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Abstract

An important characteristic of the recent decade is the dramatic growth in the use and
generation of data. From collections of images, documents and videos, to genetic data, and
to network traffic statistics, modern technologies and cheap storage have made it possible
to accumulate huge datasets. But how can we effectively use all this data? The growing
sizes of the modern datasets make it crucial to develop new algorithms and tools capable of
sifting through this data efficiently. A central computational primitive for analyzing large
datasets is the Nearest Neighbor Search problem in which the goal is to preprocess a set
of objects, so that later, given a query object, one can find the data object closest to the
query. In most situations involving high-dimensional objects, the exhaustive search which
compares the query with every item in the dataset has a prohibitive cost both for runtime
and memory space. This thesis focuses on the design of algorithms and tools for fast and
cost efficient nearest neighbor search. The proposed techniques advocate the use of com-
pressed and discrete codes for representing the neighborhood structure of data in a compact
way. Transforming high-dimensional items, such as raw images, into similarity-preserving
compact codes has both computational and storage advantages as compact codes can be
stored efficiently using only a few bits per data item, and more importantly they can be
compared extremely fast using bit-wise or look-up table operators. Motivated by this view,
the present work explores two main research directions: 1) finding mappings that better
preserve the given notion of similarity while keeping the codes as compressed as possible,
and 2) building efficient data structures that support non-exhaustive search among the
compact codes. Our large-scale experimental results reported on various benchmarks in-
cluding datasets upto one billion items, show boost in retrieval performance in comparison
to the state-of-the-art.
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Chapter 1

Introduction

1.1 Motivation

We live an era where most of our activities are increasingly leaving a digital trace. Consumer-
grade cameras, such as smart-phone cameras, take images or records videos, GPS trackers
record our movements and vehicle sensors such as lidar and sonar capture the surround-
ings dynamic to navigate safely. In addition to the unprecedented rate of data gener-
ation, access to large collections of data has been made effortless. This can be easily
detected by the growing number of available large-scale datasets on the Internet which
have become the standard benchmark for a broad array of data-driven tasks. Instances of
large-scale datasets include the Google n-gram dataset obtained from over 5 million books,
Imagenet [33] with more than 14 million annotated images spanning more than 20,000
categories, JFT-300M [120] with more than 300 million images and YouTube-8M [1] with
more than 6.1 million annotated videos.

Now that we have this data, terabytes and petabytes of it, what do we do with it? What
are the basic computational problems that we want to solve on large datasets? Broadly
speaking, we need to read, store, analyse and search through this data in order to extract
the most relevant information to solve problems. The prospect of exploring sheer volume
of data for extracting information is interesting. In machine learning, particularly, it has
been shown that large training datasets beside strong computational power are the keys
for good performance. For example, the performance improvement achieved by using a
very large training set in [123] emphasizes that large annotated datasets fuel progress in
object recognition. Other research papers reiterate in many places how large training sets
helped in overcoming the problem of overfitting [122].
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There is no doubt that search has been one of the most successful applications of
information technology today which, not surprisingly, has been mostly concerned with large
collections in which both the number of data items and features are huge. A fundamental
and extensively studied subclass of search problems is the Nearest Neighbor Search (NNS)
in which unseen queries are matched against a given dataset of items to find the closest item
to the query. NNS has been a key problem in theoretical and applied computer science with
a broad range of applications in data processing and analysis including machine learning,
document retrieval, data compression and bio-informatics.

Despite decades of intense research, performing NNS has been typically a bottleneck
in large-scale applications, mainly because the current similarity search techniques do not
easily scale to more than several million data points, where storage overheads and similarity
computations become prohibitive. For example, the majority of center-based clustering
algorithms such as k-means need to execute multiple instances of nearest neighbor queries
in each iteration. The problem is that the number of query instances often grows linearly
with the size of input, thus without a scalable solution, the nearest neighbor search can
quickly become the computational bottleneck of clustering.

1.2 Problem Description and Scope

This thesis aims at finding efficient solutions for large-scale nearest neighbor search prob-
lem. Given a measure of similarity and a set of items, our goal is to explore techniques
that can return the subset of relevant results as fast as possible knowing that the size of
the dataset is in the order of billions.

Problem Statement: How to develop efficient similarity search tools and algorithms
with minimal memory and computation costs, to facilitate the use of web-scale datasets?

In the absence of any practical exact similarity search technique that supports large-
scale datasets, this dissertation follows the recent direction for solving nearest neighbor
search which relies on trading accuracy for scalability, resulting in a rich family of tech-
niques collectively known as the Approximate Nearest Neighbor (ANN). Roughly speaking,
in this relaxed class of search, the algorithm is allowed to return points that are close to the
query which may not necessarily be the closest one. The focus in this thesis is on exploring
new data structures and algorithms for boosting the nearest neighbor search performance
without losing much in the accuracy.

2



1.3 Research Questions

This dissertation advocates utilization of Compact Discrete Representation (CDR); a sub-
class of ANN, which has witnessed a surge of interest over the last decade as it facilitates
fast distance computation with low memory overhead. The main idea of CDR is to map
high-dimensional items into similarity-preserving short vectors that can be represented
with only a few bits (often at most 256 bits). In this setting, solving the nearest neighbor
search among the high-dimensional items is approximated with solving the same problem
among the compressed codes. Adopting compact codes can significantly reduce the stor-
age and computational costs as, instead of high-dimensional items, one can just store the
compact codes in memory, and more importantly, such short codes can be compared much
faster than the original items.

Recent studies in CDR have focused on designing more accurate mappings that generate
codes which are more compact and more faithful to the giving notion of similarity. The
first half of this thesis, however, takes a complementary approach by developing search
techniques for fast retrieval among the generated discrete codes. Moving forward, the
thesis studies supervised and unsupervised techniques for producing more efficient codes
in order to achieve higher recall rates.

Our approach aims at answering the following two high-level research questions. We
prioritize clarity over technical precision here but more rigorous and detailed research
questions accompany each separate chapter as new questions and concepts are introduced:

1.3.1 Research Question 1: How can we preprocess the compact
discrete codes to achieve fast nearest neighbor search?

It has been shown that performing linear scan for solving NNS (that exhaustively com-
pares the query with every element in the dataset and returns the closets item) even among
the compact codes can take up to several minutes [97] which is not acceptable in dealing
with realtime applications such as search engines. Although linear scan requires no pre-
processing, we are often interested in spending some tolerable preprocessing costs in order
to reduce the search time. Chapters 3 and 4 aim at answering this question by proposing
two different indexing data structures. The main idea in both approaches is to partition
the dataset into different sets such that the query is only compared with a subset of points
rather than the whole dataset.

3
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Figure 1.1: Concepts related to thesis and their relationship with research questions.

1.3.2 Research Question 2: How can we design efficient compact
code that are more similarity-preserving?

One way to map high-dimensional items into meaningful compact codes is through vector
quantization. Chapter 5 and 6 draw upon a family quantization-based techniques, known
as multi-codebook quantizaiton, and propose two compositional models that, compared to
existing models, enjoy easier optimization procedures and better recall rates.

Figure 1.1 shows the concepts related to this thesis and their relationships with dis-
cussed research questions.

1.4 Summary of Contributions

In the following, the outline of our contributions within this dissertation is presented:

• Efficient Search with Multiple Hash Tables: The problem of exact K nearest
neighbor search in a large dataset of compact codes is addressed first. Given a dataset

4



of compact codes where each item is represented with a short binary string, the goal is
to preprocess the data such that when later given a query, the nearest neighbors can
be find efficiently. To this aim, we propose to partition each string of binary code into
shorter substrings and then build hash tables on binary code substrings. Given the
query, a sequential algorithm determines the correct sequence of buckets that must be
looked up in each hash table in order to find the exact closest points. Our approach
is storage efficient and straight-forward to implement. Theoretical analysis shows
that the proposed algorithm exhibits sub-linear behavior for uniformly distributed
codes. In addition, the empirical analysis with non-uniformly distributed codes shows
dramatic speedups over several baselines for datasets up to one billion codes.

• Non-exhaustive Search in Dynamic Datasets: This study concerns the problem
of exact dynamic K nearest neighbor search where dynamic means that the dataset is
open-ended and items appear over time thus the size and distribution of data are not
known beforehand. For this purpose, we propose a tree-search data structure that
partitions the input space by exploiting the Hamming weights of codes and their
substrings. The proposed data structure constructs a tree over data points in an
incremental fashion by routing incoming points to the leaves. We empirically show
that the proposed technique can accelerate nearest neighbor search specially when
the size of the dataset is large.

• Supervised Quantization with Deep Networks: This thesis also extends over
the existing supervised quantization techniques and proposes a deep supervised quan-
tization that outputs similarity-persevering compact codes. The proposed approach
benefits from a simple objective function with no extra constraints and can be learned
end-to-end on the raw input images. The advantages of a simple formulation are not
merely aesthetic; in practice, they result in a straightforward optimization procedure
and less overhead for the programmer. Furthermore, a more standard formulation
might render other variants of the problem easier to solve as well. We demonstrate
one such use case, by implementing a formulation of quantization that enforces spar-
sity on the codebooks. The empirical results on standard image benchmarks show
that the proposed technique achieves higher recall rates in comparison to existing
supervised quantization techniques.

• Unsupervised Quantizaiton with a Single Quantizer We revisit the unsuper-
vised quantizaition problem and propose a new formulation which allows learning
unconstrained codebooks. The state-of-art in quatization for nearest neighbor search
suggests using two quantizers, one for quantizing the input vectors themselves and a
separate quantizer for encoding the norms. Our new formulation discards the norm
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quantizer and spend all of its quantization budget on the vector quanizer. This in
turn leads to smaller quantization error and thus higher recall rates in practice. This
study also derives the first distribution-free generalization bound for the family of
multi-codebook quantiaztion techniques which shows that sample complexity grows
only polynoimally with the number of codebooks.

1.5 Document Organization

The rest of this thesis is organized as follows. Chapter 2 reviews some background concepts
and related works. Chapter 3 details our multi-index hashing approach for solving angular
nearest neighbor search. Chapter 4 focuses on solving similarity search in dynamic datasets.
Chapter 5 discusses a supervised compositional quantization models useful for fast distance
computation. Chapter 6 introduces an unsupervised quantization technique for further
reduction of quantization error. Finally, Chapter 7 recaps the contributions and concludes
the thesis with a discussion of interesting directions for future research.
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Chapter 2

Background

This chapter reviews some background and related literature for research presented in
this thesis. The chapter starts with the formal definition of nearest neighbor search and
its approximate variant in Section 2.1. Sections 2.2 and 2.3 discuss prior work on data-
independent and data-dependent hashing. Finally, Section 2.4 reviews non-exhaustive
search techniques for compact codes.

2.1 Nearest Neighbor Search

Nearest neighbor search is defined as follows: Given a dataset X of n points X = {x1, . . . ,xn},
xi∈ Rd, and a distance function δ: Rd × Rd → R preprocess X to prepare for quickly an-
swering queries of following kind: given a d-dimensional query point q, find the closest
data point in X to the query.

NN(q) = arg min
x∈X

δ(q,x) (2.1)

The K Nearest Neighbor Search (KNN) is the generalization of NNS that aims at
finding the K closests items to the query. An item x ∈ X is in the result of KNN(q) if
and only if it satisfies the following condition:

|{t ∈ X|δ(t,q) < δ(x,q)}| < K (2.2)

For notational convenience, often X ∈ Rd×n is represented as a matrix, in which all the
d-dimensional database vectors xi are horizontally stacked.
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One can define NNS (and KNN) problem with respect to any distance function. How-
ever, the most studied case is when the dataset lie in a d-dimensional vector space Rd

equipped with `1 or `2 distances. A useful special case of `1 scenario is when the dataset
and query lie in the hypercube {0, 1}d. This corresponds to the Hamming distance. An
important special case of `2 setting is when data points lie on a unit sphere Sd−1 ∈ Rd, this
is equivalent to the nearest neighbor search with respect to the cosine similarity.

The NNS is one of the prototype proximity problems with a long history in compu-
tational geometry and plays an important role in many applications. Perhaps the most
obvious one is the similarity search for various types of data such as text documents, im-
ages, audio files and protein. A typical approach is to take a dataset and map it into Rd

by computing a certain feature representation. Oftentimes, this step requires significant
domain expertise, however the burgeoning deep architectures has equipped us with feature
learning, automatic learning of needed representation from raw data. Nevertheless, once
the feature vectors are computed, the similarity search directly corresponds to executing
the nearest neighbor search in the feature space.

The NNS admits a straightforward solution: omit the preprocessing stage and whenever
given a query, linearly compute all distances δ(q,x) for x ∈ X and keep track of the
entry with the minimum distance. However, linear scan ends up being too slow for high-
dimensional large datasets as it linearly depends on both the number of dimensions and
number of data points, O(nd). Since in many applications n can be large, it was necessary
to develop faster methods that find the nearest neighbor without explicitly computing all
distances from q (sublinear in n). Those methods compute and store additional information
about set X , which is then used to find nearest neighbors more efficiently. To illustrate this
idea, consider another simple solution for the case where points lie in the d dimensional
Hamming space, {0, 1}d. In this case, one could precompute and store in memory the
answers to all 2d possible queries, and given q return its nearest neighbor by performing
only a single memory lookup. Unfortunately, this approach requires memory of size 2d,
which again is intolerable in practice.

These two solutions can be viewed as extreme ends in tradeoff between the time to
answer a query (query time), and the amount of memory used (space). The study of this
tradeoff dates back to the work of Minsky and Papert [85], and has become one of the
key topics in the field of computational geometry. For special case when d = 1, sorting
data points and performing binary search guarantees finding the exact nearest neighbor in
logarithmic time. The case of d = 2 can also be efficiently solved using Voronoi diagrams
in O(log n) time and O(n) space. For d ≥ 3 there is no sublinear algorithm with efficient
memory and preprocessing time. Nevertheless, for low-dimensional problems (e.g., with
d up to 20) a handful of tree-based techniques, such as KD-tree and ball tree, manage to
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exhibit good practical performance (see [109] for an overview). While some of such space
partitioning algorithms guarantee sublinear “expected” search time, no satisfactory worst
case performance can be guaranteed.

That said, for relatively high-dimensional data, the exact NNS problem is unsolved both
in theory and practice. In particular, despite decades of intensive research, for moderate
feature dimensional (e.g., d > 20), exact NNS solutions with sublinear (in n) query time
requires storage cost that is exponential in the number of dimensions. More specifically, to
this day, there is no exact algorithm with polynomial preprocessing and storage costs which
guarantees sublinear query time even for simple distances such as Hamming distance [90].
This shows that NNS, like many other proximity problems, suffer from a phenomena known
as the curse of dimensionality : as number of dimensions grows, all algorithms quickly (both
theoretically and practically) degrade to linear search [130].

Due to the lack of success in removing the exponential dependency on the number of
dimensions, many researchers conjecture that no efficient solution exists for this problem
when the number of dimensions is large. At the same time, researches raised the question: is
it feasible to eliminate the exponential dependency on dimensions, if we allow the answers
to be approximate? Fortunately, this question has been answered positively for many
distance measures. In the following, first define the approximate variant of KNN problem
is defined and then some important achievements in this line of research are reviewed.

Approximate Nearest Neighbor Search. To overcome the apparent difficulty of
devising algorithms that are capable of finding the exact solution of nearest neighbor prob-
lem, there has been an increasing interest to resort to ANN search which trades accuracy
for scalability.

In ANN formulation, the algorithm is allowed to return an item whose distance from
the query is at most c times (c > 1) the distance to its nearest neighbor. The problem
is often relaxed to do this with high probability. There are two lines of research address-
ing approximate NNS problem: theoretical (such as [3, 55]) and applied (such as [59]).
Theoretical research aims at improving the approximation ratios of the NNS solutions,
and their space and worst case query time complexity. In addition, theoreticians try to
develop hardness results for NNS under different metrics. Applied research, such as the
current thesis, mainly concerns experimental evaluation of techniques, and while it draws
inspiration from theory, it does not compare methods based on their worst case query
time complexity, but instead based on their average query time performance and retrieval
accuracy on standard benchmarks.
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2.2 Data-independent Hashing

2.2.1 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a randomized hashing scheme for solving nearest neigh-
bor search. The main building block of LSH is the family of locality sensitive hashing
functions which map similar items to same (or close) hash values with high probability.
This idea was introduced by Indyk and Motwani in 1998 in a seminal paper [55] which was
described as a breakthrough in reducing the computational cost of similarity search and
circumventing the curse of dimensionality. The problem that they tackled was a variant
of ANN that is called (c, r)-ANN. In this problem, the data structure is allowed to return
any data point whose distance from the query is at most cr, for an approximation factor
c > 1. The basic idea of LSH is to map each database vector into a hash value using a hash
function randomly chosen from a locality sensitive hash function family, formally defined
as follows:

Definition 2.1. Locality Sensitive Function Given the example space S, a family H
of functions h(.) is called locality sensitive, or more specifically (r, c, p1, p2) sensitive, if for
any u,v ∈ S we have:

• if δ(u,v) < r then Pr(h(u) = h(v)) ≥ p1

• if δ(u,v) > cr then Pr(h(u) = h(v)) ≤ p2

where Pr denotes the probability.

