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Abstract

As Unmanned Aerial Vehicles (UAVs) become increasingly available, pose estimation
remains critical for navigation. Pose estimation is also useful for scene reconstruction in
certain surveillance applications, such as surveillance in the event of a natural disaster. This
thesis presents a Direct Sparse Visual-Inertial Odometry with Loop Closure (VIL-DSO)
algorithm design as a pose estimation solution, combining several existing algorithms to
fuse inertial and visual information to improve pose estimation and provide metric scale, as
initially implemented in Direct Sparse Odometry (DSO) and Direct Sparse Visual-Inertial
Odometry (VI-DSO). VIL-DSO utilizes the point selection and loop closure method of
the Direct Sparse Odometry with Loop Closure (LDSO) approach. This point selection
method improves repeatability by calculating the Shi-Tomasi score to favor corners as point
candidates and allows for generating matches for loop closure between keyframes. The
proposed VIL-DSO then uses the Kabsch-Umeyama algorithm to reduce the effects of scale-
drift caused by loop closure. The proposed VIL-DSO algorithm is composed of three main
threads for computing: a coarse tracking thread to assist with keyframe selection and initial
pose estimation, a local window optimization thread to fuse Inertial Measurement Unit
(IMU) information and visual information to pose scale and pose estimate, and a global
optimization thread to identify loop closure and improve pose estimates. The loop closure
thread also includes the modification to mitigate scale-drift using the Kabsch-Umeyama
algorithm. The trajectory analysis of the estimates yields that the loop closure improves
the pose estimation, but causes to scale estimate to drift. The scale-drift mitigation method
successfully improves the scale estimate after loop closure. However, the estimation error
level struggles to exceed the other state-of-the-art methods, namely VI-DSO and VI-ORB
SLAM. The results were evaluated on the EuRoC MAV dataset, which contains fairly short
sequences. VIL-DSO is expected to show more advantages when used on a longer dataset,
where loop closure is more useful. Lastly, using the odometry as a feed, scene reconstruction
and the effects of various factors regarding mapping are discussed, including the use of a
monocular camera, camera angle and resolution in outdoor settings.
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Chapter 1

Introduction

Robots are becoming increasing accessible and more common today. In particular, Un-
manned Aerial Vehicles (UAVs), especially quadcopters, can be easily utilized in various
applications. With the growing number of UAVs, the number of applications also grows. A
common configuration for a UAV is to attach a camera for filming or surveillance purposes,
or even to provide perspective to help the pilot navigate the drone through its environ-
ment. For autonomous vehicles, it becomes critical that the drone is able to locate its own
position, as well as determine its orientation, in order to navigate. The combination of
position and orientation is referred to as pose. In environments without access to GPS, the
camera feed can be used to determined the camera’s location by generating structure from
motion. UAVs are also often equipped with an Inertial Measurement Unit (IMU) that can
be used to further gather information about the pose of the vehicle.

In addition to pose estimation, it can be advantageous to compile the collected data in
the form of a three-dimensional (3D) map because extensive visual data is received by the
UAV. By reconstructing the entire scene, the user is able to see far more of the situation
than the camera’s current perspective, and can further evaluate the scenario. In order to
accomplish 3D scene reconstruction, the pose of the UAV must be known. This can be
accomplished using visual odometry. By comparing images temporally, depth estimates
can be generated from a monocular camera, which in turn are used to generate the 3-D
model of the environment.

This thesis presents a method for generating pose estimation when using UAVs in
outdoor mapping applications. In particular, it focuses on improving visual odometry with
inertial data fusion, as well as using loop-closure for better pose estimation. Subsequently,
these pose estimates are intended to be fed into 3-D scene reconstruction algorithms to
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generate detailed dense maps.

1.1 Motivation

There are events that can rapidly change the face of the planet. For example, landslides or
avalanches can change the environment and create situations where timely operations are
needed to save lives, while rending existing maps useless. Having information about the
scenario can allow for quick and critical decisions in planning rescue operations, as well as
other damage mitigation techniques. Often, if the situation is unknown, the rescuers cannot
freely move around without jeopardizing their own safety, resulting in slower progress.
Statistics show that 93% of avalanche victims survive if dug out within 15 minutes [10],
then the survival rates drop fast to 30% at 35 minutes. Scouting ahead with UAVs is much
more time-efficient, allow the rescuers to navigate the area and prioritize victims.

Improved pose estimation is also critical to navigation for robots and unmanned ve-
hicles. GPS-denied environments can be challenging to traverse, such as in mountainous,
cavernous or underwater regions. Utilizing Visual-Inertial Odometry (VIO) can provide
the location of the vehicle, which can be useful in local and global path planning.

The more detailed the map, the better the decisions that can be made. A three-
dimensional map would be able to highlight which parts of the terrain are passable. The
map could also be input to path planning algorithms to suggest possible routes for rescue
crews. In more advanced cases, autonomous rescue vehicles could used to navigate areas
without requiring human operators.

Alternatively, UAVs can be used for defense-based systems for monitoring an area.
Pose estimation is needed to navigate the environment and mapping can be used to note
changes. If there are any significant changes to the scene, ongoing surveillance can quickly
detect and report the differences.

1.2 Key Problems

Many of the existing algorithms for pose estimation and mapping are developed in indoor
environments. When transferred to outdoor environments, there are various issues with
these algorithms. For example, when the scale of the environment increases, it becomes
more difficult to ascertain depth. Stereo cameras require larger effective baselines and
infrared cameras can be flooded out by sunlight. Outside, there are also issues when the
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skyline becomes visible to the camera. The sky view is typically quite uniform, making
it difficult to identify features in the video feed. Algorithms are also unable to determine
depth for the sky, which is effectively present at an infinite distance. The finite flight time
of the UAV is another limiting factor for large outdoor areas, which needs to be taken in
consideration when maximizing the coverage.

When using visual odometry as the sole source of pose information, there are various
sources of error. The pose estimate can accumulate error and drift from the ground truth.
Additionally, when the camera is in fast motion or in low-light scenarios, visual algorithms
may struggle to detect features. This can result in loss of tracking and infeasibility of main-
taining pose estimates. Monocular camera-based methods also struggle with determining
scale for the scene.

1.3 Contributions

Visual-inertial odometry from [36] is able to provide metric estimates while providing
advantages of both visual and inertial information. Similarly, loop-closure, as implemented
in [15], is able to reduce drift errors over long datasets. In this thesis, the methods of
Direct Sparse Odometry (DSO), Direct Sparse Visual-Inertial Odometry (VI-DSO) and
Direct Sparse Odometry with Loop Closure (LDSO) are proposed to be integrated into
a single method called Direct Sparse Visual-Inertial Odometry with Loop Closure (VIL-
DSO), aiming to provide the advantages of both loop-closure and visual-inertial odometry.
As the key novel contribution of this thesis, the features of the aforementioned methods
are embedded in a single source code and the functions are unified in a single framework.
One of the major challenges in achieving this contribution is the variable types for points
and keyframes are managed differently in LDSO than in DSO and DSO. This is required
to guarantee the point selection repeatability needed for loop closure. In addition to
combining the existing methods, scale estimates are not maintained through the loop
closure in LDSO. As part of VIL-DSO, a scale-drift mitigation method is proposed involving
generating a scale factor between the sets of pose estimates generated before and after
loop closure using the Kabsc-Umeyama algorithm. This helps to retain the scale estimates
generated from the factor graph optimization used in pose estimation. This scale mitigation
approach also requires less computation than recalculating a scale estimate after loop
closure, such as by fusing IMU information at a global scale. The resulting pose estimates
can then be used for navigation, or as input for other algorithms for mapping or path
planning.

One proposed use of the estimated poses from VIL-DSO is to be fed into mapping
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algorithms, such as REgularized MOnocular Depth Estimation (REMODE), to generate
a dense map. A proposed system combining these is discussed as part of this thesis. Due
to the nature of outdoor mapping, modifications to the mapping approach are needed to
ensure map quality and coverage. These are intended to help maintain map quality while
ensuring that the UAV can cover more area, and are discussed in regards to future work
on mapping. This portion will also discuss parsing information more efficiently for depth
estimates over large passes.

3D Map

Scene Reconstruction

REMODE

Pose Estimation

VIL-DSO

Monocular Camera

Visual

IMU

Inertial

Pose and Depth

Point Cloud

UAV

Ground Station PC

Figure 1.1: Simple layout of the scene reconstruction system.

1.4 Thesis Outline

The background information and the current state-of-the-art are presented in Chapter 2.
Chapter 3 will presents the algorithm design for visual odometry and UAV pose estimation.
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Chapter 4 covers the proposed methodology of used for 3D scene reconstruction using the
pose information and the camera feed, as well as some discussions on for outdoor imple-
mentation issues and evaluation of the map. Chapter 5 contains experimental results and
comparisons to state-of-the-art methods, and Chapter 6 presents the concluding remarks.

