine for short-text
conversation. In ACL-IJCNLP, pages 1577–1586, 2015.

[172] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP
solvers. AAMAS, 27(1):1–51, 2013.

[173] Yuanlong Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and
Ray Kurzweil. Generating high-quality and informative conversation responses with
sequence-to-sequence models. In EMNLP, pages 2210–2219, 2017.

[174] Xiaoyu Shen, Hui Su, Yanran Li, Wenjie Li, Shuzi Niu, Yang Zhao, Akiko Aizawa,
and Guoping Long. A conditional variational framework for dialog generation. In
ACL (Volume 2: Short Papers), pages 504–509, 2017.

[175] Xiaoyu Shen, Hui Su, Shuzi Niu, and Vera Demberg. Improving variational encoder-
decoders in dialogue generation. In AAAI, pages 5456–5463, 2018.

[176] Weiyan Shi and Zhou Yu. Sentiment adaptive end-to-end dialog systems. In ACL
(Volume 1: Long Papers), pages 1509–1519, 2018.

[177] Mei Si, Stacy Marsella, and David Pynadath. Modeling appraisal in theory of mind
reasoning. AAMAS, 20(1):14–31, 2010.

[178] David Silver and Joel Veness. Monte-carlo planning in large POMDPs. In J.D.
Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems (NIPS) 23, pages 2164–2172.
Curran Associates, Inc., 2010.

[179] Herbert A. Simon. Motivational and emotional controls of cognition. Psychological
Review, 74:29–39, 1967.

[180] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output represen-
tation using deep conditional generative models. In NIPS, pages 3483–3491, 2015.

[181] Edward J Sondik. The Optimal Control of Partially Observable Markov Decision
Processes. PhD thesis, Stanford University, 1971.

[182] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Mar-
garet Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. A neural network ap-
proach to context-sensitive generation of conversational responses. In NAACL, pages
196–205, 2015.

132

[183] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized point-based value
iteration for POMDPs. JAIR, 24:195–220, 2005.

[184] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory net-
works. In NIPS, pages 2440–2448, 2015.

[185] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In NIPS, pages 3104–3112, 2014.

[186] Henri Tajfel and John C. Turner. An integrative theory of intergroup conflict. In
Stephen Worchel and William Austin, editors, The social psychology of intergroup
relations. Brooks/Cole, Monterey, CA, 1979.

[187] Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting Liu, and Ming Zhou. Sentiment
embeddings with applications to sentiment analysis. IEEE Transactions on Knowl-
edge and Data Engineering, 28(2):496–509, 2015.

[188] Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui Yan. Ruber: An unsupervised
method for automatic evaluation of open-domain dialog systems. In AAAI, pages
722–729, 2018.

[189] Dante I Tapia and Juan M Corchado. An ambient intelligence based multi-agent
system for alzheimer health care. International Journal of Ambient Computing and
Intelligence (IJACI), 1(1):15–26, 2009.

[190] Sara Ann Taylor, Natasha Jaques, Ehimwenma Nosakhare, Akane Sano, and Ros-
alind Picard. Personalized multitask learning for predicting tomorrow’s mood, stress,
and health. IEEE Transactions on Affective Computing, 2017.

[191] Brian Thompson, Jeremy Gwinnup, Huda Khayrallah, Kevin Duh, and Philipp
Koehn. Overcoming catastrophic forgetting during domain adaptation of neural
machine translation. In NAACL, pages 2062–2068, 2019.

[192] Alan M Turing. Computing machinery and intelligence. In Parsing the Turing Test,
pages 23–65. Springer, 2009.

[193] Ankit Vadehra. Creating an emotion responsive dialogue system. Master’s thesis,
University of Waterloo, 2018.

[194] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages
5998–6008, 2017.

133

[195] Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Ste-
fan Lee, David Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse
solutions from neural sequence models. AAAI, 2018.

[196] Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint
arXiv:1506.05869, 2015.

[197] Jin Wang, Liang-Chih Yu, K. Robert Lai, and Xuejie Zhang. Dimensional sentiment
analysis using a regional cnn-lstm model. In ACL, pages 225–230, 2016.

[198] Amy Beth Warriner, Victor Kuperman, and Marc Brysbaert. Norms of valence,
arousal, and dominance for 13,915 English lemmas. Behavior Research Methods,
45(4), 2013.

[199] Joseph Weizenbaum. Eliza—a computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1):36–45,
1966.

[200] Shixian Wen and Laurent Itti. Overcoming catastrophic forgetting problem by weight
consolidation and long-term memory. arXiv preprint arXiv:1805.07441, 2018.

[201] Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-Hao Su, David Vandyke, and
Steve Young. Semantically conditioned lstm-based natural language generation for
spoken dialogue systems. In EMNLP, pages 1711–1721, 2015.

[202] Jason Weston. Dialog-based language learning. NIPS, 2016.

[203] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

[204] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge
corpus for sentence understanding through inference. In NAACL-HLT, pages 1112–
1122, 2018.

[205] Jason D Williams, Pascal Poupart, and Steve Young. Factored partially observable
markov decision processes for dialogue management. In Proc. IJCAI Workshop on
Knowledge and Reasoning in Practical Dialogue Systems, pages 76–82, 2005.

[206] Jason D. Williams and Steve Young. Partially observable Markov decision processes
for spoken dialog systems. Computer Speech and Language, 21(2):393–422, 2006.

134

[207] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de Weijer, and
Bogdan Raducanu. Memory replay GANs: learning to generate images from new
categories without forgetting. arXiv preprint arXiv:1809.02058, 2018.

[208] Yu Wu, Wei Wu, Zhoujun Li, and Ming Zhou. Learning matching models with weak
supervision for response selection in retrieval-based chatbots. In ACL, pages 420–425,
2018.

[209] Ruobing Xie, Zhiyuan Liu, Rui Yan, and Maosong Sun. Neural emoji recommenda-
tion in dialogue systems. arXiv preprint arXiv:1612.04609, 2016.

[210] Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, and Wei-Ying Ma.
Topic aware neural response generation. In AAAI, pages 3351–3357, 2017.

[211] Chen Xing, Wei Wu, Yu Wu, Ming Zhou, Yalou Huang, and Wei-Ying Ma. Hi-
erarchical recurrent attention network for response generation. arXiv preprint
arXiv:1701.07149, 2017.

[212] Jiaolong Xu, Sebastian Ramos, David Vázquez, Antonio M López, and D Ponsa.
Incremental domain adaptation of deformable part-based models. In BMVC, 2014.

[213] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In NeurIPS, pages 899–908.
2018.

[214] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. In ICML, pages 2048–2057, 2015.

[215] Zhao Yan, Nan Duan, Junwei Bao, Peng Chen, Ming Zhou, Zhoujun Li, and Jian-
she Zhou. DocChat: An information retrieval approach for chatbot engines using
unstructured documents. In ACL, 2016.

[216] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Oracle: Order
robust adaptive continual learning. arXiv preprint arXiv:1902.09432, 2019.

[217] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning
with dynamically expandable networks. ICLR, 2018.

[218] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends
in deep learning based natural language processing. Computational Intelligence Mag-
azine, 13(3):55–75, 2018.

135

[219] Jianfei Yu, Minghui Qiu, Jing Jiang, Jun Huang, Shuangyong Song, Wei Chu, and
Haiqing Chen. Modelling domain relationships for transfer learning on retrieval-based
question answering systems in e-commerce. In WSDM, pages 682–690, 2018.

[220] Zhou Yu, Ziyu Xu, Alan W Black, and Alexander Rudnicky. Strategy and policy
learning for non-task-oriented conversational systems. In SIGDIAL, pages 404–412,
2016.

[221] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synap-
tic intelligence. In ICML, pages 3987–3995, 2017.

[222] Rui Zhang and Zhenyu Wang. Learning to converse emotionally like humans: A con-
ditional variational approach. In CCF International Conference on Natural Language
Processing and Chinese Computing, pages 98–109, 2018.

[223] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason
Weston. Personalizing dialogue agents: I have a dog, do you have pets too? In ACL,
pages 2204–2213, 2018.

[224] Wei-Nan Zhang, Qingfu Zhu, Yifa Wang, Yanyan Zhao, and Ting Liu. Neural per-
sonalized response generation as domain adaptation. WWW, pages 1–20, 2017.

[225] Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett,
and Bill Dolan. Generating informative and diverse conversational responses via
adversarial information maximization. arXiv preprint arXiv:1809.05972, 2018.

[226] Zheng Zhang, Minlie Huang, Zhongzhou Zhao, Feng Ji, Haiqing Chen, and Xiaoyan
Zhu. Memory-augmented dialogue management for task-oriented dialogue systems.
arXiv preprint arXiv:1805.00150, 2018.

[227] Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. Learning discourse-level diversity
for neural dialog models using conditional variational autoencoders. In ACL, pages
654–664, 2017.

[228] Yinhe Zheng, Guanyi Chen, Minlie Huang, Song Liu, and Xuan Zhu. Personalized
dialogue generation with diversified traits. arXiv preprint arXiv:1901.09672, 2019.

[229] Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan Zhu, and Bing Liu. Emotional
chatting machine: Emotional conversation generation with internal and external
memory. arXiv preprint arXiv:1704.01074, 2017.

136

[230] Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. The design and implemen-
tation of xiaoice, an empathetic social chatbot. arXiv preprint arXiv:1812.08989,
2018.

[231] Xianda Zhou and William Yang Wang. Mojitalk: Generating emotional responses
at scale. In ACL (Volume 1: Long Papers), pages 1128–1137, 2018.

137

APPENDICES

138

Appendix A

POMCP-C: Full experiments with
Prisoner’s Dilemma

I present full results for the prisoner’s dilemma experiments. Each experiment is described
with a table showing the mean and median reward gathered over 10 sets of 20 games, as
well as the mean and median over the last 10 games (10 times). A figure then shows the
average means and medians per game. Solid lines with markers show the means (over 10
tests) for agent (blue) and client (red). Dashed lines in blue and red show one standard
deviation away (above and below). The thick solid lines show the medians. The last two
plots in each figure show the results from associated table in plot form.

In all the following examples, I have assumed that agent and client both start with a dis-
tribution over two identities: friend (EPA:{2.75, 1.88, 1.38}) and scrooge (EPA:{ 2.15, 0.21, 0.54}),
with probabilities of 0.8 and 0.2, respectively. The social coordination bias models the
propositional actions (of cooperate and defect) as having sentiments close to collaborate
with (EPA:{1.44, 1.11, 0.61}) and abandon (EPA:{ 2.28, 0.48, 0.84}), respectively. These
sentiments were chosen for my experiments because they corresponded to my intuitions
about playing the prisoner’s dilemma game. Changing to other, similar, sentiments for
identities and actions would result in slightly different results, but qualitatively the same.