In order for a locality sensitive hash family to be useful, it has to satisfy inequality
p1 > p2. Intuitively, a hash function is locality sensitive if its probability of collision is
higher for nearby points than for far apart points. The parameter c quantifies the gap
between near and far apart points.

Given such an LSH family of hash functions for distance measure dis, for ρ = log(1/p1)
log(1/p2)

,

there exists an algorithm that solves the (c, r) ANN which uses O(dn + n1+ρ) space with
query time dominated by O(nρ) distance computation and O(nρ log1/p2 n) evaluations of
hash functions from H. The parameter ρ governs the search performance, the smaller the
ρ, the better search performance [32].

Informally speaking, the main idea is to partition the input space using several hash
functions (each corresponds to a separate hash table) from the family H. The goal is
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to ensure that the probability of collision is much higher for close points (at distance
< r) than for those far apart (at distance > cr). During preprocesing phase, all the
points in the dataset are separately indexed in each of the hash tables, then upon query
arrival, one computes its hash keys by applying the same hash functions, thus the query
also hashes to certain buckets where it collides with some small portion of the database
vectors. Only these examples are searched and returned in ranked order as the output of
nearest neighbor search. For sufficiently large number of hash tables, LSH guarantees that
the nearest neighbor lies in the resulting output with high probability. Note that LSH is
considered data-independent as the hash functions are selected randomly, independent of
data distribution. As we will discuss later, it is possible to exploit the distribution of data
(by using a training set) in order optimize the parameters of hash function.

To illustrate the concept of LSH, consider the following example.

Example 2.1. Assume that the data items are in binary space, that is we have u ∈ {0, 1}p.
Also, assume that Hamming distance is used as the measure of similarity in this space.
A simple yet efficient family of hash functions H contains all the projections of the input
point on one of the coordinates. In other words, H contains all functions hi from {0, 1}p
to {0, 1} such that hi(u) = u(i) where u(i) indicate the i-th coordinate of u. Choosing
one hash function h at random from H indicate that h(u) selects one of the coordinate
randomly. It is easy to show that H is a locality sensitive with non-trivial parameters. The
probability that Pr(h(u) = h(v)) is equal to the fraction of points on which u and v share
the same value of bit. In particular, we have p1 = 1 − R

p
and p2 = 1 − cR

p
. Since c > 1,

we have p1 > p2 where R is the Hamming distance between the two points. Therefore,
random selection of coordinates in the Hamming space is a locality sensitive hash function.

Earlier works in LSH proposed hash functions for NNS on binary codes in Hamming
distance. Such methods also extend to Euclidean distance by embedding Euclidean space
into Hamming space. Next, Datar et al. [32] proposed a LSH scheme that works directly for
Euclidean space which was later improved by a follow-up work [2]. There exist a large body
of work on designing LSH functions other similarity measures, such as angular distance [25]
and Jaccard similarity [16, 17]

LSH is widely studied in theory and extensively applied in different array of fields
such as near-duplicate web page detection [16], image retrieval [62], clustering [64], and
filtering [31]. The natural question that emerged in the theoretical community is: what
is the smallest possible value of ρ achievable via locality sensitive hashing approach? The
original paper of LSH [55] proposed hash functions with ρ < 1/c for both Hamming and
Euclidean spaces. It is shown that for the case of Hamming space using the random
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coordinates hash function actually provides the best possible value of ρ. For the case of
Euclidean distance, hash functions with better exponent are achievable [2, 32] such that
ρ ≤ 1/c2. It has been shown that for the Euclidean case, which turns out to be most
widely applied case in practice, this bound is tight [99]. Also in [32], it has been shown
that hashing-based algorithms cannot achieve ρ < 0.462/c2. This result indicates that
the best possible LSH exponent has been almost settled and making improvements seems
impossible.

Many other studies improve or adapt LSH in various aspects. For example, using a
prior to design more efficient hash functions [110], using sampled data [36], using LSH on
distributed computing platforms [11, 121], and taking advantages of specific hardware [100,
115]. Parameter tuning for LSH is important, and this is discussed in detail in [118].

2.2.2 Limitations of Locality Sensitive Hashing

There are mainly three problems with using LSH techniques in practice:

• From the practical point of view, to achieve acceptable retrieval accuracy usually the
number of hash tables should be relatively large [132, 140]. Experimental studies
indicate that LSH-based techniques need over a hundred [45] and sometimes several
hundred hash tables [18]. Since the size of hash table is proportional to the number
of data objects, in some applications, using LSH incurs intolerable memory cost and
long query time. Some heuristics to address this issue are studied such as “Entropy-
based LSH” [101] and “Mutli-prob LSH” [75] but unlike the basic LSH, they do not
provide guarantee on the performance of their algorithms.

• Existing tight bounds for the LSH scheme suggest that improving LSH with the cur-
rent formulation is not achievable and this family of techniques is almost completely
understood [104]. Even this line of research in theoretical computer science com-
munities has recently shifted towards allowing the hash functions to depend on the
data [4, 5, 104].

• Instead of curse of dimensionality, LSH suffers from curse of approximation as its
performance has exponential dependency on the accuracy of search with lower bounds
matching this intuition [2, 24].

These problems have motivated researchers to design data-dependent hash functions
that can exploit the distribution of the dataset. The goal of data-dependent techniques is
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to optimize a parametric hash function such that the similarities in the input space are
kept in the target discrete space.

2.3 Data-dependent Hashing

The main focus of this dissertation is on data-dependent hashing scheme in which, instead
of using random partitions, the parameters of hash functions are adjusted during a learning
phase. Using a training set, the distribution of data is exploited in order to optimize the
parameters of hash functions such that the input space can be efficiently partitioned based
on the empirical distribution. Because of this preprocessing, the codes trained with data-
dependent hashing tends to be shorter and better preserve the similarities.

Data dependent hashing techniques are roughly in two streams depending on how the
distance between the compact codes are calculated:

• Binary Hashing techniques encode high-dimensional real-valued vectors with com-
pact binary codes subject to preserving a given notion of similarity. Hamming dis-
tance or angular distance are then used to compare the resulting binary codes which
can be executed extremely fast using bitwise operations.

• Multi-Codebook Quantization, as a generalization of k-means, partitions the
feature space into a number of non-overlapping regions each with a unique center. By
storing the distances between centers in a lookup and approximating each point with
the center of its region, computing distance between a query and an approximated
vector can be swiftly performed with a series of lookup and addition operations.

In what follows, a summary of some of the well-known techniques in both categories is
provided. A more detailed and deeper review can be found in [127].

2.3.1 Binary Hashing

Binary hashing aims at training hash functions, h : Rd → {0, 1}p, such that the close/far
vectors in the input domain have corresponding close/far binary strings (see Figure 2.1).
Once such hash functions are trained, all items of database are mapped into the binary
space. Then, during search time, the query is similarly mapped and search is performed
among the short compact codes.
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Figure 2.1: Binary hashing aims at encoding similar/dissimilar items with close/far binary
codes.

Binary hashing has been an extremely active field of research over the last decade, re-
sulting in a rich family of techniques tailored for different applications. Earlier hashing tech-
nique used simpler hash functions h(.), such as linear function h(x;W, b) = sign(W Tx+b)),
with a limited number of parameters [91], whereas recent studies are mainly focused on
end-to-end training of deep models with multiple layers of non-linearity to find better
codes. Also, existing hashing methods can be categorized into unsupervised and super-
vised. Unsupervised hashing methods learn functions that map data to binary codes using
unlabeled data. Typical learning criteria are reconstruction error minimization [66, 23],
preserving local neighborhood [73] and quantization error minimization [47]. Supervised
hashing, on the other hand, aims at learning binary codes that are faithful to a given notion
of semantic information such as pointwise (class labels) [68, 112], pairwise [19, 20, 27, 91]
or tripletwise labels [93, 147]. The similarity measure among the binary codes can be also
different. While most adopt Hamming distance to compare binary codes, other metrics
such as angular distance [46], spherical Hamming distance [52] and weighted Hamming
distance [140] are used.

Here, the hashing techniques are categorized into shallow and deep approaches:

Shallow hashing. Salakhutdinov and Hinton [108] were perhaps among the first
researchers to enunciate the idea of data-dependent hashing for text retrieval and then to
the vision community by Torrablba et al. [124]. In both of these studies, neural networks
are trained to learn binary codes. The experimental studies show successful applications
of these techniques for large-scale text and image retrieval.
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Shortly after, Weiss et al. proposed Spectral Hashing (SH) [132], which aims at finding
hash functions such that i) semantically similar items are mapped to similar hash codes
based on the Hamming distance, and ii) bits are uncorrelated and balanced that is the
probability of a bit to take the value of 0 or 1 is 0.5. In particular the cost function of SH
is:

min :
∑
ij

sij||bi − bj||H

s.t. bi ∈ {−1, 1}p,
∑
i

bi = 0,
1

n

∑
ij

bib
T
j = I

(2.3)

where p is the length of the binary codes and sij denotes the similarity between xi and xj
and ‖.‖H denotes the Hamming norm.

The authors then transformed the above cost function to a graph partitioning problem
and proposed several relaxation of the graph Laplacian decomposition step. While Spectral
Hashing outperforms data-independent techniques for short binary codes, the relaxation
used to propose the out of sample extension is simplistic. In particular, it assumes that
the data is sampled from a uniform distribution. Several extensions for SH were proposed
over the years; the kernelized version of SH was introduced by He et al. [50] which uses the
same constraints but kernelizes the cost function. Sparse Spectral Hashing [111] combines
the Sparse Principle Component Analysis [148] into SH. Multi-dimensional Spectral Hash-
ing [131] is another SH-related technique that seeks hash codes such that the weighted
Hamming affinity is equal to the affinity in the original space.

Around the same time, Kulis and Darrell [66] proposed learning projections with Binary
Reconstructive Embedding (BRE) that directly minimizes the Euclidean distance between
the binary codes and the original data points through coordinate distance. The cost
function of BRE is:

min:
∑
{i,j}∈N

(||xi − xj||2 − ||bi − bj||H)2 (2.4)

where the hash function to compute bi is parametrized as:

bij = hj(xi) = sign[

Tj∑
t=1

wjtK(ej,t,xi)] (2.5)

where {ej,t}
t=Tj
t=1 are the sampled data items to form the hash function, K(., .) is a kernel

function, and {wjt} are the weights to be learnt by minimizing the objective function over
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the training set. The objective function in (2.4) is highly non-convex in W (the matrix of
weights) and non-smooth due to the use of sign function. One limitation of BRE is its high
storage requirement for training, making it impractical to be used on large datasets [91]. To
address this issue, Norouzi and Fleet [91] formulated the hashing as a structured prediction
problem, called Minimal Loss Hashing (MLH), to preserve semantic similarity (i.e., for
problems where each data point in the training set is assigned with a discrete label). Their
technique does not separate the projection and thresholding steps, instead it directly learns
the hash function to preserve the semantic similarity. The cost function of MLH is:

min
W

∑
{i,j}∈X

I(sij = 1) max(||h(xi; W)− h(xj; W)|| − ρ+ 1, 0))+

I(sij = 0)λmax(ρ− ||h(xi; W)− h(xj; W)||+ 1, 0)

(2.6)

where ρ and λ are hyper parameters of the loss functions and I(.) is the indicator function.
ρ is the threshold in the Hamming space that differentiates the neighbours from non-
neighbours. Intuitively, the loss function in (2.6) favours mapping similar items to binary
codes that differ by no more than ρ bits. The other hyper parameter λ controls the ratio
of the slopes of the penalties incurred for similar (or dissimilar) points when they are too
far (or too close). Both of these hyper parameters are adjusted using the validation set.

One problem with such a loss function is that finding suitable hyper parameters with
cross-validation is slow. Moreover, for many problems one cares more about the relative
magnitude of pairwise distance than their precise numerical values. Thus, just considering
pairwise Hamming distance over all pairs of codes with a single threshold is often restrictive.
To make the loss function independent of hyper-parameters, in a follow up work, Norouzi et
al. [93] offered a triple loss function defined in terms of relative similarity. Their loss
function is defined over triples of items (x,x+,x+) such that x is more similar to x+ than
to x−. Thus, the goal is to optimize a hash function h such that h(x) is closer to h(x+)
than to h(x−) in terms of Hamming distance. Their final cost function takes the following
form:

min
W

:
∑

(x,x+,x−)∈X

max[||h(x; W)−h(x+; W)||H−||h(x; W)−h(x−; W)||H+1, 0]+Tr(WTW).

(2.7)
Two problems associated with this cost function are: i) discontinuity, and ii) non-convexity.
Motivated by the upper bounds for latent structural SVM proposed in [139], the authors
offered a continuous upper bound to mitigate the discontinuity problem and incorporated
a perceptron-like optimization technique to find a local minimum for W.
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Iterative quantization (ITQ) [47] is also one of the important techniques in the earlier
years of hashing. ITQ uses principal component analysis to map the data to a low di-
mensional space and then exploits an alternating minimization scheme to find a rotation
matrix, which maps the data to binary codes with minimum quantization error.

Deep Binary Hashing. Not surprisingly, with the dawn of deep learning, most of the
recent research effort in compact coding has been directed towards using deep networks
for producing compact and functional binary codes. As shown in Figure 2.2, deep hashing
methods simultaneously learn the representation and hash coding from raw inputs in order
to pull the codes of similar items and push the codes of dissimilar items away.

One of the main obstacles in realizing the real end-to-end training of deep hashing
is that due to the binary constraint on the codes, deep hashing is essentially a discrete
optimization problem and thus can not be directly solved with back-propagation. To be
specific, adopting sign function in the last layer of network to turn continuous features into
binary codes cause a variant of vanishing gradient problem as the gradient of sign function
is zero for all nonzero input and thus does not carry any information. To address this
issue, majority of studies adopt the “relaxation and rounding” approach: first optimize a
relaxed problem by replacing the sign function with a differentiable approximation (such
as sigmoid or tanh) then, once the network is trained, the final binary codes are obtained
by using the sign function [70, 138, 137, 145]. Some other techniques also add a penalty
term to the loss in order to generate features as discrete as possible [69, 72, 146].

HashNet [22] takes an alternative approach and starts the training with a smoothed
activation function tanh(αx) and increases α until eventually almost behaves like the sign
function. Discrete Supervised Discrete Hashing (DSDH) [68] also solves the discrete opti-
mization problem with the discrete cyclic coordinate descent (DCC) [112] algorithm which
can keep the discrete constraint during the optimization. Greedy Hash [119] takes a greedy
principle by iteratively updating the network parameters towards the probable optimal dis-
crete solution in each iteration. To generate the discrete codes, the model uses the sign
function in the forward pass but transmits the original gradients through the backward
pass.

Table 2.1 provides a summary of reviewed binary hashing techniques.

2.3.2 Multi-Codebook Quantization

An alternative approach for enhancing distance computation and compressing high-dimensional
items is through Vector Quantization (VQ). We start off with a brief introduction of VQ
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Figure 2.2: Deep hashing techniques pass the input item through a deep neural net and
apply a binarization layer to the deep features to generate binary codes.

Technique supervised? Information Function

Binary Reconstructive Embedding [66] unsupervised pairwise kernel
Discrete Graph Hashing [73] unsupervised local structure kernel

DistillHash [136] unsupervised local structure deep network
Kernelized Discrete Graph Hashing [114] unsupervised local structure kernel

Iterative Quantization [47] unsupervised quantization error linear

AddLabelHash [138] supervised pointwise deep network
Deep Supervised Discrete Hashing [68] supervised pointwise deep network

Greedy Hash [119] supervised pointwise deep network
HashNet [22] supervised pairwise deep network

Kernelized Spectral Hashing [50] supervised pairwise kernel
Hamming Metric Learning [93] supervised triplet (non)linear
Minimal Loss Hashing [91] supervised pairwise linear
Scalable Deep Hashing [30] supervised pointwise deep network

Semantic-Preserving Discrete Hashing [143] supervised pointwise deep network
Spectral Hashing [132] supervised pairwise eigenfunction

Supervised Discrete Hashing [112] supervised pointwise linear

Table 2.1: Summary of some of the important binary hashing techniques in literature.
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and then discuss how it can enhance the distance computation in the context of nearest
neighbor search.

VQ is a form of lossy data compression that is used to quantize continuous multi-
dimensional vectors. Formally, a quantizer is a function that maps d-dimensional vector
x ∈ Rd into a discrete and finite set of items, C. VQ allows efficient storage, retrieval,
and manipulation of large-scale data sets, and therefore has a wide range of applications
in information retrieval, machine learning, and signal processing. VQ has been exten-
sively studied over the last few decades [59, 127]. In recent years, the challenges of using
data analytic tools for large-scale and high-dimensional data sets – specially for embedded
systems [56] – have called for creating more efficient and scalable VQ techniques.