A brief layout of the proposed scene-reconstruction system is illustrated in Figure 1.1.
VIL-DSO acts as the front-end pose estimation algorithm, taking in the IMU and camera
data to generate pose and depth estimates, which are passed to REMODE, which acts a
dense mapping algorithm.
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Chapter 2

Literature Review

2.1 Visual Odometry and Visual SLAM Overview

The problem of scene reconstruction is often closely tied to the Simultaneous Localization
and Mapping (SLAM) problem in robotics. According to [38], SLAM can be defined as
trying to localize the robot or UAV within an unknown environment, while building a
map of this environment as the same time. Since UAVs have limited payloads, sensor
inputs available focus primarily on visual information, i.e. cameras, as well as inertial
information, such as from an IMU, while avoiding the use of costly depth sensors such
as RGB-D cameras and LIDAR. Due to the computational intensity of SLAM methods,
finding the position and orientation of the robot through odometry is often implemented as
the front-end feed for another dense mapping algorithm. These odometry methods can be
classified as Visual Odometry (VO) or VIO depending on the information used. Similar,
SLAM methods which depend on visual information are often referred to as Visual SLAM
(VSLAM)

The combination of position and orientation is often called the UAV’s pose. One of the
key requirements for pose estimation is generating depth estimates of the scene. Stereo
cameras can generate depths estimates, but are ineffective at long distances due to relative
baselines. Typically in stereo photography, a general rule of thumb for the baseline is 1:30,
where the baseline is 1/30 the length of the furthest object. This means for a UAV at 90
meters, a three meter baseline would be needed. Alternatively, RGB-D camera that utilize
infrared reflections may be used, but are not effective in outdoor scenarios due to ambient
lighting flooding the scene. Therefore, for large-scale outdoor mapping, monocular cameras
are a more practical choice. When implemented as a standalone solution, monocular VO is
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able to effectively generate pose estimates of the UAV, but is unable to observe scale. These
methods use an arbitrary scale is assigned when the algorithm is initialized. Conversely,
integrating inertial data from an IMU can generate pose measurements in the metric scale,
but also can accumulate drift errors due to the accumulation of noise. By combining the
visual and inertial information, the resulting odometry method can have both estimated
metric scale and reduced drift error.

In scene reconstruction, a number of dense mapping algorithms rely on accurate pose
estimates. When precise locations are not available through either Real-Time Kinematic
(RTK) positioning or a camera system such as VICON, VIO can provide relatively accurate
positioning with little hardware cost.

Before discussing these algorithms, important conventions and background information
is covered.

2.2 Transformations and Pose Representations

This section summarizes the pose representations and the reference frame conventions used
in VIO and pose estimation.

2.2.1 Lie Groups for 3D Transformations and Poses

To represent pose estimates, transformations in 3D space are used, and represented using
Lie groups [6]. The pose of an object refers to both its position and orientation together,
which correspond to translation and rotation respectively in terms of rigid-body motions.

Rotations in 3D form a special orthogonal group of order 3, SO(3), and are represented
by 3x3 orthogonal matrices

R ∈ SO(3). (2.1)

Translation in 3D can be represented by a vector in R3. Any arbitrary rigid-motion can
be represented as a combination of a rotation and a translation. Therefore, all rigid-body
motions in 3D form a special Euclidean group of order 3, SE(3), and are represented using
homogeneous transformation matrices

C =

(
R t
0 1

)
∈ SE(3) (2.2)
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which consist of a rotation matrix and a translation vector

R ∈ SO(3), t ∈ R3. (2.3)

Finally, similarity transformations are a combination of rigid-body motions and a scal-
ing factor, s. In 3D space, they are are represented by the group, Sim(3), as follows:

R ∈ SO(3), t ∈ R3, s ∈ R, (2.4)

T =

(
R t
0 s−1

)
∈ Sim(3). (2.5)

The definitions and representations above allow us to manage combining transformations in
different scales, such as visual odometry in its own arbitrary scale, and inertial odometry in
the metric scale. Both SE(3) and Sim(3) transformations are often used in VO depending
on how the particular VO method deals with scale.

2.2.2 Visual-Inertial Transformation Conventions

When working with different frames of references, frame notations and conventions need
to be consistent. Typically the inertial reference frame is associated with the body of the
robot, while the visual frame of reference is aligned with the camera. Thus, Tbc (analagous
to T bc ) refers to the transformation from the camera to the body. Similarly, Tcw (or T cw)
represents the transformation from the world frame to the camera frame, which is also
called the camera’s pose in the world frame. Tcw is often used to represent the pose of the
drone, since the camera’s location is effectively the same the drone’s location.

2.3 Factor Graphs and Optimization

Rather than estimating only the current pose, many algorithms optimize the pose esti-
mation across multiple time steps using factor graphs. A brief review of factor graph
optimization, based on notes from Dellaert [4], and Dellaert and Kaess [5], as well as the
General Graph Optimization (g2o) framework [21], is described below.
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x1 x2 x3

z1 z2 z3

Figure 2.1: Hidden Markov Model, modeled as a Bayesian network

f0(x1)

x1

f1(x1, x2)

x2

f1(x2, x3)

x3 Factors

Variables

Figure 2.2: Hidden Markov Model, modeled as a factor graph

2.3.1 Factor Graph Models

A dynamic system can be often modeled as a Markov chain, in which the sequence of
possible states is entirely dependent on the previous state values. In the context of these
examples, the relevant states are pose x ∈ R6. A hidden Markov model assumes that
in each time step t, the states xt are not observable, and must be determined from the
observations zt ∈ R6, as shown in Figure 2.1. Note that the set of states xt from all time
steps is represented by X, and the set of observations zt from all time steps is represented by
Z. The observations Z are dependent on the hidden states X, resulting in the conditional
probability density, P (Z|X). In the example shown in Figure 2.1, given a series of known
measurements z1, z2, z3, the task is to find the hidden state sequence (x1, x2, x3) which
maximizes the posterior probability P (x1, x2, x3|z1, z2, z3).

The dynamic system and Markov chain illustrated in Figure 2.1 can be alternatively
represented using a factor graph. A factor graph is a bipartite graph that consists of two
kinds of vertices: factors and variables. Variables represent the unknown states in the
estimation, while the factors represent the probabilistic information on the variables that
is gained from the observations. Edges exist only between factors and variables, connecting
each factor to the variables that the factor provides information on. The alternative factor
graph to the estimation problem in Figure 2.1 is illustrated in Figure 2.2. The factors fi
correspond to the relative poses, as generated from the observations zi.
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The value of the graph can be generated by taking the product of the factors

f(X) =
∏
i

fi(xi). (2.6)

The task is to estimate the subset of state variables xi ∈ X that maximizes the value of the
graph. In other words, the factor graph is maximized by finding the values of each variable
that maximizes the probabilities of receiving the given measurements Z. This yields the
maximum a posteriori probability (MAP) state as

XMAP = arg max
X

∏
i

fi(xi). (2.7)

The state estimates are generated through optimization. The residual function r(xt, zt) of
the factor graph can be used to generate the cost function used in optimization. A simple
example of a residual function is

r(xi, zi) = h(xi)− zi, (2.8)

where h(x) is the observation or sensor model that maps the observations Z, from the
states, X.

h : X → Z (2.9)

The goal of the estimation is to find the values of X such that the likelihoods of observations
Z are maximized, as in

p(Z|X) ∝ exp

(
−1

2
||hi(xi)− zi||2Σi

)
. (2.10)

where Σi is the covariance matrix and || · ||Σi
is the Mahalanobis norm. Since the logarithm

of 2.10 is monotonic, maximizing the probability is equivalent to minimizing the negative
log-likelihood function (as well as dropping the 1

2
factor), which results in

XMAP = arg min
X

∑
i

||hi(xi)− zi||2Σi
. (2.11)

This is the same as minimizing the sum of nonlinear least squares. The cost function g(X)
is subsequently defined as

g(X) :=
∑
i

||hi(xi)− zi||2Σi
. (2.12)

Optimizing the cost function yields estimates for the entire sequence of states, which tends
to yield a more smooth trajectory, as opposed to methods that only estimate the current
state. Two common methods for solving the non-linear least squares problems include
Gauss-Newton optimization and Levenberg-Marquardt optimization.
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2.3.2 Marginalization

Due to the nature of continuous VIO, additional data is constantly being added to the
system and constantly increases the complexity of the factor graphs. While it is possible
to simply omit variables, and subsequently any factors tied to them, a more accurate
optimization result can be obtained by marginalization. Marginalization is done using the
Schur complement, as presented in [7]. If a system of equations can be expressed a block
matrix, the Schur complement decomposes the block matrix into components, which allows
for elimination of variables while retaining the information from the system of equations.

