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Abstract

The traditional process of building interactive machine learning systems can be viewed
as a teacher-learner interaction scenario where the machine-learners are trained by one or
more human-teachers. In this work, we explore if teachable AI agents can reliably learn
from human-teachers through conversational interactions, how this teaching process affects
a teacher’s performance in the task, and their trust on the agent. We introduce a teach-
able agent named Kai, that learns to classify news articles while also guiding the teaching
process through conversational interventions. In a three part study, where several crowd-
workers individually teach Kai, we investigate whether this Learning by Teaching approach
creates reliable machine learners, improves Turkers’ performance and leads to trustable AI
agents that crowdworkers would use. We present and discuss the results of the underlying
classifier built from conversational interactions with other text classification algorithms.
We also provide an evaluation of how crowdworkers perform a text classification before
and after interacting with a teachable agent. Finally, we investigate the notion of trust
that crowdworkers exhibit for their teachable agents in terms of delegating the work involv-
ing monetary compensation. Together, our results demonstrate the benefits of Learning
by Teaching approach, in terms of the performance of the AI agent, the crowdworkers, and
the dynamics of trust built from the teacher-learner interaction.
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Chapter 1

Introduction

Recent progress in artificial intelligence has resulted in the development of intelligent agents
that can direct their activities towards achieving a goal. Moreover, rapidly advancing in-
frastructure around conversational technologies has resulted in a wide range of applications
around these agents, which include intelligent personal assistants (like Alexa, Cortana ,
Siri, and Google Assistant), guides in public places (like Edgar [50], Ada and Grace [126]),
smart-home controllers [115], and virtual assistants in cars [86]. This growing ecosystem
of applications supporting conversational capabilities has the potential to affect all aspects
of our lives, including healthcare, education, work, and leisure. Consequently, agent-based
interactions has attracted a lot of attention in HCI research [24, 89, 87, 85, 115]. The
success of these agents will depend on their ability to efficiently learn from non-expert hu-
mans in a natural way. As these agents become more and more prevalent, it is important
to explore certain interaction techniques that inform their development from HCI as well
as AI perspective.

In this thesis, we investigate the domain of teachable agents, a special type of pedagog-
ical agents that draws on the social metaphor of teaching a certain task to an autonomous
or semi-autonomous entity. Conventional pedagogical agents are designed to play the role
of teachers by giving instructions to the students. Here, we explore the domain of teach-
able conversational agents to study whether human-teachers can train a teachable AI agent
through conversational interactions. Specifically, we investigate whether these teachable
agents reliably learn from natural language conversations, how the teaching process affects
human-teacher’s performance later in the task, and whether human-teachers trust their
own teachable agents. Understanding these questions can inform the design of teachable
agents for various social interaction scenarios.
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1.1 Thesis Objective

In this thesis, we present and discuss the results of a teachable agent that interactively
queries crowdworkers in the process of building a text-classifier. We compare the results
with traditional machine learning algorithms and examine how crowdworkers themselves
perform a text classification task before and after interacting with this teachable agent. In
addition, we investigate the notion of trust that crowdworkers would put on their teachable
agents in terms of delegating the work involving monetary compensation. The high-level
question we aim to investigate through our work is: can we design a teachable agent that
crowdworkers can directly train, such that the agent can share their task workload. Specif-
ically, we aim to answer the following research questions from our work:

RQ1: How well can crowdworkers train the teachable agent?
Traditionally, crowdsourcing is used for labelling machine learning datasets and crowd-
workers are remunerated for their efforts through payments and bonuses. However, this
does not often ensure meaningful engagement and leaves limited options to motivate the
crowdworkers beside the monetary incentives. To address these concerns, we investigate
the use of a teachable conversational agent that incorporates direct human teaching to in-
teractively train a machine classifier. We hypothesize that compared to statistical machine
learners:
H1: Teachable conversational agents representing an interactive machine learner, boot-
strapped from statistical techniques will give comparable performance with meaningful
engagement.

RQ2: What effects does teaching an agent have on the crowdworker’s per-
formance?
Protégé effect states that the best way to learn a concept is to teach it to someone else
[25]. Traditionally, this effect has been mostly studied in peer-to-peer interaction scenarios
occurring in classrooms or controlled laboratory settings. We intend to validate the effec-
tiveness of this technique in the context of crowdsourcing platforms and hypothesize that:
H2: Crowdworkers who teach the agent will perform better than those who don’t.

RQ3: Would crowdworkers actually adopt the teachable agent that they trained
to share their work?
Establishing trust is a key requirement for the wide adoption and overall success of AI
systems. Previous work has explored the use of algorithmic transparency (explainability),
robustness, bias, privacy, reproducibility and accountability to build trust [22]. We posit
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that personalizing the system and directly involving end-users in the training/teaching
process can also strengthen their trust on AI systems. We hypothesize that:
H3: Crowdworkers will trust the agents taught by them by delegating the tasks.

1.2 Contribution

In summary, this thesis makes the following contributions:

• An interactive machine learning algorithm for text-classification that considers ”sta-
tistical” as well as ”user-defined” likelihood of words while predicting the posterior
probability of a document belonging to a class.

• Performance comparison of the interactive machine learner built from conversational
interactions with other algorithms for text-classification.

• Formalization of the learning-by-teaching paradigm and evaluation of its effectiveness
in crowdsourcing tasks through teachable-agents.

• Investigation of trust on teachable-agents taught by online crowdworkers.

In addition, this thesis answers each of the research questions mentioned above, and
discusses how teachable agents learn a task, what impact they have on the performance of
humans teaching them, and how much they are trusted by the humans that teach them.

3



1.3 Organization

The remainder of the thesis is organized as follows:

• chapter 2 provides background information on related work on interactive machine
learning, conversational agents and agent-based interactions.

• chapter 3 outlines the system description, provide details on the interactive machine
learning algorithm and how dialog management and task environment.

• chapter 4 describes the first crowdsourcing experiment investigating the interactive
machine learning algorithm.

• chapter 5 extends the experiment described in chapter 4 and investigates if the
process of teaching a task to an agent improves crowdworkers performance in the
task.

• chapter 6 presents a final experiment that explores the dynamics of trust that
workers put on the teachable agent for tasks involving monetary compensation.

• chapter 7 concludes the thesis by summarizing the results and proposing directions
for future work.

4



Chapter 2

Background and Related Work

In this chapter, we describe a brief overview of previous work on conversational agents
within the HCI community. Then, we cover the research on agent-based interactions and
how it relates to this thesis. Finally, we outline the domain of interactive machine learning
that combines the efforts from human and the machine learning algorithm to address a
problem. We conclude this section by describing machine teaching, that focuses on the
human-centric aspect of interactive machine learners.

2.1 Research on Conversational Agents within HCI

Previous work on Conversational Agents is spread across various research themes. Re-
cently, Clark et al. examined several topics in the HCI literature that are relevant to
conversational agents, namely: system speech production, design insights, accessibility,
and modality comparisons [31]. Work on system speech production has primarily studied
the change in interaction behaviour of users based on specific manipulations to elements of
(a) speech synthesis [99, 78, 37], (b) content of speech [66, 32], or (c) spatio-temporal as-
pects of the dialogues [67, 75]. Research related to design insights is focused on developing
generally applicable guidelines for conversational interactions or iterations of developments
for specific systems. This includes the designing of (a) iterative and bespoke systems tai-
lored to accomplish specific tasks [57, 128, 127, 121], (b) dialogue modelling [40, 63] and (c)
Automatic Speech Recognizers (ASR) [98, 109]. The research on accessibility has widely
explored the use of conversational agents as assistive technologies that focus on users with
specific requirements, or users interacting with specific type of systems [58, 107, 113].
Finally, the research on modality has explored both unimodal and multimodal systems
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through speech and text, combined with more traditional input modalities such as key-
board [94], mouse [92], pen [104] and gestures [59]. Work related to modality comparisons is
specifically relevant to our research. Le Bigot et al. found performance with an information
retrieval system improved over time, regardless of using speech or text [76]. However, sim-
ilar experiments comparing speech and written modalities observed lower efficiency when
speech was used [77]. Hayashi and Ono studied the effects of modality on quality and
quantity of interpretations in collaborative activities with embodied conversational agents
[60]. Their results showed that while the use of text-based interfaces enhances the quantity
of creative interpretations, voice-based interaction enhances the quality of results. Collec-
tively, these results inform our decision to use textual modality over speech, to implement
the conversational aspect of teachable agent as described in section 3.3.

2.1.1 Personalization of Conversational Agents

Personalization can be described as the process of making something suitable for the needs
of a particular person [35]. In the context of information systems, it is defined as a process
that changes the functionality, interface, information access and content, or distinctiveness
of a system to increase its personal relevance to an individual or a category of individuals
[48]. Fan and Poole proposed a framework to characterize personalization along three
dimensions: (a) what is personalized (ie, content, user interface, functionality, and delivery
channel); (b) for whom is it personalized (individuals or categories of individuals); and
(c) how automated is the personalization (implicit or explicit) [48]. Personalization in
Conversational Agents can be achieved implicitly by processing past interactions with users
[123, 4] or explicitly by user-entered information at the set-up time [48] or using ongoing
confirmation style input [26]. Past work has shown that Personalization of conversational
systems can improve user comprehension [30], user satisfaction [100], task efficiency [16],
and the likelihood of behaviour change [23].

In HCI research, personalization is often implemented as anthropomorphic software
agents [7, 44]. Our work is inspired from the similar idea and attempts to emulate the
teaching-learning scenario through conversational agents and interactive machine learn-
ing. Effectively, this inspired us to build Teachable Conversational Agents as a way to
personalize the Human-AI interaction.
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2.2 Agent Based Interactions

A significant amount of work in HCI and AI literature revolves around the notion of agents
and agent-based interactions. However, the term ”agent” has been often used in conflated
ways and even regarded as the locus of considerable confusion [45]. First, it implies the
existence of autonomous or semi-autonomous properties of AI systems like intelligence and
responsiveness through adaptive functionality. Second, it suggests a particular model of
what the program is, and how it relates to the user through the agent-metaphor [45].
While these two definitions often go together, the agent may not always comply with both.
For instance, the agent reference used in many contexts such as ”embodied conversational
agents,” ”anthropomorphic interface agents”, ”virtual agents”, or ”pedagogical agents”
etc, may not necessarily cover all aspects of adaptive functionality or the agent-metaphor.
Further, the context may not require the Human-Agent interaction to be conversational in
nature.