The generic approach for quantizing a set of n data points, X = {xi ∈ Rd}ni=1, is
partitioning the domain (and therefore X ) into k subsets, and then encoding all the data
points within each partition using the same code. These codes can then be decoded back to
approximately reconstruct the original data points. In particular, the decoder maps each
code to its corresponding codeword. The set of all codewords, C = {cj}kj=1, is called the
codebook. k-means clustering is perhaps the best-known approach for vector quantization,
where the codewords are the cluster centers, and the reconstruction error for each data
point is the square of its distance to its closest center.

The best VQ approach is not merely the one with the lowest reconstruction error
(i.e., lowest distortion); on top of that, the codebook should be efficiently learnable (e.g.,
finding the centers in the k-means), the encoder/decoder should be efficient (e.g., the time
complexity of encoding a data point and the space complexity of storing the codebook
should be small), and the approach should allow efficient computations on the compressed
data for downstream data processing tasks (e.g., finding the nearest neighbor of a query
point within a set of quantized points).

Formally, let x ∈ Rd be a point to be quantized. Given a fixed linear map C : {0, 1}k →
Rd, one can try to encode x using b̂ by minimizing the following reconstruction loss:

b̂ = arg min
b∈B

‖x− Cb‖2
2 (2.8)

where b̂ is called the assignment vector (or index vector) and B ⊂ {0, 1}k is the set
of possible assignments. One can then use b̂ to approximately reconstruct x by simply
calculating x̄ = Cb̂. In this setting, C is called the codebook and is implemented by a d-by-
k matrix, where its columns correspond to k codewords, {ci}ki=1. Given a dataset Xd×n =
[x1, . . . ,xn], one can find the codebook C that minimizes the empirical reconstruction error
on X:
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min
C

n∑
i=1

min
bi∈B
‖xi − Cbi‖2

2 (2.9)

In standard VQ (e.g., , k-means), the set of possible assignments, B, is the set of
all k-dimensional vectors whose entries are all zero except exactly one entry. Formally,
B = {b|b ∈ {0, 1}k, ‖b‖1 = 1}. Therefore, each xi is encoded using exactly one cen-
ter/codeword, i.e., x̄i = Cbi ∈ {cj}kj=1.

In the case of k-means clustering for VQ, clearly, one can reduce the distortion of k-
means by increasing the size of the codebook, k. This, however, can result in prohibitive
storage and run-time costs: as a rule of thumb, k should grow exponentially with the
dimensionality of the data to allow for a fix bounded distortion – rendering the storage of
the centers practically untenable.

Recently, a family of techniques known as MCQ have emerged to address the aforemen-
tioned issue[59]. In MCQ, multiple codebooks , {C1, . . . , Cm}, are learned and each data
point is encoded using a combination of codewords (typically one from each codebook).
Consequently, the number of “potential codewords” grows exponentially with m. This has
allowed MCQ to achieve state-of-the-art quantization error [134] without the need for stor-
ing huge codebooks. Formally, in MCQ, we have m codebooks, {Cj}mj=1, and each point is
encoded using a combination of codewords (one from each codebook). MCQ still seeks to
minimize the distortion:

min
C

n∑
i=1

min
bij∈B

‖xi −
m∑
j=1

Cjbij‖2
2 = min

C

n∑
i=1

min
bi

‖xi − Cbi‖2
2 = min

C,B
‖X − CB‖2

F (2.10)

in which ‖.‖F is the Frobenius norm and the definitions of C and bi from (2.9) are over-
loaded in order to have a concise matrix form. In particular, here C is a d-by-mk matrix
containing m codebooks, C = [C1, C2, . . . , Cm] (each Cj ∈ Rd×k still contains k codewords).
Furthermore, each bi has a non-zero entry for each codebook : bTi = [bTi1,b

T
i2, . . . ,b

T
im] where

each bij ∈ B. Finally, B is the km-by-n assignment matrix, B = [b1,b2, . . . ,bn].

It is easy to see that VQ is a special case of MCQ when m = 1. Furthermore, the
“effective number of codewords/centers” in MCQ is exponential in m, as bi can take km

possible values. The quantization error of MCQ can therefore be much lower than that of
standard VQ.

MCQ for NNS. One of the main applications of MCQ is large-scale NNS, in which the
distance between two points is approximated with the distance between their quantized
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min
C,B

kX � CBk22 min
C,B

kX � CBk22

C 

X 2 Rd⇥n

B 

k2F

Figure 2.1: Illustration of the PQ optimization problem.

vectors.

On the other hand, Sandhawalia and Jégou did not use product codes, but quan-

tized each dimension independently, and compared only against Spectral hash-

ing (SH). In parallel work, Brandt (2010) proposed a similar method – that quan-

tizes dimensions independently – but also has data-driven bit allocation and non-

uniform minimum distortion quantization. Brandt simply calls the method trans-

form coding (TC).

A followup version of the tech report by Jégou et al. (2009) was later published

in a computer vision journal (Jégou et al., 2011), and further included a compari-

son against FLANN (Muja and Lowe, 2009), a library for ANNS that is extremely

popular in the computer vision community, obtaining slightly better recall at com-

parable query times. Since ANNS requires storing the entire database in RAM at

runtime, these results demonstrated that PQ with an inverted file would a better

option for large-scale ANNS.

Optimized product quantization (OPQ)

Jégou et al. noticed that using either a random permutation of the dimensions, or

using a random rotation (i.e., equalizing variance among subspaces) to preprocess

the data resulted in better recall rates. Followup work (Jégou et al., 2012) then

suggested PCA-rotating the data for dimensionality reduction, and then applying

a random orthogonal transformation to equalize variance among subspaces and

further improve accuracy. With these observations in mind, Ge et al. (2014) intro-

duced optimized product quantization (OPQ), a method that learns a rotation that

both maximizes independence and distributes the variance among the subspaces

12

(a) Orthogonal (product quantization)

min
C,B

kX � CBk22 min
C,B

kX � CBk22

C 
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B 
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Figure 2.2: Illustration of the non-orthogonal MCQ optimization problem.

Residual vector quantization (RVQ)

The first use of non-orthogonal codebooks for ANNS is due to Chen et al. (2010).

The proposed optimization approach simply optimizes the codebook sequentially

using k-means. Their study, however, does not address the issue of the extra mem-

ory incurred by the need to store the norms of the approximations, and simply sug-

gests storing them during the offline training stage, which makes the comparison

with PQ somewhat problematic.

Enhanced residual vector quantization (ERVQ), Stacked quantizers (SQ)

Ai et al. (2014, 2017) proposed an enhanced version of RVQ, borrowing ideas from

the vector quantization (VQ) literature of the 1990s (Chan et al., 1992). ERVQ

uses RVQ as initialization, and further iterates to refine the learned codebooks by

fixing the parameters of all but the ith codebook, updating its parameters by co-

ordinate descent until convergence. The authors further propose using the short-

listing approach of Hwang et al. (2012b) to speed up encoding. The same idea

was independently applied to ANNS by Martinez et al. (2014), who also evaluated

their approach on features obtained from deep neural networks, showing for the

first time that non-orthogonal approaches produce particularly better results than

orthogonal ones on such datasets.

Additive quantization (AQ)

Babenko and Lempitsky (2014a) introduced a method that has the same formu-

lation as RVQ and ERVQ, but were apparently not aware of such previous work.
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(b) Non-orthogonal

Figure 2.3: Visual illustration of orthogonal and non-orthogonal multi-codebook quantiza-
tion [81].

counterparts. The benefit is that the distance computation for the latter case can be
significantly accelerated using lookup tables.

To be specific, given C and B, the distance between a query point q and a compressed
vector x̄i =

∑m
j=1 Cjbij can be written as:

‖q− x̄i‖2
2 = (1−m)‖q‖2

2 +
m∑
j=1

‖q− Cjbij‖2
2 +

m∑
j=1

m∑
t=1
t6=j

〈Cjbij, Ctbit〉. (2.11)

where 〈·, ·〉 denotes the inner product.

When searching for nearest neighbors, the first term of (2.11) can be ignored, as it is
constant for all database vectors. To compute the second term, upon query arrival, one can
create an m × k lookup table that stores the Euclidean distances between the query and
all codewords. Then, this term can be computed using only m lookups and m additions in
O(m) time. The third term is explained below.

Variants of MCQ. MCQ techniques are often divided into three categories depending
on how they treat the third term of (2.11), known as the cross codebook inner product
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term. Orthogonal techniques [44, 59, 92], as the name suggests, restrict the codeword
inner products across codebooks to be strictly zero. For example, Product Quantization
(PQ) [60], which was the first study to use MCQ for nearest neighbor search, simply
partitions the input features into m disjoint subsets and executes k-means in each subspace
independently. Therefore, the final codebook matrix C would be block diagonal:

C = [C1, . . . , Cm] =


Ĉ1 0 . . . 0

0 Ĉ2 0
...

. . . 0

0 0 . . . Ĉm

 (2.12)

where Ĉj ∈ Rbd/mc×k (if d is not divisible by m,the convention is to assign the extra
dimensions to the first few codebooks) denotes the centers learned in the j-th subspace. It
is clear that the codewords of difference codebooks are mutually orthogonal in this setting
which makes PQ an orthogonal MCQ technique. The authors also noticed that randomly
rotating the data before applying the k-means could result in better recall rates. With
this observation, Norouzi and Fleet [92] introduced Cartesian K-Means (CKM), a method
that simultaneously learns a rotation of features and the centers in each subspace in order
to further reduce the quantization error. Ge et al. [44] independently discovered the same
method and published it in the same conference, under the name of Optimized Product
Quantization (OPQ).

Semi-orthogonal techniques relax the orthogonality constraint and optimize for code-
books with constant inner products. In particular, techniques such as Composite Quan-
tization (CQ) [128, 141] and Sparse Composite Quantization (SCO) [142], add the term∑m

j=1

∑m
t=1
t6=j

(〈Cjbij, Ctbit〉 − ε)2 to the quantization error, penalizing deviation of the cross

codebook term from ε. This results in a non-linear constrained optimization problem that
is solved with the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm [89].

The advantage of orthogonal and semi-orthogonal codebooks is that the cross codebook
term can be ignored when looking for the nearest neighbors of a query as it is constant
and does not affect the ranks. However, the additional codebook constraint (orthogonality
or semi-orthogonality) needs to be satisfied when optimizing (B.1).

Finally, non-orthogonal MCQ [7, 78, 80] imposes no constraints on the codebooks,
which can result in codebooks with lower quantization error. In comparison to orthog-
onal and semi-orthogonal MCQ, non-orthogonal techniques pose a more challenging op-
timization problem with more learnable parameters; in addition, they need to calculate
the cross codebook inner product term during distance computation. Additive Quanti-
zation (AQ) [7] first proposes to accelerate this process through creating an additional
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lookup table that stores inner product between all codewords and then performing the
nested summation during search time. However, this would increase distance computation
cost from O(m) to O(m2). Alternatively, the authors proposed to learn a separate scalar
quantizer (e.g., k-means) that compresses the inner product term for each vector. The
advantage is that the distance computation cost remains linear, but the storage cost grows
due to the additional quantizer. Local Search Quantization (LSQ) [78] and Local Search
Quantization++ (LSQ++) [81] also adopt a separate norm quantizer but utilize Iterated
Local Search (ILS), a heuristic search method, for optimizing B to enhance the quality
of codes. The authors of LSQ++ also release a GPU implementation of their technique
which significantly accelerates the learning phase.

Figure 2.3 shows orthogonal and non-orthogonal MCQ in a graphical and more intuitive
way.

Supervised Quantization

While most of the research in supervised hashing is focused on supervised binary hash-
ing, a handful of studies have been recently proposed on using MCQ in the supervised
setting. Supervised MCQ techniques can be, for the most part, described as a combina-
tion of supervised loss function and one of the unsupervised MCQ techniques described
above. In a supervised setting, one has access to both the data and its corresponding
labels. In this scenario, it is possible to use the labels to improve the accuracy of systems
that compute ANNs as part of a semantic retrieval or large-scale classification pipelines.
The main challenge in this area is that current deep learning systems are usually trained
with backpropagation, and are thus more efficiently trained with differentiable operations.
Since quantization is in general non-differentiable, work mostly focuses on optimization
techniques that approximate hard quantization assignments.

Supervised Quantization (SQ) [129] combines supervised `2 loss with CQ [128], how-
ever, the resulting optimization problem is hard to solve as it inherits the constant inter-
dictionary-element-product constraint from CQ. Deep Quantization Network (DQN) [21]
combines a deep architecture and PQ. One shortcoming of DQN is that during codebook
optimization, it ignores the supervisory information.

More recently, Jain et al. [57] introduced SUpervised structured BInary Code (SUBIC),
a neural network that both learns feature representations and produces compact codes.
SUBIC manages to implicitly learn a set of codebooks by adding sparsity terms that
ensure blockwise one-hot encodings, and balancing the use of all codebooks across the
dataset. Klein and Wolf [63] have further improved upon SUBIC with a network that
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Technique Supervised? Information Codebooks

Additive Quantization [7] unsupervised quantization error non-orthogonal
Cartesian k-means [92] unsupervised quantization error orthogonal

Competitive Quantization [98] unsupervised quantization error non-orthogonal
Composite Quantization [128] unsupervised quantization error semi-orthogonal
Local Search Quantization [78] unsupervised quantization error non-orthogonal

Local Search Quantization++ [80] unsupervised quantization error non-orthogonal
Optimized Product Quantization [44] unsupervised quantization error orthogonal

Optimize Tree Quantization [9] unsupervised quantization error semi-orthogonal
Product Quantization [59] unsupervised quantization error orthogonal

Sparse Composite Quantization [142] unsupervised quantization error semi-orthogonal
Unsupervised Neural Quantization [86] unsupervied quantization error non-orthogonal

Deep Triplet Quantization [71] supervised triplet orthogonal
Deep Quantization Network [21] supervised pairwise orthogonal
Supervised Quantization [129] supervised class-label semi-orthogonal

SUBIC [57] supervised class-label non-orthogonal

Table 2.2: Summary of some of the important MCQ techniques in literature.

explicitly learns soft- and hard-quantized representations. Followup work by Jain et al. [58]
introduces a differentiable large-scale indexing structure that can be learned end-to-end
together with SUBIC, resulting in the first complete image indexing pipeline that can be
learned end-to-end.

Finally, very recently, Moroz and Babenko [86] proposed Unsupervised Neural Quan-
tization (UNQ) using a deep auto-encoder like architecture where the encoder maps the
input into compact discrete codes and the decoder tries to reconstruct the original input
from the compressed codes. To ensure that the compressed code are faithful to the neigh-
borhood structures of the input images, the authors add a triplet-loss to the auto-encoder
loss function. The final model is then trained to minimize the objective using stochastic
gradient descent.

Table 2.2 provides a summary of reviewed MCQ techniques.

2.4 Non-exhaustive Search Among Compact Codes

The data-dependent techniques discussed so-far try to reduce the cost of distance com-
putation and storage by using compact representations. However, the search cost would
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still remain linear in the number of items in the dataset, if no sublinear search algorithm
is incorporated. Unfortunately, even if we use compact codes to enhance the distance
computation, the search time of linear scan can still be in the order of minutes [97].

The concept of sublinear algorithms has been introduced for quite a long time, but
initially it has been used to denote “pseudo sub linear” algorithms which achieve sublinear
time at the cost of Ω(n) preprocessing time. Sublinear algorithms, as what the name shows,
solve problems using less than linear time or space as against to the input. Perhaps the
most well-known one dimensional sublinear algorithm is the binary search with O(log n)
search time. Sublinear algorithms are key ingredients of similarity search algorithms as
they do not require to read the entire input. Only recently a handful of studies have
investigated the use of sublinear data structures and search algorithm for data-dependent
high dimensional hashing techniques. Here, I review some of the state of the art sublinear
search algorithms in the context of binary codes and quantized vectors.

An inverted index is a data structure that maps the content of an item (such as words
or numbers) to its location in the dataset. In its most basic form, an inverted index is a
simple hash table which maps words in the documents to some sort of document identifier
(or the document itself). Similar ideas have been applied in computer vision domain where
Bag of Words is used as the content of images. The inverted index can increase retrieval
speed at the cost of increased processing time when an item is added to the dataset. It is
one of the most popular data structures to achieve sublinear search time in a broad array of
fields such as text mining and image retrieval. Given the query point, instead of searching
through all items in the datasets, an inverted index data structure looks up the entries of
dataset where the neighbours of the query may reside.