Tables A.5-A.12 and Figures A.1-A.8 show the results with a discount factor of γ = 0.9,
while Tables A.13-A.20 and Figures A.9-A.16 show the results with a discount factor of
γ = 0.99.

139

Recall that the strategies played by client are:

1. (same): plays with the same timeout as agent tc = ta

2. (1.0): plays with a timeout of tc = 1s

3. (co): always cooperates

4. (de): always defects

5. (to): two-out, cooperates twice, then always defects

6. (tt): tit-for-tat, starts by cooperating, then always repeats the last action of the
agent

7. (t2): tit-for-two-tat, starts by cooperating, then defects if the other agent defects
twice in a row

8. (2t): two-tit-for-tat, starts by cooperating, then cooperates if the other agent coop-
erates twice in a row

There are many things going on in these graphs, here I draw attention to some of
the most interesting behaviours. Below I refer to figure numbers only, but each figure is
accompanied by a table on the same page with the mean/median results that are shown
in the last two figures (bottom right).

• Figures A.8 and A.16 show two agents with the same planning resources (POMCP-C
timeout, ta and tc), but with discounts of γ = 0.9 and γ = 0.99, respectively. We can
see that with γ = 0.99, the agents cooperate until ta = tc = 60s, at which point they
start defecting now and again. Agents are getting tempted by short-term rewards,
and this effect somewhat goes away above ta = tc = 120s. With γ = 0.9 however
(more discounting of the future), we see that defections start at about ta = tC = 10s,
and cause massive disruption leading to mutual defection. This is an example of
short-term thinking leading to sub-optimal decisions in social dilemmas.

• Figures A.1 and A.9 show agent playing against client who always cooperates (co).
With very short timeouts (less than 10s), and more discounting (γ = 0.9), we see
that agent starts by cooperating, but then starts to defect after about 12 games.
It has become confident that client is a good person that can be taken advantage
of in the short term. With more than ta = 30s timeout, agent starts defecting by

140

the second game most of the time. By ta = 120s, this is all the time. With less
discounting, though (γ = 0.99), we see that a small amount of defection starts at
short timeouts, but that cooperation is mostly maintained until the last game. The
agent sometimes tries defection early, but generally persists with cooperation. At
high timeouts ta = 120s, we again see defection coming in, but less than with the
lower discount factor.

• Figures A.2 and A.10 show agent playing against client who always defects (de).
Here, with more discounting, agent rapidly starts defecting. With less discount,
agent continues to try to cooperate with client, but these efforts die off as timeout
increases. In this case, agent sees the long-term possibility that he can reform the
client, who is behaving like a scrooge.

• Figures A.3 and A.11 show agent playing against client who plays two-out (to). We
see a similar pattern to the last case here, with agent attempting to cooperate for
even longer at the start, because he gets “fooled” by the first two cooperations of
client.

• Figures A.4-A.6 and A.12-A.6 show agent playing against client who plays one of
the tit-for strategies (tt), (t2) or (2t). With a timeout of 1s and γ = 0.9, we see
a similar start as when playing against (co), except when agent starts defecting, it
does not work out so well. With longer timeouts, defection persists. With γ = 0.99,
we see better coordination, especially at mid-range timeouts (ta = 10s− 30s).

• Figures A.7 and A.15 show agent playing against client who has less resources (tc =
1.0). We might expect here to see that agent will “outsmart” client and gain an
advantage, however this happens only seldom. In particular, with mid-range timeouts
(ta = 30−60s for γ = 0.99 and ta = 10−120s for γ = 0.9), agent attempts to do this
after about 10 games, but this generally leads to less reward (although a bit more
than client gets, so agent is “beating” client at the game, which doesn’t really work
in this case as it is not zero-sum). agent sees short-term possibilities of defection
(it will get 11 as opposed to 10), but client is able to quickly adjust and adapt its
behaviour, even with a timeout of tc = 1s. We can see this effect when agent plays
against (to): it is able to start defecting after about 2-3 games when it has a timeout
of 1s.

Let us take a closer look at the last case, where tc = 1s and ta = 120s for γ = 0.9. One
typical game in this series is shown in Table A.1. At the start, agent defects, then starts
cooperating, feeling like a feminine cousin interacting with a self-conscious spokeswoman.

141

client feels like a self-conscious stepson interacting with an easygoing stepmother. Sub-
sequent to this, both agents cooperate. This causes client to re-evaluate himself as sig-
nificantly less good (lower E) than he originally thought (as a stepson rather than a best
man, as he is attributing the cause of the original defection back to himself, or at least
taking some of the blame. This then causes client to be sending rather negative messages
to agent, causing agent to re-evaluate himself more negatively as well. At game 10, both
agents are still cooperating (and have done so since game 1), but feeling rather badly and
powerless. This finally causes agent to defect again (and he does so until the end of the
game). agent feels like a dependent nut, and client cooperates twice in the face of this, then
defects, feeling like an exasperated gun moll (affectively like a buddy) - “hey, I thought we
were friends?”. agent feels contrite (guilty) after client attempts to cooperate once more,
after which both start defecting. After four more defections, client again tries to cooperate,
but is rebuffed, and both feel like ex-girlfriends: the end of a beautiful friendship.

Table A.2 shows the example from Chapter 3 in which an agent is playing against a
client playing (to). In this case, the action of cooperation is interpreted as collaborate
with (EPA:{1.44, 1.11, 0.61}). As I noted in Chapter 3, this makes the agent feel less good
than he would normally, like a failure. Let us now look at an example with a different
(more positive and powerful) interpretation of the propositional action of cooperation.
Table A.3 shows such a case, where again client is playing (to), but the cooperation action
is interpreted (by agent) as flatter (EPA:{2.1, 1.45, 0.82}). There is no environmental noise.
We see that this example starts about the same as in Table A.4, although in this case agent
does not defect on the second game. Once client starts defecting though (at game 3), agent
rapidly re-adjusts his estimate of client from an earnest lady to an unfair sawbones or a
immoral bureaucrat. After the 14th game, agent feels like a dependent klutz playing against
a cynical ex-boyfriend. Overall we see the end result is quite similar, even though the
start of the game is quite different. In the end, the feelings of the agent are quite a bit
more negative and less powerful, probably as a reaction to the more positive and powerful
actions of client at the start of the game.

Table A.4 shows an example where client is playing (co), and the cooperation action is
interpreted (by agent) as flatter (EPA:{2.1, 1.45, 0.82}). There is no environmental noise.
We see that in this case, the agent intially feels much more positive (as a warm date), as
compared to Table 3.2 (copied from the paper), where the agent felt like a failure. We see
that the subtle difference in this interpretations causes quite different identity feelings for a
pd-agent. The agent cooperates on the first move, defects once, then continues to cooperate
for another 14 games. At this point, agent feels like a self-conscious waiter interacting with
a conscientious brunette, and starts to defect, leading him to feel like a self-conscious nut,
significantly less good, but about the same power and activity.

142

g
a
m

e
se

n
ti

m
e
n
ts

d
e
fl

-
id

e
n
ti

ti
e
s

e
m

o
ti

o
n
s

a
c
ti

o
n
s

#
a
c
to

r
f a

f c
f b

e
c
ti

o
n

a
g
e
n
t

c
li
e
n
t

a
g
e
n
t

c
li
e
n
t

a
g
e
n
t

c
li
e
n
t

1
a
g
e
n
t

2
.2

1
,1

.5
0
,1

.1
8

2
.2

8
,1

.5
3
,1

.2
9

-0
.3

1
,-

0
.6

1
,0

.0
5

4
.3

9
p
a
rt

n
e
r

n
e
w

ly
w

e
d

se
lf

-c
o
n
sc

io
u
s

in
tr

o
sp

e
c
ti

v
e

c
li
e
n
t

2
.0

4
,1

.4
9
,1

.2
6

-1
.7

2
,-

0
.2

9
,-

0
.4

1
2
.4

0
,1

.2
6
,1

.4
6

4
.6

5
b

e
st

m
a
n

a
d
u
lt

e
re

r
e
x
a
sp

e
ra

te
d

fe
m

in
in

e
d
e
f.

c
o
o
p
.

2
a
g
e
n
t

2
.1

2
,1

.2
2
,1

.0
1

2
.1

6
,1

.2
3
,1

.1
4

3
.1

9
,1

.6
2
,1

.0
4

1
.4

9
sw

e
e
th

e
a
rt

si
st

e
r

in
tr

o
sp

e
c
ti

v
e

w
a
rm

c
li
e
n
t

1
.5

6
,1

.1
2
,1

.1
0

-0
.9

6
,-

0
.2

0
,-

0
.2

2
2
.4

2
,1

.2
5
,1

.5
5

8
.9

4
A

ir
F
o
rc

e
re

se
rv

is
t

su
sp

e
c
t

se
lf

-c
o
n
sc

io
u
s

p
o
li
te

c
o
o
p
.

c
o
o
p
.

3
a
g
e
n
t

1
.9

8
,0

.8
7
,0

.8
7

1
.8

5
,1

.0
2
,0

.9
7

2
.1

7
,0

.9
7
,0

.9
2

2
.6

2
fi

a
n
c
é
e

b
ri

d
e

fe
m

in
in

e
m

id
d
le

-a
g
e
d

c
li
e
n
t

1
.1

4
,0

.9
2
,0

.8
9

-0
.3

6
,-

0
.1

6
,-

0
.0

2
0
.5

9
,1

.2
4
,0

.0
8

4
.5

2
b
ig

si
st

e
r

to
a
d
y

se
lf

-c
o
n
sc

io
u
s

a
c
c
o
m

m
o
d
a
ti

n
g

c
o
o
p
.

c
o
o
p
.

4
a
g
e
n
t

1
.6

7
,0

.5
3
,0

.7
7

1
.4

1
,0

.8
1
,0

.8
1

2
.0

6
,0

.8
9
,1

.0
2

2
.6

5
c
o
u
si

n
sp

o
k
e
sw

o
m

a
n

fe
m

in
in

e
se

lf
-c

o
n
sc

io
u
s

c
li
e
n
t

0
.8

1
,0

.6
8
,0

.7
2

0
.0

1
,-

0
.1

5
,0

.1
5

0
.5

5
,0

.4
6
,0

.2
8

3
.1

6
st

e
p
so

n
st

e
p
m

o
th

e
r

se
lf

-c
o
n
sc

io
u
s

e
a
sy

g
o
in

g
c
o
o
p
.

c
o
o
p
.