In this thesis, we specifically consider the agent contexts that encapsulate the teacher-
learner interaction and adhere to adaptive functionalities through conversational interac-
tions. One area that closely relates with our work is the domain of pedagogical agents.
Pedagogical agents are lifelike characters presented on a computer screen that guide users
through multimedia learning environments [29]. Their goal is to facilitate learner mo-
tivation and learning outcomes in such environments. However, most of the previous
research in this area is focused on using agents for tutoring [53, 61, 5], question-answering
[38, 49, 122], learning companions [80, 119, 14, 41], and dialogues to promote reflection and
meta-cognitive skills [55, 72]. Moreover, these agents are mostly used as peers [111, 71], or
tutors that play the role of a teacher or instructor [54, 95]. Our work is catered towards the
scenario where these agents take the role of a less intelligent entity, allowing the students
to teach [15, 17]. This approach is inspired from the Protégé effect, which demonstrates
that learning for the sake of teaching others is more beneficial than learning for one’s own
self [25]. Previous work in cognitive science and education research supports the presence
of the Protégé effect in reciprocal teaching [105], peer-assisted tutoring [33], small-group
interaction [130] and self-explanation [27]. Studies focused on the cognitive benefits of
teaching suggest that preparing to teach may produce more organized cognitive structures
than learning the material for oneself [13]. Biswas et al. has shown that expecting to teach
others helps in self-reflection, builds a sense of responsibility, and is useful for meaningful
structuring of information [15]. This has been confirmed in later studies that demonstrate
the effectiveness of the Protégé effect for cognitive [101], meta-cognitive [97] and motor
learning skills [64]. Despite this, Protégé effect has not been fully explored with conver-
sational agents or interactive machine learning systems. We explore this area within the
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context of crowdsourcing systems as described in chapter 5.

2.2.1 Evaluation of Conversational Interactions

User interactions with conversational agents have been measured through both objective
as well as subjective metrics across various dimensions like task performance, user atti-
tudes, perceived usability, system usage, and cognitive load. Task performance has been
measured using total number of conversational turns [77], percentages of tasks completed
correctly [104], and task completion time [106]. Attitude of users towards conversational
agents has been studied by measuring likeability and human likeness [32]. Perceived us-
ability has been mostly examined through scale based questionnaires on perceived ease
of use and learnability [46]. System usage has been quantified to study what people use
conversational interfaces for [36] and how they used them [114]. Finally, studies on measur-
ing cognitive load deals with identifying physical, mental and temporal demands of users
while interacting with conversational systems. Informed by these methods to evaluate the
interactions with conversational systems, we employ a set of subjective as well as objective
measures in order to quantify the effectiveness of teachable conversational agents.

2.3 Interactive Machine Learning

Traditional machine learning aims to solve problems without any human intervention.
These algorithms are used to create predictive models based on a given dataset. However,
prediction accuracy of these models can only be as good as the quality of the training data
used. Otherwise, the model can make incorrect predictions, or take more time to learn. In
contrast, interactive machine learning attempts to overcome these problems by involving
users directly in the process of optimizing the machine learning models. It allows rapid,
focused and incremental updates to the model, thus enabling users to interactively examine
the impact of their actions and adapt subsequent inputs to obtain desired behaviours. In
essence, interactive machine learning facilitates the democratization of applied machine
learning by allowing humans to interact with machine-learning-based systems to address a
problem.

One of the earliest work in this area is from Ankerst et al. who worked on an interac-
tive visualization of classification tree [9]. They created an interface that provide sliders to
adjust the number of features or threshold values for each node in the decision tree, and
interactively display the classification error. Ware et al. demonstrated that humans can
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produce better classifiers than traditional automatic techniques when assisted by a tool
that provides visualizations about the operation of specific machine learning algorithms
[129]. Within the HCI community, work on interactive machine learning was first explored
by Fails and Olsen [47]. They studied the difference between classical and interactive
machine learning and showed an interactive feature selection tool for image recognition.
Fiebrink et al. created a machine learning system that enable people to interactively create
novel gesture-based instruments [51]. Their experiments found that as users trained their
respective instruments, they also got better and even adjusted the goals to match observed
capabilities of the machine learner through the interactive nature of the system. These
examples illustrate how rapid, focused and incremental interaction cycles can facilitate end-
user involvement in the machine-learning process. Porter et al. formally break down the
interactive machine-learning process into three dimensions: task decomposition, training
vocabulary, and training dialogue [108]. These dimensions define the level of coordina-
tion, type of input, and level/frequency of interaction between the end-users and machine
learners. Later, some researchers examined the role of humans in interactive machine
learning, and highlighted various areas where humans have interactively helped machine
learning systems to solve a problem [6]. Most of the work in this area suggests a diver-
sity in terminologies used across different disciplines. This informs the need to develop a
common language to accelerate the research on interactive machine-learning systems from
both machine-centric and human-centric perspectives.

2.3.1 Active Machine Learning versus Machine Teaching

Active learning is a special case of interactive machine learning that focuses on improving
machine learner’s performance by actively querying a human oracle and obtain labels [116].
These labels are obtained through various querying strategies that can select instances
which (a) the machine learner is least certain about (Uncertainty Sampling) [81], (b) creates
maximal disagreement between multiple models being trained (Query By Committee) [118],
(c) have greatest influence on the model (Expected Model Change) [117], or (d) reduce
the expected generalization error (Expected Error Reduction) [112]. Some of the first
active learning scenarios were investigated by researchers during late 80’s and early 90’s
[8, 11, 34]. Since then, researchers have explored the use of active learning with support
vector machines [125], Bayesian networks [124], named entity recognition [102], and natural
language processing [103]. However, several studies reveal that active learning can cause
problems when applied to interactive settings [20, 18, 56]. One of the primary challenge
with active learning in such situations is: humans are not always willing to be simple
oracles by answering a stream of questions through traditional user-interfaces. To address
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these concerns, many researchers have recently started focusing on the human-centric part
of these interactive systems.

Machine teaching is a discipline that focuses on the efficacy of teachers and their inter-
action with data [120]. While machine learning focuses on creating new algorithms and
improving the accuracy of ”learners”, machine teaching measures performance relative to
human costs, such as productivity, interpretability, robustness, and scaling with the com-
plexity of the problem or the number of contributors [120]. The primary inspiration behind
this research is the idea that a helpful teacher can significantly improve the learning rate
of a machine learning algorithm, as shown in the field of Algorithmic Teaching [12, 90, 52].
Simard et al. formalize the role of teachers as the humans who transfer knowledge to
machine learners so that they can generate useful models to approximate a concept [120].
However, human teaching is mostly optimized for human learning, and therefore is not
naturally optimal for arbitrary machine learners. Cakmak et al. investigated ways to elicit
good teaching from humans for interactive machine learners [21]. They propose the use
of teaching guidance to let human teachers adapt for the needs of specific machine learn-
ers. Teaching guidance is a set of instructions given to human teachers, that influences
their choice of examples towards most informative ones for a particular learner [21]. This
can be in the form of either algorithm or a heuristic based guidance. While algorithms
can have guaranteed optimality bounds, they are often not as amenable to be used as
teaching guidance. On the other hand, although heuristic-based guidance may not guar-
antee optimality, they are often easier to understand and use for everyday people [21].
Heuristic-based teaching guidance has also been used for inverse reinforcement learning
agents in the sequential decision making tasks [19]. Our work is partly inspired from the
machine teaching philosophy, and demonstrates the use of conversational interactions to
elicit information from human teachers in chapter 4.

2.3.2 Summary

In summary, this section covered the previous work related to agent-based interactions
and interactive machine learning in order to justify the use of these agents as an interface
between the humans and a traditional machine learning algorithm. Specifically, our work
leverages the conversational interface to elicit teaching from the humans through the prin-
ciples of machine teaching and use the captured information to improve the performance
of an underlying machine learning algorithm. Rest of this thesis covers the system de-
scription, experimental results and discussions on the design implications for interactions
related to teachable conversational agents.
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Chapter 3

Dataset and System Description

In this chapter, we describe the dataset and system used to facilitate the interaction be-
tween the human-teacher and a teachable machine learner. Then, we discuss the classi-
fication algorithm that combines input from human-teachers and statistical techniques to
classify text documents. Lastly, we describe the conversational interface and task environ-
ment used to conduct the experiments.

3.1 AG News Classification Dataset

We used AG News Classification Dataset [1], which is consisted of more than 1 million
news articles gathered from more than 2000 news sources by an academic news search
engine called ComeToMyHead [2] since July, 2004. AG news dataset was used because it
has been used as a benchmark by previous work on text classification. The dataset was
made available to the academic community to do research in data mining (clustering, clas-
sification, etc), information retrieval (ranking, search, etc), xml, data compression, data
streaming, and any other non-commercial activities.

For news topic classification, we used the dataset constructed by Zhang et al. [131], with
4 largest classes representing the topics World, Sports, Business and SciTech. Each class
contains 30,000 training samples and 1,900 testing samples. The total number of training
samples in the dataset is 120,000 and number of test samples is 7,600.
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Data Preprocessing

We followed a series of steps to pre-process the data obtained from AG News classification
dataset and use it to train the classifier. These steps are described as follows:

• Tokenization: Tokenization is the process through which text is stripped out to
a simpler sets of essential units called tokens. These tokens are either created at
word level or sentence level. Words tokens are useful for finding patterns in the
text and considered as a base step for stemming and lemmatization. We used the
word tokenize() function from NLTK to split the raw sentences from dataset into
separate word tokens. This process was followed by a text normalization step where
we converted individual tokens into lowercase to maintain the consistency during
training and prediction.

• Stop Words Removal: Stop words are the commonly used words (such as ’the’,
’an’, ’of’, etc) that do not contribute much to the context and semantics of the text
when it comes to classification techniques. These words hold almost no importance
for the purposes of information retrieval and natural language processing and often
add noise to the text being analyzed. Therefore, it is important to remove such
words from extracted tokens before further analysis. NLTK python package comes
with many stopwords corpus (nltk data/corpora/stopwords/) that contain word lists
for different languages. We used the list of stopwords from NLTK English corpus to
filter out the words that did not contain vital information for text classification.

• Lemmatization: Different languages may have different degrees of inflections de-
pending on how the words are modified to express different grammatical categories
such as tense, case, voice, aspect, person, number, gender, and mood. Lemmatization
is a text normalization technique that is used to handle such language inflections
by converting words to their base form. It is similar to other text normalization
techniques like Stemming; however, Lemmatization considers the context while per-
forming the base form conversion, while stemming performs suffix-stripping and does
not ensure that the stem (root) is a valid word in the original language. We used
WordNetLemmatizer with with POS tags to obtain the canonical form (lemmas) of
the tokens.
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3.2 Classification Algorithm

Classification is a predictive modelling problem that involves assigning a label to a given
input data sample. From the Bayesian perspective, classification algorithms are catego-
rized into discriminative or generative models based on how they estimate the conditional
probability of the output class. Discriminative classifiers are known to predict the posterior
probability P (y|x) directly as a mapping from the input x to the class label y. Generative
classifiers on the other hand, learns the joint probability, P (x, y) of inputs and the output
labels, and make their predictions by using the Bayes rule to calculate P (y|x) and then
picks the most likely label y. In this work, we use generative classifiers with Bayesian in-
ference to learn text classifications with additional inputs from conversational interactions.
The actual classification on new instances is performed using Bayes theorem by selecting
the class with the largest posterior probability.