Perhaps one of the most compelling reasons for using discrete codes is that they can be
incorporated in an inverted index data structure in which binary codes are treated as the
direct indices of a hash table. This can potentially result in a considerable decrease in the
search speed compared to the brute force search. However, using binary codes as direct
indices is not necessarily efficient. To retrieve the nearest binary codes, one needs to check
all the buckets within some specific Hamming ball around the query. The key problem
is that the number of such buckets grows near-exponentially with the search radius. In
particular, the number of buckets that lie in the Hamming ball with radius r centered at
q is

∑r
i=0

(
p
i

)
where p is the length of the binary codes. Even for a small search radius, the

number of buckets to examine is usually larger than the number of items in the dataset,
making linear scan a better alternative. As a result of this problem, earlier approaches on
binary codes, resort to exhaustive search for codes larger than 32 bits [66, 108, 124]

In the context of binary codes, Norouzi et al. [94] proposed the Multi-Index Hashing
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(MIH) [49] technique to increase the search speed among a dataset of binary codes. MIH
does not directly solve the KNN problem, instead it solves the radius search (find all items
within a given radius from the query) which is then used to solve the KNN.

MIH partitions the binary codes into several disjoint substrings. Then, it creates one
hash table per substring and populates each of the substrings into its corresponding hash
table. In particular, each binary code such as b ∈ {0, 1}p is partitioned into m substrings,
b(1), b(2),. . .,b(m) where each substring has p/m bits (for the sake of simplicity, assume
that p is divisible by m). Then, it populates the i-th hash table with the substring b(i).

The key idea of MIH is that if two strings are close to each other, then their substrings
must be also similar to each other. Formally, if the Hamming distance between two binary
codes such as g and b is r, then according to the pigeon-hole principle, at least in one
of their substrings, they cannot differ in more than r′ = br/mc bits. During the query
phase, MIH similarly divides the query binary string into substring q(1), . . . ,q(m). Then, to
search for the codes whose Hamming distance from the q is at most r, the MIH searches all
hash tables for entries that are within the Hamming distance of r′ of q(j), j ∈ {1, . . . ,m}.
By doing that, we obtain a set of candidates neighbours from the j-th substring hash
table, denoted by Tj(q). According to the pigen-hole principle mentioned above, the set
T (q) = ∪jTj(q) is the superset of the r-near neighbours of q. In the last step of the
algorithm, MIH computes the full Hamming distance between the query code and the
candidates in T , keeping those that are the true r-near neighbours.

While MIH is designed to solve the r-near neighbor problem, it can be easily used to
solve the KNN problem: starting from Hamming distance radius equal zero, r = 0, one
can progressively increase the radius until K number of neighbours is found.

The idea of using multiple hash tables and multi-index hashing to increase retrieval
speed was originally proposed in [49] and one can think of the MIH as a multi-index
hashing approach tailored for searching among binary codes. Experimental studies show
that MIH can provide speed up factors up to orders of magnitude in comparison to linear
scan. However, it is specific for solving the Euclidean KNN among binary codes. In some
applications, binary codes are compared in terms of the cosine similarity rather than the
Hamming distance [46, 117].

The idea of multi-index hashing has also been extended to MCQ coding space. Babenko
and Lempitsky [8] proposed to use multiple hash tables to achieve sublinear search for com-
positional quantization techniques such as PQ and CKM. Their proposed data structure
creates a separate hash table for each subspace and populates the items in the dataset
in each of them. The entries of the hash tables are all possible tuples of codewords from
the codebooks corresponding to different dimension groups. They propose an iterative
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algorithm that produces the sequence of multi-index entries ordered by increasing distance
between the query and the centroid of the corresponding entry. The main drawback of
their approach is that the cost of searching for problems with more than 2 subspaces is
prohibitive. Often in practice, the number of subspaces should be much more than 2 to
achieve acceptable retrieval rates. Another technique is this context is PQTable [82] which
adopts multi-sequence algorithm for efficiently finding candidate tables.

2.5 Summary

This Chapter reviews the state-of-the-art in approximate nearest neighbor search. I dis-
cussed binary hashing and multi-codebook quantization in ANN which are the main build-
ing blocks of this manuscript. I also reviewed some of the classical exact algorithms and
showed their limitations in scalable applications. In the following Chapters, I draw upon
discussed techniques and propose several approaches for enhancing the speed and accuracy
of search. In particular, the first two Chapters introduce non-exhaustive search methods
among binary codes. Moving forward, Chapters 5 and 6 extend existing MCQ techniques
and propose a supervised and an unsupervised quantization techniques that outperform
the state-of-the-art in quantization-based nearest neighbor search.
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Chapter 3

Fast Cosine Similarity Search with
Multi-index Hashing

One main advantage of incorporating binary codes is that the distance between two codes
can be computed extremely fast using bitwise operators. For example, the Hamming dis-
tance between two codes can be computed by performing an XOR operation followed by
counting the number of ones in the result (computed using the population count opera-
tor). This important feature makes binary codes a suitable fit for the task of KNN search.
Nevertheless, performing linear search among the binary codes can still take several min-
utes [97] for large-scale binary datasets encountered in practice. Thus, it is imperative to
obtain a solution with runtime that is sublinear in the dataset size.

A relevant question concerns the possibility of utilizing data structures that provide
sublinear search time, such as a hash table. It turns out that binary codes are in fact
a suitable fit for hash tables as binary codes lie in a discrete space. To find K nearest
neighbors, a hash table is populated with binary codes where each code is treated as an
index (memory addresses) in the hash table. Then, one can probe (check) the nearby
buckets of the query point until K items are retrieved. For instance, if the Hamming
distance is used as the measure of similarity, then the algorithm that solves the exact
KNN problem is as follows: starting with a Hamming radius equal to zero, r = 0, at each
step, the algorithm probes all buckets at the Hamming distance r from the query. After
each step, r is increased by one, and the algorithm proceeds until K items are retrieved.
However, in some applications, binary codes are compared in terms of cosine similarity,
instead of the Hamming distance [13, 46, 117]. This is known as the angular KNN problem.
In such cases, there are no exact sequential procedures for finding the correct sequence
of probings. In practice, instead of using a hash table, researchers resort either to the
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exhaustive search [46], or to the approximate similarity search techniques [117], such as
LSH [55].

3.1 Contributions

This Chapter proposes a sequential algorithm for performing exact angular KNN search
among binary codes. Our approach iteratively finds the sequence of hash table buckets
to probe until K neighbors are retrieved. We prove that, using the proposed procedure,
the cosine similarity between the query and the sequence of generated buckets’ indices will
decrease monotonically. This means, the larger is the cosine similarity between a bucket
index and the query, the sooner the index will appear in the sequence.

Using a hash table for searching can in principle reduce the retrieval time, nevertheless,
this approach is only feasible for very compact codes, i.e., 32 bits at most [47, 94]. For longer
codes (e.g., 64 bits), many of the buckets are empty and consequently the number of buckets
that must be probed to find the K nearest neighbors often exceeds the number of items in
the dataset, making linear scan a faster alternative. MIH [83, 49, 77, 95, 94, 97] is a powerful
technique for addressing this issue. The MIH technique hinges on dividing long codes into
disjoint shorter codes to reduce the number of empty buckets. Motivated by the MIH
technique proposed in [94], Angular Multi-Index Hashing (AMIH) technique is developed
to realize similar advantages for the angular KNN problem. Empirical evaluations of
our approach show orders of magnitude improvement in search speed in conjunction with
large-scale datasets in comparison with linear scan and approximation techniques.

Given a binary query and a hash table populated with binary codes, this study raises
the following research questions:

1. RQ 3.1: What is correct probing sequence for solving the angular KNN problem?

2. RQ 3.2: How can MIH technique be tailored for the angular KNN problem?

3. RQ 3.3: What is the effect of AMIH on the query time?

To answer these questions, which are related to our high-level research question RQ1
discussed in Chapter 1, first we establish a relationship between the cosine similarity and
the Hamming distance. Relying on this connection, a fast algorithm for finding the correct
order of probings is introduced. This allows modifying the multi-index hashing approach
such that it can be applied to the angular KNN problem.
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3.2 Fast Cosine Similarity Search

Given the dataset B = {bi ∈ {0, 1}p}ni=1, our goal is to build a data structure such that
when later given query q ∈ {0, 1}p, the data structure can quickly report the K points in
B with the largest cosine similarity to q. This problem, known as Angular KNN, admits a
straightforward solutions which linearly compares the query with all the points B however
its computational cost is prohibitive for large-scale datasets.

Another related search problem is the R-near neighbor problem (RNN). The goal of
RNN problem to report all data points lying at distance at most R from the query point.
Similarly, if the Euclidean distance is used as the similarity measure, the problem is called
the Euclidean R-near neighbor.

RNN and KNN problems are closely related. For binary datasets, one way to tackle
the Hamming KNN problem is to solve multiple instances of the Hamming RNN problem.
First, a hash table is populated with binary codes in B. Then, starting from a Hamming
radius equal to zero, R = 0, the procedure increases R and then solves the R-near problem
by searching among the buckets at the Hamming distance R from the query. This procedure
iterates until K items are retrieved. Nevertheless, if cosine similarity is used, the probing
sequence will not be the same as the case of the Hamming distance. Unlike the Hamming
distance, the angle between two binary codes is not a monotonically increasing function of
their Euclidean distance. In other words, if binary codes b1 and b2 satisfy ‖q − b1‖H >
‖q− b2‖H , it does not necessarily lead to sim(q,b1) < sim(q,b2) where sim(x,y) is the
cosine of the angle between binary codes x and y, and ‖.‖H denotes the Hamming norm.
Next, an algorithm is proposed that systematically finds the order of probings required for
solving the angular KNN problem.

To reduce the search cost, we propose to use a hash table populated with binary codes.
Given the dataset B, the idea is to populate a hash table with items of B, where each
binary code is treated as the direct index of a hash bucket. The problem here is finding the
K closest binary codes (in terms of cosine similarity) to the query. Evidently, for a given
query q, the binary code that yields the largest cosine similarity is q itself. Therefore,
the first bucket to probe has the index identical to q. The next bucket to probe has the
second largest cosine similarity to q, and so on. In the rest of this section, we propose an
algorithm for efficiently finding such a sequence of probings to address our first research
question (RQ 3.1).

The cosine similarity of two binary codes can be computed using:
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sim(q,bi) =
〈q,bi〉
‖q‖2‖bi‖2

, (3.1)

where 〈·, ·〉 denotes the inner product and ‖·‖u denotes the `u norm. In comparison to the
Hamming distance, computing the cosine similarity is computationally more demanding.
While computing Hamming distance requires an XOR followed by popcount operator,
calculating cosine similarity needs the square roots and a division, refer to (3.1).

The key idea behind the proposed technique relies on the fact the set of all binary codes
at the Hamming distance r from the query can be partitioned into r + 1 subsets, where
the codes in each subset yield equal cosine similarities to the query. In particular, for two
binary code q and bi lying at Hamming distance r from each other, there are r bits that
differ in the two vectors. Let rq,bi

1→0 denote the number of bit positions that are 1 in q and
0 in bi. Similarly, let rq,bi

0→1 denote the number of bit positions that are 0 in q and 1 in bi.
By the definition of Hamming distance, we have rq,bi

1→0 + rq,bi
0→1 = r. Consequently, we can

rewrite (3.1):

sim(q,bi) =
‖q‖1 − rq,bi

1→0√
‖q‖1 ×

√
‖q‖1 − rq,bi

1→0 + rq,bi
0→1

. (3.2)

It is clear that 0 ≤ rq,bi
1→0 ≤ ||q||1 and 0 ≤ rq,bi

0→1 ≤ p− ||q||1.

The dot product of two binary codes (the numerator of (3.1)) is equal to the number
of positions where q and bi are both 1, which is equal to ‖q‖1 − rq,bi

1→0. The denominator
simply contains the `2 norms of q and bi. In the rest of this chapter, we use (3.2) to
compute the cosine similarity.

The important observation is that, for a given query q, all binary codes which corre-
spond to the same values of r1 and r2 lie at the same angle from q. We use this observation
to define the notation of Hamming Distance Tuple as follows:

Definition 3.1. (Hamming Distance Tuple) Given a query q, we say a given binary
code bi lies at the Hamming distance tuple Hq,bi

= (rq,bi
1→0, r

q,bi
0→1) from q if:

a) the number of bit positions in which q is 1 and bi is 0 equals rq,bi
1→0, and,

b) the number of bit positions in which q is 0 and bi is 1 equals rq,bi
0→1.

A Hamming distance tuple, such as (r1, r2), is valid if both of its elements are in valid
ranges, i.e., , 0 ≤ r1 ≤ ‖q‖1 and 0 ≤ r2 ≤ p− ‖q‖1.
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Each Hamming distance tuple represents a set of binary codes lying at the same angle
from q. The number of binary codes lying at the Hamming distance tuple (rq,bi

1→0, r
q,bi
0→1)

from q is: (‖q‖1

rq,bi
1→0

)
×
(
p− ‖q‖1

rq,bi
0→1

)
. (3.3)

As all codes with the same Hamming distance tuple yield identical sim values, instead
of searching for the correct probing sequence, we find the correct sequence of Hamming
distance tuples.

We say that a Hamming distance tuple (r′1, r
′
2) is less than or equal to (r1, r2), shown

by (r′1, r
′
2) � (r1, r2), if and only if r′1 ≤ r1 and r′2 ≤ r2.

Definition 3.2. ((r1, r2))-near neighbor) A binary code bi is called an (r1, r2)-near
neighbor of q, if we have Hq,bi

� (r1, r2).

Example 3.1. Suppose q = (1, 1, 1, 0, 0, 0) and b1 = (0, 1, 0, 1, 1, 1), then b1 lies at the
Hamming distance tuple Hq,b1 = (2, 3) from q, and b2 = (1, 1, 1, 1, 1, 1) lies at the Ham-
ming distance tuple Hq,b2 = (0, 3) from q. Also, the Hamming distance tuple (0, 3) is less
than the Hamming distance tuple (2, 3).

The partial derivatives of (3.2) with respect to rq,bi
1→0 and rq,bi

0→1 are both negative. This
property indicates that, for a given Hamming distance tuple (x, y), all the binary codes
with the Hamming distance tuple (x′, y′) satisfying (x′, y′) � (x, y) have larger sim values.

To visualize how the value of sim varies with respect to rq,bi
1→0 and rq,bi

0→1, the sim value
as a function of rq,bi

1→0 and rq,bi
0→1 is plotted in Fig. 3.1. We are interested in sorting the tuples

(rq,bi
1→0, r

q,bi
0→1) (small circles in Fig. 3.1) in decreasing order of sim values. A naive way to

construct the probing sequence is to compute and sort the sim values of all possible tuples.
However, in a real application, we expect to use a small fraction of the Hamming distance
tuples as we only need to probe the hash buckets until K neighbors are retrieved. Next, we
propose an efficient algorithm that, in most cases, requires neither sorting, nor computing
the sim values.

Definition 3.3. (Hamming Ball) For a given query q, the set of all binary codes with
a Hamming distance of at most r from q is called the Hamming ball centered at q with
radius r, and is shown by C(q, r):

C(q, r) = {h ∈ {0, 1}p : ‖q− h‖H ≤ r}. (3.4)
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Figure 3.1: Plot of sim values for different values of rq,bi
1→0 and rq,bi

0→1 with p = 45 and
‖q‖1 = 32.

Given bi, values of rq,bi
1→0 and rq,bi

0→1 can be computed efficiently using bitwise operations.
However, to search for the K closest neighbors in the populated hash table, we are inter-
ested in progressively finding the values of rq,bi

1→0 and rq,bi
0→1 that lead to binary codes with

the largest sim value. One observation is that, within all indices lying at the Hamming
distance r from q, indices with the Hamming distance tuples (rq,bi

1→0, r
q,bi
0→1) = (0, r) and

(rq,bi
1→0, r

q,bi
0→1) = (r, 0) (provided that they are valid tuples) yield the largest and the smallest

cosine similarities with the query, respectively. This fact leads to the following proposition:

Proposition 3.1. Among all binary codes lying at the Hamming distance r from q, those
with larger values of rq,bi

0→1 yield larger cosine similarities.

Proof: To prove this proposition, let us compute the derivatives of (3.2) with respect to
rq,bi

0→1 or rq,bi
1→0 (in this proposition, to be able to take derivatives, we assume that rq,bi

0→1 and
rq,bi

1→0 are continuous variables in R+). Suppose rq,bi
1→0 + rq,bi

0→1 = r, by replacing rq,bi
1→0 with

r − rq,bi
0→1, we obtain:

sim(q,b1) =
‖q‖1 + rq,bi

0→1 − r√
‖q‖1 ×

√
‖q‖1 + 2rq,bi

0→1 − r
. (3.5)

After some algebraic manipulations, it follows that ∂sim

∂r
q,bi
0→1

≥ 0. Therefore, among all tuples
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at the Hamming distance r from q, the maximum of sim occurs at (rq,bi
1→0, r

q,bi
0→1) = (0, r),

and its minimum occurs at (rq,bi
1→0, r

q,bi
0→1) = (r, 0).�

Proposition 3.1 states that, for tuples at the Hamming distance r from q, sim is a
growing function of rq,bi

0→1. As a result, the order of tuples in the direction of decreasing
sim values is (0, r), (1, r−1), . . . , (r, 0). In other words, among all the binary codes that lie
at the Hamming distance r from the query, those with larger `1 norms yield larger cosine
similarities.