.
.
.

1
0

a
g
e
n
t

0
.3

3
,-

0
.5

6
,0

.3
0

0
.0

1
,0

.1
2
,0

.3
9

0
.0

5
,-

0
.4

1
,0

.0
8

0
.6

6
n
u
t

c
h
u
m

e
x
a
sp

e
ra

te
d

n
o

e
m

o
ti

o
n

c
li
e
n
t

-0
.0

3
,0

.0
9
,0

.4
2

0
.2

1
,-

0
.6

2
,0

.3
2

0
.3

3
,-

0
.0

3
,0

.5
4

0
.5

5
c
h
u
m

n
u
t

e
x
a
sp

e
ra

te
d

e
x
a
sp

e
ra

te
d

c
o
o
p
.

c
o
o
p
.

1
1

a
g
e
n
t

0
.1

1
,-

0
.6

7
,0

.2
7

-0
.1

3
,0

.0
3
,0

.3
8

-0
.0

6
,-

0
.6

6
,-

0
.1

8
0
.5

2
n
u
t

g
u
n

m
o
ll

d
e
p

e
n
d
e
n
t

n
o

e
m

o
ti

o
n

c
li
e
n
t

-0
.1

6
,0

.0
3
,0

.3
8

0
.0

2
,-

0
.7

1
,0

.2
9

0
.1

4
,0

.6
9
,0

.3
8

0
.4

1
g
u
n

m
o
ll

d
iv

o
rc

é
e

n
o

e
m

o
ti

o
n

e
x
a
sp

e
ra

te
d

d
e
f.

c
o
o
p
.

.
.
.

1
3

a
g
e
n
t

-0
.2

0
,-

0
.7

8
,0

.2
2

-0
.3

5
,-

0
.0

6
,0

.3
2

-0
.1

6
,-

0
.5

5
,-

0
.1

6
0
.2

3
d
iv

o
rc

é
e

g
u
n

m
o
ll

c
o
n
tr

it
e

e
n
v
io

u
s

c
li
e
n
t

-0
.3

7
,-

0
.0

8
,0

.3
1

-0
.2

5
,-

0
.7

9
,0

.2
0

-0
.4

2
,-

0
.0

2
,0

.2
0

0
.3

0
g
u
n

m
o
ll

d
iv

o
rc

é
e

e
x
a
sp

e
ra

te
d

e
x
a
sp

e
ra

te
d

d
e
f.

d
e
f.

1
4

a
g
e
n
t

-0
.2

8
,-

0
.7

9
,0

.2
1

-0
.4

1
,-

0
.1

4
,0

.3
4

-0
.1

7
,-

0
.2

8
,-

0
.2

2
0
.1

9
d
iv

o
rc

é
e

h
u
ss

y
c
o
n
tr

it
e

n
o

e
m

o
ti

o
n

c
li
e
n
t

-0
.4

3
,-

0
.1

6
,0

.3
1

-0
.3

1
,-

0
.7

9
,0

.1
7

-0
.0

4
,0

.3
8
,0

.4
4

0
.2

1
h
u
ss

y
d
iv

o
rc

é
e

n
o

e
m

o
ti

o
n

e
x
a
sp

e
ra

te
d

d
e
f.

c
o
o
p
.

.
.
.

2
0

a
g
e
n
t

-0
.6

3
,-

0
.7

4
,0

.3
2

-0
.6

1
,-

0
.6

1
,0

.2
7

-0
.6

6
,-

0
.3

1
,0

.3
2

0
.0

8
e
x
-g

ir
lf

ri
e
n
d

e
x
-g

ir
lf

ri
e
n
d

e
x
a
sp

e
ra

te
d

e
x
a
sp

e
ra

te
d

c
li
e
n
t

-0
.6

2
,-

0
.6

2
,0

.2
5

-0
.6

8
,-

0
.7

3
,0

.3
1

-0
.3

7
,-

0
.1

1
,0

.4
0

0
.0

9
e
x
-g

ir
lf

ri
e
n
d

e
x
-g

ir
lf

ri
e
n
d

e
x
a
sp

e
ra

te
d

e
n
v
io

u
s

d
e
f.

c
o
o
p
.

T
ab

le
A

.1
:

E
x
am

p
le

ga
m

es
w

it
h

cl
ie

n
t
t C

=
1s

w
h
er

ea
s

ag
en

t
t a

=
12

0s
.

143

g
a
m

e
p

o
st

-p
la

y
se

n
ti

m
e
n
ts

d
e
fl

-
id

e
n
ti

ti
e
s

e
m

o
ti

o
n
s

a
c
ti

o
n
s

#
f a

f c
f b

e
c
ti

o
n

a
g
e
n
t

c
li
e
n
t

a
g
e
n
t

c
li
e
n
t

a
g
e
n
t

c
li
e
n
t

1
-1

.3
6
,-

0
.0

1
,-

0
.3

5
2
.3

2
,1

.6
1
,1

.2
7

2
.6

2
,1

.5
8
,1

.7
3

4
.4

4
fa

il
u
re

n
e
w

ly
w

e
d

e
a
sy

g
o
in

g
id

e
a
li
st

ic
c
o
o
p
.

c
o
o
p
.

2
-0

.6
6
,0

.0
4
,-

0
.0

5
1
.7

7
,1

.2
7
,1

.0
6

2
.2

3
,1

.0
0
,1

.7
6

3
.7

0
p
a
ro

le
e

h
u
sb

a
n
d

e
a
sy

g
o
in

g
se

lf
-c

o
n
sc

io
u
s

c
o
o
p
.

c
o
o
p
.

3
-0

.2
3
,-

0
.0

8
,0

.2
0

1
.0

2
,0

.9
3
,0

.8
4

2
.4

9
,0

.9
7
,1

.8
7

7
.1

9
st

e
p
m

o
th

e
r

p
u
rc

h
a
se

r
fe

m
a
le

im
m

o
ra

l
c
o
o
p
.

d
e
f.

4
-0

.1
2
,-

0
.3

3
,0

.3
3

0
.2

7
,0

.6
2
,0

.6
2

2
.3

7
,0

.4
8
,1

.3
4

4
.9

9
st

u
ff

e
d

sh
ir

t
ro

o
m

m
a
te

d
e
p

e
n
d
e
n
t

u
n
fa

ir
c
o
o
p
.

d
e
f.

5
-0

.2
6
,-

0
.4

7
,0

.3
2

-0
.2

6
,0

.2
6
,0

.4
2

-0
.5

9
,0

.4
1
,-

0
.2

3
3
.2

7
d
iv

o
rc

é
e

g
u
n

m
o
ll

d
e
p

e
n
d
e
n
t

se
lfi

sh
d
e
f.

d
e
f.

6
-0

.3
7
,-

0
.6

6
,0

.2
6

-0
.6

1
,0

.0
0
,0

.2
8

-0
.1

0
,-

0
.4

1
,-

0
.2

7
2
.2

9
d
iv

o
rc

é
e

h
u
ss

y
d
is

a
p
p
ro

v
in

g
se

lfi
sh

d
e
f.

d
e
f.

T
ab

le
A

.2
:

E
x
am

p
le

ga
m

es
w

it
h

cl
ie

n
t

p
la

y
in

g
(t

o)
,

an
d

co
op

er
at

io
n

is
in

te
rp

re
te

d
as

co
ll

ab
or

at
e

w
it

h.
T

h
is

is
th

e
sa

m
e

ex
am

p
le

as
in

C
h
ap

te
r

3,
re

p
ea

te
d

h
er

e
fo

r
ea

sy
co

m
p
ar

is
on

s.