3.2.1 Naive Bayes Classifier

Naive Bayes is one of the simplest Bayesian classifiers; it applies the Bayes’ theorem while
making strong assumptions that the features are conditionally independent.

Bayes Theorem

In probability theory and statistics, Bayes theorem describes the probability of an event
based on prior knowledge of conditions that might be related to the event.
Mathematically, Bayes’ theorem is stated as the following equation:

P (A|B) =
P (A)P (B|A)

P (B)
(3.1)

Where, A and B are events and P(B)6= 0.

• P (A|B) is the conditional probability of event A occurring given that event B has
already occurred.

• P (B|A) is the conditional probability of event B occurring given that A has already
occurred.

• P (A) and P (B) are the probabilities of observing events A and B respectively.
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In simple terms, (3.1) can be expressed as:

Posterior =
Prior × Likelihood

Evidence
(3.2)

Here, prior and evidence refer to the probabilities of observing A and B independently
from each other, whereas the posterior and likelihood are the conditional probabilities
of observing A given B, and vice versa.

Probabilistic Model

Naive Bayes classifier is a probabilistic machine learning model that uses Bayes theorem to
predict posterior probability of an event. It assumes that the presence of a particular word
in a class is independent to the presence of any other word in that class. Furthermore, Naive
Bayes predicts a probability distribution over a set of classes instead of merely outputting
the most likely class. Accordingly, under the Naive Bayes model, Bayes theorem can be
rewritten as:

P (Ck|w) =
P (Ck)P (w|Ck)

P (w)
(3.3)

Here the variable Ck represents a document class from (World, Sports, Business, or SciTech).
Variable w represent the feature vector containing words from the respective document and
mathematically defined as:

w = (w1, w2, w3...wn) (3.4)

Here, w1, w2, w3...wn represent the individual words coming from document class c. Overall,
equation (3.3) describes P (Ck|w) as the posterior probability of a document belonging to
a class given its constituent words, in terms of P (w|Ck): the likelihood of words coming
from a known class, P (Ck): prior probability of the class distributions and the evidence
term represented by P (w). Due to the assumption of feature independence, likelihood
can be calculated as the product of the individual probabilities of seeing each word in the
set of documents. Formally,

P (Ck|w1, w2...wn) ∝ P (Ck)
n∏

i=1

P (wi|Ck)

= P (Ck) P (w1|Ck) P (w2|Ck) . . .

(3.5)

The proportionality symbol in (3.5) is introduced due to the independence assumption
and removal of the evidence term as it is a constant factor depending only on words.
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The prior probability of document classes is calculated by either assuming equi-probable
classes (prior = 1/number of classes), or by calculating an estimate for the class probability
from the training set (priorc = (number of samples in class c)/(total number of samples)).
Finally, the likelihood is estimated by assuming a distribution or by assuming a non-
parametric model for the words in the training set. The assumptions made on the distri-
bution of words depend on the event model of the Naive Bayes classifier. For continuous
features, values associated with each class are assumed to fit a Gaussian distribution, re-
sulting in what is known as a Gaussian Naive Bayes classifier. For discrete features like
words occurring in a document, Multinomial and Bernoulli distributions are used, resulting
in two distinct variants of Naive Bayes.

Bernoulli Naive Bayes

In the multivariate Bernoulli event model, features are represented as a binary variables
describing the occurrence of a word in all documents from a given class. If wi is the ith

term from the vocabulary, then its conditional probability given the class is expressed as:

P (wi|Ck) = P (wi|Ck)xi(1− P (wi|Ck))1−xi (3.6)

where xi is a boolean expressing the presence or absence of the i’th term from the vocab-
ulary.

Bernoulli Naive Bayes is popular for classifying short texts and have the benefit of
explicitly handling the absence of terms. However, it does not capture the information
about the number of times a word occurs in a document.

Multinomial Naive Bayes

In the multinomial event model, features are represented as the frequency with which
certain events are generated in a multinomial distribution. This property makes it par-
ticularly useful for document classification as it can represent the frequency of occurrence
of a word in a document. This model for text classification was introduced by McCallum
et al. [91] as an improvement over Multivariate Bernoulli model for long text documents.
Here, conditional probability of each word given the class is expressed as follows:

P (wi|Ck) =
count(wik)

count(wk)
(3.7)
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Where count(wik) is the number of times word i from the test document appears in
class k across all the samples in training data, and count(wk) is the total number of words
in class k in training data. A Multinomial Naive Bayes classifier can be treated as a linear
classifier when expressed in log space [110].

One of the common challenges encountered in Multinomial Naive Bayes is the handling
of 0 probabilities from features that do not exist in the vocabulary. If not handled, these
features can potentially wipe out all the information from other feature probabilities when
they are multiplied. To avoid this, Lidstone smoothing is applied as a regularization
technique for all classes (C1, C2..Ck) as described below:

P (wi|Ck) =
count(wik) + α

count(wk) + α |k|
(3.8)

Modified Naive Bayes Classifiers

Naive Bayes classifiers are known to perform well for many classification tasks even when
the conditional independence assumption on which they are based is violated. Domin-
gos et al. have discussed the feature independence assumption and explained why Naive
Bayes performs well for classification even with such a gross over-simplification [43]. On
the flip side, many of the studies reporting superior performance of Naive Bayes classifiers
are focused on smaller datasets with balanced classes. It has been shown that the classi-
fication accuracy of Naive Bayes does not scale well with large data sets [73]. Rennie et
al. discussed ways to improve the accuracy of multinomial models through tf–idf weights
instead of raw term frequencies and document length normalization [110]. Another popu-
lar technique to boost the classification accuracy is to relax the conditional independence
assumption through locally weighted learning [10]. Past work has thoroughly discussed lo-
cal likelihood methods like locally weighted linear logistic regression [84], locally weighted
density estimation [84, 28] and locally weighted decision trees (C4.4) [70]. Frank et al.
proposed a similar algorithm—a locally weighted Naive Bayes that weighs the k nearest
neighbours of the test instance in terms of their distance to that instance. This helps to
weaken the e ffects of attribute dependencies that may strongly exist in the whole training
data but much weaker within the neighbourhood of the test instance. Thus, most of the
work on improving the classification performance of Naive Bayes is focused on address-
ing the independence condition either explicitly by directly estimating dependencies, or
implicitly by increasing the number of parameters to estimate.
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3.2.2 Proposed Approach

As described above, there are many variants of Naive Bayes classifier that aim to im-
prove its classification performance by making certain assumptions about the distribution
of words, or relaxing the independence assumption. In this thesis, we adopt the idea of
estimating dependencies for features in the test document and relaxing the feature indepen-
dence assumption through a human-in-the-loop system. The idea is to infer the class of a
test document given its words, through the conditional probabilities of having those words
present in training data and/or similar words captured from conversational interactions
with a human-teacher on each of the available classes (Ck). Given the set of words from a
test document, the conditional probability for those words in training data under respec-
tive classes is represented as P (wi|Ck) and the conditional probability of conversational
keywords that are similar to the words in the corpus is represented as P (si|Ck).

P (si|Ck) =
# conversational keywords similar to wordi in test document

Total # conversational keywords captured from the interaction for Ck

(3.9)

To determine whether a conversational keyword is similar to a word in the test docu-
ment, we calculated the average cosine similarity between the words appearing in the test
document and the words discussed during conversational interactions for each document
class. Cosine similarity measures the cosine of the angle between two non-zero vectors in
the same vector space, representing their closeness. Since cosine similarities can only be
calculated for vectors, we transformed the words into word-embeddings using Word2Vec
model. Word2Vec is a shallow neural-network that is trained to reconstruct the linguistic
contexts of words in vector space [93]. The original pre-trained model is trained on 3 mil-
lion 300-dimension word vectors in English language. We used a lighter model with same
dimensionality of vectors as the original model but trained on 300,000 words from Google
News dataset, crossed-referenced with English dictionaries. Similarity coefficients are cal-
culated using the Gensim package that provides a Python implementation of Word2Vec
with an in-built utility for finding similarity between two words given as input. Note
that these similarity coefficients can only be calculated if both words are present in the
Word2Vec model vocabulary: words from the conversation and the words from the test
document. We applied Laplace smoothing to both conditional probabilities for reasons
described above by setting α = 1 in equation (3.8). These similarity coefficients are then
multiplied with the statistical likelihood of corresponding words appearing in the training
corpus in order to calculate the overall posterior probability of the text belonging to a
specific document class. Similarity coefficients have a range between -1 and 1, with neg-
ative values indicating that the words are not similar to each other, and positive values
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indicating greater similarity between the words. Conversational keywords where the sim-
ilarity coefficient is below a threshold (e.g. 0.2) are not counted in (3.9). The similarity
coefficients between the words in test document and words obtained from conversations
can be determined through any other distance metric technique like Minkowski distance,
or Jaccard scores. We refer these similarity coefficients as user-defined likelihood and use
them to to modify the posterior probabilities of a test document belonging to a class based
on the following two situations.

Case 1: Without supervised pre-training

In this case, the posterior probability of the document belonging to a class is only in-
ferred from the conditional probability of the conversational keywords captured during the
discussion. Thus, equation (3.5) can be expressed as:

P (Ck|w1, w2...wn, s1, s2...sn) ∝ P (Ck)
n∏

i=1

P (si|Ck)

= P (Ck) P (s1|Ck) P (s2|Ck) . . .

(3.10)

Case 2: With supervised pre-training

In this case, the conditional probability of the conversational keywords captured during
the discussion is combined with conditional probability of the words in the original corpus.
Thus, equation (3.5) can be expressed as:

P (Ck|w1, w2...wn, s1, s2...sn) ∝ P (Ck)
n∏

i=1

P (wi|Ck)P (si|Ck)

= P (Ck) P (w1|Ck) P (s1|Ck) P (w1|Ck) P (s2|Ck) . . .

(3.11)

Note that the conditional probability of a word appearing in the training corpus, P (wi|Ck),
and the conditional probability of similar words being discussed during the conversational
interaction, P (si|Ck) are considered as two independent events and hence their combined
probabilities can be expressed as the product of individual probabilities.
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Decision Rule for Classification

To yield the final classification, the algorithm outputs the class with the highest posterior
probability:

y = argmax P (Ck)
n∏

i=1

P (wi|Ck) P (si|Ck) (3.12)

3.3 Conversational Interface

3.3.1 Why a Conversational Interface?

Previous research on agent-based interactions has found that the mere presence of a lifelike
character in an interactive learning environment induces strong positive effect on learner’s
perception of the learning experience (persona effect) [79, 96, 42]. However, a later study
found the text-based interface delivering third-person references to a subject to be more
enjoyable leading to better learning outcomes in comparison to a conversational agent
delivering first-person references (Piagetbot) [62]. Nevertheless, most of the work advo-
cating non-conversational interactions has focused on agents that are mostly used as peers
[111, 71], or tutors playing the role of a teacher or instructor [54, 95]. Since our work
focuses on presenting the agent as a less intelligent entity, an important benefit of using
the conversational interface is that clarification can be obtained through the interaction
process. Further, using a conversational interface to obtain the user-defined likelihood of
features is useful because it can address some important concerns that directly relate to
the performance of Naive Bayes classifiers:

• Independence condition: Performance of the Naive Bayes classifier degrades when
the attribute-independence condition does not hold. This limitation can be addressed
by relaxing the independence assumption through additional features that are dis-
cussed during conversational interactions on a given topic.