While the Proposition 3.1 specifies the direction of the search for a given Hamming
distance, it does not establish the relationship between the Hamming distance and the
cosine similarity for different Hamming distances.

Although the above may appear as a discouraging observation, we show that, for small
Hamming distances, the cosine similarity and the Hamming distance are related to each
other. In particular, the following proposition specifies the region where the cosine simi-
larity is a monotonically decreasing function of the Hamming distance.

Proposition 3.2. : If ‖q‖1 >
r(r+t)
t

for some r, t ∈ {1, . . . , p}, then all binary codes in
C(q, r) yield larger cosine similarities to q than binary codes with Hamming distances at
least r + t from q.

Proof: According to Proposition 3.1, the maximum of the sim value for a fixed Ham-
ming distance r occurs at (rq,bi

1→0, r
q,bi
0→1) = (0, r) with a sim value of

√
z
z+r

, and its minimum

occurs at (rq,bi
1→0, r

q,bi
0→1) = (r, 0) with a sim value of

√
z−r
z

, where z = ‖q‖1. The condition

in Proposition 2 is satisfied if the smallest value of sim(q,bi), where bi ∈ C(q, r), is larger
than the largest value of sim(q,bj) where bj lies at the Hamming distance r + t from q.
Hence, we have: √

‖q‖1 − r
‖q‖1

>

√
‖q‖1

‖q|‖1 + r + t

⇒ ‖q‖1 − r
‖q‖1

>
‖q‖1

‖q‖1 + r + t

⇒ (‖q‖1 − r)(‖q‖|1 + r + t) > ‖q‖2
1

⇒ ‖q‖1 >
r(r + t)

t
.

(3.6)
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This concludes the proof.�

If the condition of Proposition 3.2 is satisfied for t = 1 and some radius of search r,
then all the binary codes inside the Hamming ball C(q, r) have larger cosine similarities
than those outside of C(q, r). Also, among all binary codes inside C(q, r), those with larger
Hamming distances from the query have smaller cosine similarities.That is, if bi is closer
to q than to bj in terms of the Hamming distance, then bi is also closer to q in terms of
the cosine similarity.

Algorithm 1 Fast Cosine Similarity Search (r ≤ r′)

Input: K: number of nearest neighbors to retrieve, q: query, H: hash table populated
with binary codes

Output: A: the set of retrieved items
1: Initialize set A = ∅
2: Initialize integer r = 0
3: Initialize r̂ with the positive root of the equation r2 + r − ||q1||
4: r̂ = br̂c
5: while |A| < K and r ≤ r̂ do
6: R = (0, r)
7: while R 6= (r + 1,−1) do
8: if R is a valid tuple then
9: Check the buckets in H lying at the Hamming distance tuple R from the query

10: Add each of the found candidates to A
11: R = R + (1,−1)
12: end if
13: end while
14: r = r + 1
15: end while

Therefore, for binary codes lying within the Hamming ball C(q, r), cosine similarity
is a decreasing function of the Hamming distance. In this case, the search algorithm is
straightforward: for t = 1, the maximum integer r that satisfies the inequality condition
in Proposition 3.2 is found. Let r̂ denote the integer part of the positive root of the
equation r2 + r − ‖q‖1 (this equation has only one positive root). Staring from r = 0, the
search algorithm increases the Hamming radius until the specified number of neighbors are
retrieved, or until r reaches r̂. Further we know that, for each Hamming radius, the search
direction should be aligned with the direction specified by the Proposition 3.1.
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Definition 3.4. ((r1, r2)-near Neighbor Problem) Given the query point q and dataset
B, the result of (r1, r2)-near neighbor problem is the set of all codes in B that lie at a Ham-
ming distance tuple of at most (r1, r2) from q.

The proposed approach, is effective in cases that K binary codes are retrieved before r
reaches r̂. It tackles the angular KNN problem by solving multiple instances of the (r1, r2)-
near neighbor problem. An important advantage of the proposed algorithm is that it does
not need to compute the actual sim values between binary codes. It can be efficiently
implemented using bitwise operators and the popcount function. The rest of this section
addresses the case of r > r̂.

When the search radius is greater than r̂, the sim value is not a monotonically decreas-
ing function of the Hamming distance. However, we propose a sequential algorithm that
can efficiently find the proper ordering of the tuples. The key idea is that, although the
next tuple in the ordering can lie at many different Hamming distances, we show that it
can be found by searching among a small subset of remaining tuples. In particular, first
form a small set of candidate tuples is formed and then the one with the highest sim value
is selected. To do that, one can first insert such candidate tuples (called anchors) into a
priority queue and then sequentially select the one with highest priority. The priority of a
tuple is evidently determined by its corresponding sim value. The queue is initialized with
the tuple (0, r̂ + 1). When a tuple is pushed into the queue, it is considered as traversed.
At each subsequent step, the tuple with the top priority (the highest sim value) is popped
from the queue. When a tuple is popped, two tuples are considered for insertion into the
queue. Hereafter, these are called the first anchor and the second anchor, respectively.
These two tuples are checked, and if “valid” and “not traversed”, they are pushed into the
queue.

Definition 3.5. (First and Second Anchors of a Tuple)

Given a query q and a Hamming distance tuple R = (x, y), the first anchor and the
second anchor of R are defined as follows:

• Among all tuples that lie at the Hamming distance x+ y + 1 from q, the tuple with
the largest sim value is called the first anchor of R.

• Among all tuples that lie at the Hamming distance x + y from q and have smaller
sim values than R, the tuple with the largest sim value is called the second anchor
of R.

Example 3.2. For the query q with ‖q‖1 = 10 and p = 32, the first anchor of v = (1, 4)
is (0, 6) and the second anchor is (2, 3) (according to the Proposition 3.1).
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Figure 3.2: Visual representation of the “first anchor” and the “second anchor” of a Ham-
ming distance tuple.

When a tuple is popped from the queue, the algorithm pushes the first and the second
anchors of the popped tuple into the priority queue (provided that these are valid, and not
traversed) and marks them as traversed. This procedure continues until either K elements
are retrieved, or all valid tuples are traversed. Therefore, when a tuple such as R = (x, y)
is popped from the queue, the algorithm checks whether the following two tuples are valid
or not:

a) The first anchor of R: This tuple, by definition, has the largest sim value among
the tuples at the Hamming distance x+ y+ 1 from the query. According to Proposi-
tion 3.1, this candidate is (0, x+ y+ 1) if x+ y+ 1 ≤ p−‖q‖1. In general, to ensure
that the two components of this tuple are in acceptable ranges, the first anchor of R
takes the form (c, x+ y+ 1− c) where c = max(0, x+ y+ 1− (p−‖q‖1)). Note that
the first component of any Hamming distance tuple is at most ‖q‖1 (number of ones
in q) and its second component is at most p− ‖q‖1 (number of zeros in q).

b) The second anchor of R: Among the tuples that have smaller sim values than
R, and lie at the Hamming distance x+ y from the query, this tuple is the one that
has the largest sim value. Using Proposition 3.1, it is easy to show that the second
anchor of R is (x + 1, y − 1). This tuple is pushed into the queue if its components
are in acceptable ranges (the second anchor is valid if x+ 1 ≤ ‖q‖1 and y − 1 ≥ 0).

Fig. 3.2 shows an example of the first/second anchors (shown in dashed circles) of a
tuple that is selected in the current step (shown in green).
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Algorithm 2 Fast Cosine Similarity Search
Input: K: number of nearest neighbors to retrieve, q: query, H: hash table populated with binary codes
Output: A: the set of retrieved items
1: Initialize set A = ∅
2: Initialize integer r = 0
3: Create an empty priority queue pq
4: Marked all candidates as not traversed
5: Initialize r̂ with the positive root of the equation r2 + r − ||q||1
6: r̂ = br̂c
7: R = (0, 0)
8: while |A| < K do
9: if r ≤ r̂ then

10: if R is a valid tuple then
11: Check the buckets in H corresponding to the Hamming distance tuple R
12: Add the retrieved items to A
13: Mark the tuple (r1, r2) as traversed
14: R = R+ (1,−1)
15: end if
16: if R = (r + 1,−1) then
17: r = r + 1
18: R = (0, r)
19: if r > r̂ then
20: pq.push(R)
21: end if
22: end if
23: else
24: if pq.isempty() then
25: return
26: end if
27: R← pq.pop()
28: Check the buckets in H corresponding to the Hamming distance tuple R
29: Add the retrieved items to A
30: if The first anchor of R is not traversed then
31: pq.push(the first anchor of R)
32: Mark the first anchor of R as a traversed
33: end if
34: if The second anchor of R is a valid tuple then
35: pq.push(the second anchor of R)
36: Mark the second anchor of R as traversed
37: end if
38: end if
39: end while
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Next, we prove that the proposed algorithm results in the correct ordering of Hamming
distance tuples.

Proposition 3.3. In each iteration, the Hamming distance tuple popped from the queue
has a smaller sim value than the traversed tuples, and has the largest sim value among the
not traversed tuples. Moreover, the algorithm eventually traverses every tuple.

Proof: When r < r̂, according to Propositions 3.1 and 3.2, the ordering is correct. For
r ≥ r̂, we show that the selected candidate has the highest cosine similarity among the
remaining tuples.

Assume that the algorithm is not correct. Let R be the first tuple that the algorithm
selects incorrectly. This means another tuple, such as R′ = (x′, y′), yields the highest
sim value and it has not been pushed into the priority queue because if R′ had been
pushed into the queue, then R′ would have been popped from the queue instead of R. Let
r′ = x′ + y′, meaning that r′ is the Hamming distance between q and any binary code
lying at the Hamming distance tuple (x′, y′) from the q. Consider all binary codes that
lie at the Hamming distance r′ from q. If there exists a tuple with the second component
greater than y′ that has not been traversed yet, then a contradiction occurs (this means R′

does not yield the largest sim value). This stems from the fact that, at a fixed Hamming
distance, tuples with larger second components have larger sim values (Proposition 3.1).
As a result, y′ yields the largest possible value among the not-traversed tuples lying at the
Hamming distance r′ from q. However, we show that, this tuple should have been pushed
into the priority queue in previous steps. One of the following cases may occur:

a) Until the current step, no Hamming distance tuple at the Hamming distance r′ from
q has been selected: According to Proposition 3.1, any tuple with the Hamming
distance r′ − 1 that is in the set L = {(a, b)|(a, b) is a valid tuple and, a + b = r′ −
1, a ≤ x′, b ≤ y} has larger sim values than R′. Therefore, all of them must have
been selected prior to R′ in the sequence. However, the first time that a tuple from
L was popped, R′ was pushed into the priority queue. R′ is in fact the first anchor
of all the tuples in L, and thus, it must have been pushed when any of the elements
in L were popped from the priority queue.

b) At least one Hamming distance tuple with the Hamming distance r′ from q has been
traversed in previous steps: Similar to the previous case, R′ was pushed into the
priority queue when the algorithm popped the tuple (x′− 1, y′+ 1). In this scenario,
R′ is the second anchor of (x′ − 1, y′ + 1).
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It is concluded that R′ must have been pushed into the priority queue during previous
steps, which contradicts the assumption that R′ is not a member of the priority queue.

We also need to prove that the algorithm is complete, i.e., , the algorithm continues
until it either finds the K neighbors, or it traverses all the valid tuples. Again, let us assume
the contrary. This means that, at the final step, the algorithm pops the last tuple from
the queue and the last tuple does not have any valid anchors. Thus, the queue remains
empty and the algorithm will terminate while there are still some valid tuples that have
not been traversed. It is clear that the not-traversed tuples cannot lie at the Hamming
distance of r when at least one tuple with the Hamming distance r is traversed. This
situation occurs because once the first tuple with the Hamming distance r is popped from
the queue, the second anchor of this tuple is pushed into the queue. Therefore, one tuple
with the Hamming distance r always exists in the queue until the last one of such tuples
is popped, and such a last tuple does not have a valid second anchor. As a result, the only
possible case is that all the tuples at a Hamming distance less than or equal to r have been
traversed; and all of the tuples at a Hamming distance r + 1 and greater have not been
traversed. However, this is not possible because when a tuple at the Hamming distance r
is popped from the queue, its first anchor is pushed into the queue and this tuple lies the
Hamming distance r + 1. Hence, all the tuples at the Hamming distance r + 1 from the
query will be covered eventually.�

3.3 Angular Multi-index Hashing

To achieve satisfactory retrieval accuracy, applications of binary hashing often require
binary codes with large lengths (e.g., , 64 bits). For such applications, it is not practical to
use a single hash table mainly because of the computational cost of search. For long binary
codes, it is frequently the case that n� 2p and thus most of the buckets in the populated
hash table are empty. To solve the KNN problem in such a sparse hash tables, even for
small values of K, often the number of buckets to be examined exceeds the number of items
in the dataset. This means that the exhaustive search (linear scan) is a faster alternative
than using a hash table. As shown in Fig. 3.3, the average number of probing required for
solving the angular KNN query for the SIFT dataset with one billion items (the details of
SIFT will be explained later), often exceeds the number of available binary codes in the
dataset. This problem arises as the required number of probings grows near-exponentially
with the values of rq,bi

1→0 and rq,bi
0→1 (refer to (3.3)).

Multi-Index Hashing (MIH) [49], and its variants [95, 94], are elegant approaches for
reducing storage and computational costs of the R-near neighbor search for binary codes.
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Figure 3.3: The average number of probings required for solving the angular KNN problem,
if a single hash table is used for the SIFT dataset (with 109 items).

The key idea behind the multi-index hashing is that, as many of the buckets are empty,
one can merge the buckets over different dimensions of the Hamming space. To do this,
instead of creating one huge hash table, MIH creates multiple smaller hash tables with
larger buckets, where each bucket may be populated with more than one item. To do this,
all binary codes are divided into smaller disjoint (usually with the same length) substrings,
then each substring is indexed within its corresponding hash table. Therefore instead of
one creating one huge hash table, the idea of MIH is to form multiple smaller hash tables
which can significantly reduce the storage cost.

More importantly, MIH reduces the computational cost of the search. To solve the
R-near neighbor problem, the query is similarly partitioned into m substrings. Then, MIH
solves m instances of the R

m
-near neighbor problem, one per each hash table. By doing

this, the neighbors of each substring in its corresponding hash table are retrieved to form a
set of potential neighbors. Since some of the retrieved neighbors may not be a true R-near
neighbor, a final pruning algorithm is used to remove the false neighbors.

Despite being efficient in storage and search costs, MIH cannot be applied to the angular
preserving binary codes, since it is originally designed to solve the R-near neighbor problem
in the Hamming space. The rest of this section proposes AMIH technique for fast and exact
search among angular preserving binary codes which addresses the second research question
(RQ 3.2).
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Instead of populating one large hash table with binary codes, AMIH creates multiple
smaller hash tables. To populate such smaller hash tables, each binary code b ∈ {0, 1}p
is partitioned into m disjoint substrings b(1), . . . ,b(m). For the sake of simplicity, in the
following, it is assumed that p is divisible by m and use the notation w = p

m
. As a

result, the s-th hash table, s ∈ {1, . . . , w}, is populated with b
(s)
i i ∈ {1, . . . , n}. To

retrieve the (r1, r2)-near neighbors of the query, q is similarly partitioned into m substrings,
q(1), . . . ,q(m).

The following proposition establishes the relationship between the Hamming distance
tuple of two binary codes and their substrings.

Proposition 3.4. If b lies at a Hamming distance tuple of at most (r1, r2) from q, then:

∃ 0 < t ≤ m s.t. ‖q(t) − b(t)‖H ≤ b
r1 + r2

m
c

∧ r
q(t),b

(t)
i

1→0 ≤ r1

∧ r
q(t),b

(t)
i

0→1 ≤ r2.

(3.7)

The first condition follows from the Pigeon-hole principle. If in all of the m substrings,
the Hamming distance is strictly greater than b r1+r2

m
c, then we have ‖q−b‖H ≥ m(b r1+r2

m
c+

1). This contradicts the assumption that b lies at a Hamming distance of at most r1 + r2

from q. The second and the third conditions must in fact hold for all substrings, because

if we have r
q(t),b

(t)
i

1→0 > r1, then we should have rq,bi
1→0 > r1. Similarly, if we have r

q(t),b
(t)
i

0→1 > r2,
then we should have rq,bi

0→1 > r2. Thus, b is not a (r1, r2)-near neighbor of q.�

In simple terms, Proposition 3.4 states that, if b is a (r1, r2)-near neighbor of q, then at
least in one of its substrings such as t, b(t) must be a (r′1, r

′
2)-near neighbor of q(t), where

r′1 + r′2 ≤ b r1+r2
m
c, r′1 ≤ r1 and r′2 ≤ r2.