144

g
a
m

e
p

o
st

-p
la

y
se

n
ti

m
e
n
ts

d
e
fl

-
id

e
n
ti

ti
e
s

e
m

o
ti

o
n
s

a
c
ti

o
n
s

#
f a

f c
f b

e
c
ti

o
n

a
g
e
n
t

c
li
e
n
t

a
g
e
n
t

c
li
e
n
t

a
g
e
n
t

c
li
e
n
t

1
2
.7

7
,

1
.5

9
,

1
.3

1
,

2
.6

9
,

1
.7

0
,

1
.1

7
,

2
.6

5
,

1
.4

0
,

1
.4

9
,

1
.0

1
d
a
te

fr
ie

n
d

w
a
rm

e
a
rn

e
st

c
o
o
p

e
ra

te
c
o
o
p

e
ra

te
2

2
.7

0
,

1
.3

4
,

1
.1

6
,

2
.5

8
,

1
.4

1
,

0
.9

6
,

2
.5

4
,

1
.5

5
,

1
.6

6
,

1
.1

4
la

d
y

la
d
y

in
tr

o
sp

e
c
ti

v
e

e
a
rn

e
st

c
o
o
p

e
ra

te
c
o
o
p

e
ra

te
3

2
.3

9
,

0
.9

0
,

1
.0

4
,

1
.7

5
,

1
.0

5
,

0
.8

3
,

2
.4

3
,

1
.5

0
,

1
.4

9
,

1
4
.1

3
la

d
y

b
ri

d
e

d
e
p

e
n
d
e
n
t

in
c
o
n
si

d
e
ra

te
c
o
o
p

e
ra

te
d
e
fe

c
t

4
1
.6

7
,

0
.3

6
,

0
.8

9
,

0
.7

4
,

0
.7

2
,

0
.6

5
,

2
.5

2
,

0
.8

0
,

1
.2

7
,

1
0
.6

9
g
ra

n
d
so

n
st

e
a
d
y

n
e
rv

o
u
s

u
n
fa

ir
c
o
o
p

e
ra

te
d
e
fe

c
t

5
1
.0

7
,

-0
.1

3
,

0
.7

0
,

0
.0

3
,

0
.4

4
,

0
.4

7
,

1
.9

8
,

0
.1

1
,

0
.1

6
,

6
.5

9
w

a
it

e
r

sa
w

b
o
n
e
s

g
u
ll
ib

le
u
n
fa

ir
c
o
o
p

e
ra

te
d
e
fe

c
t

6
0
.6

2
,

-0
.4

7
,

0
.5

7
,

-0
.4

3
,

0
.2

2
,

0
.3

3
,

1
.7

0
,

0
.1

9
,

0
.7

4
,

3
.8

4
sc

h
o
o
lb

o
y

b
u
re

a
u
c
ra

t
fl

u
st

e
re

d
im

m
o
ra

l
c
o
o
p

e
ra

te
d
e
fe

c
t

7
0
.2

3
,

-0
.7

4
,

0
.4

6
,

-0
.7

3
,

0
.0

3
,

0
.2

1
,

0
.2

4
,

-0
.5

0
,

0
.1

1
,

2
.6

3
n
u
t

te
a
se

fl
u
st

e
re

d
p
re

ju
d
ic

e
d

d
e
fe

c
t

d
e
fe

c
t

8
-0

.0
5
,

-0
.8

9
,

0
.3

9
,

-0
.9

2
,

-0
.1

3
,

0
.1

3
,

0
.1

3
,

-0
.3

0
,

0
.2

3
,

1
.8

3
d
ru

n
k

m
a
lc

o
n
te

n
t

fl
u
st

e
re

d
p
re

ju
d
ic

e
d

d
e
fe

c
t

d
e
fe

c
t

9
-0

.2
5
,

-0
.9

6
,

0
.3

5
,

-1
.0

3
,

-0
.2

6
,

0
.0

8
,

-0
.0

8
,

-0
.1

9
,

0
.2

9
,

1
.4

6
d
ru

n
k

m
a
lc

o
n
te

n
t

in
h
ib

it
e
d

a
n
n
o
y
e
d

d
e
fe

c
t

d
e
fe

c
t

1
0

-0
.3

9
,

-1
.0

6
,

0
.3

2
,

-1
.1

1
,

-0
.3

4
,

0
.0

4
,

-0
.0

3
,

-0
.6

6
,

0
.2

6
,

1
.2

7
k
lu

tz
m

a
lc

o
n
te

n
t

d
is

a
p
p
ro

v
in

g
a
n
n
o
y
e
d

d
e
fe

c
t

d
e
fe

c
t

1
1

-0
.4

9
,

-1
.1

4
,

0
.3

0
,

-1
.1

6
,

-0
.4

0
,

0
.0

1
,

-0
.2

0
,

-0
.6

8
,

0
.1

8
,

1
.1

7
k
lu

tz
m

a
lc

o
n
te

n
t

in
h
ib

it
e
d

a
n
n
o
y
e
d

d
e
fe

c
t

d
e
fe

c
t

1
2

-0
.5

5
,

-1
.2

1
,

0
.2

8
,

-1
.2

0
,

-0
.4

3
,

-0
.0

0
,

-0
.2

2
,

-0
.7

5
,

0
.0

2
,

1
.1

0
k
lu

tz
m

a
lc

o
n
te

n
t

in
h
ib

it
e
d

a
n
n
o
y
e
d

d
e
fe

c
t

d
e
fe

c
t

1
3

-0
.6

0
,

-1
.2

4
,

0
.2

7
,

-1
.2

2
,

-0
.4

6
,

-0
.0

1
,

-0
.2

3
,

-0
.6

5
,

0
.2

7
,

1
.0

7
k
lu

tz
e
x
-b

o
y
fr

ie
n
d

d
e
p

e
n
d
e
n
t

a
n
n
o
y
e
d

d
e
fe

c
t

d
e
fe

c
t

1
4

-0
.6

3
,

-1
.2

4
,

0
.2

8
,

-1
.2

3
,

-0
.4

8
,

-0
.0

2
,

-0
.2

5
,

-0
.5

3
,

0
.2

9
,

1
.0

8
k
lu

tz
e
x
-b

o
y
fr

ie
n
d

d
e
p

e
n
d
e
n
t

c
y
n
ic

a
l

d
e
fe

c
t

d
e
fe

c
t

1
5

-0
.6

4
,

-1
.1

9
,

0
.2

9
,

-1
.2

3
,

-0
.5

0
,

-0
.0

2
,

-0
.1

3
,

-0
.2

5
,

0
.3

7
,

1
.1

0
k
lu

tz
e
x
-b

o
y
fr

ie
n
d

d
e
p

e
n
d
e
n
t

c
y
n
ic

a
l

d
e
fe

c
t

d
e
fe

c
t

1
6

-0
.6

9
,

-1
.1

6
,

0
.3

1
,

-1
.2

3
,

-0
.5

3
,

-0
.0

3
,

-0
.6

3
,

-0
.4

5
,

0
.4

6
,

1
.1

4
k
lu

tz
e
x
-b

o
y
fr

ie
n
d

d
e
p

e
n
d
e
n
t

c
y
n
ic

a
l

d
e
fe

c
t

d
e
fe

c
t

1
7

-0
.6

9
,

-1
.1

8
,

0
.3

1
,

-1
.2

3
,

-0
.5

3
,

-0
.0

3
,

-0
.2

0
,

-0
.6

5
,

0
.3

0
,

1
.1

0
k
lu

tz
e
x
-b

o
y
fr

ie
n
d

d
e
p

e
n
d
e
n
t

c
y
n
ic

a
l

d
e
fe

c
t

d
e
fe

c
t

1
8

-0
.7

0
,

-1
.2

3
,

0
.3

1
,

-1
.2

4
,

-0
.5

3
,

-0
.0

3
,

-0
.2

7
,

-0
.8

4
,

0
.3

3
,

1
.0

7
k
lu

tz
e
x
-b

o
y
fr

ie
n
d

d
e
p

e
n
d
e
n
t

c
y
n
ic

a
l

d
e
fe

c
t

d
e
fe

c
t

1
9

-0
.7

9
,

-1
.2

9
,

0
.4

1
,

-1
.4

2
,

-0
.5

4
,

0
.0

5
,

-0
.6

6
,

-0
.3

8
,

0
.5

2
,

0
.4

2
g
o
o
f-

o
ff

w
o
m

a
n
iz

e
r

c
o
n
tr

it
e

sh
a
k
e
n

d
e
fe

c
t

d
e
fe

c
t

2
0

-0
.7

7
,

-1
.2

0
,

0
.3

8
,

-1
.3

1
,

-0
.5

7
,

0
.0

3
,

-0
.4

3
,

-0
.4

0
,

0
.2

3
,

1
.1

6
q
u
e
e
r

n
e
u
ro

ti
c

d
e
p

e
n
d
e
n
t

c
y
n
ic

a
l

d
e
fe

c
t

d
e
fe

c
t

T
ab

le
A

.3
:

E
x
am

p
le

ga
m

es
w

it
h

cl
ie

n
t

p
la

y
in

g
(t

o)
,

an
d

co
op

er
at

io
n

in
te

rp
re

te
d

as
fl

at
te

r.

145

g
a
m

e
p

o
st

-p
la

y
se

n
ti

m
e
n
ts

d
e
fl

-
id

e
n
ti

ti
e
s

e
m

o
ti

o
n
s

a
c
ti

o
n
s

#
f a

f c
f b

e
c
ti

o
n

a
g
e
n
t

c
li
e
n
t

a
g
e
n
t

c
li
e
n
t

a
g
e
n
t

c
li
e
n
t

1
2
.6

7
,

1
.5

5
,

1
.3

7
2
.5

3
,

1
.6

2
,

1
.1

4
2
.3

5
,

1
.2

3
,

1
.5

2
1
.1

0
d
a
te

g
ir

lf
ri

e
n
d

w
a
rm

e
a
rn

e
st

c
o
o
p
.

c
o
o
p
.

2
2
.0

1
,

0
.9

9
,

1
.1

6
2
.0

7
,

1
.3

0
,

0
.9

6
-0

.0
6
,

-0
.3

4
,

0
.0

5
3
.9

7
c
o
e
d

o
rg

a
n
iz

e
r

n
o

e
m

o
ti

o
n

in
tr

o
sp

e
c
ti

v
e

d
e
f.

c
o
o
p
.

3
1
.9

5
,

0
.7

4
,

0
.9

4
1
.9

0
,

1
.1

1
,

0
.8

3
3
.0

7
,

1
.4

2
,

0
.6

9
1
.2

0
g
ir

l
b
ri

d
e

in
tr

o
sp

e
c
ti

v
e

w
a
rm

c
o
o
p
.

c
o
o
p
.

4
1
.8

5
,

0
.5

4
,

0
.8

3
1
.8

3
,

1
.0

0
,

0
.7

4
2
.0

4
,

0
.6

9
,

1
.0

4
1
.0

3
w

h
iz

k
id

fi
a
n
c
é
e

in
tr

o
sp

e
c
ti

v
e

e
a
sy

g
o
in

g
c
o
o
p
.

c
o
o
p
.

5
1
.7

6
,

0
.4

1
,

0
.7

7
1
.7

9
,

0
.9

3
,

0
.6

8
2
.1

2
,

0
.7

9
,

1
.1

2
0
.8

3
c
o
u
si

n
fi

a
n
c
é
e

in
tr

o
sp

e
c
ti

v
e

e
a
sy

g
o
in

g
c
o
o
p
.

c
o
o
p
.

6
1
.7

3
,

0
.3

5
,

0
.6

7
1
.7

6
,

0
.8

3
,

0
.6

3
2
.0

7
,

0
.7

0
,

0
.5

2
0
.8

0
c
o
u
si

n
w

h
iz

k
id

in
tr

o
sp

e
c
ti

v
e

e
a
sy

g
o
in

g
c
o
o
p
.

c
o
o
p
.

7
1
.5

5
,

0
.2

5
,

0
.6

1
1
.6

8
,

0
.7

4
,

0
.6

1
1
.6

6
,

0
.6

5
,

0
.5

1
0
.9

0
h
o
u
se

g
u
e
st

n
o
n
sm

o
k
e
r

in
tr

o
sp

e
c
ti

v
e

w
a
rm

c
o
o
p
.

c
o
o
p
.

8
1
.4

7
,

0
.0

8
,

0
.5

9
1
.7

1
,

0
.7

2
,

0
.6

0
1
.8

9
,

-0
.0

1
,

0
.8

3
0
.7

7
h
o
u
se

g
u
e
st

c
o
u
si

n
fe

m
in

in
e

w
a
rm

c
o
o
p
.

c
o
o
p
.

9
1
.4

8
,

0
.0

3
,

0
.6

3
1
.6

3
,

0
.6

1
,

0
.6

0
2
.1

4
,

0
.2

4
,

1
.0

7
0
.6

3
st

u
d
e
n
t

te
a
c
h
e
r

c
o
u
si

n
in

tr
o
sp

e
c
ti

v
e

a
ff

e
c
ti

o
n
a
te

c
o
o
p
.

c
o
o
p
.