• Limited training data: Although Naive Bayes classifiers are known to perform well
with limited training data [65], their performance still depend on the size and rich-
ness of feature vocabulary. By incorporating additional features from conversational
interactions, we can account for words in the test document that do not appear in
the original training data.
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• Imbalanced classes: Performance of a Naive Bayes classifier can be skewed towards
a class with significantly higher number of training samples. Although past work has
addressed this issue by applying tf-idf weights to features [110], it still does not
account for limited feature vocabulary from classes with lesser training samples. A
teachable conversational agent can conduct more discussions on topics that have
lesser training samples and capture new features for those classes.

Interaction Modality

Previous work on the modality comparisons in conversational or pedagogical agents is full
of mixed results. More recent studies on embodied conversational agent show that while the
use of text-based interfaces enhances the quantity of creative interpretations, voice-based
interaction enhances the quality of results [60]. Moreover, using a textual interface over
voice helped us avoid errors originating from incorrect speech recognition and challenges
in speech-to-text conversions.

3.3.2 Dialog System

Conversations in the dialog system were designed using a dialogue tree, a branching data
structure. Dialogue trees are popular in game design and similar to story trees where each
node represents a place where a conversation may branch, based on the users’ decision
about what they want to say [3]. Unlike a story tree, links in a dialogue tree can go
backward or forward because of the nature of conversational interaction (eg. repeating
a sentence). Besides managing the conversation, we kept a separate strategy to manage
states and overall interaction of the agent with human teachers.

State Management

The dialog states are managed through a rule-based approach built using a hierarchical
state machine. Hierarchical state machines are the finite state machines whose constituent
states themselves can be other state machines. The top-most level of our dialog system
hierarchy represents the mode of agent’s primary interaction with the human-teacher. This
mode could either be the learning mode, or the validation mode. In learning mode, the
teachable agent is focused on learning new features through conversations related to a given
topic. In validation mode, agent attempts to predict the category of unseen news snippets
and asks for more samples to predict from the human-teachers. The agent can switch
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between either modes based on the interaction sequence determined by human-teacher.
This interaction sequence to switch modes can be triggered by either pressing a button,
giving a verbal command or touching a sensor based on the interaction modality of the
teachable agent. Each of these modes further contain multiple contexts that defines the
second level of our dialog system hierarchy. The context refers to the states that describe
the relevance of features for a given topic. The agent can switch between different contexts
in order to capture new features that are relevant or irrelevant to the topic under discussion.
We used these contexts to represent different teaching heuristics aimed to facilitate the
teaching process for humans. These teaching heuristics are explained in detail in the
following subsection. Finally, all contexts contain multiple intents that decide the sequence
of conversation. These intents can either be recognized through rule-based heuristics or
deep learning methods. We used the rule-based approach to identify different intents
during the conversational interactions. In addition, we also developed agent strategies
loosely consistent with Speech Act theory that direct the user to ask about content within
Kai’s dialog system repertoire. In certain cases in which no input was recognized, Kai
would default to one of several fallback options like: asking users to paraphrase, repeat or
simply ignore and move to next .

3.3.3 Teaching Guidance

Heuristic Instruction Conversational Guidance
1. Internal relevant
words

1. Select few words from the
text that are most relevant to
the category

I wonder which words are most
relevant while categorizing this
text to the category?

2. Internal irrelevant
words

2. Select few words from the
text that are least relevant to
the category

Which words are least relevant
while categorizing this text to the
category?

3. External relevant
words

3. Enter few words ’outside’
the text that will most likely
describe the category

Can you tell me few more words
that should describe the category
but are not in the text?

Table 3.1: Heuristics with corresponding instructions and teaching guidance given to
crowdworkers during the task

Past work on algorithmic teaching has shown that human teachers can significantly
improve the learning rate of a machine learning algorithm [12, 90, 52]. However, hu-
mans often do not spontaneously generate optimal teaching sequences. Moreover, human
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teaching is mostly optimized for human learning and therefore not naturally optimal for
arbitrary machine learners. Cakmak et al. examined several ways to elicit good teaching
from humans for machine learners [21]. They proposed the use of teaching guidance based
on computational solutions to the teaching problem at hand which can either be in the
form of an algorithm or a heuristic. As described above, while algorithms can have guar-
anteed optimality bounds, they are often not as amenable to be used as teaching guidance.
On the other hand, although heuristic-based guidance may not guarantee optimality, they
are often easier to understand and use for everyday people. Macgregor et al. proposed
two teaching heuristics for optimizing the classification algorithms [88]. Similar to their
approach, we identify three teaching heuristics that may help our interactive Naive Bayes
classifier and also amenable for humans. Features identified through these heuristics were
meant to supplement the classifier by proposing new features, amplifying relevant ones, or
discounting the irrelevant ones for respective categories. Table 3.1 summarizes the heuris-
tics with corresponding instructions and teaching-guidance. This teaching guidance was
used to form the second level of our dialog system hierarchy described above.

(a) Teaching Interface (b) Testing Interface

Figure 3.1: Task Environment: Curiosity Notebook

3.4 Task Environment

We used the task environment provided by Curiosity Notebook: a learning-by-teaching
platform with conversational agents. Curiosity Notebook provides a web-based learning
environment that supports the interaction between student-teachers and agent-learners.
The purpose of this system is to focus on the nature of the interaction between a tutor
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and tutee. Specifically, we aim to promote the scenario that enables students to take the
role of an instructor who teaches a classification task to a virtual conversational agent.
We chose classification tasks because they are well structured which means that the teach-
ing conversation can be designed to be highly structured as well. Classification tasks are
also amenable to machine learning, allowing computational models of learning to be even-
tually implemented in the agent as described above. Although our previous studies on
Curiosity Notebook were focused on classifying objects that involves mainly identifying
and remembering features that distinguish each category, our work in this thesis is fo-
cused on facilitating text-classification. Additionally, unlike previous experiments where
Curiosity Notebook was used along with a physical humanoid robot in controlled lab and
school studies, we decided to run our experiments online on Amazon Mechanical Turk for
multiple reasons. First, it allowed to to quickly prototype the system and test it with small
sample groups. This allows frequent iterations necessary to build a robust experimental
prototype. Second, it broadens the sample population that includes participants from a
diverse set of age group, gender, and geographic regions. Previous research have shown
that crowdsourced experiments and experiments yield equally valid results [74]. In essence,
Curiosity Notebook was extended to facilitate online teaching in crowdsourcing context.

In the task interface, participants could switch between Teaching and Testing modes
to either teach their agent, or validate their performance on a set of unseen articles. These
two modes are described in Figure 3.1. Within the teaching mode, while reading the
article, participants could highlight sentences and use them to direct conversations in
natural language dialogues through a textual interface (Figure 3.1(a)). The agent then
asks questions and prompts the human-teacher to elicit their queries and reveals what it
does not understand about the topic, or what else it wants to know. These queries are
answered by the human-teacher interacting with the agent, allowing them to reflect upon
their own knowledge and ultimately gain a better understanding about the topic. In the
testing mode, participants could load new articles in the interface and ask the teachable
agent to classify them in real-time based on what they have learned from the conversational
interaction. After the agent’s prediction, correctly classified articled were coloured green,
whereas incorrectly classified articled were coloured red. During the entire interaction,
participants were encouraged to switch between teaching and testing modes in order to
check their teaching performance and how the agent adopts to it with new articles and
additional words.
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Chapter 4

Experiment 1: Formative Evaluation

The purpose of this experiment is to test the learning algorithm described in previous
section with a group of crowdworkers. The aim is to evaluate the performance of Naive
Bayes classifier built from the keywords gathered from the conversational interaction with
and without using the supervised pre-training. We also compare the performance of our
classifier with the baseline text classification algorithms that were modified. Results from
this study not only helped us gather necessary conversational data to evaluate our sys-
tem, but also provided useful insights into how such interactions should be modelled into
conversational setups in order to maximize agent’s learning performance. Additionally, we
also capture user-feedback on the Computer System Usability Questionnaire to evaluate
their opinion on overall satisfaction with a system having teachable agent. Thus, this study
serves as an important part to evaluate the learnability of Teachable AI systems that learn
a task through conversations. Figure 5.1 describes the general experimental procedure.

4.1 Design

We conducted a formative study to investigate whether our modified variant of Multino-
mial Naive Bayes classifier can iteratively learn from additional keywords captured from
conversational interactions. For this, we designed an experiment within Curiosity Note-
book where a human teacher reads a series of news articles and help the conversational
agent embedded as a chatbot to learn the news classification. The chatbot asks questions
related to the articles and capture the user-utterances made in response. Each human
teacher teaches their own version of the agent that allows us to evaluate agent’s learning
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progress after each article as an independent epoch. Dependent measures from the study
are as follows:

• Words taught, the total number and proportion of words taught to the agent.

• Change in agent’s performance, the classification performance of the agent as it
learns from human-teachers without supervised pre-training.

• Overall agent’s performance, the overall classification performance of the agent
after the conversational interaction combined with supervised pre-training.

Besides these dependent measures, we also measured participants’ responses to the post-
study questionnaire, including their opinion on the overall interaction and feedback on the
systems involving teachable agents.

4.2 Participants

We recruited sixty crowdworkers from Amazon Mechanical Turk (10 females, 50 males),
23 to 53 years old (M= 30.9, SD= 5.29). The study was conducted by posting Human-
Intelligence-Tasks (HITs) with the title: “Teach How to Classify News Articles to a Chat-
bot”. Participant pool represented a variety of professions including managers (13), IT
technicians (10), engineers (9), clerks (5) , analysts (4) and designers (3). Three of the
participants were teachers, two were homemakers and remaining were self employed. 87% of
the participants were native English speakers, but all reported some prior experience with
conversational agents on a 7-point scale (M=5.76, SD=1.15). 53.4 % of the participants
reported prior experience in teaching a classification to someone else, the other half had no
prior experience on teaching (46.6%). Regarding the prior knowledge on the 4 given news
categories, participants rated most for World (M=5.85, SD=1.20), followed by SciTech
(M=5.63, SD=1.27), Business (M=5.55, SD=1.47) and Sports (M=5.07, SD=1.78).