3.3.1 (r1, r2)-near Neighbor Search Using Multi-index Hashing

We have thus far established the necessary condition that facilitates the search among
substrings. At the query phase, to solve a (r1, r2)-near neighbor search, AMIH first gen-
erates the tuples that satisfy the conditions of the Proposition 3.4. That is, to solve the
(r1, r2)-near neighbor problem, AMIH generates the set of all tuples (r′1, r

′
2) such that

r′1 + r′2 ≤ b r1+r2
m
c, where r′1 ≤ r1 and r′2 ≤ r2. This set is denoted by Tr1,r2,m.
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Figure 3.4: The tuples that must be checked for solving the (3, 8)-near neighbor problem
with 2 hash tables.

Example 3.3. Suppose m = 2 and we are interested in solving (3, 8)-near neighbor prob-
lem. According to Proposition 3.4, we need to search among tuples with a Hamming
distance of at most 5 = b3+8

2
c that satisfy the conditions. These tuples are shown in

Fig. 3.4. Notice that, for each tuple, the algorithm should probe all corresponding buckets
in each of the hash tables.

Next, for each tuple such as t = (r′1, r
′
2) in Tr1,r2,m and for each substring q(s), s ∈

{1, . . . ,m}, AMIH solves the (r′1, r
′
2)-near neighbor problem for the query q(s) in the s-th

hash table. This step results in a set of candidate binary codes, denoted by Oj,t. According
to Proposition 3.4, the set O =

⋃
j,tOj,t is the superset of (r1, r2)-near neighbors of q.

Finally, AMIH computes the Hamming distance tuples between q and all candidates in O,
discarding the tuples that are not the true (r1, r2)-near neighbors of q.

The intuition behind this approach is that, since the number of buckets that lie at the
Hamming distance tuple (a, b) grows near-exponentially with the values of a and b, it is
computationally advantageous to solve multiple instances of (a′, b′)-near neighbor problem
with a′ < a and b′ < b, instead of solving one instance of (a, b)-near neighbor problem where
a and/or b are relatively large. This requires a significantly smaller number of probings as
compared to the case of deploying a single large hash table.
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3.3.2 Cost Analysis

The cost analysis directly follows the performance analysis of MIH in [95]. As suggested
in [95], it is assumed that b p

log2 n
c ≤ m ≤ d p

log2 n
e. Using AMIH, the total cost per query

consists of the number of buckets that should be checked to form the candidate set O, plus
the cost of computing the Hamming distance tuple between retrieved binary codes in O
and q.

We start by providing an upper bound on the number of buckets that should be checked.
Since the algorithm probes identical buckets in each hash table, the number of probings
equals the product of m and the number of probings in a hash table.

To solve the (r1, r2)-near neighbor problem, for each tuple such as (a, b) in Tr1,r2,m, the
algorithm probes the buckets that correspond to (a, b). It is clear that, in the i-th hash
table (1 ≤ i ≤ m), all binary codes corresponding to the tuples in the set Tr1,r2,m lie at a
Hammming distance of at most b r1+r2

m
c from the q(i) (Proposition 3.4). Therefore, in the

i-th hash table, the indices of buckets that must be probed are a subset C(q(i), b r1+r2
m
c),

and we can write:

#probings ≤
m∑
i=1

|C(q(i), br1 + r2

m
c)|

= m×
b r1+r2

m
c∑

j=0

(
w

j

)

= m×
bw(r1+r2)

p
c∑

j=0

(
w

j

)
.

(3.8)

Assuming that r1+r2
p
≤ 1/2, we can use the following bound on the sum of the binomial

coefficients [42].

For any n ≥ 1 and 0 < α ≤ 1/2, we have:

bαnc∑
i=0

(
n

i

)
≤ 2H(α)n. (3.9)

where H(α) := −α log(α)− (1− α) log(1− α) is the binary entropy of α.

Therefore, we can write:
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#probings ≤ m

bw(r1+r2)
p

c∑
j=0

(
w

j

)
≤ m2wH(

r1+r2
p

). (3.10)

If binary codes are uniformly distributed in the Hamming space, the expected number of
items per buckets of each hash table is n

2w
. Therefore, the expected number of items in the

set O is:
E(|O|) =

n

2w
m× 2wH(

r1+r2
p

). (3.11)

Empirically, it is observed that the cost of bucket lookup is marginally smaller than the
cost of verifying a candidate. If we have: single lookup cost= t× single candidate test cost,
for some t ≤ 1, then using (3.10) and (3.11), we can write the total cost as:

cost ≤ m2wH(
r1+r2

p
)(t+ n/2w). (3.12)

For m ≈ p/ log2 n, by substituting log2 n for w, we have:

cost = O(
p

log2 n
nH(

r1+r2
p

)). (3.13)

For reasonably small values of r1+r2
p

, the cost is sublinear in n. For example, for
r1+r2
p
≤ 0.1, the expected query cost would be O(p

√
n/ log n).

The space complexity of AMIH comprises: a) the cost of storing n binary codes each
with p bits, which takes O(np), and b) the cost of storing n pointers to dataset items in each
hash table. Each pointer can be represented in O(log2 n) bits, therefore, the cost of storing
pointers would be O(mn log2 n). For m = d p

log2 n
e, the total storage cost is O(np+n log2 n).

3.4 Experiments

In order to answer RQ 3.3, this section empirically evaluates the performance of the pro-
posed algorithm.

AMIH is coded in C++ on top of the MIH implementation provided by the authors
of [95] (all codes are compiled with GCC 4.8.4). Our implementation is publicly available
at https://github.com/sepehr3pehr/AMIH. The experiments have been executed on a
single core of 2.0 GHz Xeon CPU with 256 Gigabytes of RAM.
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3.4.1 Datasets

Two non-synthetic datasets are used in this section:

SIFT: The ANN SIFT1B dataset [102] consists of SIFT descriptors. The available dataset
has been originally partitioned into 109 items as the base set, 104 items as the query set,
and 108 items as the learning set. Each data item is a 128-dimensional SIFT vector.

TRC2: The TRC2 (Thomas Reuters Text Research Collection 2) dataset [67] consists
of 1,800,370 news stories covering a period of one year. 5 × 105 news are used as the
learning set, 106 news as the base set, and the remaining as the query set. The data is
preprocessed by removing common stop words, stemming, and then considering only the
2000 most frequent words in the learning set. Thus, each news story is represented as a
vector composed of 2000 word-counts.

Since the items of these datasets lie in real space, a binary hashing technique is adopted
to map the items to binary codes. For our experiments, we have used the angular-
preserving mapping method called Angular Quantization-based Binary Codes (AQBC)
proposed in [46], to create the dataset of binary codes. We implemented AQBC in Python
following the initialization and parameter setting described in [46]. We have also made our
implementation of AQBC publicly available at https://github.com/sepehr3pehr/AQBC.
For each dataset, the learning set is used to optimize the parameters of the hash function.
Once learning is completed, the learning set is removed and the learned hash function is
applied to the base and the query sets. The base set is used to populate the hash ta-
bles. Then, the angular KNN problem is solved for all queries points and the average
performance is reported.

3.4.2 AMIH vs Linear Scan

Our first experiment compares the performance of linear scan with AMIH in terms of the
search speed. The norm of any binary code with p bits ranges from 0 to

√
p. Thus, to

increase the speed of the linear scan, we initialize a look up table with all the possible
norm values. Moreover, as the term

√
‖q‖1 in the denominator of (3.2) is independent of

bi, there is no need to account for its value in searching.

We observed that the performance of linear scan is virtually independent of K (number
of nearest neighbors). Consequently, for the sake of comparison, in the following, only
the result of the linear scan for the 1NN problem is used. Note that the linear scan can
benefit from caching, as it performs sequential memory access. Otherwise, it would be
much slower.
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Table 3.1: Speedup gains that AMIH achieves in comparison to linear scan. The last line
shows the average query time of linear scan in seconds.

SIFT 1B TRC2

# bits: 64 128 64 128

Speedup gain

1NN 2672 1035 106 7.5

10NN 2137 345 27.5 3.21

100NN 1336 138 9.1 2.1

Linear scan (s): 106 207 0.110 0.206

Fig. 3.5 shows the average query time as a function of the dataset size for 64-bit and
128-bit binary codes. In all experiments, the value of m (number of hash tables) for AMIH
is set to p

log2 n
, following [83, 49, 95]. The leftmost graphs show the search time in seconds

in terms of the data base size. It is apparent that AMIH is significantly faster than the
linear scan for a broad range of dataset sizes and K values. To differentiate between the
performance of AMIH for different values of K, the middle graphs show the zoomed version
of the leftmost graphs, and the rightmost graphs are plotted using logarithmic scale. As
Figs. 3.5 illustrates, for linear scan, the query time grows linearly with the dataset size,
whereas the query time of AMIH increases with the square root of the size. Consequently,
the difference between the query times of the two techniques is more significant for larger
datasets. For instance, linear scan spends more than three minutes to report the nearest
neighbor in the 109 SIFT dataset with 128-bit codes, while AMIH takes about a quarter
of a second. The dashed line on log-log plots shows the growth rate of the

√
n up to

a constant factor. The evident similarity between the slope of this function and that of
AMIH query time indicates that, even for non-uniform distributions, AMIH can achieve
sublinear search time.

Fig. 3.6 shows the percentage of queries for which the required radius of search gets
larger than r̂. As the size of the dataset grows, the number of empty buckets reduces, and
the algorithm finds the nearest neighbors within a smaller search radius. Similarly, for
shorter binary codes, the number of buckets reduces, and in turn, AMIH retrieves items
before the search radius reaches r̂.

Table 3.1 includes the speed up factors achieved by AMIH versus linear scan. Each
entry in the table indicates the average query time using linear scan over the average query
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Figure 3.5: Average search time for 64-bit and 128-bit binary codes of the SIFT dataset.
AMIH and linear scan are executed to solve the KNN problem with K ∈ {1, 10, 100}.
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Figure 3.7: Indexing time of AMIH on 109 SIFT dataset.

time using AMIH for a specific value of K. Interestingly, AMIH solves the angular KNN
problem up to hundreds and even thousands of times faster than linear scan. In particular,
AMIH can solve the 100NN problem 138 times faster than the linear scan on a dataset of
109 binary codes each with 128 bits.

While the linear scan technique does not rely on any indexing phase, AMIH requires
each binary code to be indexed in m hash tables. The indexing time for AMIH using the
SIFT dataset is shown in Fig. 3.7. For 64 and 128 bit codes, the indexing phase takes
about 1 and 2 hours, respectively.

3.4.3 AMIH vs Approximate Techniques

Due to the curse of dimensionality, linear scan is theoretically the fastest exact technique
for solving the angular KNN problem in its general setting. However, a handful of ap-
proximation algorithms exist that provide sublinear search time for this problem. The
most well-known representative among these is LSH [55], which offers a (provably) sub-
linear search time. In addition to LSH, some applied approximation algorithms have been
proposed which work promising in realworld applications, such as KGraph [35] and An-
noy [15], but do not necessarily guarantee (efficient) worst case analysis. In this section,
we compare AMIH with some of the well-known approximation techniques for the task of
nearest neighbor search (1NN).
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The comparison between AMIH and other approximation techniques is performed in
two different scenarios:

• First, we investigate the performance of different techniques for solving the angular
nearest neighbor problem in the binary space. Similar to the experiments of sec-
tion 3.4.2, we assume that we are given a binary dataset and the goal entails solving
the angular nearest neighbor search for binary query points.

• In the second scenario, we assume that the original dataset lies in the real space.
Given the dataset, we apply the approximate algorithms to the real dataset. However,
since AMIH can be only applied to binary codes, we first use a hashing algorithm to
map the dataset to binary codes and then use AMIH to solve the K nearest neighbor
search within the binary dataset. Finally, among the K retrieved points, we select the
one that is the closet to the query in the real space. Therefore, the returned nearest
neighbor in this setting is approximate with respect to the original data points lying
in the real space. This scenario mainly targets applications in which the original
dataset items do not lie in the binary space because for binary datasets the result of
AMIH is exact.

Approximate Techniques Used for Comparison

For both scenarios, we compare AMIH with three state-of-the-art ANN techniques. Dis-
cussing the details of these techniques is beyond the scope of this study but we briefly
introduce each of them here.

Crosspolytope LSH [3] is a recently proposed LSH-based technique for solving the
angular nearest neighbor search problem. The general idea behind LSH is to randomly
partition the feature space using a specific family of hash functions that map similar items
into the same buckets with high probability. Given such hash functions, during the pre-
processing step, all items of the dataset are inserted in to l hash tables corresponding
to l randomly chosen hash functions (each hash function represents a partitioning of the
space). To find the nearest neighbors the query vector is similarly mapped l times, and the
items in the corresponding l hash buckets are retrieved as the candidates for the nearest
neighbor. The algorithm then passes through the retrieved points to find the closest one
to the query. This variant of LSH is often called Single-Probe (SP) LSH as it probes only
one bucket per hash table.

We also compare the performance of AMIH with the MultiProbe (MP) variant of the
crosspolytope LSH. Multiprobe LSH [75] is an extension of LSH that can achieve significant
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space reduction via reducing the number of required hash tables. The basic idea of multi-
probe LSH is to not only consider the main bucket, where the query falls, but also probe
other buckets that are close to the main bucket in every hash table. For our comparisons,
we use the multiprobe variant of the crosspolytope LSH described in [3]. The source code
of this method has been made publicly available as a part of the FAst Lookups of Cosine
and Other Nearest Neighbors (FALCONN) [105].

KGraph [35] performs the nearest neighbor search by building a KNN graph over the
datapoints. In the graph, each node corresponds to a data point and is connected to its
M nearest point where M needs to be tuned. During query phase, the algorithm starts
from one of the nodes and follows the paths with shorter distances to find the approximate
nearest neighbors.

Annoy [15] decomposes the search space using multiple trees to achieve sublinear search
time. At each non-leaf node, a random hyperplane is formed by taking the equidistant
hyperplane of two randomly selected data points. Each internal node therefore divides the
space into two subspaces where each subspace contains at least one data point. Each leaf
node contains a subset of datapoints that lie in the region of space defined by the leaf’s
ancestors. To find the nearest neighbor, the search algorithm only considers the subspaces
where the query fall in. Annoy incorporates a forest of such trees to increase the probability
of collision between query and its nearest neighbor in at least one leaf node.

Experimental setting

In all experiments, for single-probe crosspolytope (SP-CP) LSH, KGraph and Annoy, we
use the parameter settings of ann-benchmark [6] which is a tool of standardizing bench-
marking for approximate nearest neighbor search algorithms. The SP-CP setting in ann-
benchmark incorporates a fixed value for the number of hash functions per hash tables,
k = 16, and let l vary from 1 to 1416. For multiprobe crosspolytope (MP-CP) LSH (which
is absent in ann-benchmark), we follow the parameter setting of [3]. In particular, for
MP-CP, we use only 10 hash tables (l = 10) in each experiment. As stated in [3], the
goal of this choice is to keep the additional memory occupied by LSH comparable to the
amount of memory needed for storing dataset. This is perhaps the most practical and in-
teresting scheme since large memory overheads are impossible for massive datasets. To set
k (number of hash functions per hash table), we try different values for this parameter and
select the one with the minimum query time. To do that, following [105], for each value of
k ∈ {10 . . . , 30}, we use binary search to find the minimum number of probes that results
in a near-perfect recall rate (≥ 0.9), meaning that 10 percent of returned neighbors are
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not exact. After fixing k and l, the number of probes per hash table is gradually increased
(which results in higher recall rates) and for each value the average query time is reported.

In the following, we compare the performance of different techniques in terms of the
average query time and memory requirement. Note that the memory cost reported here
is the additional memory required by each technique to build its data structure (memory
required to store the raw dataset is not included). The experiments of this section are
executed on a single core 3.0 GHz CPU with 32 GB of memory.

Before discussing the results, we would like to note that the ann-benchmark basically
is not designed for scenarios with low memory budget. We observed that the settings
used for techniques such as KGraph and Annoy require an amount of memory that is
much larger than the memory required to store the dataset. Also for LSH, the benchmark
only uses single-probe LSH. The main reason for this choice is that, in comparison to
multiprobe LSH, single-probe LSH achieves better query time when RAM budget is not a
matter of concern. The memory cost of ann-benchmark is perhaps the main reason why
larger datasets such as 1 billion SIFT vectors (that we used in the first experiments) are
absent in the benchmark (all datasets in ann-benchmark have around 1 million points).
The authors of [3] have also explicitly mentioned that the experiments of ann-benchmark
are not efficient for low RAM budget scenarios [105].

Nearest Neighbor Search in Binary Space

Here we use the ANN SIFT1M [59] dataset which consists of 1 million 128D SIFT vectors
for the base set and 10000 query items. Similar to section 3.4.2, the dataset is binarized
to 64-bit and 128-bit codes by applying AQBC. The binary dataset is then fed to each
technique and the average query time as well as memory cost is reported.