1
0

1
.4

8
,

-0
.0

4
,

0
.6

5
1
.5

7
,

0
.6

0
,

0
.6

2
1
.8

0
,

0
.1

0
,

1
.0

3
0
.7

1
st

u
d
e
n
t

te
a
c
h
e
r

c
o
u
si

n
id

e
a
li
st

ic
a
ff

e
c
ti

o
n
a
te

c
o
o
p
.

c
o
o
p
.

1
1

1
.4

5
,

-0
.1

4
,

0
.6

6
1
.5

4
,

0
.6

2
,

0
.6

1
1
.7

8
,

0
.1

2
,

0
.7

8
0
.6

9
st

u
d
e
n
t

te
a
c
h
e
r

c
la

ss
m

a
te

in
tr

o
sp

e
c
ti

v
e

w
a
rm

c
o
o
p
.

c
o
o
p
.

1
2

1
.3

4
,

-0
.2

3
,

0
.6

3
1
.4

2
,

0
.6

3
,

0
.5

7
1
.7

3
,

0
.0

4
,

0
.5

1
0
.7

5
d
a
u
g
h
te

r-
in

-l
a
w

A
ir

F
o
rc

e
e
n
li
st

e
e

se
lf

-c
o
n
sc

io
u
s

a
w

e
-s

tr
u
c
k

c
o
o
p
.

c
o
o
p
.

1
3

1
.2

5
,

-0
.3

0
,

0
.6

0
1
.3

6
,

0
.5

4
,

0
.5

8
1
.6

0
,

-0
.1

8
,

-0
.0

1
0
.8

0
w

o
m

a
n

sh
o
p
p

e
r

n
o
st

a
lg

ic
w

a
rm

c
o
o
p
.

c
o
o
p
.

1
4

1
.1

8
,

-0
.2

0
,

0
.4

5
1
.3

5
,

0
.5

0
,

0
.5

5
1
.4

5
,

0
.2

2
,

0
.6

7
0
.8

8
w

o
m

a
n

c
it

iz
e
n

se
lf

-c
o
n
sc

io
u
s

c
o
n
sc

ie
n
ti

o
u
s

c
o
o
p
.

c
o
o
p
.

1
5

1
.0

4
,

-0
.2

5
,

0
.4

8
1
.3

3
,

0
.3

6
,

0
.4

6
1
.4

2
,

-0
.0

3
,

0
.3

5
0
.9

3
w

o
m

a
n

sm
a
ll

b
u
si

n
e
ss

m
a
n

se
lf

-c
o
n
sc

io
u
s

c
o
n
sc

ie
n
ti

o
u
s

c
o
o
p
.

c
o
o
p
.

1
6

1
.0

1
,

-0
.2

7
,

0
.5

9
1
.1

5
,

0
.4

0
,

0
.4

2
0
.9

0
,

-0
.4

7
,

0
.6

2
1
.0

1
w

a
it

e
r

b
ru

n
e
tt

e
se

lf
-c

o
n
sc

io
u
s

c
o
n
sc

ie
n
ti

o
u
s

c
o
o
p
.

c
o
o
p
.

1
7

0
.7

1
,

-0
.4

1
,

0
.4

4
0
.8

9
,

0
.3

5
,

0
.4

9
0
.2

7
,

-0
.6

6
,

0
.2

0
1
.3

2
sc

h
o
o
lb

o
y

h
a
lf

si
st

e
r

n
o

e
m

o
ti

o
n

id
e
a
li
st

ic
d
e
f.

c
o
o
p
.

1
8

0
.4

7
,

-0
.4

5
,

0
.4

2
0
.7

5
,

0
.2

6
,

0
.4

6
0
.1

6
,

-0
.3

4
,

0
.0

2
2
.1

4
n
u
t

so
n
-i

n
-l

a
w

n
o

e
m

o
ti

o
n

c
o
n
sc

ie
n
ti

o
u
s

d
e
f.

c
o
o
p
.

1
9

0
.3

5
,

-0
.4

9
,

0
.3

8
0
.6

9
,

0
.2

4
,

0
.4

4
0
.4

1
,

-0
.5

4
,

-0
.1

7
1
.9

2
n
u
t

so
n
-i

n
-l

a
w

se
lf

-c
o
n
sc

io
u
s

c
o
n
sc

ie
n
ti

o
u
s

d
e
f.

c
o
o
p
.

2
0

0
.2

5
,

-0
.5

3
,

0
.3

7
0
.6

6
,

0
.2

3
,

0
.4

3
0
.1

5
,

-0
.7

0
,

0
.2

0
1
.9

6
n
u
t

c
o
-w

o
rk

e
r

se
lf

-c
o
n
sc

io
u
s

c
o
n
sc

ie
n
ti

o
u
s

d
e
f.

c
o
o
p
.

T
ab

le
A

.4
:

E
x
am

p
le

ga
m

es
w

it
h

cl
ie

n
t

p
la

y
in

g
(c

o)
,

an
d

co
op

er
at

io
n

in
te

rp
re

te
d

as
fl

at
te

r.

146

Tables A.21-A.28 and Figures A.17-A.24 show the results with varying levels of environ-
mental noise (from 0.01 to 5.0) for POMCP-C timeout of ta = 120s. The varying environ-
mental noise is added to the communications of Fb as random Gaussian noise with standard
deviation σb, and reflected in the variance of the observation function for Pr(ωf |fb), which
is Gaussian with the same standard deviation. We can make the following observations.

• When playing against (co), with high noise (std. dev of 5.0), agent basically ignores
Fb from client, and so thinks of client as a friend only. At lower noise levels, the
results remain roughly similar (compare Figure A.17 with Figure A.9).

• When playing against (de) or (to), results remain roughly the same for all noise
levels. What this means is that the client’s actions of always defecting outweigh any
signals that are being sent as Fb.

• When playing against (tt), (t2) and (2t), at low noise levels (0.01), agent defects
significantly more than with no noise and σb = 0.1 (as in Chapter 3). The reason
is that the signals accompanying defection cause more significant disruption. At
higher noise levels, this effect goes away, and we see more cooperation from both
agents. (compare Figures A.20, A.21 and A.22 with Figures A.12, A.13 and A.14,
respectively).

• For (1.0) and (same), we see very little effect of environmental noise.

The lack of any strong effect of environmental noise in the communication of Fb across
a wide range of conditions is because of the significantly more powerful effect of the propo-
sitional action of the client serving as evidence about the client identity. Except at very
small values of σb, this means that the communication of fb makes little difference. In
fact, I believe that fb may not be communicated at all in many cases, with humans rely-
ing on expressions of emotions instead which are direct evidence about identities, so more
powerful.

147

timeout
1 2 5 10 30 60 120

mean agent 10.29± 0.38 10.33± 0.42 10.55± 0.28 10.44± 0.34 10.72± 0.18 10.76± 0.20 10.96± 0.18
client 7.10± 3.75 6.70± 4.21 4.50± 2.80 5.65± 3.44 2.80± 1.82 2.45± 1.96 0.45± 1.79

mean agent 10.58± 0.10 10.66± 0.08 10.78± 0.22 10.69± 0.19 10.85± 0.21 10.87± 0.24 11.00± 0.00
(last 10) client 4.20± 1.03 3.40± 0.84 2.20± 2.20 3.10± 1.91 1.50± 2.07 1.30± 2.36 0.00± 0.00
median agent 10.00 10.00 11.00 10.00 11.00 11.00 11.00

client 10.00 10.00 0.00 10.00 0.00 0.00 0.00
median agent 11.00 11.00 11.00 11.00 11.00 11.00 11.00
(last 10) client 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A.5: PD experiments with client strategy: (co) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.1: PD experiments with client strategy: (co) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

148

timeout
1 2 5 10 30 60 120

mean agent 0.67± 0.21 0.78± 0.24 0.85± 0.20 0.89± 0.23 0.93± 0.16 0.94± 0.16 0.93± 0.21
client 4.35± 2.11 3.20± 2.42 2.50± 2.04 2.10± 2.31 1.70± 1.63 1.60± 1.57 1.75± 2.15

mean agent 0.75± 0.16 0.86± 0.13 0.94± 0.10 0.96± 0.07 1.00± 0.00 1.00± 0.00 1.00± 0.00
(last 10) client 3.50± 1.58 2.40± 1.35 1.60± 0.97 1.40± 0.70 1.00± 0.00 1.00± 0.00 1.00± 0.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00

client 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.6: PD experiments with client strategy: (de) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.2: PD experiments with client strategy: (de) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

149

timeout
1 2 5 10 30 60 120

mean agent 1.50± 2.92 1.58± 2.89 1.81± 2.89 1.83± 2.89 1.92± 2.97 1.92± 2.92 1.88± 2.89
client 5.90± 2.85 5.05± 3.47 2.80± 2.26 2.55± 2.68 1.70± 1.17 1.75± 1.65 2.15± 2.25

mean agent 0.65± 0.14 0.79± 0.11 0.93± 0.07 0.99± 0.03 1.00± 0.00 1.00± 0.00 1.00± 0.00
(last 10) client 4.50± 1.35 3.10± 1.10 1.70± 0.67 1.10± 0.32 1.00± 0.00 1.00± 0.00 1.00± 0.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00

client 5.50 1.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.7: PD experiments with client strategy: (to) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.3: PD experiments with client strategy: (to) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

150

timeout
1 2 5 10 30 60 120

mean agent 7.86± 3.23 7.79± 3.02 4.74± 2.63 3.57± 2.51 2.27± 2.08 2.67± 2.09 1.64± 2.24
client 7.69± 3.18 7.35± 3.20 4.19± 2.39 3.02± 1.93 1.72± 0.51 2.12± 0.88 1.08± 0.46

mean agent 5.71± 1.44 5.58± 1.13 2.95± 2.01 2.20± 1.89 1.55± 1.74 1.65± 1.39 1.00± 0.00
(last 10) client 5.38± 1.70 4.70± 1.11 2.29± 1.56 1.87± 1.50 1.44± 1.39 1.43± 0.93 1.00± 0.00
median agent 10.00 10.00 1.00 1.00 1.00 1.00 1.00

client 10.00 10.00 1.00 1.00 1.00 1.00 1.00
median agent 10.00 5.50 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.8: PD experiments with client strategy: (tt) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.4: PD experiments with client strategy: (tt) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