Assuming the cost function used to minimize the residuals is in the form

E(x) = 2xTb + xTHx+ c, (2.13)

the constant c can be dropped and it can be rewritten as a linear system (Gauss-Newton),
which results in

Hx = b, (2.14)

[
Hαα Hαβ

Hβα Hββ

] [
xα
xβ

]
=

[
bα
bβ

]
, (2.15)

where α are the variables we are retaining, and β refers to the variables that are being
marginalized. Applying the Schur complement yields

Ĥααxα = b̂′α, (2.16)

where
Ĥαα = Hαα −HαβH

−1
ββHβα (2.17)

b̂′α = b′α −HαβH
−1
ββb

′
β. (2.18)

This is analogous to taking a system of equations and eliminating a variable, except with
matrices. This gives us a new energy function related to xα alone,

E ′(xα) = b̂′α + xTαĤααxα. (2.19)

Ultimately, this allows for the elimination of variables from the factor graph, while still
retaining information from the edges (or factors) that were connected to it.
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2.3.3 Pose Graph for Loop Closure

A simple example of a factor graph application is its use in loop closure. In this application,
the poses of the UAV can be modeled as the graph variables, while the VO measurements
are the factors, or edges, tying the variables together. When a loop is detected, an edge
is generated between the corresponding poses. This kind of loop closure is used in LDSO
[15] and is discussed in more detail in chapter 3.

2.4 Existing VO and VSLAM Methods

VO and VSLAM methods can be categorized by the formulation used. Direct methods
use the actual sensor values, such as the brightness of each pixel. In the case of vision
systems, it is using the pixels in the frames and trying to minimize photometric error.
Alternatively, indirect methods use some level of pre-processing to generate an intermediate
representation [7]. For example, this could be creating features based of various criteria
such as corners or line-segments, and then minimizing the geometric error between these
features. In addition to this, the sparse methods are used on only a certain selection of
points, often intended for navigational purposes, while dense method method attempt to
construct using all of the pixels available. These dense methods are often more precise,
but also more computationally expensive. Dense methods also use the formulation of a
geometry prior by utilizing the connections between pixels in the image, which can help
yield smoothness in the results. Since in the context of search-and-rescue and real-time
navigation, the goal is to reach real-time processing speeds, sparse methods are often more
favorable. There are also differences in the formulations used to estimate the states. Some
frameworks use extended Kalman filters, while others use non-linear optimization methods
that can be modeled as factor graphs.

Since dense and spare methods are not mutually exclusive to direct and indirect meth-
ods, combinations can and do exist.

2.4.1 Sparse and Indirect Methods

Sparse and indirect methods tend to be some of the most widely-used techniques. These
algorithms estimate 3D poses through matching keypoints or features, and utilize geometric
error without generating a geometry prior. Some examples include Jin et al. [16], PTAM
[20], and monoSLAM [3]. This also includes ORB-SLAM [24], and its successor, ORB-
SLAM2 [25], which are key examples of SLAM algorithms that utilize the keyframe-based
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approach proposed in [23] and developed further in [26]. These complete SLAM solutions
yield some of the best results for pose estimation in the state-of-the-art.

2.4.2 Dense and Indirect Methods

The combination of dense and indirect is not as common in literature. These methods
utilize geometric errors and the formulation of a geometry prior. Most indirect methods
use features that reduce the amount of information, resulting in sparse formulation, but
dense and indirect algorithms work from a dense, regularized flow field instead of features.
Examples include [29] and [35]. These methods use the optical flow from consecutive frames
for the generation of dense depth maps.

2.4.3 Dense and Direct Methods

Dense and direct methods optimize photometric error without using features, while also
creating geometry prior to help determine the structure of the scene. Examples include
DTAM [27] and its precursor [32]. LSD-SLAM [8] is also an example of this type of
algorithm, working directly on the pixels in the images to form a semi-dense map for
areas with significant intensity gradients. DPPTAM [2] is another method that combines
odometry for pose estimation with dense scene reconstruction to produce a map.

2.4.4 Sparse and Direct Methods

Sparse and direct methods optimize photometric error directly on camera images without
requiring intermediate features, and do not use a geometry prior to formulate the structure.
The method from Jin et al. [11] uses an extended Kalman filter, while other examples such
as DSO [7] and subsequent works, LDSO [15] and VI-DSO [36], use non-linear optimization,
which can be modeled as a factor graph. The VIL-DSO method described in chapter 3
and presented in this thesis is also based on this formulation of VO.

2.4.5 Hybrid Methods and Deep Learning

There are also methods that do not fit exactly into any of the above categories. For
example, Semi-Direct Visual Odometry (SVO) [12] and SVO2.0 [13] uses a semi-direct
method, which includes an indirect formulation as part of its optimization.
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In addition to this, some newer methods are starting to integrate machine learning into
their algorithms. One such example is Deep Virtual Sparse Odometry (DVSO) [37], which
uses training data to help with depth estimation. However, these algorithms are reliant on
training data, and are less effective in scenarios that differ significantly from the training
set. In the case of drastically shifted terrain in a natural disaster, it may be difficult to
obtain sufficient training samples. Urban environments are easily repeatable and more
appropriate for these applications.

2.4.6 Visual and Inertial Fusion

A number of VO methods also incorporate inertial information, resulting in VIO. These
algorithms are able to observe scale without using RGB-D cameras. For example, there are
implementations of ORB-SLAM that fuse visual and inertial information, as proposed in
[26]. LearnVIORB-SLAM [17] is one such implementation that is later used in this thesis
for algorithm comparisons.

Visual-inertial data fusion can be classed as either tightly-coupled or loosely-coupled
methods. Tightly-coupled methods jointly optimize the motion information from the IMU
with the visual information as part of the energy function used in the optimization. Con-
versely, loosely coupled methods apply the estimates from the VO as inputs into the com-
bination algorithm used for optimization. This is typically easier to implement as it does
not require modification of the VO algorithm. An example of loose-coupling is presented
in [19], where an extended Kalman Filter is used to fuse IMU information with odometry
measurements. VI-DSO is a tightly-coupled method, as it use IMU information directly in
the VO portion of the estimation.

2.4.7 Gaps and Contributions in Visual Odometry

The motivation for using a direct and sparse formulation is analagous to DSO. Direct
avoids the issues with features and lighting while sparse negates the issues related to the
complexity of solving for a geometry prior, making real-time calculations feasible.

Visual odometry methods that only utilize monocular camera do not have observable
scale The scale used is arbitrarily initialized, which make it difficult to do path planning
with the pose estimates. A common solution to this is to gather depth information using
an RGB-D camera, which may use either stereo or infrared reflection to estimate depth.
Unfortunately, stereo cameras are only typically effective within a distance of 10 to 15 times
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the baseline, and infrared radiation is often flooded by ambient light in outdoor scenarios.
This makes these solutions nonideal for large-scale surveillance in outdoor scenarios.

Alternatively, metric scale can be obtained by including inertial information from an
IMU. This is independent of what the camera sees, and as a result does not have the same
weaknesses as RGB-D cameras. The main drawback to integrating inertial information is
that it can be noisy and lead to accumulated drift, especially over long flights. To remedy
this, loop closure is used. Loop closure identifies features that have been seen before, and
includes them as part of the pose-graph optimization to reduce the drift error when a drone
revisits an area.

Ultimately, the odometry algorithm used in this thesis is called Direct Sparse Visual-
Inertial Odometry with Loop Closure, which is based off the visual odometry from DSO,
while utilizing dynamic marginalization and Bag of Words (BoW) loop closure. Due to the
loop-closure causing scale drift, a method is introduced to reduce this drift by matching
the loop-closed pose estimates with their estimates from before loop closing.

2.5 Mapping after Pose Estimation

The algorithms discussed in the previous section include both odometry and SLAM solu-
tions. In VSLAM solutions, the visual information is used to determine the location of
features or pixels and allow for the generation of the map. In contrast, the primary goal
of VO is to find the pose of the camera, and the map is not optimized. Some dense map-
ping algorithms struggle with reconstruction in real-time, while lighter odometry methods
are able to generate pose with less computation. Once pose has been estimated, it can
be used as the reference point for a scene reconstruction algorithm. Some complete scene-
reconstruction system used odometry as front-end estimation for states, while using a dense
mapping method at the back-end for scene reconstruction. In particular, REMODE [28]
is a method that relies on robust pose estimates to form a dense map. A combined imple-
mentation using REMODE and SVO is described in [9]. However, these methods are more
suitable when scene reconstruction quality is priority. In contrast, the priority of this thesis
is surveying a large area quickly and efficiently in the event of a natural disaster. This thesis
proposes VIL-DSO combining with REMODE to create a complete scene-reconstruction
system, as well as noting specific considerations for outdoors mapping.
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Chapter 3

Visual-Inertial Odometry for Pose
Estimation

In order to generate accurate scene reconstructions, accurate pose estimation for the UAV
is required. The accuracy of the pose estimation is critical in scene reconstruction since
the pose of the drone is used as the reference point for the visual information used in
reconstruction, as noted in algorithms such as [28]. The design goal of this chapter focuses
on is to generate good pose estimates for the camera, and subsequently the UAV, using
only monocular camera and IMU as sensors.