Participants received $0.5 USD for the pre-study questionnaire on demographics, $2
USD for the primary teaching task and $0.5 USD for the post-study questionnaire. The
teaching task took approximately 30 minutes, pre- and post-study questionnaires took 2-5
minutes each to complete. The experiment was conducted within Curiosity Notebook run-
ning on Django framework in the backend and Javascript in the frontend. Only participants
using Chrome and Firefox were allowed to participate in order to reduce the possibility of
browser incompatibility.
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4.3 Procedure

The experiment was hosted as an independent Web Application running on Python Django
framework. The workers were first meant to accept the HIT from Amazon Mechanical Turk
and click a link that would open the application interface in a new browser window. Upon
completion, the application generated a random alphanumeric token which was meant to be
entered in the Mechanical Turk Interface while submitting the HIT. The general procedure
adopted for all studies is described in Figure 4.1

Figure 4.1: General experimental procedure for MTurk studies

In the experiment, workers first read the information and consent letter explaining the
details about the study. Then, after providing the consent for participation, they were
given a short tutorial on the interface explaining different UI elements and their usage.
After this, they were shown a news article and a chat interface to teach the classification
to the virtual teachable agent. The agent used to ask the category for the given article
and ways to classify it into one of the known categories. During the teaching process,
workers were free to switch between the ”Teach” and ”Test” mode by clicking respective
buttons below the chatbox. In the test mode, the agent would predict the category of the
articles based on words that were taught during the ”Teach” mode. In total, there were
20 articles to teach that were equally distributed across all four news categories. Workers
were supposed to teach at least one word from each article in order to proceed further in
the Task. The study procedure and teaching interface are shown in Figure 4.2 and 4.3
respectively.

After completing the teaching task, workers were asked to fill the IBM Computer System
Usability Questionnaire (CSUQ) [83] to report their opinion on the overall interaction
experience and satisfaction with the system having a teachable agent.
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Figure 4.2: Study procedure for experiment 1

(a) Teaching (b) Testing

Figure 4.3: Interaction with the agent during (a) teaching, and (b) testing mode
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4.4 Analysis Methods

This section describes the metrics used to evaluate engagement of crowdworkers during the
experiment and measure the classification performance of agent.

4.4.1 Indicators of crowd performance

We analyzed the data gathered from each crowdworker in the pre-study questionnaire
as well as the final performance of the agent that was taught by them. This was done
to examine whether there is any relation between these pre-experiment attributes and
worker’s ability to teach a classification task to the agent. If such a relationship exists
and is significant, it can be used as a mechanism to filter out poor teachers for subsequent
studies.

4.4.2 Teaching Efforts

Teaching efforts were measured by recording the entire transcript of the conversation be-
tween the crowdworkers and the teachable agent. From this, we inferred the total time
spent on teaching, number of dialogues exchanged during the interaction, number of words
that were taught to the agent, and number of times the agent was tested by the crowdwork-
ers. This was done to understand what factors from worker’s ability to teach a classification
task are most relevant to the final classification performance of the agent.

4.4.3 Agent’s Performance

Agent’s performance was evaluated by measuring its classification performance (F-1 scores)
on the test set. For the experiment, we used the interactive variant of Multinomial Naive
Bayes as the underlying classification algorithm. The interactive Naive Bayes was used
without supervised pre-training (as described in equation (4.3)) in order to minimize the
confounds resulting from initial performance being too high. It was necessary because an
interactive classifier with supervised pre-training would already be good in news classifica-
tion before the conversational interaction. This could have primed the participants to not
teach as many words as they may teach otherwise, assuming that the agent is already clas-
sifying news-snippet accurately. Other variants of the interactive Naive Bayes were later
analyzed offline to identify the most useful algorithm that can learn from human-teachers
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during the experiment. The metrics used to quantify the classification performance of the
teachable agent are described below.

Evaluation Metrics

In order to evaluate the performance of the agent representing a text-classifier, we computed
precision (P), recall (R) and F1-score (F1) by comparing the predicted output with ground-
truth answers for the news articles in the test-set. These measures are defined as follows:

• Precision: It attempts to predict the proportion of positive identifications that were
actually correct (TP). Thus, a model that does not produce any false positives (FP)
has a precision of 1.0.

P =
TP

TP + FP
(4.1)

• Recall: It attempts to predict the proportion of actual positives that were identified
correctly (TP). Thus, a model that does not produce any false negatives (FN) has a
precision of 1.0. Recall is also called referred as Sensitivity of a model.

R =
TP

TP + FN
(4.2)

• F1-Score: Sometimes, it is desirable to consider both precision and recall in order
to fully evaluate the effectiveness of a model. However, both these metrics are often
inversely proportional to each other and improving precision reduces the recall and
vice versa. In such cases, the most effective metric to evaluate the model performance
is to find F1-score by taking the harmonic mean of Precision and Recall. Thus, F1-
score conveys a balance between the precision (P) and the recall (R).

F1 =
2PR

P +R
(4.3)

We used F1 scores to evaluate the classification performance of the agent. The following
section describes how performance of the classifier changes with individual news articles
for all the participants, and how the model performs if words taught by all the participants
are combined with the pre-trained Naive Bayes classifier.
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4.5 Results

4.5.1 Indicators of crowd performance

We performed an analysis of variance (ANOVA) between the teachable agent’s final F1
score, and each of the user attributes collected from pre-study questionnaire: gender,
profession, interest, knowledge and prior teaching experience. Since the F1-scores were
continuous and most of the user attributes were categorical in nature, we grouped the F-1
values using the categorical variables, measured the variance in each group and compared
it with the overall variance of agent’s performance. Participants’ self-reported prior knowl-
edge on the news categories was not observed to have any effect on the performance of the
teachable agents (p > 0.05). Similarly, no significant relationship was observed between the
other user attributes and final F1-score of the teachable agent (all p > 0.05). Therefore,
pre-filtering of participants based on their responses in pre-study questionnaire was not
performed for subsequent studies.

4.5.2 Teaching Efforts

Words taught during conversation

Figure 4.4: Proportion of words taught for each (a) type and (b) news category.

Each crowdworker individually taught an average of 146 words (SD = 155.08) during
the conversation. High standard-deviation indicates that some of the participants taught
too little and others taught a lot of words to the agent. Overall, crowdworkers taught a total
of 8471 words across all interactions. Figure 4.4 illustrates the proportion of words taught
for each type of word and different news categories. 44.4% of the overall taught words
were not from the news article given in the interface but relevant to the topic in general.
39.2% of the words were relevant and also mentioned in the article, while the remaining
16.4% of the words taught were mentioned to be irrelevant to the topic being discussed.
A category-wise frequency analysis revealed that conversations related to Business domain
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(a) Internally Relevant (b) Internally Irrelevant

(c) Externally Relevant

Figure 4.5: Proportion of words taught by all the participants across (a) internally relevant
(b) internally irrelevant, and (c) externally relevant words during the interaction.

contributed the most number of taught words (26.9%) while the conversations related
to Science Technology contributed least number of words (21.5%). World and Sports
contributed 26.5% and 25% words respectively that were taught during conversational
interaction. Proportion of words taught by all the participants is shown in figure 4.5.
Figure 4.6 shows the number of words taught by individual participant.

Average time spent

Crowdworkers spent an average time of 42.5 minutes for the entire experiment. No sig-
nificant effect of time spent was noticed on the final F1-scores indicating classification
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(a)

Figure 4.6: Words taught by individual crowdworkers during the interaction.

performance of the teachable agent (p > 0.05).

Number of dialogues exchanged

Average number of dialogues exchanged between crowdworkers and the teachable agent
was 515 (SD=101). This metric was highly influenced by the number of words taught to
the agent and the way they were exchanged. Some crowdworkers taught individual words in
different dialogues, whereas some preferred teaching all the words in one message separated
by spaces or commas. No significant effect of the number of dialogues was noticed on the
final F1-scores indicating classification performance of the teachable agent (p > 0.05).

Number of times agent was tested

During the interaction, crowdworkers were allowed to switch between teaching and testing
modes in order to validate the agent’s performance. We monitored the number of times
crowdworkers tested their agents while teaching in order to examine whether this has any
effect on the agent’s final classification performance. It was observed that the number of
times a teachable agent was tested by the crowdworkers had no significant effect on its
classification performance (p > 0.05).
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4.5.3 Agent’s Performance

Change in classification performance

We calculated the classification performance of the agent after each news article that was
discussed during the conversational interaction. As mentioned before, although the classi-
fier was trained online on the keywords captured from conversations on the current article,
along with the keywords captured from all previous conversations, the performance was
calculated ”offline” on the entire test set of 7600 articles from the AG News Dataset treat-
ing individual article as an epoch. For this, we used the interactive variant of Multinomial
Naive Bayes classifier as described in equation (4.3). Since the classifier was used without
supervised pre-training, the initial performance was around 20% before the interaction.
After the interaction, some of the most successful crowdworkers were able to increase the
performance of the agent to around 70%, while for the least successful ones, the perfor-
mance decreased to 10%. Results indicate that the final performance of classifier varied
significantly across different participants. We did not find a direct co-relation between the
number of words taught and the classification performance. This indicates that the quan-
tity of the words captured alone does not impact the classifier’s performance. Figure 4.7
shows the progression of F1-score with each article for 3 most successful and least successful
teachers, that trained an interactive machine learner without supervised pre-training.

Figure 4.7: Change in accuracy of the agent when taught by 3 (a) most successful, (b)
least successful crowdworkers, with no supervised pre-training of the interactive Naive
Bayes classifier
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Overall classification performance

Previous section describes how the performance of the classifier changes with each article
discussed during the conversation without supervised pre-training. In this section, we
describe the results of classifier’s performance for other interactive variants of Naive Bayes
with supervised pre-training as described in equation (3.11). These results were obtained
”offline”, by simulating the learning conditions after the experiment. Both statistical
likelihood of words from relevant classes, and the user-defined likelihood obtained from
conversations were used to calculate the posterior probability of test-documents. The
classification performance of the interactive variants of Naive Bayes were compared with
the two baselines for Bernoulli Naive Bayes (BNB) and Multinomial Naive Bayes (MNB)
respectively. The comparison was made between most successful, least successful, and
combination of all crowdworkers who taught the teachable agent during the experiment.
Precision, recall and F1 scores for the interactive variants are described in Table 4.1

Model Precision Recall F1-Score
Without Teachers (Baseline)

Bernoulli Naive Bayes 0.8626 0.8584 0.8593
Multinomial Naive Bayes 0.8899 0.8902 0.8900

Best Teacher
Interactive Bernoulli Naive Bayes 0.8658 0.8672 0.8664
Interactive Multinomial Naive Bayes 0.8972 0.9042 0.9006

Worst Teacher
Interactive Bernoulli Naive Bayes 0.8145 0.8247 0.8196
Interactive Multinomial Naive Bayes 0.8729 0.8709 0.8719

All Teachers
Interactive Bernoulli Naive Bayes 0.8532 0.8578 0.8558
Interactive Multinomial Naive Bayes 0.8847 0.8830 0.8838

Table 4.1: Comparison of baseline classifiers with interactive variants of Naive Bayes with
supervised pre-training, for best teacher, worst teacher and all teachers.