151

timeout
1 2 5 10 30 60 120

mean agent 8.70± 2.28 8.46± 2.54 3.37± 2.78 6.18± 2.95 3.85± 2.61 3.44± 2.71 3.98± 2.48
client 7.21± 3.54 7.13± 3.63 1.55± 0.87 4.64± 2.83 2.65± 1.10 2.29± 1.10 2.83± 1.24

mean agent 7.39± 1.17 6.91± 1.07 1.96± 1.35 3.92± 2.63 2.57± 3.32 2.03± 2.18 2.69± 2.86
(last 10) client 4.42± 1.40 4.27± 1.01 1.30± 0.58 2.49± 1.54 2.13± 2.39 1.59± 1.26 1.92± 1.61
median agent 10.00 10.00 1.00 10.00 1.00 1.00 1.00

client 10.00 10.00 1.00 1.00 1.00 1.00 1.00
median agent 10.00 10.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.9: PD experiments with client strategy: (t2) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.5: PD experiments with client strategy: (t2) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

152

timeout
1 2 5 10 30 60 120

mean agent 7.26± 3.89 7.21± 4.13 4.47± 2.46 5.75± 2.89 2.75± 2.15 3.48± 2.17 1.72± 2.35
client 7.21± 3.50 7.21± 3.64 4.42± 2.15 5.42± 2.99 2.31± 1.07 2.93± 1.44 1.23± 0.92

mean agent 4.52± 1.28 4.42± 0.59 2.71± 2.20 3.76± 2.22 1.64± 1.37 2.29± 2.09 1.00± 0.00
(last 10) client 4.41± 1.68 4.42± 0.75 2.71± 1.69 3.10± 1.66 1.53± 1.12 1.96± 1.57 1.00± 0.00
median agent 10.00 10.00 1.00 10.00 1.00 1.00 1.00

client 10.00 10.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.10: PD experiments with client strategy: (2t) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.6: PD experiments with client strategy: (2t) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

153

timeout
1 2 5 10 30 60 120

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.93± 1.30 9.50± 0.92 9.35± 0.94 9.21± 1.34
client 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.38± 1.62 8.56± 1.56 8.09± 1.94 7.46± 2.40

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.89± 2.74 8.95± 1.24 8.64± 1.86 8.36± 1.74
(last 10) client 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.34± 3.74 7.63± 3.52 6.77± 4.01 5.61± 3.91
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A.11: PD experiments with client strategy: (1.0) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.7: PD experiments with client strategy: (1.0) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

154

timeout
1 2 5 10 30 60 120

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.54± 1.15 8.91± 0.99 4.14± 2.38 3.14± 1.96
client 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.27± 1.35 8.47± 1.11 3.71± 2.36 2.87± 2.13

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.60± 3.32 8.10± 3.75 2.08± 2.84 1.65± 2.09
(last 10) client 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.27± 3.76 8.21± 3.80 2.08± 2.84 1.43± 1.06
median agent 10.00 10.00 10.00 10.00 10.00 1.00 1.00

client 10.00 10.00 10.00 10.00 10.00 1.00 1.00
median agent 10.00 10.00 10.00 10.00 10.00 1.00 1.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 1.00 1.00

Table A.12: PD experiments with client strategy: (same) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.8: PD experiments with client strategy: (same) and discount γ = 0.9 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

155

timeout
1 2 5 10 30 60 120

mean agent 10.33± 0.15 10.33± 0.18 10.06± 0.14 10.07± 0.07 10.07± 0.06 10.02± 0.04 10.47± 0.14
client 6.70± 1.49 6.70± 1.78 9.40± 1.35 9.30± 0.66 9.25± 0.64 9.80± 0.41 5.25± 1.37

mean agent 10.39± 0.12 10.43± 0.19 10.12± 0.10 10.10± 0.25 10.09± 0.19 10.04± 0.13 10.54± 0.38
(last 10) client 6.10± 1.20 5.70± 1.95 8.80± 1.03 9.00± 2.49 9.10± 1.91 9.60± 1.26 4.60± 3.84
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 11.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 0.00

Table A.13: PD experiments with client strategy: (co) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.9: PD experiments with client strategy: (co) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

156

timeout
1 2 5 10 30 60 120

mean agent 0.59± 0.26 0.55± 0.21 0.47± 0.20 0.58± 0.22 0.67± 0.21 0.64± 0.26 0.77± 0.22
client 5.10± 2.61 5.50± 2.12 6.35± 1.98 5.20± 2.17 4.35± 2.11 4.65± 2.60 3.30± 2.23

mean agent 0.73± 0.19 0.64± 0.19 0.50± 0.20 0.66± 0.15 0.72± 0.09 0.76± 0.11 0.87± 0.15
(last 10) client 3.70± 1.89 4.60± 1.90 6.00± 2.00 4.40± 1.51 3.80± 0.92 3.40± 1.07 2.30± 1.49
median agent 1.00 1.00 0.00 1.00 1.00 1.00 1.00

client 1.00 1.00 11.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 0.50 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 6.00 1.00 1.00 1.00 1.00

Table A.14: PD experiments with client strategy: (de) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.10: PD experiments with client strategy: (de) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

157

timeout
1 2 5 10 30 60 120

mean agent 1.54± 2.95 1.52± 2.97 1.38± 2.97 1.48± 2.93 1.57± 2.96 1.60± 2.91 1.68± 2.90
client 5.45± 2.63 5.65± 2.25 7.10± 2.07 6.10± 2.97 5.15± 2.28 4.85± 2.54 4.10± 2.22

mean agent 0.72± 0.19 0.69± 0.12 0.51± 0.19 0.64± 0.16 0.71± 0.19 0.78± 0.14 0.81± 0.11
(last 10) client 3.80± 1.87 4.10± 1.20 5.90± 1.91 4.60± 1.58 3.90± 1.85 3.20± 1.40 2.90± 1.10
median agent 1.00 1.00 0.00 1.00 1.00 1.00 1.00

client 1.00 1.00 11.00 10.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.15: PD experiments with client strategy: (to) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.11: PD experiments with client strategy: (to) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

158

timeout
1 2 5 10 30 60 120

mean agent 7.29± 1.87 7.01± 1.73 9.16± 1.32 10.00± 0.00 8.38± 0.92 7.33± 1.42 7.33± 1.17
client 6.96± 1.83 6.74± 1.58 8.95± 1.46 10.00± 0.00 8.33± 0.85 7.05± 1.30 7.05± 1.02

mean agent 5.89± 1.26 6.41± 1.56 8.69± 1.41 10.00± 0.00 8.28± 2.82 7.04± 3.45 6.87± 3.75
(last 10) client 5.56± 0.99 6.30± 1.29 8.25± 1.64 10.00± 0.00 8.39± 2.59 6.93± 3.48 6.65± 3.83
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A.16: PD experiments with client strategy: (tt) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.12: PD experiments with client strategy: (tt) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

159

timeout
1 2 5 10 30 60 120

mean agent 9.47± 1.15 9.66± 0.75 9.90± 0.42 9.96± 0.20 9.97± 0.16 9.25± 0.80 7.28± 1.68
client 6.83± 2.15 8.45± 1.45 9.02± 1.68 9.46± 1.25 9.76± 0.70 8.59± 0.77 6.01± 1.40

mean agent 9.17± 1.08 9.35± 1.18 9.87± 0.55 9.91± 0.54 9.95± 0.23 9.17± 1.91 6.57± 3.75
(last 10) client 5.43± 1.08 7.59± 1.50 8.33± 1.44 8.92± 1.32 9.51± 0.94 8.40± 2.42 5.69± 4.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A.17: PD experiments with client strategy: (t2) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.13: PD experiments with client strategy: (t2) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

160

timeout
1 2 5 10 30 60 120

mean agent 5.25± 2.75 7.42± 2.35 8.72± 1.41 9.90± 0.31 8.32± 0.90 8.45± 0.87 7.63± 0.91
client 7.01± 1.80 8.08± 1.96 8.89± 1.27 9.96± 0.23 8.93± 0.91 8.67± 1.20 7.91± 0.84

mean agent 2.90± 2.20 5.84± 2.83 8.19± 2.62 9.81± 0.60 7.86± 3.76 8.00± 3.84 7.33± 4.31
(last 10) client 5.76± 1.04 7.05± 1.51 8.30± 1.53 9.92± 0.25 8.63± 2.22 8.22± 2.61 7.99± 3.25
median agent 1.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 1.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 5.50 10.00 10.00 10.00 10.00 10.00 10.00

Table A.18: PD experiments with client strategy: (2t) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.14: PD experiments with client strategy: (2t) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

161

timeout
1 2 5 10 30 60 120

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 9.41± 1.17 9.79± 0.43 10.00± 0.00
client 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.97± 1.25 9.68± 0.48 10.00± 0.00

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.79± 1.60 9.67± 1.04 10.00± 0.00
(last 10) client 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.24± 2.29 9.34± 2.09 10.00± 0.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A.19: PD experiments with client strategy: (1.0) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.15: PD experiments with client strategy: (1.0) and discount γ = 0.99
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median.

162

timeout
1 2 5 10 30 60 120

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.15± 1.55 9.40± 0.46
client 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.21± 1.50 9.52± 0.48

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 6.91± 3.38 9.26± 2.34
(last 10) client 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.24± 3.08 9.48± 1.64
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A.20: PD experiments with client strategy: (same) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.16: PD experiments with client strategy: (same) and discount γ = 0.99
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick):
median.

163

σb
0.01 0.05 0.10 0.50 1.00 2.00 5.00

mean agent 10.64± 0.27 10.77± 0.22 10.23± 0.10 10.02± 0.05 10.04± 0.08 10.00± 0.00 10.00± 0.00
client 3.60± 2.74 2.35± 2.18 7.70± 1.03 9.85± 0.49 9.60± 0.75 10.00± 0.00 10.00± 0.00

mean agent 10.75± 0.13 10.80± 0.11 10.28± 0.39 10.03± 0.07 10.08± 0.16 10.00± 0.00 10.00± 0.00
(last 10) client 2.50± 1.27 2.00± 1.05 7.20± 3.88 9.70± 0.67 9.20± 1.62 10.00± 0.00 10.00± 0.00
median agent 11.00 11.00 10.00 10.00 10.00 10.00 10.00

client 0.00 0.00 10.00 10.00 10.00 10.00 10.00
median agent 11.00 11.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 0.00 0.00 10.00 10.00 10.00 10.00 10.00

Table A.21: PD experiments with client strategy (co), timeout=120.0, discount γ = 0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.17: PD experiments with client strategy (co), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean, solid (thick):
median.