As part of the visual-inertial odometry implementation, a keyframe-based framework
is used, similar to the one developed in [23] and used in [26]. The system states, such as
the pose and the velocity, are tied directly to each keyframe. Keyframes are often used to
manage visual information in classical visual-only systems [23]. To extend this framework,
the IMU data and poses are aligned to these keyframes for simple management of the
states. Keyframes with arbitrary intervals are still useful in computations, as long as the
critical information, such as timestamps, is retained. This prevents the need for a constant
rate of keyframes.

The odometry solution proposed in this thesis is based on DSO [7], which is available as
open-source code. The keyframe-based framework considered in this thesis has three main
threads to cover coarse tracking, local keyframe optimization, and global loop closure, as
summarized in Figure 3.1. The tracking thread focuses on managing tracking features in
order to generate rough pose estimates between keyframes. The local optimization thread
forms pose estimates by minimizing the photometric error between the points and the
frames, while also fusing IMU information with the visual information. This thread utilizes
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an implementation of VI-DSO [36] as implemented by Sun in [33], as the original source
code for VI-DSO was unavailable. The global optimization thread manages keyframes
at a global scope, where it matches the current keyframe to a database and completes
loop closures to improve the final pose estimates, as initially proposed in LDSO [15]. The
combined algorithm is called Direct Sparse Visual-Inertial Odometry with Loop Closure
(VIL-DSO). The layout between the threads for VIL-DSO is illustrated in Figure 3.2.

In terms of implementation, the DSO code of [7] forms the basis for the coarse tracking
thread and the local keyframe optimization thread. VI-DSO adds IMU information to
these two threads, and also implements dynamic marginalization. LDSO extends DSO
by modifying the point selection method and adding the global optimization thread for
loop closure. The proposed VIL-DSO algorithm integrates all these features, and adds on
scale-drift mitigation to improve post loop-closure scale estimates. This chapter explains
the details of this integration and the scale-drift mitigation add-on.

Visual-Inertial Odometry with Loop Closure

Thread 1

Coarse Tracking

• Based on DSO and
VI-DSO

• Projects active points
into current KF

• Two-frame image
alignment

• Constant motion model

Thread 2

Local Optimization

• Based on DSO and
VI-DSO

• Sliding local window

• Fuses IMU information
to get scale

• Dynamic
marginalization

Thread 3

Global Optimization

• Based on LDSO

• Loop closure

• Pose graph
optimization

• Scale-drift mitigation

Figure 3.1: Main threads in VIL-DSO.
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Figure 3.2: Layout of VIL-DSO

3.1 Initialization and Pre-integration of IMU

A number of key parameters need to be estimated prior to fusing IMU information into
the factor graph. These include the gyroscope and accelerometer biases, as well as the
magnitude of gravity. The initialization implementation used is based on VI-DSO [36],
where initial estimates for the biases, b0, are set to zero and the scale is set to 1.0. Gravity
direction and magnitude are determined by averaging the first 30 measurements from the
IMU. Note that scale is defined as the ratio between distances in the odometry reference
frame and distances in the world reference frame.

Since IMU information is generated at a higher frequency than camera frames, the
IMU data is pre-integrated to form single instances of data that can be fused at each time
step. These time steps correspond to the time when each visual frame is taken, thus the
pre-integrated IMU information represents all IMU readings taken between consecutive
frames or keyframes, depending on where the IMU information is used. Pre-integration is
calculated using a simple constant-acceleration model.

3.2 Keyframe and Point Management

Each frame that is input into the odometry program passes through a number of steps to
determine if it will be used as a keyframe for the pose estimation in the local optimization
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thread. First, all frames are tracked relative to the latest keyframe, as part of the coarse
tracker. Next, a check is performed to see if a new keyframe is needed. A keyframe is
generated from the current frame if it is needed. Lastly, old keyframes are marginalized as
required.

3.2.1 Coarse Tracking Thread

The coarse tracking thread utilizes visual information to generate rough pose estimates
between frames. This allows for tracking in between keyframes, where optimization is not
used. It also provides an initial rough estimate for the local-window optimization to start
at. This thread comes from DSO’s codebase [7] with additions from [36] and [15]. The
coarse tracker first projects all active points into the current keyframe and dilates them.
Then, it uses conventional direct image alignment between the current frame and the active
keyframe, during which the scale is fixed. As part of this alignment, multi-scale pyramid
representation and a constant motion model are used. In addition, inertial residuals are
calculated from the IMU pre-integration and included between subsequent frames. After
the local-window optimization is completed, a new keyframe is generated and the coarse
tracking is reinitialized, using the new scale, gravity, bias and velocities as references for
the visual factors. The resulting poses from the coarse tracker are used as initial estimates
in the local optimization thread.

3.2.2 Keyframe Generation

Keyframe generation is based on a criteria check, as proposed in DSO [7]. If a weighted
summation of the following criteria exceed a predefined threshold, then a new keyframe is
generated:

1. The Field of View (FOV) changes significantly, as measured by the mean square
optical flow,

f :=

(
1

n

n∑
i=1

||p− p′||2
) 1

2

, (3.1)

where n is the number of frames since the last keyframe and p is the position.
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2. The translation of the camera causes occlusion of the points, which is indicated by
the mean flow without rotation,

ft :=

(
1

n

n∑
i=1

||p− p′t||2
) 1

2

, (3.2)

where pt is the warped point position with R = I3x3

3. There is significant change in brightness, as indicated by a relative brightness factor
between the keyframe and the current frame,

a := |log(eaj−aitjt
−1
i )| (3.3)

The weighted summation of the above criteria is defined as

b := wff + wftft + waa (3.4)

where wf , wft , wa are the relative weights. If this measure, b, exceeds a predefined thresh-
old, Tkf , then a new keyframe is generated. The threshold, Tkf , is arbitrarily defined and
set in DSO as Tkf = 1. The adjustment of the weights and this threshold was not explored.

After the weighted criteria is checked, an additional check against the IMU timestamps
is calculated. If the time between IMU timestamps for the current frame and the previous
keyframe exceeds a threshold (0.45 seconds is used) and the cumulative measure, b, in
(3.4) exceeds another threshold, Timu, then a new keyframe is taken. This is to ensure
that keyframes continue to be taken when IMU data is absent. Similarly to the previous
threshold Tkf , Timu is also arbitrarily defined and was not adjusted from the source code,
which was set as Timu = 0.45. A new keyframe is also generated if it has been too long
time-wise since the previous keyframe was generated.

3.2.3 Point Generation

In pose estimation, having excessive information is redundant, so only a limited number of
points are used, which is also noted in [7] and [28]. A limited number of point candidates
are proposed in each keyframe. The default value is 1500 in the original implementation
of DSO. Similarly, the total number of active points retained across all active frames is
limited to Np. An arbitrary number, Np = 2000, is used to keep computation minimal.
Points are selected using a combination of two different methods. The first method is from
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DSO [7], which uses a dynamic grid search. This is used to ensure that enough pixels
are selected from portions of the image that may be poorly textured. The second method
utilized is from LDSO, which selects corners that are detected from the Shi-Tomasi score
[31]. Selecting corners improves repeatibility in point selection and improves the likelihood
of achieving matches required for the BoW loop closure.

3.2.4 Marginalization

The goal of marginalization is to remove the old states, reducing the complexity of calcula-
tions, while retaining some a priori information about the previous states. The criteria to
decide if certain data is marginalized or not is based on frame and pose management from
the VO. Once the data from a frame is marginalized, associated factors are removed from
the factor graph and a new factor is formed, acting as a priori information for the window.
Marginalization is completed using the Schur-Complement, as detailed in preliminaries.

In order to reduce the amount of data being processed in the factor graph, older data
is marginalized in a sliding-window approach, accordingly to a list of criteria from DSO
[7], where I1 is the current keyframe:

1. Keep the latest two keyframes, I1 and I2.

2. Marginalize a keyframe if it shares less than 5% of its points shared with I1.

3. Marginalize a keyframe if the number of keyframes exceeds the set threshold, NI . A
distance score between keyframes is calculated to select the frame to remove,

s(Ii) =
√
d(i, 1)

∑
j∈[3,n]\{i}

(d(i, j) + ε)−1, (3.5)

where d(i, j) is the Euclidean distance between keyframes Ii and Ij, and ε is a small
constant.

4. Marginalize a point if it is no longer in the FOV.

5. Marginalize a point if its host frame is marginalized.

VI-DSO [36] introduces a new method for marginalization called dynamic marginaliza-
tion. In this, multiple marginalization factors are calculated and maintained, and are reset
when the scale estimate deviates too much. The three factors used are:
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1. Mvisual, which contains the scale-independent information generated from the visual
information, and no IMU information.

2. Mcurr, which contains all information since the scale linearization point was set.

3. Mhalf , which contains only the recent states with scale estimates similar to the current
scale estimate.

Whenever the current scale estimate deviates too much from the scale estimate at the
linearization point, the marginalization priors are reset by setting Mcurr to Mhalf and Mhalf

to Mvisual. This results in the optimization always retaining some level of information from
prior states regarding the scale estimate.