4.5.4 Post-study questionnaire

After the experiment, participants were asked to fill a post-study questionnaire designed
for the assessment of perceived usability of a system. This questionnaire was adapted
from the IBM Computer System Usability Questionnaire (CSUQ) [83]. CSUQ is a 5-point
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usability scale questionnaire, similar to the 18-item version of Post-Study System Usability
Questionnaire (PSSUQ) [82], with slight changes to the wording due to the change in
research context. We used the 16-item version of CSUQ that produces four scores: three
well defined sub-scales and an overall measurement for the perceived usability of a system.

Figure 4.8: Median scores for usefulness, information quality, interface quality and overall
usability of the system from CSUQ

Median scores within the 95% confidence intervals for overall perceived usability along
with three sub-scales are shown in Figure 4.8. Mean rating for System Usefulness (SysUse)
was recorded as 5.14 (SD=0.36). For Information Quality (InfoQual) and Interface Quality
(IntQual), participants reported an average score of 4.28 (SD=0.48) and 4.2 (SD=0.53)
respectively. Overall, the mean perceived usability of the system was recorded to be 4.59
(SD=0.29).

4.6 Discussion

A major aspect of this study was to investigate whether crowdworkers can directly inter-
act with a teachable conversational agent and interactively train the underlying machine
learning classifier. This is different from the traditional approach where crowdworkers only
provide the labels for training data, which is later used to train the classifier offline. Re-
sults from the experiment reveal that sincere crowdworkers who are good at teaching can
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iteratively improve classifier’s performance with even limited conversational interactions.
However, ineffective teaching may result in sub-optimal performance of the underlying clas-
sifier as illustrated in Figure 4.7. The difference between effective and ineffective teaching
cannot solely be quantified by the number of words taught during conversational inter-
action and may also depend on the quality of teaching as well. Identifying the quality
of teaching from conversational interactions remains an open challenge in this area and
may need further investigations. Similar to the situation where interactive learning is used
without supervised pre-training, the results also indicate that the performance of the clas-
sifier improves with most effective teachers and degrades for least effective teachers when
used with supervised pre-training as described in Table 4.1. An interesting finding is that
the combined effect of teaching from all the crowdworkers may actually reduce the overall
performance of the classifier in an interactive setting. This implies that interactive learners
who aim to learn from conversational interactions should be used individually with differ-
ent human-teachers rather than directly learning from a group of teachers. Learning from
a lot of sources may affect the performance of the learner if the proportion of ineffective
teachers is significantly more than effective ones, and effective and ineffective sources are
indistinguishable. Finally, results from the post-study questionnaire indicate that teach-
ing through conversational interactions is perceived well by the participants in terms of
usability of the system and provide a meaningful engagement experience.
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Chapter 5

Experiment 2: Learning By Teaching

The goal of this study is to investigate the effectiveness of the learning-by-teaching paradigm
within the context of crowdsourcing tasks. One part of this study is focused on facilitating
crowdworkers in teaching a classification task to an AI agent. The other part is concerned
with simply providing them more instructions to do the task. Specifically, we are interested
in knowing whether crowdworkers can improve their own performance by teaching the task
to a virtual AI agent, compared to a situation where they do the same task themselves
with additional task instructions. We compare the pre- and post-interaction performance
of crowdworkers in the two conditions to validate the effectiveness of learning-by-teaching
technique. Additionally, we also capture participants’ opinion on the usefulness and per-
ceived enjoyment during the task through Activity Perception Questionnaire from the
Intrinsic Motivation Inventory. Thus, this study serves as an important task of informing
the usefulness of Teachable Agents for humans, especially in the context of crowdsourcing.

5.1 Design

The experiment used a between-subject design with the ”task interaction technique” in
training phase as an independent variable. We chose two interaction techniques to seek
information from the crowdworkers. In the control condition, crowdworkers self-classified
the news articles with additional task-instructions corresponding to the rubric. These
instructions were displayed on a panel alongside the text to classify. In treatment condition,
crowdworkers were asked to teach the classification to Kai: the virtual AI agent embedded
within Curiosity Notebook. The agent used conversational interventions to deliver the task
instructions and elicit teaching from crowdworkers. The agent acted as a less intelligent
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entity with the desire to learn the classification task from crowdworkers. Both experimental
conditions conveyed the same amount of instructions for the task as defined by the rubrics.
In the control condition, crowdworkers were treated as annotators, whereas in the treatment
condition, they were treated as human-teachers. The entire experiment was divided into
3 parts with first and third part measuring pre-interaction and post-interaction baselines
and second part representing the experimental condition. Dependent measures from the
study are as follows:

• Words Captured, number of words captured from each article for each condition.

• Task Completion Time, the duration of time from the beginning to completion
for pre-interaction and post-interaction baseline tasks.

• Participants’ Accuracy, the proportion of articles labelled correctly in pre-interaction
and post-interaction baseline tasks.

We also measured the following dependent variables from the Activity Perception Ques-
tionnaire in Intrinsic Motivation Inventory:

• Interest/Enjoyment, self-reported enjoyment of the activity from the participants
in respective condition.

• Value/Usefulness, self-reported usefulness of the activity from the participants in
respective condition.

Participants were given 8 articles in first and third part respectively, and 4 articles
in the second part that represented one of the experimental conditions. In total, each
participant saw 20 articles during the experiment.

5.2 Participants

We recruited 100 crowdworkers from Amazon Mechanical Turk (38 females, 62 males), 22
to 65 years old (M= 33.74, SD= 9.24). Participant pool represented a variety of professions
including freelancers (42), managers (23), engineers (15), home-makers (8), and designers
(3). Remaining 9 participants were self-employed. 94% of the participants were native
English speakers, but all reported some prior experience with conversational agents on a 7-
point Likert scale (M=5.58, SD=1.56). 37 % of the participants reported prior experience
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in teaching a classification to someone else, the other half had no prior experience on
teaching (63%). Regarding the prior knowledge on the 4 given news categories, participants
rated most for SciTech (M=5.26, SD=1.43), followed by Sports (M=5.09, SD=1.71), World
(M=5.01, SD=1.45) and Business (M=4.08, SD=1.52).

The HITs were posted with the title ”Teach How to Classify News Articles to a Chat-
bot”. Participants received $0.5 USD for the pre-study questionnaire on demographics, $2
for both baseline tasks, $2 for completing the condition task (teaching the classification or
self-classification with instructions), and $0.5 USD for the post-study questionnaire. The
two baseline tasks took approximately 5 minutes, interaction phase took approximately 10
minutes and the pre- and post-study questionnaires took 2-5 minutes each to complete. As
in the first experiment, this study was also conducted within Curiosity Notebook. Only
participants using Chrome and Firefox were allowed to participate in order to reduce the
possibility of browser incompatibility.

5.3 Procedure

Figure 5.1: Study procedure for experiment 2

Crowdworkers were first given a series of text-classification tasks to capture their pre-
interaction baseline performance. Then, they were placed in independent conditions and
told that the purpose of this part is to help them more accurately annotate the articles
for text-classification. In this phase they were asked to mark certain words from the
text that helped them choose a specific category for the overall article. Workers were
divided into two experimental conditions. In control condition, they were given a set of
rubric-instructions to follow while annotating the text to classify. These rubric-instructions
asked them to further specify which words in the text were most and least relevant to the
category belonging to the article. In treatment condition, workers interacted with Kai,
a conversational agent that asked them to teach the text classification task. Kai used
teaching-guidance to elicit the same amount of information as gathered in control condition.
Both rubric-instructions and teaching-guidance were different forms of the same underlying
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(a) Pre-interaction (b) Post-interaction

Figure 5.2: Interface for (a) pre-interaction, and (b) post-interaction task in experiment 2

heuristics as described in subsection 3.3.3. These heuristics were carefully designed to
optimize the performance of Naive Bayes classifier that was ultimately being trained from
Turkers responses. We ensured that the teaching-guidance used in the treatment group and
the rubric-instructions shown in the control group convey the same amount of information.
Effectively, workers were exposed to the same type and amount of information, but they
assumed different responsibilities during the training process. Crowdworkers in control
condition were supposed to do the task themselves, whereas crowdworkers in the treatment
condition were supposed to teach the task to a virtual AI agent. Finally, participants from
both conditions were asked to perform a post-interaction baseline task, in order for us
to evaluate whether there is any change in their performance. Study procedure for the
experiment is described in Figure 5.1

5.4 Task Interface

As described above, the task was divided into three stages corresponding to pre-interaction,
experimental condition, and post-interaction task. In each of the stages, crowdworkers were
supposed to identify the correct class for a news-snippet sampled from the AG news dataset.
Pre-interaction and post-interaction stages were identical and asked the crowdworkers to
select a correct document class belonging to the given text. After this, they could click
the next button to proceed to the next article. Figure 5.2 describes the task interface in
pre-interaction and post-interaction task.
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(a) Interface for Teaching Classification (b) Interface for Self Classification

Figure 5.3: Study conditions in experiment 2 with interfaces for (a) teaching-classification,
and (b) self-classification

After the pre-interaction task, crowdworkers were redirected to the second part that
corresponded to the experimental condition. In this part, they were randomly assigned to
one of the two experimental conditions. In both the conditions, participants were asked to
identify the document class for the given news articles. Further, they were asked to provide
some words that helped them make the decision while selecting the class. The control
condition presented a passive textual interface containing instructions for the participants.
In treatment condition, crowdworkers interacted with a teachable conversational agent that
expressed an eagerness to learn text-classification. The agent used teaching guidance as
described in subsection 3.3.3, to ask the participants about specific words related to the
topic. The teaching guidance was exchanged in conversational form and conveyed the same
amount of information as it was conveyed in the control condition. In both conditions, new
words were provided by typing them in a textbox. Once the words were taught, participants
could ask the agent to learn them. Like in the previous experiment, participants in this
condition could also test the agent’s classification accuracy by switching to the testing mode
as described in Figure 4.3. The task interface in two experimental conditions is described
in Figure 5.3. After the second part, participants were redirected to the post-interaction
task to label few more news articles without explicit cues from the interface.
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5.5 Analysis Methods

In this section, we describe the metrics and methods that were used to compare the teaching
condition with self-classification. As mentioned above, we considered words captured dur-
ing the interaction phase, and change in performance in pre-interaction and post-interaction
parts as the primary performance metrics for each experimental condition. The perfor-
mance in pre/post-interaction baselines was defined as the average time spent, and average
classification accuracy of the crowdworkers. We were interested in knowing whether there is
any effect of the interaction technique on workers’ performance. Specifically, we wanted to
know whether teaching a task to a virtual agent makes crowdworkers better, compared to
a situation when they do the task on their own. We also analyzed the perceived usefulness
and interest that the participants reported in the post-study questionnaire.

5.5.1 Words Captured From Interaction

We calculated the total number of words captured during the interaction in each experimen-
tal condition. Since this data was discrete and non-normal, we performed Kruskal-Wallis
test to examine the effect of interaction techniques on the number of words captured.