164

σb
0.01 0.05 0.10 0.50 1.00 2.00 5.00

mean agent 0.71± 0.23 0.74± 0.31 0.78± 0.26 0.78± 0.24 0.73± 0.25 0.76± 0.27 0.73± 0.24
client 3.85± 2.32 3.60± 3.10 3.25± 2.55 3.20± 2.38 3.65± 2.48 3.40± 2.74 3.70± 2.36

mean agent 0.81± 0.11 0.88± 0.06 0.87± 0.13 0.86± 0.13 0.83± 0.14 0.89± 0.12 0.79± 0.12
(last 10) client 2.90± 1.10 2.20± 0.63 2.30± 1.25 2.40± 1.35 2.70± 1.42 2.10± 1.20 3.10± 1.20
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00

client 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.22: PD experiments with client strategy: (de), timeout=120.0, discount γ = 0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.18: PD experiments with client strategy: (de), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean, solid (thick):
median.

165

σb
0.01 0.05 0.10 0.50 1.00 2.00 5.00

mean agent 1.69± 2.85 1.76± 2.93 1.70± 2.89 1.62± 2.88 1.52± 2.91 1.60± 2.89 1.60± 2.89
client 4.05± 2.31 3.30± 2.32 3.95± 3.10 4.70± 3.74 5.65± 3.08 4.85± 3.38 4.85± 3.42

mean agent 0.77± 0.13 0.85± 0.12 0.88± 0.09 0.88± 0.11 0.72± 0.18 0.82± 0.16 0.82± 0.14
(last 10) client 3.30± 1.34 2.50± 1.18 2.20± 0.92 2.20± 1.14 3.80± 1.81 2.80± 1.62 2.80± 1.40
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00

client 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.23: PD experiments with client strategy (to), timeout=120.0, discount γ = 0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.19: PD experiments with client strategy (to), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean, solid (thick):
median.

166

σb
0.01 0.05 0.10 0.50 1.00 2.00 5.00

mean agent 4.67± 2.76 3.42± 2.83 5.93± 1.84 9.34± 0.50 9.93± 0.25 9.82± 0.40 9.78± 0.44
client 4.34± 2.39 2.98± 2.25 5.66± 1.49 9.18± 0.68 9.76± 0.69 9.77± 0.43 9.72± 0.47

mean agent 3.87± 1.04 1.80± 0.69 4.96± 3.89 9.03± 2.83 9.85± 0.34 9.65± 1.11 9.65± 1.11
(last 10) client 3.98± 1.16 1.91± 0.62 4.96± 3.92 8.81± 2.82 9.52± 0.81 9.54± 1.45 9.54± 1.45
median agent 1.00 1.00 10.00 10.00 10.00 10.00 10.00

client 1.00 1.00 10.00 10.00 10.00 10.00 10.00
median agent 1.00 1.00 1.00 10.00 10.00 10.00 10.00
(last 10) client 1.00 1.00 1.00 10.00 10.00 10.00 10.00

Table A.24: PD experiments with client strategy (tt), timeout=120.0, discount γ = 0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.20: PD experiments with client strategy: (tt), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean, solid (thick):
median.

167

σb
0.01 0.05 0.10 0.50 1.00 2.00 5.00

mean agent 7.46± 2.33 4.83± 2.80 8.11± 1.18 9.90± 0.43 10.02± 0.05 10.02± 0.04 10.00± 0.00
client 5.16± 2.58 2.75± 2.12 7.17± 1.03 9.46± 1.12 9.85± 0.49 9.85± 0.37 10.00± 0.00

mean agent 5.59± 2.47 3.73± 2.67 7.43± 3.42 9.81± 0.33 10.03± 0.05 10.03± 0.05 10.00± 0.00
(last 10) client 3.61± 1.67 2.41± 1.32 6.99± 3.92 8.93± 1.55 9.70± 0.48 9.70± 0.48 10.00± 0.00
median agent 10.00 1.00 10.00 10.00 10.00 10.00 10.00

client 1.00 1.00 10.00 10.00 10.00 10.00 10.00
median agent 1.00 1.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 1.00 1.00 10.00 10.00 10.00 10.00 10.00

Table A.25: PD experiments with client strategy (t2), timeout=120.0, discount γ = 0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.21: PD experiments with client strategy (t2), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean, solid (thick):
median.

168

σb
0.01 0.05 0.10 0.50 1.00 2.00 5.00

mean agent 2.63± 3.39 2.69± 3.01 8.41± 0.83 9.76± 0.99 9.82± 0.40 9.78± 0.58 9.90± 0.31
client 3.96± 2.56 3.85± 2.08 8.57± 1.21 9.48± 1.47 9.82± 0.40 9.72± 0.60 9.96± 0.23

mean agent 1.52± 0.57 1.12± 0.59 8.01± 3.62 9.51± 0.63 9.64± 1.14 9.56± 0.96 9.81± 0.60
(last 10) client 2.73± 1.17 2.77± 1.35 8.12± 2.66 8.96± 0.82 9.64± 1.14 9.45± 1.16 9.92± 0.25
median agent 1.00 1.00 10.00 10.00 10.00 10.00 10.00

client 1.00 1.00 10.00 10.00 10.00 10.00 10.00
median agent 1.00 1.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 1.00 1.00 10.00 10.00 10.00 10.00 10.00

Table A.26: PD experiments with client strategy (2t), timeout=120.0, discount γ = 0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.22: PD experiments with client strategy (2t), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean, solid (thick):
median.

169

σb
0.01 0.05 0.10 0.50 1.00 2.00 5.00

mean agent 9.71± 0.51 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00
client 9.38± 0.51 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00

mean agent 9.36± 2.02 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00
(last 10) client 9.47± 1.68 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A.27: PD experiments with client strategy (1.0), timeout=120.0, discount γ = 0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.23: PD experiments with client strategy (1.0), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean, solid (thick):
median.

170

σb
0.01 0.05 0.10 0.50 1.00 2.00 5.00

mean agent 10.00± 0.00 9.11± 0.80 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.01± 0.02 9.99± 0.22
client 10.00± 0.00 9.00± 0.79 10.00± 0.00 10.00± 0.00 10.00± 0.00 9.95± 0.22 9.61± 0.59

mean agent 10.00± 0.00 8.68± 2.79 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 9.96± 0.16
(last 10) client 10.00± 0.00 8.35± 3.51 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 9.41± 1.55
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A.28: PD experiments with client strategy (same), timeout=120, discount γ=0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d
/g

am
e

mean/median (last 10 games)

Figure A.24: PD experiments with client strategy (same), timeout=120.0, discount γ =
0.99. Red=client, Blue=agent, dashed=std.dev. solid (thin, markers): mean, solid (thick):
median.

171

Appendix B

ACT-based Dialogue Response
Generation: Additional Qualitative
Experiments

This appendix consists of additional experiments to evaluate the ACT-based neural re-
sponse generation models (namely, S2EPA, EPA2S-Seq2Seq and EPA2S-CVAE) presented in
Chapter 4.

B.1 Assessing S2EPA

First, I assess the quality of EPA vectors produced by the S2EPA model. Some example
sentences from the Cornell test set are shown in Table B.1, along with their EPA predictions
produced by S2EPA. I also include the closest word labels for each EPA from the ACT
lexicon of behaviours.

We note that the model’s EPA predictions are generally appropriate, and in many cases
they are in alignment with the ACT behaviour labels. For instance, ‘i think i am in love’
is fairly positive due to the presence of the word love; it is moderately potent and slightly
active because of the phrase i think. The closest labels in the ACT lexicon are caution
and collaborate with. Among these, caution seems to describe the input well. A similar
phenomenon is seen for the input ‘i hate you’, whose EPA prediction closely matches the
ACT labels malign, injure. An interesting case is ‘i have no fear of failure’ : it has two

172

Sentence EPA Closest ACT Labels

i think i am in love [1.60, 0.95, 0.55] caution, collaborate with
i hate you [-1.63, 0.85, 0.49] malign, injure
i have no fear of failure [0.64, 1.27, 0.80] train, confront
what the hell are you doing? [-1.64, 0.41, 1.39] badger, club
he’s determined, unstoppable [0.66, 1.87, 1.45] apprehend, challenge
what do i do for fun? [-0.35, -0.21, -0.04] poke, gawk at
will you have dinner with me? [0.91, 0.45, 0.79] concur with, jest with
please don’t talk with food in your mouth [-0.82, 0.10, -0.64] defer to, monitor
i insist on being told exactly what you have in mind [0.06, 0.03, 0.13] joggle, beckon to
you go ahead and relax, i’ll cook [0.95, 0.32, 0.47] pay for, concur with
i’ve been thinking about you [1.59, 1.12, 0.66] caution, collaborate with
you are despicable [-1.74, 0.86, 0.94] kick, club
i quit. [-0.1, 0.89, 0.17] search, smirk at
how about a drink? [0.60, 0.42, 1.06] query, jest with
there is nothing for me here anymore [-0.56, 0.30, 0.14] flee, sound out

Table B.1: Examples of EPA vectors (and their closest word labels in ACT) produced for
input sentences by S2EPA.

negative and strong words fear and failure. Yet, the model correctly predicts that the
overall sentiment is positive and powerful, and is described well by the label confront.

We also see some negative examples. The E value of ‘i quit’ is −0.1, but it should
be much more negative. The closest ACT labels search and smirk at don’t make sense
either. Similarly, the input ‘i’ve been thinking about you’ is composed of fairly neutral
individual words; however the model correctly predicts that overall the sentence is positive,
moderately potent and slightly active. On the other hand, its ACT labels caution and
collaborate with are not appropriate.

To quantify the success rate of alignment between sentences and S2EPA’s predictions, I
take a test set of 100 sentences (from the Cornell corpus, as before) and ask 3 human judges
to classify the EPA predictions as ‘good’ or ‘bad’. Averaging these ratings yields a score
of 0.739, indicating that 73.9% of the EPA predictions (on the test set) are in alignment
with the input sentence affect. Thus, overall the S2EPA module works reasonably well.

B.2 Assessing EPA2S

Next, I would like to analyse the affective quality of responses produced by the two variants
of the EPA2S model: Seq2Seq and CVAE.