3.3 Local Optimization Thread

In the local graph optimization thread, the factor graph minimizes photometric error be-
tween keyframes by optimizing energy residuals, as implemented in [7]. This is calculated
within a sliding window to minimize the amount of information in the computation. Frames
and points that leave the field of view are marginalized. The remaining keyframes form a
window that is local to the current keyframe. Only these keyframes and their associated
poses are optimized. The factor graph detailed in Figure 3.3 shows how the error terms
used in the optimization are created. An error term is generated between the host keyframe
of a point, and every keyframe that shares that point. For example, Ep13 is the error term
generated by Point 1 (P1) hosted by Keyframe 1 and overlapped with Keyframe 3. These
error terms are further defined in [7]. Edges between points and their host keyframes are
indicated with blue lines, while edges between points and other overlapping keyframes are
indicates with red lines.

The sum of these energy terms represents the full photometric error for all of the
keyframes and points involved in the factor graph. This is defined in [7] as

Ephoto :=
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj, (3.6)

where i runs over all keyframes F in the local window, p is over all points P in keyframe i,
and j is over all keyframes in which point p is observable. Optimization of the factor graph
is executed using the Gauss-Newton algorithm. It is unlikely to converge to an incorrect
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Point 1: dp1

Point 2: dp2

Point 3: dp3

Point 4: dp4

Figure 3.3: Factor graph of bundle adjustment to minimize photometric error, from DSO
[7].
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local minimum because initial pose estimates from tracking are used. The Levenberg-
Marquardt algorithm is not used because it adds an additional level of computation while
not substantially improving the results, as noted in [7].

To improve on the resulting state estimates from DSO and add metric scale, VI-DSO
[36] proposes a factor graph that includes pose, IMU biases, velocity, visual variables, grav-
ity direction and scale. Visual variables include camera intrinsics and brightness transfer
function parameters. Inertial and visual measurements are used to generate factors in the
graph that relate the unknown variables using the known probabilistic information. The
resulting factor graph is illustrated in Figure 3.4.

3.3.1 Scale Estimation

As part of the local window optimization, a transformation from the DSO reference frame to
the world reference frame is estimated. This transformation is expressed as TWD ∈ Sim(3),
and includes both rotation and translation. It also includes a scalar scale factor that
represents the ratio between distances in the DSO reference frame and the world reference
frame. This transformation is continuously iterated, and then applied to poses when they
are read by the visualizer or output from the program.

3.4 Global Keyframe Bundle Adjustment and Loop

Closure

While each of the poses is calculated in a local window, these pose estimates do not
account for when the UAV returns to previously visited locations. When returning to
these locations, it is possible to reduce drift error by utilizing loop closure. A pose graph
for loop closure is generated using all of the keyframes. This is different from the sliding
local window, which only uses keyframes near the current frame. Instead, it uses a global
scope which uses keyframes from the entire dataset. The factors between keyframes in
the global pose graph are generated from relative poses that are calculated from the pose
estimates of the local sliding window. The initial implementation of this thread is from
LDSO [15]. The difference between the local and global scopes is illustrated in Figure 3.5.

In order to detect loop closure, the ORB descriptors [30] are calculated from each
keyframe. These are repeatable due to using the corner features generated by the point
selection method from LDSO [15]. The descriptors are then packed into a BoW database
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Figure 3.4: Factor graph for VI-DSO [36].
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using DBoW3 [14]. When a new keyframe is generated, matching candidates are proposed
by referencing the BoW database. When there are enough matches, a loop is detected and
a Sim(3) transformation between the matched frames is calculated. This transformation
is used to generate an edge in the global pose graph, as illustrated in Figure 3.6.

Factor graphs are implemented using the g2o framework [21]. Optimization is done
using the Gauss-Newton method instead of the Levenberg-Marquardt method. The pose
estimates from the local optimization thread are used as initial estimates to ensure con-
vergence.

3.4.1 Scale Drift and Loop Closure

In the local optimization thread, pose and scale are estimated. Unfortunately, only poses
are passed to the global optimization thread for loop closure, which means that the scale

Sim(3) Transformation

Loop Closure

Candidate

Keyframe Database

Visual and

Inertial Info

Local Sliding Window

Global Pose Graph

Frame used in global and local window (active keyframes)

Frame only used in global window

Figure 3.5: Local window versus global window modeled from LDSO [15].
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Loop Closure Edge

Figure 3.6: Loop closure represented by a pose graph.

is no longer directly observable. In order to close loops, the original pose estimates need
to be stretched to fill the gaps, which can result in the scale drifting. Without using
IMU information, it is impossible to recalculate a new scale estimate. Many algorithms
are visual only and are not interested in the scale, or the scale drift, while other SLAM
methods are able to fuse IMU and loop closure at a global scope. However, with VIL-DSO,
fusing IMU at the global scope would counteract the advantages of using a local sliding
window and a global loop closure separately.

In order to mitigate the scale drift without fusing IMU information at the global scope,
the proposed method is to calculate a rotation and scale factor between the loop-closed
trajectory and the original trajectory estimates using Kabsch-Umeyama alignment. The
Kabsch algorithm [18] finds the optimal rotation matrix between the two paired sets of
points by finding the minimal root-mean-square deviation, while Umeyama [34] extends
this formulation to include a scale factor as well. This algorithm minimizes the squared
error between the two trajectories by finding the optimal Sim(3) transformation between
the two sets. This method is often used for aligning trajectories for error analysis.

The Kabsch-Umeyama algorithm is as follows: Given two sets of corresponding points
X = x1, x2, ..., xn and Y = x1, x2, ..., xn The optimum transformation from X to Y can
be decomposed into a rotation R, a translation t and a scale c. These parameters can be
calculated as

R = USV T (3.7)

t = µy − cRµx (3.8)

c =
tr(DS)

σ2
x

(3.9)

where,

µx =
1

n

n∑
i=1

xi (3.10)
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µy =
1

n

n∑
i=1

yi (3.11)

σ2
x =

1

n

n∑
i=1

‖xi − µx‖2 (3.12)

σ2
y =

1

n

n∑
i=1

‖yi − µy‖2 (3.13)

Σxy =
1

n

n∑
i=1

(yi − µy)(xi − µx)T (3.14)

and the singular value decomposition of Σxy is UDV T . Subsequently,

S =

{
I if det(Σxy) ≥ 0
diag(1, 1, ..., 1,−1) if det(Σxy) < 0

(3.15)

In the context of VIL-DSO, only the 3D positions of the points are used, such that S is
a 3× 3 matrix. The sets of points are the before and after loop closure position estimates.
Only the scale factor is used from the Kabsch-Umeyama algorithm. This scale is then
multiplied with the existing scale factor from the local optimization thread to form a new
scale value. Using this method only mitigates the scale drift, as it shifts the scale value
to be equivalent to the estimated scale from the local optimization thread. If scale drifts
closer to its true value during loop closure, this method can actually makes results worse.
This effect can be seen in some results in chapter 5. The algorithm is also only set up to
compute the new scaling factor whenever there is a loop closure. If there is no loop closure
near the current pose, scale error can accumulate through the remaining pose estimates.

Alternative Methods Explored for Loop Closure and Scaling Problems

Three other methods were proposed and explored to find a new scale factor after loop
closure. The first method aligned the estimated trajectory with the pre-integrated IMU
trajectory using Kabsch-Umeyama alignment to find a scale factor. The second method
explored calculated relative distances from the IMU trajectory and plotted them against
the relative distances from the estimated trajectory. The slope of this plot represents scale.
Unfortunately, neither of these method were effective. The IMU information was too noisy
to form a clear trajectory. The IMU information needs to be fused incrementally to prevent
accumulation of too much noise.
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The third method proposed was to calculate Tbi as the relative pose for the body and
IMU for frame i in the world reference frame as well as Tci as the relative pose for camera
for frame i in the odometry reference frame. Next, convert Tci to the world frame by left
multiplying it with TWD, the transformation from odometry frame to world frame.

TWDTci =

(
RWDRci RWDtci + tWD

0 s−1
WD

)
(3.16)

Since the scale factor is not equal to one in the bottom right, we need to right multiply by
A, defined as

A =

(
I 0
0 sWD

)
. (3.17)

This yields

sWDTWDA =

(
RWDRci sWDRWDtci

0 1

)
(3.18)

Then, find TWD such that

TWD = arg min
∑
i

(
T−1
bi

[sWDTWDTci ]− I
)
, (3.19)

where TWD yields the rotation, translation and scale factor between the odometry and the
world frame. This provides a scale factor that accounts for both orientation and translation.
Unfortunately, it also requires a clear trajectory from pre-integrating the IMU, so it was
not implemented.

Alternative methods for pre-integration could be explored to enhance trajectory gener-
ation from the IMU information. Then, these three methods could be more fully explored
for generating a new scale estimate after loop closure.