5.5.2 Pre- and Post-Interaction Performance

As described above, we calculated participants’ accuracy and task completion time be-
tween pre-interaction and post-interaction baselines to analyze crowdworkers’ performance
in each condition. We compared the time data in two ways: across the post-interaction
baselines for both groups, and individual difference between pre-interaction and post-
interaction baselines. Since the time data was continuous and satisfied normality after
log transformation, we performed one-way ANOVA and pairwise t-tests with Bonferroni
correction, to compare the corresponding distributions.

5.5.3 Post-study Questionnaire

After the experiment, participants were asked to fill a post-study questionnaire to report
their opinion on the perceived enjoyment and perceived usefulness based on the condition
they were exposed to, during the task. These ratings were recorded on a 7-point scale and
analyzed using Kruskal-Wallis test, followed by Mann-Whitney test for post hoc analysis.
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5.6 Results

5.6.1 Words Captured From Interaction

(a) (b)

(c)

Figure 5.4: Words captured during the interaction phase in experiment 2

Figure 5.4 illustrates the average number of words captured in each condition. In
the control condition, participants were found to contribute an average of 1.55 words
(SD=1.27) that were present in the text and also relevant to the chosen category (inter-
nally relevant), 1.07 words (SD=0.81) that were present in the words but not relevant to
the chosen category (internally irrelevant), and 0.92 words (SD=0.68) that were not present
in the text but relevant to the category. In the treatment condition containing a teachable
conversational agent, participants contributed an average of 4.72 internally relevant words
(SD=3.96), 1.59 internally irrelevant words (SD=1.12), and 3.44 words that were relevant

43



but not present in the news-snippet (SD=2.56). We excluded stopwords, and common
padding words while counting, as they may have appeared in treatment condition owing
to the conversational nature of the interface. In total, participants provided an average of
3.53 words (SD=2.49) in the control condition involving self-classification of news articles,
and 9.74 words (SD=6.11) in the treatment condition containing a teachable conversa-
tional agent. Since the data exhibited non-normality, we performed Kruskal-Wallis test
for significance testing and Mann-Whitney test for post hoc analysis. These are the non-
parametric equivalent of ANOVA and unpaired t-test respectively. Treatment condition
the teachable conversational agent was found to capture significantly more words than the
control condition involving self-classification (p < 0.05). This indicates that teaching the
classification is more beneficial than self-classification with passive instructions for both
human-teachers and machine-learners .

5.6.2 Pre- and Post-Interaction Performance

Average Time Spent

In control condition with annotation interface, participants were found to complete the
pre-interaction task in 91.96 seconds (SD=109.9), and post-interaction task in 79.68 sec-
onds (SD=198.64). In the treatment condition with teachable conversational agent, par-
ticipants completed the pre-interaction task in 100.48 seconds (SD=78.10), whereas the
post-interaction task was completed in 67.98 seconds (SD=54.87). Visual inspection of the
task completion times suggested non-normality, which was confirmed by Shapiro-Wilk and
Anderson-Darling tests. To compensate this, we applied log-transformation on all data
points for task completion time. Log transformations were only applied for statistical tests
and all times presented in the thesis are actual measured values. After this, we performed
one-way ANOVA to investigate if the participants actually got faster after respective con-
ditions. No significant effect was observed in task completion time between pre-interaction
and post-interaction tasks for the control condition(p > 0.05). For treatment condition
with teachable conversational agent, the test showed a significant improvement in task
completion time during post-interaction task (p < 0.05). Finally, we compared the task
completion time across both the conditions. No significant difference was observed be-
tween pre-interaction, or post-interaction times across the conditions (p > 0.05). Figure
5.4 illustrates the average number of words captured in each condition.
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Figure 5.5: Average time taken to complete pre-interaction and post-interaction tasks
across both conditions

Classification Accuracy

We calculated the average accuracy of participants in labelling the news articles during
pre-interaction and post-interaction tasks. Accuracy of the participants was calculated by
following equation:

Accuracy =
Number of articles correctly labelled

Total number of articles
× 100 (5.1)

The average accuracy of participants in pre-interaction task for the control condition
was 78.5% (SD=18.21). For treatment condition, the pre-interaction accuracy was 77.75%
(SD=17.73). In both conditions, the accuracy was observed to slightly increase in post-
interaction tasks (79.5% in control vs 81% in treatment). Similar to time data, accuracy of
the participants in pre- and post-interaction satisfied normality after log-transformation.
We performed one-way ANOVA with interaction technique as the independent variable to
investigate its effect on participants’ performance. The increase in accuracy in both condi-
tions was not found to be significant (p > 0.05). Figure 5.6 describes the average accuracy
of crowdworkers in pre-interaction and post-interaction tasks across the two conditions.

5.6.3 Post-study Questionnaire

After the experiment, participants were asked to fill a post-study questionnaire on Ac-
tivity Perception from Intrinsic Motivation Inventory (IMI). The IMI activity perception
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Figure 5.6: Classification accuracy of crowdworkers in pre-interaction and post-interaction
tasks across both conditions.

questionnaire is a collection of 25 questions containing 7-point Likert scale type questions.
We selected a subset of the scale containing 17 questions that measured participants’ in-
terest/enjoyment in the activity as well as the perceived value/usefulness. Overall, we
collected a total of 100 survey responses corresponding to 50 participants in each experi-
ment condition.

Interest/Enjoyment

The experimental condition with the teachable conversational agent was rated higher
(M=5.45, SD=1.31) on the scale of enjoyment than the condition with passive rubric
instructions (M=5.1, SD=1.39). Since the survey data was ordinal and assumed non-
normality, we performed Kruskal-Wallis test for significance testing. The perceived enjoy-
ment rating between the two condition was not found to be significant (p > 0.05). Figure
5.7(a) illustrates the mean enjoyment ratings for both conditions. Figure 5.7(b) describes
the median rating within first and third quartile range.
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(a) Mean Score (b) Median Score

Figure 5.7: IMI enjoyment

Value/Usefulness

We examined the average ratings for perceived usefulness of the activity that was per-
formed by the crowdworkers in each experimental condition. Mean score recorded for the
control condition with teachable conversational agent was 4.76 (SD=1.11). For treatment
condition, the average usefulness score was recorded to be 5.34 (SD=1.09). We performed
Kruskal-Wallis test with mean usefulness rating as the dependent variable as the data was
ordinal and assumed non-normality. Results indicate that participants in treatment con-
dition considered the interaction with teachable agent more valuable than the participants
in control condition (p < 0.05). Figure 5.8(a) illustrates the mean enjoyment ratings for
both conditions. Figure 5.8(b) describes the median rating within first and third quartile
range.

5.7 Discussion

The results from this experiment provide some interesting evidence that favours the use of
teaching over self-classification in the context of crowdsourcing studies. It was found that
letting crowdworkers teach a classification to an agent captures more words from them com-
pared to the condition where crowdworkers self-classify the articles as illustrated in Figure
5.4. Thus, teaching a task can provide better results while eliciting information from the
human-teachers in an interactive setting. Further, comparing the pre-interaction and post-
interaction performance of the crowdworkers in both conditions reveal that participants in
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(a) Mean Score (b) Median Score

Figure 5.8: IMI usefulness

the treatment condition with responsibility to teach news classification showed significant
improvement in task completion time and participants’ accuracy during post-interaction
phase compared to the participants in control condition who self-classified news articles
(Figure 5.5 and Figure 5.6 respectively). These results indicate towards the presence of
Protégé Effect that implies that teaching, pretending to teach, or preparing to teach an in-
formation to someone else (eg. a Teachable Agent) ultimately helps the teacher learn that
information. However, more studies should be conducted to examine the actual learning
that comes from long-term and short-term interactions with the Teachable Agent. Finally,
the IMI usefulness scores reported in post-study questionnaire shows that the teaching was
perceived to be more useful and valuable than the self-work (Figure 5.8). This suggests
that teaching is an effective method for eliciting information from crowdworkers, and us-
ing a teachable conversational agent in the crowdsourcing context can improve workers
performance in terms of accuracy and task completion time.
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Chapter 6

Experiment 3: Dynamics of Trust

In this experiment, we investigate whether crowdworkers would trust an AI agent that
they themselves taught. Specifically, we are interested to determine if Turkers would prefer
incorporating teachable agents in their workflow if they diligently teach them for certain
human intelligence tasks, and what factors might matter in influencing trust in either a
positive or negative way.

6.1 Design

The experiment used an observational study design with the preference over task delega-
tion as a dependent variable. Total experiment was spanned across two parts: first part
pertaining to the teaching phase, and an optional bonus phase to label extra news-snippets.

6.2 Participants

We recruited 40 crowdworkers from Amazon Mechanical Turk (18 females, 22 males), 21 to
54 years old (M= 29.97, SD= 9.38). Participant pool represented a variety of professions
including managers (10), IT technicians (10), engineers (6), teachers (5), nurse (3) and
designers (3). Remaining 3 were self employed. 89% of the participants were native
English speakers, but all reported some prior experience with conversational agents on a 7-
point Likert scale (M=5.63, SD=1.31). 30 % of the participants reported prior experience
in teaching a classification to someone else, the other half had no prior experience on
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teaching (70%). Regarding the prior knowledge on the 4 given news categories, participants
rated most for SciTech (M=5.38, SD=1.43), followed by World (M=5.2, SD=1.14), Sports
(M=4.78, SD=1.76) and Business (M=4.48, SD=1.57).

The HITs were posted with the same title as previous two experiment, ”Teach How
to Classify News Articles to a Chatbot”. Crowdworkers who participated in the previous
two experiment were not allowed to participate in this study. Eligible participants received
$0.5 USD for the pre-study questionnaire on demographics, $2 for the teaching task, and
$0.5 USD for the post-study questionnaire. Further, for every correctly labelled sample in
the bonus task, they received an amount of $0.17 USD. The maximum possible payment
for the bonus task was $2 USD (12 articles * $0.17 USD per correctly labelled article). The
teaching task took approximately 10 minutes, bonus took around 0-5 minutes depending
on whether the crowdworker decide to delegate the task or do it all by themselves. Pre-
and post-study questionnaires took 2-5 minutes each to complete. As in the first two
experiments, this study was also conducted within Curiosity Notebook. Only participants
using Chrome and Firefox were allowed to participate in order to reduce the possibility of
browser incompatibility.