Fig. 3.8 and Fig. 3.9 show the average query time as well as the index size (memory
overhead) of each technique with respect to the recall rates. Note that AMIH is an exact
algorithm in the binary space therefore its recall rate is 1. The results highlight that
AMIH is significantly faster than other techniques for near-perfect recall rates. However,
for longer codes the difference between AMIH and other techniques reduces. SP-CP has
very fast query time for low recall rates especially in 64-bit codes. In particular, SP-CP is
the fastest technique for recall rates smaller than 0.3 in 64-bit codes. The results show that
LSH based techniques tend to be faster than KGraph and Annoy for both lengths of codes.
The only exception is in recall rates very close to 1 for which KGraph performs better than
other approximate techniques but still slower than AMIH. Another advantage of AMIH
over the other techniques is the memory cost. AMIH achieves perfect recall with memory
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cost that is comparable with the dataset. However, Annoy and KGraph index size can
take a large amount of memory, even 100 times more than the size of dataset. Therefore,
AMIH is particularly interesting when the RAM budget is quite restrictive. In fact, the
high memory cost of Annoy and KGraph did not allow us to provide similar comparisons
for the ANN SIFT1B dataset. The memory cost of Annoy and KGraph remains virtually
the same for different recall rates but the catch is that they require more preprocessing
time to achieve higher recall rates (the preprocessing time of each technique is not shown
here due to limited space).

We would like to note that most of the techniques in ann-benchmark are designed to
work with real vectors and may not be necessarily optimized for binary data. Therefore,
each of these techniques can be potentially implemented more efficiently to achieve better
query time for binary data. However, editing the source code of all techniques in ann-
benchmark would require a great deal of human effort and is beyond the scope of this
study.

Nearest Neighbor Search in Real Space

If the target binary dataset is generated with binary hashing techniques, then the nearest
neighbors found by AMIH are approximate with respect to the original space. For instance,
the nearest neighbor found in the above experiments is not exact for the original 128D SIFT
vectors. One clear advantage of the approximate techniques such as LSH and KGraph
over AMIH is that they are far more general techniques that can work with many distance
measures, whereas AMIH is specifically designed for binary spaces. The benefit of applying
such approximate techniques in the original space is that they could potentially achieve
higher recall rates (with respect to the original space). On the other hand, mapping items
to binary codes significantly reduces the storage costs as well as the cost of comparing the
items. Therefore, the question that arises is: what is the performance of state-of-the-art
approximation techniques in the original space in comparison with AMIH applied to a
binary dataset generated by a binary hashing technique?

To answer this question, we compare the performance of SP-CP LSH, MP-CP LSH,
KGraph and Annoy applied to the original SIFT vectors with the performance of AMIH
applied to the binary vectors generated by AQBC. It is clear that, in this setting, the
precision of AMIH is highly dependent on how accurate the binary hash function can
preserve the similarities. Learning hash functions to increase accuracy is an active line
of research, but is not the focus of this study. Still, such a comparison can be helpful in
judging the usefulness of AMIH for non-binary datasets.
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Figure 3.8: Average query time and memory overhead with respect to the recall rate for
single-probe crosspolytope (SP-CP) LSH (k = 16) , multiprobe crosspolytope (MP-CP)
LSH, Annoy, KGraph and AMIH. The memory overhead plots also show the size of dataset
(the recall rate of zero for dataset size does not have a meaning). For MP-CP, the optimal
value of k is 20.
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Figure 3.9: Average query time and the memory overhead with respect to the recall rate
for single-probe crosspolytope (SP-CP) LSH (k = 16) , multiprobe crosspolytope (MP-CP)
LSH, Annoy, KGraph and AMIH. The memory overhead plots also show the size of dataset
(the recall rate of zero for dataset size does not have a meaning). For MP-CP, the optimal
value of k is 20.
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Similar to the our previous experiments, we use the ann-benchmark parameter setting
for SP-CP, Annoy and KGraph. For MP-CP, we again fix the number of hash tables
(l = 10) and chose the value of k that corresponds to the minimum query time for recall
rates above 0.9. For AMIH, we increase K (the number of nearest neighbor to retrieve)
from 1 to 1000 and for each value, the KNN problem is solved for each query in the binary
space. Then, the algorithm linearly scans among the retrieved candidates to find the closest
point to the query in the original space. Therefore, the AMIH query time reported in this
setting is the summation of: i) the time required to hash the real query point into the
binary space (using AQBC), ii) the time to solve KNN problem in the binary space with
AMIH and iii) the time to perform linear scan among the retrieved points in the original
space. This evaluation process of AMIH is similar to the MP-CP. In both, after populating
the hash tables, to boost the recall rate, the search algorithm increases the number of
probings per hash table in order to retrieve a larger number of candidates. Increasing
probings causes better recall rates but also reduces the search speed because we have to
probe more buckets and also compare more candidates with the query.

Fig. 3.10 shows the average query time and the memory overhead of each technique for
the task of angular nearest neighbor search in the real space. In this case, the KGraph
clearly outperforms other techniques for all tested recall rates. Among the others, AMIH
64-bit and Annoy show better average query time for many of the recall rate values. For
recall rates very close to one, after KGraph, AMIH-128 consistently exhibits the fastest
query time. In terms of the memory requirement, AMIH and MP-SP require constant
memory budget in all experiments as the number of hash tables remains fixed. The memory
footprint of SP-CP increases with recall rate due to the higher number of hash tables.
Similar to previous experiments, at low recall rates, SP-CP imposes small memory cost
but for recall rates greater than 0.62 AMIH 64-bit has the smallest memory overhead while
achieving slightly better recall rates than SP-CP.

We would like to note that the applications of binary hashing or any other approach for
compact representation is slightly different from other approximate nearest neighbor search
techniques such as KGraph and LSH. Binary hashing techniques are in essence designed for
extremely large datasets, too large that we are not even able to store the entire raw dataset
in the memory, let alone algorithms that require superlinear storage with large exponents
and constants. The goal of binary hashing is to reduce the storage cost of such large
datasets in order to fit them in the memory of a single machine while still being faithful
to the original metric. Unlike the setting used in ann-benchmark and the experiments
of this subsection, in binary hashing applications, not only high memory overheads are
not tolerated, but also the datasets itself is often absent in the memory. Moreover, the
performance of AMIH with respect to the real space can be improved if more accurate
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hash functions (other than AQBC) are applied to the dataset. Nevertheless, the empirical
results of this section show that some approximation techniques with non-compact index
structures such as KGraph, perform better when significant memory overhead is not a
matter of concern.

3.5 Summary

This chapter proposes a new algorithm for solving the angular KNN problem on large-scale
datasets of binary codes. By treating binary codes as memory addresses, our proposed
algorithm can find similar binary codes in terms of cosine similarity in a time that grows
sublinearly with the size of dataset. To achieve this, we have first established a relationship
between the Hamming distance and the cosine similarity. This relationship is in turn used
to solve the angular KNN problem for applications where binary codes are used as the
memory addresses of a hash table. However, using a hash table for long codes is often
inferior to the linear scan due to the large number of empty buckets. To tackle this
issue, as the second contribution, we have proposed the AMIH technique; a multi-indexing
approach to reducing both computational and storage costs in comparison to using a single
hash table. We have empirically shown that the AMIH technique can increase the search
speed up to orders of magnitude when applied to large-scale datasets.
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Figure 3.10: Average query time and the memory overhead with respect to the recall rate
for single-probe crosspolytope (SP-CP) LSH , multiprobe crosspolytope (MP-CP) LSH for
k = 20, Annoy, KGraph and AMIH.
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Chapter 4

Online Nearest Neighbor Search
Using Hamming Weight Trees

Modern real-life datasets are not only large in the number of points, but also are open-
ended and dynamic; new items appear over time. For example, a search engine often
has numerous new web pages containing images and textual data, that are continuously
arriving at the data center everyday. In online NNS therefore, the nearest neighbor queries
must be answered based on the total data that has been gathered so far. This leads to a
natural question: can we perform better than linear scan (search) for the task of large-scale
KNN search in dynamic binary datasets?

This question has not been answered adequately in the literature. In the context of
CDR, some recent studies have addressed the problem of learning compact binary codes in
online settings [12, 53, 54]. They have shown that it is possible to gradually refine the hash
function parameters, as data points become available, such that the resulting binary codes
better preserve the similarities. However, the problem of efficiently searching among the
so-far collected binary codes seems to have remained unchallenged. In practice, researchers
resort to linear scan to find nearest neighbors in online applications[53].

It is worth noting that MIH and AMIH do not suit online nearest neighbor search as
the optimal number of hash tables relies heavily on the number of database items. In
particular, both theory and practice suggest using p

logn
hash tables to elicit the best query

performance. Norouzi et al. [95] empirically showed that deviating from this value can
incur extra work, even significantly more than what linear scan requires. Consequently,
both techniques are mostly applicable for batch data in which the number of items remains
constant and known.
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4.1 Contributions

This chapter revisits the exact nearest neighbor search for compact binary codes in online
settings. We propose a data structure, called Hamming Weight Tree (HWT), that enables
fast and exact NNS under two different distance functions, namely Hamming distance and
angular distance (cosine similarity). Equally importantly, HWT supports insertion of new
items which is imperative for dealing with dynamic datasets. Our empirical experiments
show that HWT achieves orders of magnitude speedup in comparison with linear scan and
outperforms several best known solutions for the static setting.

This chapter is concerned with the following research questions:

RQ 4.1: How can we design data structure that supports fast Hamming nearest
neighbor search for dynamic data?

RQ 4.2: How can we extend the data structure to support angular distance?

RQ 4.3: What is the empirical performance of the data structure on real-world
datasets?

To address these research questions, which are related to the high-level research question
RQ1 of Chapter 1, we first propose our tree-based data structure for solving the Hamming
NNS and then extend its search algorithm to support angular NNS, finally we report its
empirical results on large-scale binary dataset and compare it with the state-of-the-art.

4.2 Hamming Weight Tree

We start off describing our data structure by focusing on the Hamming NNS problem
(to answer RQ 4.1), meaning that binary codes are compared in terms of the Hamming
distance. Then, in Section 4.3, we show how the same proposed data structure can be
applied to the angular NNS by modifying the search algorithm.

We address two closely related problems. Given a dataset of p-dimensional binary
codes B = {bi ∈ {0, 1}p}ni=1, and a binary query vector q ∈ {0, 1}p, the first problem is the
r-neighbor problem or range query, whose goal is to report all codes in B that are within
a given distance r from q. The second problem, K nearest neighbor, aims at finding the
K codes in B that are closest to q in terms of the Hamming distance. We address both
problems in their online settings; that is, the items in B become available sequentially and
the size of dataset is unknown.
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4.2.1 Depth One Tree

We first propose a data structure for solving the r-neighbor problem and then apply the
data structure to solve the KNN problem. One of key ideas of this study rests on the
following proposition which intuitively states that when two binary codes h and g differ
by at most r bits then the difference between their Hamming weights is at most r where
the Hamming weight of a binary code is the number non-zero entries in the code.

Proposition 4.1. If ‖h− g‖H = r, then we have:

|‖h‖H − ‖g‖H | ∈ {0, 2, . . . , r − 2, r}. (4.1)

where ‖.‖H denotes the Hamming weight.

Proof. By definition of Hamming distance, r bits of h are flipped in g. Such flips can be
of types 1) zero to one, or 2) one to zero. Let r1, r2 denote the number of type 1 and type
2 flips respectively, thus we have r1 + r2 = r. We have:

‖h‖H + r1 − r2 = ‖g‖H . (4.2)

Using r1 + r2 = r, we have:
‖h‖H − ‖g‖H = 2r2 − r. (4.3)

The proof is concluded considering the fact that r2 ≤ r.

�

It is easy to see that based on Proposition 4.1, for two binary codes with Hamming
distance of at most r (‖h − g‖H ≤ r), the difference of Hamming weights is also at most
r. Computing the Hamming weight is an extremely fast operation as many of the mod-
ern CPUs provide popcnt (population count) instruction which implements the Hamming
weight function at the hardware level.

The significance of (4.1) stems from the fact that to solve the r-neighbor search problem
for the given query q, one needs to retrieve binary codes with Hamming weights in the set
{‖q‖H − r, . . . , ‖q‖H + r} and ignore the rest of the points. Unfortunately, the retrieved
codes are not restricted to the Hamming radius of interest around the query. Hence, not
all items in the target sets are r-neighbors of the query, so we need to cull any candidate
that is not a true r-neighbor. For example, to answer a 2-neighbor problem for the query
code q on a dataset of 128-bit binary codes, we can create a tree, which we call the HWT,
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64. . .0 . . . 128

Figure 4.1: Hamming weight tree with depth one for 128-bit codes.

with 129 leaves (one for each possible Hamming weight), and assign the codes of dataset
to their corresponding leaf node based on their Hamming weights (see Fig.4.1). Assuming
that we have ‖q‖H = 64, to answer the 2-neighbor query, the algorithm linearly searches
among the codes belonging to nodes 62,63,64,65,66 and ignores the other 124 nodes. More
generally, to solve 2-neighbor query for any query point, the algorithm needs to check at
most five leaf nodes.

To create a depth-one HWT, the pre-processing step of our algorithm partitions the
binary codes of B into p + 1 sets, each corresponding to one of the possible Hamming
weights. Then, during the query phase, the algorithm retrieves the points in the nodes
whose Hamming weight difference from q is at most r. Pleasingly, inserting new items to
the HWT is easy as we only need to compute the Hamming weight of the new code and
add it to the corresponding leaf.

An ideal scenario for solving the nearest neighbor problem using the HWT occurs when
the algorithms only needs to check a few leaf nodes and such nodes contain a small portion
of the dataset points. However, the pruning power of a depth-one HWT is limited in real
applications, mainly due to the fact that the codes are not distributed uniformly among
the nodes. While a depth-one HWT can potentially prune the search space of the r-
neighbor problem and consequently use fewer Hamming distance computations compared
to the linear scan, it is only beneficial for small radii of search or very long code lengths.
Some problems restrict the search to exact matches [87] or small search radius, but in
most cases of interest the desired search radius is large and binary codes are compact.
The following two facts limit the performance of a depth-one HWT: (1) Concentration of
Hamming weights: since the number of possible binary codes with Hamming weight c is(
p
c

)
, Hamming weights of binary codes (both query and dataset) are highly concentrated

around p/2. This means that the leaf nodes with Hamming weights around p/2 are assigned
with a great portion of the points. (2) Large radii of search: solving the KNN problem
often requires a not-so-small radius and thus we have to check several nodes in such cases.
Because of these two observations, we often need to search among several nodes with
weights around p/2 which unfortunately constitute a great portion of the codes, thus not
much pruning can be done in such cases and the query is virtually compared with all the
dataset codes.
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Figure 4.2: (a) Average radius of search for solving the KNN problem for different values
of K. (b) Average Hamming weight of 1 billion SIFT vectors that are mapped to binary
space using hyperplane LSH.

To further illustrate this problem in a real application, Fig. 4.2a shows the required
radius for solving the KNN problem in the Hamming space with different values of K for a
dataset of 1 billion binary codes. Fig. 4.2b shows the distribution of Hamming weights for
the same dataset which clearly shows the concentration of Hamming weights around p/2.
For instance, to solve the 10NN problem for 64-bit codes, the required search radius is 5
in average. This indicates that to search for nearest neighbors of a query with ‖q‖H = 32
we have to look among the nodes with Hamming weights {27, . . . , 37} which (based on
Fig. 4.2b) contain 80% of the points. The problem is that in a vast majority of cases the
algorithm requires to compare the query with all of the points in several leaf nodes each
storing a relatively large number of points.

4.2.2 Hamming Weight Tree on Substrings

Our approach for enhancing the pruning is to put a limit on the number of binary codes
that a leaf node stores. If a node is assigned with more than τ number of points, it is split
by creating multiple children and moving each binary code to its corresponding child. The
children of a node are labeled based on the Hamming weights of substrings of the binary
codes.
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64. . .0 . . . 128

[32,32] . . .. . . [64,0][0,64]

Figure 4.3: A possible configuration of Hamming weight tree with depth 2 for 128-bit
binary codes.

For example, each code that belongs to the node 64 in depth-one tree of Fig. 4.1, can
be partitioned into two substrings with equal lengths (the left and right 64 bits). We know
that for each code that belongs to this node, the sum of the Hamming weights of the left
and right substrings is 64, Therefore, we create 65 children for this node (see Fig. 4.3)—
where each child is labeled with one of the possible combinations of Hamming weights for
left and right substrings—and then move the codes from node 64 to their corresponding
children.

In general, each binary code h ∈ {0, 1}p, can be partitioned into d disjoints substrings,

{h(1)
d , . . . ,h

(d)
d } each of length bp/dc or dp/de. For convenience, in what follows we assume

that the substrings contain contiguous bits, p = 2t, and p is divisible by d.

Instead of just considering the Hamming weight of the whole string, we let the tree
also incorporate the Hamming weight of the substrings. To that aim, we define the vector
transformation Qd : {0, 1}p → Nd

0 as follows:

Qd(h) = [‖h(1)
d ‖H , . . . , ‖h

(d)
d ‖H ], (4.4)

where N0 denotes the set of non-negative integers. Therefore, Qd(h) is a vector of length
d with entries denoting the Hamming weights of the h’s substrings. We call the output of
this transformation the d-Hamming weight pattern of h, in which the i-th entry denotes
the Hamming weight of the i-th substring. For example, for the binary code b = [1, 1, 0, 0],
we have Q2(b) = [2, 0]. The insight is that if two binary codes are close to each other, then
their Hamming weight patterns must also be similar.