3.5 Code Implementation

The implementation of the proposed VIL-DSO algorithm involved integrating the code
sources of DSO [7], LDSO [36], and VI-DSO [36] [33], using LDSO as the code base, and
applying some significant modifications as briefly summarized below:

• Functions and sections of code related to the IMU were transferred to LDSO from
[33].
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• Point and frame types were converted to match with LDSO, since LDSO uses different
point and frame types than VI-DSO and DSO.

• Flags in the code for using the algorithm with and without IMU were fixed.

• Dynamic marginalization functions were adjusted to correctly follow formulations
from [36] and allow for adjustments to scale.

• Functions were added to implement scale-drift mitigation.

• Functions were adjusted and added to output trajectory estimates for analysis.

• Topics in the visualizer for LDSO were separated and adjusted to correctly appear
in the user interface.

• New topics were added to visualizer for the estimated trajectory with scale-drift
mitigation.

3.6 Extensions and Limitations

A key drawback of VIL-DSO is that it does not have re-localization. It is unable to
redetermine its location if tracking is lost. Many of the requirements to implement re-
localization are present already in the algorithm. The IMU could be used for coarse
tracking when tracking is lost visually, and then matches could be found using the existing
BoW database, using a Sim(3) transformation between the match. However, points would
need to be saved in the memory for each frame in the BoW.

Another drawback is that the software has not been optimized for computational speed.
It runs at near real-time, at approximately 15 frames per second, but lags a bit behind the
video source. Runtime information was not available for VI-DSO, but VIL-DSO is expected
to be slower due to the addition of the loop closure thread. It is noted in [15] that LDSO’s
point selection method is slower than DSO, which would contribute to a slower runtime. A
new version of DBoW3 has also been released, which is called Fast Bag of Words (FBoW).
Implementation of this would likely improve computational speeds. Implementing GPU
acceleration would also be ideal.

The pose estimates from the loop closure output only need to be re-scaled to be more
accurate. Thus, loop closure pose estimates and the final scale estimates using the mitiga-
tion method were calculated in different steps in VIL-DSO. An alternative solution would
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Figure 3.7: Loop closure with IMU data.

be to fuse loop closure and IMU data simultaneously, as shown in the factor graph in
Figure 3.7. Unfortunately, this method requires a bundle adjustment in the global scope,
which defeats the computational advantages of using a sliding window and omitting IMU
information from the loop closure. The entire factor graph would be recalculated every
loop closure. This solution would be more in the scope of full SLAM solutions. To further
pursue this as a SLAM solution, inertial data could be tied to each of the points and the
map itself could be optimized, rather than just the poses.
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Chapter 4

Scene Reconstruction

After pose estimates for the UAV are generated, the next goal would be to generate more
information about the scene. This can be accomplished by reconstructing the environment
using a dense mapping algorithm. The dense map can be used to more easily evaluate
the scenario and decide the course of action. The goal of this section is to produce a map
with a visible surface for interpretation by human user. The map can also be used as a
navigation tool for ground-based vehicles.

In particular, this chapter discusses hardware setup and considerations for future work
with outdoor mapping. It explores using REMODE [28] as a dense mapping algorithm
using the feeds of VIL-DSO

4.1 Dense Mapping using REMODE

One of the real-time mapping algorithms is REgularized MOnocular Depth Estimation,
which is discussed throughout in this chapter. The goal of REMODE is to generate dense
depth maps from a monocular camera in motion. To accomplish this, it utilizes Bayesian
depth estimation to generate depth estimates for each pixel. As part of the algorithm,
camera pose must be known. This can be provided by various means, such as with SVO
as proposed in [9], or with another odometry program such as VIL-DSO. The odometry
passes images, camera poses and coarse depth estimates to REMODE. REMODE also uses
a smoothing method to help reduce the effects of noise from the camera pose estimates by
providing spatial regularity.
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4.1.1 Convergence Criteria

REMODE selects the current frame as the active keyframe. It then uses subsequent frames
to converge the depth information on the pixels of the keyframe. When a sufficient number
of points have converged depth estimates within a threshold, the keyframe is released and
the converged depths are published into the visualizer. The algorithm then selects the next
frame as a new keyframe.

4.2 Hardware and System Setup through ROS

The scene-reconstruction system is proposed to be implemented through the Robot Oper-
ating System (ROS) framework. A Matrice 210 RTK quadcopter is to be used as the UAV
for gathering visual and inertial information. To record the data, a small computer was
attached to the Matrice, which ran the DJI SDK ROS node to convert the information into
ROS topics. Next, these ROS topics for the camera and the IMU are passed to VIL-DSO.
A ROS wrapper is used to subscribe to the ROS messages, and to publish the odometry
outputs as ROS topics. The RTK pose from the drone is also recorded to be used as a
ground truth comparison.

In European Robotics Challenges (EuRoC) datasets, the DJI SDK node is replaced
with ROS bags, which allow for playback of data. A diagram of the proposed setup is
illustrated in Figure 4.1.

4.3 Outdoor Mapping Considerations

This section discusses considerations for outdoor mapping, including coverage, camera
angles and flight times. While these generally apply to all applications for mapping, these
concerns are typically exacerbated at larger scales.

4.3.1 Stereo and Monocular Comparisons

One of the key parameters of the scene that needs to be estimated is depth. Stereo
cameras are able to generate depth estimates by utilizing geometry and a fixed baseline,
which results in fusion of information spatially, as illustrated in Figure 4.2a. In contrast,
a monocular camera is unable to generate depth information using space alone. Instead,
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Figure 4.1: Proposed scene reconstruction system in ROS.

using monocular video requires fusion of the images both temporally and spatially, as
illustrated in Figure 4.2b.

Thus for monocular camera, keyframes need to be sufficiently far apart to generate
depth information, but must also overlap sufficiently so that enough frames are shared
between keyframes. If a point does not exist in both keyframes, no depth information can
be determined. Taking keyframes too closely together does not generate a wide enough
effective-baseline. In fact, feeding too many of these nearby frames as keyframes results in
noise and does not help converge the estimate. This is echoed in the literature, such as in
[7]. With wide FOVs, it can take a long time to travel sufficient distance for the baseline,
which can result in a delay in map generation.

4.3.2 GSD and Lens Selection

Another concern is the quality of the map itself. Often, higher resolution is required to
resolve small details in map. Ground Sample Distance (GSD) is measure that can assist
in understanding how certain parameters affects map quality. GSD is sampling metric
that measures the distance between the centers of pixels on the ground. For example, a
GSD of 2.4 cm/pixel means that for every pixel in the image, 2.4 cm is covered. Figure 4.3
illustrates the parameters for calculating GSD. The equation for GSD [22] can be calculated
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Figure 4.2: Stereo cameras versus monocular camera for depth estimation.

as follows

GSD =
hws

fwi cos θ
, (4.1)

where h is the height from the ground, or the distance from the surface being mapped,
ws is the width of the sensor, f is the focal length, wi is the width of the image and θ
is the angle between the line of sight and the ground/surface. Note that the widths can
be swapped with the heights of the image/sensor to get another GSD value. Usually, the
larger (and worse) of the two values is taken.

Therefore, the goal is to maximize GSD while still maintaining enough overlap for depth
estimation and tracking. Using a wide-angle lenses creates the most overlap, and was used
in the experiments as it was the most robust for tracking, but at the cost of decreased
resolution.

As altitude increases, there is more overlap in the images, but also greater GSD. This
means that in order to maintain the same resolution at higher altitudes, a more narrow
FOV (or longer focal distance) is required. Unfortunately, disturbances at higher altitudes
are amplified to the image on the ground, which can make tracking more difficult. The
effects of disturbances can be mitigated by adding camera stabilization, such as a gimbal.
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Figure 4.3: Diagram of GSD calculation.

4.3.3 Battery Life and Coverage planning

One of the major drawbacks with modern UAVs is the duration of the battery life. Many
quadcopter UAVs only maintain flight for 15 to 30 minutes. The Matrice 210 RTK used
in testing is only rated to fly a maximum 24 to 38 minutes depending on the payload, but
this is conservative estimate that does not consider additional equipment and aggressive
maneuvers. In reality, the available flight time is much less. In order to maximize the
usage of the battery, the UAV needs to quickly and efficiently cover the areas that need
mapping. One possible path is proposed in [9], where the drone flies in small circles over
the area of interest, which is illustrated in Figure 4.4a. This circling yields more angles of
the same subjects, and makes it easier to converge depth in scene reconstruction. However,
it provides a lot of redundant information as well. It is more effective for the UAV to fly
in straight lines to preserve momentum. To accommodate this, a simple pattern was used,
as illustrated in Figure 4.4b.
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(a) Circular path

from [9] (b) Straight path.

Figure 4.4: Some potential flight paths.