173

First, I present the outputs of the traditional Seq2Seq model (without the α vectors
as input). Table B.2 shows its predictions on a small test set of inputs C chosen from
the Cornell test set. We observe that the responses are grammatically well-formed but
generally short and vague; this is a known shortcoming of naive Seq2Seq models.

C Traditional Seq2Seq (baseline)

i hate you that is okay
i think i’m in love who is it
i have no fear of failure i have it in me
how about a drink? sure why not
i’ve been thinking about you that makes it okay
there is nothing for me here anymore so what do you want

Table B.2: The outputs of traditional Seq2Seq with attention, without α labels.

Next, I add an EPA vector α to each training sample; in this experiment the α is
chosen manually from the ACT lexicon. Table B.3 shows the input prompts, target EPA
vectors and the corresponding text generated by EPA2S-Seq2Seq and EPA2S-CVAE.

Line # C α (Manually Chosen) EPA2S-Seq2Seq EPA2S-CVAE

1 [1.71,1.39,-0.90] (calm) you know me what do you want
2 i hate you [-0.50,0.72,0.81] (criticize) okay man can you scream
3 [-0.83,-0.93,0.44] (hide from) you write a proper part for me i feel so tired
4 [0.98,0.38,0.02] (agree with) who is it i don’t really know you
5 i think i’m in [-1.39, -0.47, 2.15] (laugh at) wait up please yeah but don’t make any noise
6 love [-1.53,-0.20,-0.19] (ignore) i don’t think so we should find a leader to fight
7 [2.14,1.21,-0.17] (appreciate) yes i believe it when you say
8 i have no fear [-1.61,0.66,1.25] (antagonize) i don’t know i need to leave early tomorrow
9 of failure [1.90,0.82,-0.11] (smile at) what do you say i know you, <unk>
10 [0.98,0.38,0.02] (agree with) sure that’s nice let me see what i can do about you
11 how about a [-1.05,-0.69,0.33] (avoid) i’m sorry i can’t there is something on the clouds
12 drink? [1.18, 1.47, 0.20] (charm) how long have you been awake i’m going with you baby
13 there is nothing [2.12, 1.12, -0.81] (comfort) yeah you know me it is better this way
14 for me here [1.64, 1.17, 0.47] (encourage) no it is it’s not too late to try
15 anymore [1.27, 1.14, 1.44] (entertain) not now you need to calm down

Table B.3: Example outputs generated by EPA2S for a given input sentence and EPA
vector.

Similar to the Seq2Seq baseline, we see short and non-committal responses by EPA2S-Seq2Seq.
As far as their quality and relevance is concerned, we see some positive examples (Lines
1, 4, 6, 7, 10, 11, 14) where the output sentences are well-aligned with the inputs C and
α; the rest of the examples show output that is syntactically coherent but does not align
well with either C or α or both. For instance, in Line 2, ‘okay’ is a valid response to ‘i
hate you’, but it does not correspond to criticizing. Similarly, in Line 5, the response ‘wait

174

up please’ is not relevant to the input ‘i think i’m in love’ or the target affect of laugh at.
Overall, the results are pretty evenly divided between positive and negative examples.

We see similar results for EPA2S-CVAE. There are some positive examples (Lines 2, 3,
7, 12, 13, 14). On the other hand we see several outputs that are contextually relevant
but affectively misaligned (Lines 1, 4, 5, 15). The responses are generally longer and less
vague than baseline Seq2Seq and EPA2S-Seq2Seq.

To quantify the performance of the two EPA2S variants, I set up an experiment as
follows. Given a test set of 100 sentences and the desired α vector, I ask 3 human judges
to specify whether the predicted response aligns with C, α, both or none. The results are
presented in Table B.4. Overall, the results are evenly distributed across the four classes.
Strictly speaking, the success rate (alignment with both C and α) is 23.1% and 27.6%
respectively for EPA2S-Seq2Seq and EPA2S-CVAE.

EPA2S-Seq2Seq EPA2S-CVAE

% Alignment with C and α 23.1 27.6
% Alignment with C only 25.5 22.0
% Alignment with α only 22.6 20.7
% Alignment with neither C nor α 28.8 29.7

Table B.4: Evaluating the two EPA2S variants.

B.3 Assessing the Full ACT Dialogue Pipeline

I now test the full model (the dialogue pipeline shown in Figure 4.3), where the two modules
S2EPA and EPA2S are integrated with ACT1. That is to say, the target EPA vectors α are
produced by ACT. I use two ACT settings for identities: friend-friend and friend-enemy.
The quantitative results are presented in the main chapter (Table 4.4). Here, I present the
qualitative results.

I first examine the setting where the ACT identity of both interactants is friend. The
results are shown in Table B.5. We see that ACT produces target actions that are very
friendly and nice (e.g. care for, thank, kiss, embrace). This is consistent with the respon-
der’s identity of friend. As far as the response quality is concerned, we see mixed results
as before. Both Seq2Seq and CVAE produces responses that are generally well-formed and

1The ACT software, called INTERACT, is publicly available at http://www.indiana.edu/~socpsy/

ACT/interact.htm.

175

http://www.indiana.edu/~socpsy/ACT/interact.htm
http://www.indiana.edu/~socpsy/ACT/interact.htm

relevant to the input prompt C, but they often seem to ignore α. Though the affective
interpretation of the responses is very subjective, we observe that Seq2Seq produces emo-
tionally aligned responses in Lines 2 and 4, while CVAE produces affectively appropriate
results on Lines 1, 5 and 6. I also include the ACT deflection values in the table for the
sake of completeness.

In the second setting, I set the ACT identities of prompter and responder to friend
and enemy respectively. The results are presented in Table B.6. We observe that the
actions predicted by ACT are not as friendly anymore (giggle at, disagree with, bellow at,
be sarcastic with); these behaviours are consistent with the responder’s identity of enemy.
Once again, we see that the responses don’t align with α in many cases. The positive
examples for Seq2Seq are Lines 5 and 6; those for CVAE are Lines 1, 2 and 6.

Line C α (ACT) & Closest ACT Labels Defl. EPA2S-Seq2Seq EPA2S-CVAE

1 i hate you [2.52, 2.52, -0.41] (care for, caress) 17.09 that’s not the point you must be tired now
2 i think i’m in love [3.13, 1.70, 1.39] (thank, kiss) 1.84 i’m glad you like it i wouldn’t do you if i were you
3 i have no fear of failure [3.72, 1.90, 1.3] (thank, propose marriage to) 4.36 well that’s me i will ride with you love
4 how about a drink? [3.37, 1.68, 0.92] (reward, thank) 4.06 sure that’s nice i have money
5 i’ve been thinking about you [3.12, 1.96, 1.31] (thank, kiss) 1.87 okay i like you
6 there is nothing for me here anymore [3.55, 1.99, 0.45] (embrace, propose marriage to) 9.05 i don’t think so it is better this way

Table B.5: The full ACT conversational model with ACT identities friend-friend.

Line C α (ACT) and Closest ACT Labels Defl. EPA2S-Seq2Seq EPA2S-CVAE

1 i hate you [-0.14, 0.43, 0.73] (rib, giggle at) 7.31 that is okay man you can scream
2 i think i’m in love [-0.03, 0.52, 0.62] (giggle at, disagree with) 6.33 I don’t doubt it I have second thoughts
3 i have no fear of failure [-0.25, 0.28, 0.77] (rib, bellow at) 4.78 you are right take care of you
4 how about a drink? [-0.38, 0.47, 0.75] (rib, bellow at) 4.39 where? let me see what i can do
5 i’ve been thinking about you [-0.13, 0.17, 0.47] (laud, josh) 6.27 that is great i believe in it
6 there is nothing for me here anymore [-0.20, 0.32, 1.07] (be sarcastic toward, banter with) 5.48 wait for me it is better to calm down

Table B.6: The full ACT conversational model with ACT identities friend-enemy.

Overall, it can be concluded that the performance of ACT response generation is not
significantly better than the baseline. This can be attributed to the underwhelming per-
formance of EPA2S models.

176

	List of Figures
	List of Tables
	Introduction
	Affective Decision Making
	Contributions

	Affective and Human-Like Conversational Agents
	Contributions

	Domain Adaptation in Text Classification and Generation
	Contributions

	Organization

	Background
	Markov Decision Processes
	Partially Observable Markov Decision Processes
	Planning
	Planning in POMDPs
	Monte-Carlo Methods
	Monte-Carlo Tree Search

	Deep Learning for Natural Language Processing
	Feed-Forward Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Gated Recurrent Units
	Word Embeddings
	Sequence-to-Sequence Framework
	Attention Mechanism
	Variational Autoencoders for Text Generation
	Conditional Variational Autoencoders

	A Brief History of Dialogue Systems
	Encoder-Decoder Dialogue Models
	Dialogue Evaluation Metrics

	Affective Intelligence for Decision Making
	Introduction
	Affect Control Theory
	Bayesian Affect Control Theory
	BayesAct Instances
	Proposed Algorithm: POMCP-C
	POMCP
	POMCP-C
	Extended POMCP-C

	Experiments
	Prisoner's Dilemma (Repeated)
	Affective Cooperative Robots (CoRobots)
	Affective Handwashing System
	8D Intersection Problem

	Related Work
	Conclusion

	Affective Response Generation for Neural Conversational Systems
	Introduction
	Related Work
	The Proposed Affective Approaches
	Affective Word Embeddings
	Affective Loss Functions
	Affectively Diverse Decoding
	Affect Control Theory for Dialogue Generation

	Experiments
	Data and Setup
	Results

	Limitations
	Conclusion

	Online Active Learning for Neural Response Generation
	Introduction
	Related Work
	Proposed Model
	Offline Two-Phase Supervised Learning
	Online Active Learning

	Experiments
	Quantitative Evaluation
	Qualitative Comparison

	Limitations
	Conclusion

	Transfer Learning for Neural Text Classification and Generation
	Introduction
	Related Work
	Domain Adaptation
	Memory-Based Neural Networks

	Proposed Approach
	Augmenting RNN with Memory Banks
	Progressively Increasing Memory for Incremental Domain Adaptation (IDA)

	Experiments
	Experiment I: Natural Language Inference
	Experiment II: Dialogue Generation

	Conclusion

	Conclusion
	References
	APPENDICES
	POMCP-C: Full experiments with Prisoner's Dilemma
	ACT-based Dialogue Response Generation: Additional Qualitative Experiments
	Assessing S2EPA
	Assessing EPA2S
	Assessing the Full ACT Dialogue Pipeline