6.3 Procedure

We recruited a new set of workers on Amazon Mechanical Turk. Crowdworkers were
first given a series of 8 text classification tasks and asked to teach a virtual teachable agent
named Kai that delivered the same conversational interventions as described in Experiment
One. During this phase, workers were told that their future compensation may depend
on how successfully they teach Kai during the task. In this part, they were also expected
to validate the classification performance by observing the agent’s accuracy in test mode,
similar to the first experiment. In the second part, they were presented with a bonus task
to label 12 more news-snippets. The bonus task was optional and gave them an option to
either do the task themselves, delegate it to an agent. Crowdworkers were asked to choose
one of the two available options, or skip the bonus task altogether. For the delegation part,
they could choose a value on a 12-point slider to decide which portion of task they want to
do themselves and which portion they want to delegate to the agent they recently taught.
For either of the options, they were also asked to provide a reason for their choice in an
open-form text box. After the bonus task, they were asked to fill a questionnaire, which
investigated their level of trust on the agent and factors that influence their trust level.
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Figure 6.1: Study procedure for experiment 3

6.4 Task Interface

As described above, the entire experiment was divided into two parts. The first part was
about teaching the agent and similar to the teaching parts described in previous exper-
iments. Participants were supposed to teach a total of 8 articles to Kai: the teachable
conversational agent embedded within the experimental interface. Like previous experi-
ments, participants in this experiment could also evaluate the performance of their agent
by switching to the testing mode and observing its classification performance on unseen
articles. Figure 6.2(a) describes the task interface in teaching mode. After the teaching
part, participants were provided with a bonus task where they could earn more by labelling
some additional news snippets. They were also informed that the additional payment for
bonus task will be calculated only based on the number of correctly labelled samples.

(a) Teaching mode (b) Delegation mode

Figure 6.2: Task interface for experiment 3 while (a) teaching the agent, and (b) delegating
the task.
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Based on the information provided in the bonus task, participants were allowed to
either delegate a portion of the task to the agent and do the rest themselves, or do the
entire task on their own without delegating, knowing that the bonus will be only paid for
correctly labelled articles. For this, the participants were provided with a 12-point slider
in order to select the portion of task to delegate. Figure 6.2(b) describes the task interface
for delegation mode.

6.4.1 Agent’s Learning

Unlike previous experiments, where the agent was purely learning from the conversational
interaction, agent in this experiment was only simulating its learning based on the number
of news articles covered and words taught from each article. The reason behind this change
was to ensure that all the agents are equally accurate in classifying news articles after
the teaching part. This was important because the experiment was designed to measure
the trust of participants while delegating the tasks that involve monetary compensation.
Since a part of this decision may come from their perceived accuracy of the agent, it
was important to account for teachers who may not succeed in teaching, resulting in less-
accurate agents. As it is difficult to successfully separate ineffective teachers from effective
ones in the beginning of the task, we decided to simulate agent’s learning instead of letting
it learn online for more consistent results towards task delegation.

6.5 Analysis Methods

In this section, we describe the metrics that were used to investigate the dynamics of
trust relating to the interaction around a teachable agent. From the observational study
that involved teaching a task to an agent, we examined whether participants would later
delegate similar tasks involving monetary compensation to the agents that they recently
taught, or would they rather do the tasks themselves.

6.5.1 Portion of Tasks Delegated

We calculated the number of times participants decided to delegate a portion of the task
to the agent that they taught. This was used for descriptive analysis on the proportion of
overall tasks performed by the agent, and the participant.
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6.5.2 Post-study Questionnaire

After the experiment, participants were asked to fill a post-study questionnaire to report
their opinion on general self-efficacy, task specific competence and general trust towards
the automation offered by the system containing a teachable agent.

6.6 Results

6.6.1 Portion of Tasks Delegated

Figure 6.3: Tasks delegated to the agent

Each participant was given a total of 12 articles in the bonus task, and a choice to
either label all the articles themselves, or delegate a portion of those to the agent they
recently taught. It was clearly mentioned that only the correctly labelled articles in the
bonus task will be considered while calculating the bonus amount. 62.5% (N = 25/40)
of the participants trusted the agent and delegated a portion of the bonus task. The
remaining 37.5% (N = 15/40) decided to trust their own skills to classify news articles in
order to maximize the bonus amount. Among the participants who delegated the tasks to
the agent, 44% (N = 11/25) decided to assign all 12 articles to the agent, while 40%(N =
10/25) assigned half the articles (6/12) in order to compare agent’s work with their own.
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Figure 6.3 represents the portion of tasks completed by the agent and the participants.
Regions with green portion denote the instances where participants trusted the agent,
whereas regions with red portion denote the instances when participants did not trust the
agent and did all the articles in the bonus task themselves. Note that participants either
did not trust the agent at all, or trusted them at least as much as they trusted their own
skills in correctly classifying the news articles.

6.6.2 Post Study Questionnaire

Participants completed a post-study questionnaire after the experiment that was designed
for the assessment of trust and competence and self-efficacy. The questionnaire was adopted
from a combination of three surveys focused on general self-efficacy [68], task-specific com-
petence [39], and empirically determined scale of trust between people and automation
[69]. A total of 40 survey responses were gathered and analyzed using Kruskal-Wallis test
with the delegation decision as an independent measure.

General Self Efficacy

Figure 6.4: General self efficacy

Figure 6.4 represents the average self-efficacy reported by the participants on a 4-point
Likert scale. Participants who delegated the task to the agent in the experiment reported
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lower self-efficacy (M=3.12, SD=0.61) than the participants who did not delegate the
task and labelled all the articles themselves (M=3.25, SD=0.47). However, no statistical
significance was observed between the two groups (p > 0.05).

Task Specific Competence

Participants submitted their perceived competence on a 7-point scale adopted from the
Intrinsic Motivational Inventory. Similar to general self-efficacy, average task competence
reported by the participants who did not delegate the task to the agent was found to be
higher (M=5.73, SD=0.76) than those who delegated (M=5.54, SD=0.92). This indicate
that participants who were confident in their own skills to perform the news snippet classi-
fication task, were less likely to delegate it to the agent they taught. Likewise, participants
who delegated a portion of the task were slightly less confident in their own competence
to correctly label all the articles. In order to confirm the effect of competence for the task
on the decision to delegate, we performed Kruskal-Wallis test with perceived competence
rating as a dependent variable. However, the difference in scores reported was not found
to be significant between the two groups (p > 0.05). Figure 6.5 represents the mean scores
on perceived competence as reported by participants in the task.

Figure 6.5: Task specific competence
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Trust Towards AI

We examined the average ratings for self-reported trust of participants on a 7-point scale for
systems containing automation through agents. Mean score reported by the participants
who did not delegate the task to the agent was 3.89 (SD=0.82). On the other hand,
participants who delegated a portion of the task to the agent reported a mean trust score
of 5.16 (SD=0.84). Kruskal-Wallis test confirmed that that difference in trust ratings
is highly significant between the two groups of participants (p < 0.01). This implies that
using the teachable agent metaphor to perform a task may not be sufficient to gain people’s
trust. However, more studies should be performed to analyze the dynamics of trust with
teachable agents, and agents that do not involve humans in their learning. Figure 6.6
represents the average trust rating towards the system with teachable conversational agent
as provided by the participants.

Figure 6.6: General trust on AI systems

6.7 Discussion

The primary purpose of this experiment was to examine whether the crowdworkers em-
brace the concept of teachable conversational agent, and adopt them in their workflow for
the tasks they were originally taught on. Our findings reveal that while majority of the
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crowdworkers preferred delegating a portion of their tasks to the agent they themselves
taught, a significant portion of crowdworkers decided to do the entire task themselves.
Further, participants who delegated the task assigned at least 50% of the work to the
agent and kept lesser work for themselves. An interesting result was found in cases where
participants delegated exactly half of the work to the agent in order to compare its ac-
curacy with their own performance. These results are illustrated in Figure 6.3. Through
the post-study questionnaire, it was observed that participants who did not delegate the
task to their agent reported less trust on automated systems and were more confident in
themselves and their own ability to do the same task as illustrated in Figures 6.6, 6.4 and
6.5 respectively. Similarly, participants who delegated the task reported lesser self-efficacy
and task-specific competence compared to those who did not delegate. Our findings sug-
gest that the dynamics of trust towards teachable agents still depend significantly on how
people perceive automated systems in general. More experiments should be conducted to
investigate if these results vary if a teachable agent taught by other people is presented for
task delegation.
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Chapter 7

Conclusion

In this thesis, we describe the domain of teachable-agents, and how that can be used to view
an interactive machine learning system as a teacher-learner interactivity. We contributed to
this area by focusing on the interaction from both teaching as well as learning perspective,
and touching the dynamics of trust within human-teachers and agent-learners.

In chapter 2, we carried out a literature review related to previous work on interactive
machine learning, conversational agents, and agent-based interactions within the human-
computer-interaction research. We found that the theme of treating humans as teachers,
and not just annotators, has been discussed in both machine learning and HCI literature.
However, most of the existing work lacks a formal discussion over human-agent interaction
and demands stronger collaboration between the two research communities. Informed by
the previous work, we introduced the concept of teachable conversational agents, that
leverages teaching guidance in the form of conversational cues to elicit better responses
from human teachers and learn a classification task.

In chapter 3, we present an interactive variant of Naive Bayes classifier that relaxes the
’naive’ independence assumption of features and utilizes additional features captured from
conversational interactions to modify the posterior probabilities while making predictions.

In chapter 4, we examine the effectiveness of our interactive classification algorithm
and describe how its performance may vary based on the quality of instructions delivered
by human teachers.

In chapter 5, we investigate the effectiveness of learning by teaching paradigm within the
context of crowdsourcing studies, and examine whether teaching a task is more beneficial
for crowdworkers than doing the same task for themselves.

58



Finally, in chapter 6, we describe how the notion of trust may be relevant to teachable
agents and whether teaching an agent on a task can make people to delegate similar tasks
to the agent where monetary compensation is involved.

7.1 Limitations and Future Work

Performance of the interactive machine learning algorithm proposed in this thesis is based
on the cosine similarities obtained from the vector representation of words. We used a
compressed variant of Word2Vec trained on a smaller dataset due to performance reasons,
which limits the quality of word embeddings used. Future investigations can focus on
other word embeddings (eg. GloVe) trained on more relevant and richer dataset for better
outcomes. Further, results from chapter 4 shows that effective teaching leads to better
machine-learners. However, it remains unclear what characteristics are specific to a good
teacher and which factors influence the quality of teaching. It was observed in chapter
5 that letting humans teach can elicit more information from them on a task. However,
performance of an interactive machine learner may not depend on the quantity of the
information captured alone, as shown in chapter 4. Another important limitation in our
study is the lack of animation or personality in the conversational agent leading to a
weak test of the engagement mechanism hypothesized to underlie learning outcome effects.
Therefore, it will be interesting to explore different modalities of the interaction with
teachable agents as opposed to a textual conversational interaction. Follow up studies may
involve the use of voice-based agents or embodied agents like physical robots to validate
the results in different contexts. Moreover, we do not explore the actual learning outcomes
of the teachers after the interaction. An interesting area to explore for follow up work
can specifically focus on long and short-term memory changes across longitudinal studies.
Finally, more experiments should be conducted to understand the dynamics of trust on
teachable agents in the presence of non-teachable agents.

In conclusion, this thesis aims to take one step in the direction to study the learn-
ing, perception and trust dynamics of teachable conversational agents. Understanding
the breakdowns across these facets will be important for building teachable conversational
agents that can reliably learn, be trusted, and benefit human teachers through the conver-
sational interaction.
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