4.3.4 Camera Angles and Horizon Issues

When the camera is able to view above the horizon, pixels associated with the sky have
infinite depth and cannot converge. If one of these frames is selected as a keyframe,
they may not be published into the point cloud due to being unable to meet REMODE’s
convergence criteria. For example, if the keyframe image is 50% sky, then there is only
50% of the image that can converge, making it difficult to reach the threshold required for
publishing the point cloud. An image with the sky visible is illustrated in Figure 4.5. Also,
as can been seen in Equation 4.1, the line of sight is ideally perpendicular to the surface
being mapped. Using a camera pointed straight at the ground most directly fulfills this,
but then vertical surfaces are not mapped. Decreasing θ improves the mapping of vertical
surfaces, but sacrifices resolution on the ground. If θ decreases too much, there is a risk of
viewing the horizon, which will affect depth estimation.

4.4 Limitations and Extensions

Using the proposed mapping setup with REMODE will not allow the adjustment of poses
after they are generated. When loop closures are detected in VIL-DSO, the pose adjust-
ments are not passed onto the scene reconstruction algorithm. A potential way to address
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this is to associate points in the point cloud with the keyframes that they are generated
with. When the loop closure adjust the poses associated with the keyframe, the associated
points should also have their positions adjusted accordingly. This would require significant
modification of REMODE.

There are other mapping methods available in the literature that could be explored as
a more in-depth survey of scene reconstruction. REMODE was used due to the availability
of open-source code and its relevance in the context of scene reconstruction, as presented
in [9].

Work could also be done on testing and quantifying parameters for ideal mapping.
The parameters used in testing were primarily a combination of trial-and-error, and the
equipment that was available.
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Chapter 5

Experimental Results

VIL-DSO was tested on various sequences, and then compared with the available ground-
truths for evaluation of error. The methods used for data alignment and error evaluation
are discussed in this chapter. The results were generated using the using the EuRoC
dataset.

To implement the trajectory evaluation, a tutorial and a program written by Zhang
[40] were utilized. The program is available on GitHub [39].

5.1 Alignment and Error Types

Before calculating estimation error, the estimated trajectory and the ground truth tra-
jectory need to be aligned. This alignment was completed using all the available frame
position information, as opposed to only using initial frames. Sim(3) transformations are
used to generate the ground truth-scaled results. The error comparisons align the datasets
while also modifying the scale of the estimate in order to see how the estimates compare
when independent of scale. The Sim(3) transformation is used to compare estimation
methods that do not have observable scale, such as with monocular camera alone. Re-
sults using the Sim(3) transformation are referred to as ”gt-scaled”, as the estimates are
scaled to match the ground truth. Alternatively, rigid body transformations, SE(3), are
used to generate comparisons without manipulating the scale. The transformations are
used to find error in translation and scale. As part of Zhang’s implementation [40], the
Kabsch-Umeyama algorithm is used for alignment of datasets.
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Absolute Trajectory Error (ATE) refers to a direct comparison between the states of
the estimated trajectory and the ground truth. To quantify ATE as a single term, the
Root-Mean-Square Error (RMSE) is often used. RMSE is easy to use for comparison,
but can be sensitive to when the error occurs. As an alternative to ATE, Relative Error
(RE) is also used for comparison. RE looks at the changes in trajectory at different times,
which multiple instances of error. However, RE is more difficult to compare as it does not
produce a single number for evaluation. RE also does not show the accumulated drift error
in the pose estimates, which can be improved with loop closure. For these reasons, only
ATE is used for comparisons with the state-of-the-art methods. .

5.2 IMU Weights and Active Point Parameters

IMU weights were kept at their default values for the local optimization thread and for the
coarse tracker. It was noted that increasing these weights introduces more noise into the
system, since the IMU data is relatively noisy. This noise was visible in the estimate when
the IMU weights were set too large. The number of point candidates was also increased to
3000 from 1500 per keyframes, and active points retained across the local sliding window
was increased to 4000 from 2000. Typically, with only 1500 point candidates, approximately
800 were rejected with either VI-DSO or LDSO, but combined in VIL-DSO, nearly 1200
are rejected. Increasing the points improved tracking, but optimization of these values was
not fully explored.

5.3 EuRoC Dataset

Many VO algorithms are tested on the publicly-available EuRoC dataset [1]. The ground-
truth and results for other methods are readily available, which allows for straightforward
comparisons. This dataset was recorded using an Asctec Firefly hex-rotor helicopter, as
illustrated in Figure 5.1a. It carried visual-inertial sensor unit, with a stereo camera
(Aptina MT9V034 global shutter, WVGA monochrome, 220 FPS) and a MEMS IMU
(ADIS16448, angular rate and acceleration, 200 Hz).

To record poses for ground truth, a Vicon motion capture system (6D pose) was used, as
well as a Leica MS50 laser tracker. The UAV was flown through two different environments,
the Eidgenssische Technische Hochschule (ETH) Machine Hall (MH) and the Vicon Room
(V1 and V2), which are illustrated in Figure 5.1
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(a)

(b) (c)

Figure 5.1: EuRoC Dataset, from [1]: (a) Asctec Firefly used in EuRoC data collection;
(b) ETH Machine Hall; (c) 3D scan of the Vicon Room.

VIL-DSO was run on these sequences for trajectory evaluation. There were issues with
initialization on some of the Vicon hall sequences, which are omitted. The ground truth
and estimated trajectories for the first Machine Hall (MH 01) sequence from EuRoC are
illustrated in Figure 5.2. The trajectories are colour-coded as follows:

• Green: ground truth trajectory

• Red: Estimated trajectory before loop closure

• Cyan: Estimated trajectory after loop closure

• Magenta: Estimated trajectory after loop closure and using scale drift mitigation
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Figure 5.2: VIL-DSO test results: All estimated trajectories and ground truth for the
MH 01 sequence.

5.3.1 EuRoC Trajectory Analysis

The trajectories from the visualizer shown in Figure 5.2 are not aligned, which makes
it difficult to see the discrepancies. To illustrate the error, plots showing the aligned
trajectories, relative and absolute errors were generated as part of the trajectory analysis.

Figure 5.3 illustrates the top view of the estimated trajectories compared with the
aligned ground truth using SE(3) transformations. In Figure 5.3b, there is a larger gap
between the estimated trajectory and the ground truth, which is caused by the scale drifting
during loop closure. In Figure 5.3c, this error is fixed by the scale adjustment applied to
mitigate the drift.

Figure 5.4 illustrates the same trajectories from a side view. Figure 5.5 shows the rela-
tive error at different stages in the trajectory. Because it is difficult to quantify differences
from relative error, ATE is also included. Figure 5.6 shows the ATE for the translation in
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Figure 5.3: Top view of estimated trajectories aligned with ground truth for MH 01: (a)
Without loop closure; (b) With loop closure; (c) With loop closure and scale-drift mitiga-
tion.

the x-,y- and z-directions. The peaks of the error increase after loop closure, approaching
200mm, and are decreased by the scale mitigation method to around 100mm.

5.3.2 EuRoC RMSE

The plots in the Section 5.3.1 only show results for a single run of the MH 01 sequence. To
show the effectiveness of VIL-DSO, RMSE was calculated for ten runs on each sequence.
The medians of these values are shown in Table 5.1. For comparison to state-of-the-art
methods, the resulting RMSE values for the estimated trajectories from VIL-DSO are
compared with existing Visual-Inertial (VI) pose estimation techniques. These methods
include VI-DSO, and VI-ORB SLAM. Table 5.1 shows the RMSE for translation and scale
from the pose estimates using SE(3) transformations, as well as translation RMSE from
ground truth-scaled trajectories using Sim(3) alignment. The results for VI-DSO are taken
from [36] and are the medians of ten runs for each sequence. The VI-ORB SLAM results are
taken from [36] as well, and are assumed to be representative of the algorithm. The latter
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Figure 5.4: Side view of estimated trajectories with ground truth for MH 01: (a) Without
loop closure; (b) With loop closure; (c) With loop closure and scale-drift mitigation.
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Figure 5.5: Relative error for MH 01: (a) Without loop closure; (b) With loop closure; (c)
With loop closure and scale-drift mitigation.
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Figure 5.6: Translation error for x-,y- and z-directions for MH 01: (a) Without loop closure;
(b) With loop closure; (c) With loop closure and scale-drift mitigation.

sequences from the Vicon rooms (V1 02, V1 03, V2 02, V2 03) were difficult to initialize
algorithms on, and were not included.

In Table 5.1, it can be seen that loop closure improves the ground truth-scaled transla-
tion RMSE in most of the sequences. In the first Vicon Room (V1 01) sequence, the errors
are very similar, but loop closure did not improve the error, which may indicate either
that the loop closure are unable improve this sequence significantly, or incorrect matches
occurred during loop closure. However, the SE(3) translation and scale errors are some-
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Method Sequence MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V2 01

VIL-DSO
No Loop Closure

Translation RMSE (m) 0.075 0.145 0.517 0.933 0.267 0.117 0.091
Translation gt-scaled (m) 0.066 0.057 0.448 0.751 0.252 0.092 0.085

Scale RMSE (%) 1.1 2.0 5.4 8.2 2.7 3.2 2.2

VIL-DSO
With Loop Closure

Translation RMSE (m) 0.089 0.137 0.411 0.596 0.167 0.118 0.068
Translation gt-scaled (m) 0.047 0.042 0.083 0.160 0.102 0.093 0.062

Scale RMSE (%) 1.2 1.8 3.8 4.4 1.4 3.2 1.6

VIL-DSO
With Loop Closure

and Scale Drift Mitigation

Translation RMSE (m) 0.065 0.064 0.268 0.425 0.138 0.112 0.066
Translation gt-scaled (m) 0.047 0.042 0.083 0.160 0.102 0.093 0.062

Scale RMSE (%) 0.8 0.9 2.9 3.7 1.1 2.9 1.5

VI-DSO
Median of 10 runs

Translation RMSE (m) 0.062 0.044 0.117 0.132 0.121 0.059 0.040
Translation gt-scaled (m) 0.041 0.041 0.116 0.129 0.106 0.057 0.031

Scale RMSE (%) 1.1 0.5 0.4 0.2 0.8 1.1 1.2

VI-ORB-SLAM
Translation RMSE (m) 0.075 0.084 0.087 0.217 0.082 0.027 0.028

Translation gt-scaled (m) 0.072 0.078 0.067 0.081 0.077 0.019 0.031
Scale RMSE (%) 0.5 0.8 1.5 3.4 0.5 0.9 0.2

Table 5.1: VIL-DSO RMSE compared to other visual-inertial methods:
Median of ten runs. Smallest translation errors are in bold font.

times better or worse for each sequence. This is due to the scale drift error during loop
closure, as described in Chapter 3, which may drift either away or towards the true scale
with respect to the ground truth trajectory. This indicates that the new pose estimates
are more accurate in terms of direction and orientation, but not always in terms of scale.

The scale drift mitigation method decreased both scale and translation errors on all of
the sequences. The resulting error is less than with and without loop closure. In reality, the
mitigation method is not effective on all runs, but appears to be effective in majority of the
cases. In 100 runs of the MH 01 sequence, the mitigation method reduced the translation
and scale error on 92 runs. There was no discernible trend as to why it did not reduce
the errors in the remaining 8 runs. A potential source of errors is that there may not have
been significantly scale drift in these runs. In this case, scale drift would not be easily
differentiated from the changes in pose estimates needed for loop closure. Alternatively,
there may have not been a loop closure match near the end of the sequence and since scale
drift mitigation is only called during loop closure, there may be accumulated error towards
the end of the sequence. It is also important to note that the scale drift mitigation method
does not calculate a new scale, but attempts to reduce the scale drift generated during
loop closure. Calculating scale during loop closure would be a better approach.

The results shown in Table 5.1 show that VIL-DSO is comparable to existing state-of-
the-art methods. Theoretically, the VIL-DSO results without loop closure are expected to
be the same as VI-DSO, but there is a discrepancy, which is likely due to variations in the
implementation, as source code was not available. In particular,a major difference is the
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point selection method implemented in VIL-DSO, which generates more point candidates
that favor corners, but are more likely to be rejected when combined with IMU information.

The best results for each sequence were also tabulated and are shown in Table 5.2.
From these results, it can be seen that the estimates from VIL-DSO have the potential to
be better than VI-DSO, but more testing and modifications would be required to ensure
that this is consistent. Note that for MH 01, the scale drift mitigation did not improve the
result. This is one of the few cases discussed where the scale drift was likely not significant
and not observable relative to the pose estimate changes due to loop closure. Worst case
trajectory errors are not included, as these are when the algorithm fails entirely and the
error cannot be calculated.

Method Sequence MH 01 MH 02 MH 03 MH 04 MH 05 V1 01 V2 01

VIL-DSO
No Loop Closure

Translation RMSE (m) 0.057 0.104 0.300 0.367 0.187 0.088 0.080
Translation gt-scaled (m) 0.045 0.042 0.242 0.262 0.173 0.085 0.075

Scale RMSE (%) 0.7 1.4 2.5 3.0 2.4 2.2 1.9

VIL-DSO
With Loop Closure

Translation RMSE (m) 0.039 0.063 0.092 0.260 0.099 0.095 0.061
Translation gt-scaled (m) 0.038 0.036 0.066 0.107 0.071 0.088 0.057

Scale RMSE (%) 0.4 0.8 0.9 1.9 0.9 2.3 1.4

VIL-DSO
With Loop Closure

and Scale Drift Mitigation

Translation RMSE (m) 0.043 0.043 0.097 0.115 0.072 0.094 0.063
Translation gt-scaled (m) 0.038 0.036 0.066 0.107 0.071 0.088 0.057

Scale RMSE (%) 0.5 0.5 0.9 1.0 0.7 2.3 1.4

VI-DSO
Median of 10 runs

Translation RMSE (m) 0.062 0.044 0.117 0.132 0.121 0.059 0.040
Translation gt-scaled (m) 0.041 0.041 0.116 0.129 0.106 0.057 0.031

Scale RMSE (%) 1.1 0.5 0.4 0.2 0.8 1.1 1.2

VI-ORB-SLAM
Translation RMSE (m) 0.075 0.084 0.087 0.217 0.082 0.027 0.028

Translation gt-scaled (m) 0.072 0.078 0.067 0.081 0.077 0.019 0.031
Scale RMSE (%) 0.5 0.8 1.5 3.4 0.5 0.9 0.2

Table 5.2: VIL-DSO RMSE compared to other visual-inertial methods:
Best of ten runs. Smallest translation errors are in bold font.

5.4 Summary of Experimental Results

Using loop closure in VIL-DSO reduced the translation error when scaled to the ground
truth VIL-DSO, as seen in Table 5.1. However, it sometimes decreases or increases the
unscaled translation error due to the scale drift. The scale mitigation method that was
proposed in Chapter 3 worked on the majority of runs on the EuRoC sequences, and is
shown to improve consistency for maintaining scale through loop closure. When compared
to the existing methods in the state-of-the-art, the resulting estimated trajectories from
VIL-DSO are found to carry error levels similar to VI-DSO and VI-ORB SLAM. VIL-DSO
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without loop closure was expected to perform similar to VI-DSO, but performed worse.
This is hypothesized to be due to implementation discrepancies and the implementation
of a different point selection method. The best cases of VIL-DSO did not consistently
perform better than VI-ORB SLAM. However, VI-ORB SLAM is a full-SLAM solution
and optimizes the map simultaneously with the pose estimate.
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Chapter 6

Conclusion and Future Work

With the aim of generating accurate pose estimates, this thesis has studied the design of
a Direct Sparse Visual-Inertial Odometry with Loop Closure (VIL-DSO) scheme, which
combines existing algorithms for inertial and visual information from VI-DSO, as well as
loop closure to reduce drift error from LDSO. The experimental test results demonstrate
that the proposed scheme provides scaled readings in the world reference frame. The loop
closure is shown to reduce drift errors and improve pose estimates, but also cause the scale
estimate to drift. VIL-DSO introduces a scale-drift mitigation method, which improves
scale estimates after loop closure, without requiring the fusion of IMU information again.
As a VIO algorithm, VIL-DSO is effective in GPS-denied environments, and can be used
for both outdoor search-and-rescue scenarios and indoor navigation.

For the short sequences in the EuRoC dataset, the results are close to results from
existing methods in the state-of-the-art, but generally has more error. VIL-DSO is expected
to perform better on longer sequences, where there is more time for drift error to accumulate
when loop closure is not used. More testing on longer sequences is recommended to confirm
this. Many parameters in the code were set at arbitrary values. Exploration into tuning
the parameters could yield better results, especially in terms of the IMU weights and the
number of point candidates proposed. Future work would be required to calculate scale
during loop closure, instead of only mitigating the scale drift. This would most likely be
best achieved by fusing IMU information at the global scope, instead of only in the local
sliding window.

In the context of mapping, a proposed mapping system using VIL-DSO and REMODE
was discussed. Key implementation aspects for outdoor mapping have been discussed,
including the trade-offs between selecting focal length, the flight altitudes and the GSD.
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Using VIL-DSO as the basis for a more complete SLAM method is expected to provide
a more effective mapping solution without requiring a back-end dense mapping algorithm.
Since the point cloud outputs of VIL-DSO scheme form a visible, but sparse map, this is
the next step to developing it as a stand-alone system. Improved depth estimation would
also help with reducing the noise of the map. These improvements to the depth estimation
could be achieved using additional sensors, such as a radar.

Because the loop closure proposed in LDSO [15] does not take scaling into account, a
method use Kabsch-Umeyama was proposed and implemented. A more complex method,
as detailed in Chapter 3, accounts for aligning the camera and IMU sensors, but requiring
generating a trajectory from IMU measurements. Alternatively, the local window could be
eliminated and the algorithm could use a global scope for optimization as part of a SLAM
solution, while also including loop closure within such optimization.

Implementing the complete proposed scene construction process remains in the realm of
future work. However, it has also been highlighted that more in-depth exploration on scene
reconstruction should be done. There are many other alternatives for mapping, although
few operate in real-time. Finally, applying a surface to the mapped point cloud allows for
straightforward transition to using the map for navigation.
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