To measure the similarities between the patterns, one can use the `p norms since pat-
terns lie in a vector space. In particular, we use the `1 distance as the measure of similarity
between two patterns which corresponds to the sum of the Hamming weight differences.
Formally, two binary codes h and g are said to be (r, d)-neighbor pattern of each other if
we have:

‖Qd(h)−Qd(g)‖1 ≤ r. (4.5)
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A special case is when d = p for which we have that h and g are (r, p)-neighbor pattern of
each other if and only if they are r-neighbors of each other.

We can now apply (4.1) to the substrings of binary codes. Formally, if ‖h − g‖H= r,

we have that ‖h(1)
d −g

(1)
d ‖H+ . . .+ ‖h(d)

d −g
(d)
d ‖H= r, therefore by applying proposition 4.1

to each of the substrings we have:

r − ‖Qd(h)−Qd(g)‖1 ∈ {0, 2, . . . , r}. (4.6)

Now, reconsider the example of solving the 2-neighbor problem for the query point q,
with ‖q‖H= 64, in the HWT shown in Figure 4.4. As mentioned, only nodes 62,. . . , 66 can
contain such a neighbor. When the algorithm recurses on node 64, it descends down the
tree, as it is not a leaf node. Lets assume that for the query code we have that Q2(q) =
[32, 32]. Now, based on (4.6) it suffices to only search among the nodes [31,33], [33,31],
and [32,32] while the remaining 62 children of this node can be ignored. Similarly, if the
node [32,32] is later assigned with more than τ number of points, the algorithm splits it by

partitioning the two substrings, h
(1)
2 ,h

(2)
2 , into four smaller substrings, h

(1)
4 ,h

(2)
4 ,h

(3)
4 ,h

(4)
4 .

Fig. 4.4 shows an example of the nodes that must be visited for finding the codes lying at
distance r from the query.

Formally, a HWT consists of multiple levels from −1 to l for l ≤ log2 p (for the sake of
simplicity in the calculations, we assume that the depth of root is -1). Each binary code
of dataset is stored in exactly one leaf node and each node at level s (s ≥ 0) is labeled
with vector Φ = [φ1, . . . , φw] where φi ∈ N0 and w = 2s. The label of a node specifies the
Hamming weight pattern of the codes that belong to its subtree. In other words, for each
code h that belongs to a node Φ we have that Φ = Qd(h).

Based on (4.1), to solve the r-neighbor problem at depth s of the tree, the algorithm
only needs to recurse on the nodes with labels such as Φ = [φ1, . . . , φw] that satisfy the
following equations:

‖Q2s(q)−Φ‖1 ≤ r (4.7)

which is similar to (4.4). The only difference is that in (4.7), we are searching for labels of
nodes (instead of binary codes) that are (r, w)-neighbors of the query. A node at depth s
is called a promising node if its label is a (r, 2s)-neighbor pattern of query.

Note that as we descend the tree, more constraints are imposed on the neighbor patterns
since the algorithm incorporates piecewise Hamming weights of increasingly finer partitions
of the codes. Therefore, not only the Hamming weight of the whole string must be close
to the query but also the Hamming weights of the substrings cannot deviate by more than
r from those of the query.
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Figure 4.4: The paths that must be traversed for finding the codes lying at distance r
from the query q with ‖q‖H= 64, ‖q(1)

2 ‖H= 32 and ‖q(2)
2 ‖H= 32. Note that to solve the

r-neighbor problem, we need to check all nodes lying at distance r′ ≤ r from the query.
For example, to solve the 2-neighbor problem in the above tree, the search algorithm must
traverse all the red dashed paths. 67



In the following, we describe the insert and search operations of HWT in more details.

Insert. On the arrival of a new binary code such as h, based on the Hamming weights
of h and its substring, we descend the tree until a leaf node is reached. To descend from a
node at level s to a node at level s+ 1, the 2s+1-Hamming weight pattern of h is computed
and the child whose label matches the tuple is selected. Therefore, each particular point
only participates in one branch of recursion during insertion. Upon reaching a leaf node,
the code h is added to the node if the leaf node is not full. Otherwise, to split a full leaf
node at depth s, the algorithm computes the 2s+1-Hamming weight pattern of the binary
codes stored at this node, and then moves each of the codes to its corresponding child
based on the pattern. Finally, the code h is similarly added to its corresponding child.

The branching factor of an internal node at depth s is (φ1+1)×. . .×(φ2s +1). Although
the branching factor can get quite large for deep nodes, in high depths, most of children do
not store any code. Consequently, instead of initializing all children of a node at once, we
use lazy initialization to avoid memory allocation for empty children. To do that, rather
than storing all children (empty and non-empty), we define an ordering for the children’s
labels and assign an index to each one. Then, for each node, a dynamic hash table is used
to store key-value pairs where indices of non-empty children serve as keys, and the values
are the pointers to the children. This reduces the storage cost as we only need to store the
non-empty children. Meanwhile, insertion, deletion and searching for a child still can be
performed in amortized constant time.

Search. r-neighbor search on a HWT can be answered by proceeding recursively,
starting at the root. The search procedure descends through the tree level by level, keeping
track of the subset of nodes that may contain the r-neighbors of the query. When visiting an
internal node, the algorithm only recurses on the children whose label satisfy (4.7). Thus,
starting from the root node, at each depth such as s, the search procedure only investigates
the non-empty children whose labels are (r, 2s+1)-neighbor patterns of the query. There
are two options for finding the non-empty children that satisfy (4.7):

• Option 1: Simply iterate through all children and recurse on those whose pattern
satisfy (4.7).

• Option 2: First find the index of all children that satisfy (4.7) and then recurse on
those that exist in the hash table.

For the second approach, the algorithm must enumerate over all promising children of
the current node. To that aim, at node j labeled [φ1, . . . , φw], we find all solutions of the

68



following system of equations: 

x1 + x2 = φ1

. . .

x2w−1 + x2w = φw∑2w
i=1 |‖q

(i)
2w‖H−xi| ≤ r

xi ∈ N0,

(4.8)

Each solution vector, [x1, . . . , x2w], denotes a label of a child that we need to recurse on
(provided that it exists in the tree). The equations of the form x2i−1 + x2i = φi are
necessary to make sure that the solutions are the labels of j’s children. The inequality, on
the other hand, is necessary to ensure that the solutions are the r-neighbor patterns of q.
Proposition 4.2 describes an efficient procedure for solving (4.8).

Not surprisingly, there is a natural trade-off between the two options. For small radii
of search and in low depths, the number of solutions to (4.8) is small and therefore it is
computationally more efficient to use option two. On the other hand, if a node has a small
number of children then it is often more efficient to use option 1.

In our implementation, we use the following lower bound on the number of children to
decide between the two options:

Proposition 4.2. The number of solutions for (4.8) is greater than:

b r
2
c∑

r′=0

(
w + r′ −

∑w
i=1 |φi| − 1

w − 1

)
. (4.9)

Proof. The unknowns of (4.8) come in pairs, tied together only by the last inequality.
To solve it, one can consider r + 1 systems of equations, one for each possible value of∑2w

i=1 |‖q
(i)
2w‖H − xi| = r′, r′ ∈ {0, . . . r} , and solve them independently.

Now consider one of such systems in which
∑2w

i=1 ‖q
(i)
2w‖H − xi| = r′. Given r′k and φk

(0 ≤ k ≤ w), the following system of equations can be solved easily:{
x2k−1 + x2k = φk

|‖q(2k−1)
2w ‖H − x2k−1|+ |‖q(2k)

2w ‖H − x2k| = r′k.
(4.10)

which has a set of solutions only if i) r′k ≥ |φk| and ii) r′k ≡ φk mod 2. For each k, it
can be solved by considering four cases according to whether x2k−1 and x2k are positive
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or negative. To recover all solutions for a specific value of r′, we need to iterate through
all possible values of r′ks and for each iteration we must solve an instance of (4.10). In
other words, we need to generate all possible distributions of r′ among the w equations.
The total number of distributions for a specific r′ is essentially the number of partitions
of parameter r′ into w non-negative integers, r1 + . . . + rw = r′, given by the multiset
coefficient : ((

r′ + 1

w − 1

))
,

(
w + r′ − 1

w − 1

)
. (4.11)

Thus, the total number of instances of (4.10) that we need to solve is:

r∑
r′=0

((
r′ + 1

w − 1

))
. (4.12)

However, many of the instances do not yield a solution as they can violate constraints (i)
or (ii). What we show is that we can skip those instances with a simple approach. To skip
the instances that violate constraint (i), we can first find all partitions of r1 + . . . + rw =
r′−

∑w
i=1 |φi| and then for each partition add the |φi| to its corresponding ri. This reduces

the number of instances to
∑r

r′=0

((
r′+1−

∑w
i=1 φi

w−1

))
.

Now, to also ensure that all partitions satisfy constraint (ii), we can limit the radius to

r/2 which would result in 4.9. In simple terms, instead of finding all
∑r

r′=0

((
r′+1−

∑w
i=1 φi

w−1

))
solutions and then discarding those not satisfying the r′k ≡ φk mod 2 condition, one can
first find all solutions of r′1 + . . .+r′w = r′/2−

∑w
i=1 |φi| and then for each solution multiply

all of the r′is (1 ≤ i ≤ w) by two. Finally, the entries that must be odd are added by one.
Going from (4.12) to (4.9) saves us a lot of unnecessary computation as the first quantity
is much bigger.

Using this approach, each generated instance of (4.10) has at least one solution which
directly translate to that (4.9) is a lower bound for the number of children that must be
checked.

�

We use this lower bound such that, at node j, if the number of non-empty children
is less than (4.9), then the algorithm proceeds with option 1 otherwise, it proceeds with
option 2.
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4.2.3 Storage and Computational Costs

We next analyze the storage and computational costs of HWT. Storing the dataset of
binary codes requires O(np) bits. The storage cost of the tree comprises the number of
nodes in the tree plus the storage cost of the hash table per node. For each code in a leaf
node, we need an identifier that refers to the code in the dataset. This allows one to store
the identifier of a code in its corresponding leaf and fetch the full code when necessary.
Thus, the total cost of storing identifiers would be n log2 n. The maximum number of
nodes happens when τ = 1 which forms a tree with n leaves in which each leaf stores only
one code (provided that there is no duplicate). Assuming that each internal node has at
least two children, the number of internal nodes is at most n−1. Therefore, the tree has at
most 2n− 1 nodes. The total cost of hash tables is also bounded by the number of nodes
in tree, since each hash table only stores non-empty children. Therefore, the number of
nodes in the tree is linear in the number of points.

The storage cost of hash tables depend on the length of keys which in our application
represent the index of the nodes. In general, the required length of indices gets longer as we
descend in the tree. The number of possible children of a node at a certain depth depends
on both the depth itself and the label of node. It is easy to see that for a node at depth
s, the maximum number of children belongs to the node with pattern [ p

2s+1 , . . . ,
p

2s+1 ], and
the number of children for this pattern is:

I(s) = (
p

2s+1
+ 1)2s (4.13)

Considering the fact that for an internal node we have s < log p, the maximum of I(s)
occurs at s = log p− 1. Therefore, assuming p = 2t, the number of bits required to index
a child of a node is upper bounded by:

log(max(I(s))) = 2t−1 log(
p

2t
+ 1) =

p

2
, (4.14)

which is of O(p). Since the number of node indices in the hash tables is n, the total storage
complexity of HWT is of O(np+ n log n) = O(np).

Interestingly, the storage cost of HWT is the same as linear scan and better than
multi-index hashing technique proposed in [49] (with cost of O(rn1+r/p log n) for solving
r-neighbor search) and the same as those in [95, 40].

The insertion time of HWT is also appealing. Starting from the root, at each depth,
we just need to compute the pattern of the code at that depth which can done in O(p).
Retrieving a pointer to a specific child at a node can be done in amortized O(1) as we are
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using hash tables. Since the maximum depth of tree is O(log p), the total cost of inserting
a new item is O(p log p). Finally, each insertion in the worst case can trigger reinsertions
of τ other items but for a fixed τ the cost is still of O(p log p).

We also show that, for uniformly distributed binary points, the computational cost of
r-neighbor search is logarithmic in the number data points.

Theorem 4.1. [Search Complexity for Uniform Data] Let Xn be a set of n points, generated
independently from the uniform distribution over the p-dimensional binary cube {0, 1}p.
Then, the expected cost of a single r-neighbour search over the Hamming Weight Tree built
on Xn is O(p log p(log n)4r).

Therefore, the query cost is logarithmic in the number of data points for small radii.
The exponential dependency on r can be reduced by drawing upon similar techniques
used in [49, 95, 144]. The idea is that, given a data structure that solves the r-neighbor
problem in sublinear time, one can create several such data structures (say m of them)
on the substrings of binary codes (in our case it would be a forest of Hamming weight
trees with m trees on the substrings). Based on the pigeonhole principle, instead of solving
the r-neighbor problem on the whole binary code, one can solve m number of r

m
-neighbor

problems, one per substring, and then aggregate the results to retrieve the neighbors.
While our current implementation of HWT supports search on multiple trees, theoretical
and empirical analysis of this idea is out of scope of this study and we postpone it to future
works.

4.2.4 K Nearest Neighbors Search

HWT is inherently designed to answer r-neighbor queries. Consequently, each search
query to this data structure should contain the query vector and the radius of search,
however, the nearest neighbor search does not provide the radius in the query, making it a
harder problem than the r-neighbor problem. It turns out that for the nearest neighbor of
query, the required radius of search for two different query points may vary significantly,
depending on how dense the area around the query is populated. Even for a single dataset,
the required radius of search for different queries may vary dramatically [43, 94]. If the
search radius is set too small, then the algorithm may return no points. On the contrary,
large values of radius can result in non-informative neighbors. Moreover, for a large radius
of search, the needed time to retrieve the neighbors would be high. Therefore, it is natural
for many tasks to fix the number of neighbors and let the radius depend on the query
and dataset distribution. Fortunately, a careful implementation of the proposed HWT can
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be adapted to accommodate the nearest neighbor search queries. Given a query point,
starting from radius search of zero (r = 0), one can progressively increase r until the
nearest neighbors are retrieved.

In a naive implementation of HWT, when the radius increases, the new r-neighbor
search starts from scratch and we have to check all the nodes that may contain the r-
neighbors in their subtrees. However, many of such nodes overlap with those checked for
smaller values of r. In fact, when r increases, the algorithm have already checked all the
nodes that can contain codes with any distance less than r from query. Therefore, we just
need to search for the codes that lie at exact distance of r from the query. More specifically,
it is easy to see that, all the nodes that must be visited for solving the r-neighbor problem,
must be also visited for solving the (r + 2)-neighbor problem (see Fig. 4.4 for r = 0 and
r = 2). To avoid such extra checking, one can store a list of identifiers to the so far internal
visited nodes along with their radius of search for which the specific node was visited.
Then, to solve the (r + 2)-neighbor problem, the algorithm iterates through the list and
for each node recurse on children that may contain the codes with distance r+ 2 from the
query (refer to 4.6). By doing so, the algorithm can skip many of edge traversals when the
radius increases.

4.3 Angular Nearest Neighbor Search

Although most of studies on the binary codes adopt Hamming distance as the measure of
similarity between binary codes, in some applications the angle between the code arises
as a more effective alternative [13, 46, 117]. For example, AQBC [46] is a binary hashing
technique in which the appropriate similarity measure is the cosine of the angle between
the binary codes. In its basic form, AQBC maps real valued feature vectors onto the
vertex of binary hypercube with which it has the smallest angle. The distance between
the resulting codes are then defined as the cosine of angle between them. Recall that the
Hamming NNS search on HWT was performed by solving multiple instance of r-neighbor
query. Pleasingly, HWT can be used to carry out angular KNN without modifying the
data structure and again by only solving r-neighbor queries during the query phase using
the sequential algorithm developed in Chapter 3. The only difference from the Hamming
distance case is that for the angular case the search executes r-neighbor queries on some
particular nodes and in an altered order discussed in the following. This will answer RQ
4.2.

The cosine of the angle between two binary vectors can be computed as follows:
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sim(q,b) = cos(θ(q,b)) =
qTb

‖q‖2‖b‖2

(4.15)

Computing the cosine similarity between two binary codes is marginally slower than com-
puting Hamming distance, however it is still fast compared to computing similarity of the
original vectors. As shown in [40], for binary vectors, we can rewrite (4.15) with:

sim(q,b) =
‖q‖1 − r1(q,b)√

‖q‖1 ×
√
‖q‖1 − r1(q,b) + r2(q,b)

(4.16)

where r1(q,b) , ‖q ∧ ¬b‖H denotes the number of bits that are 1 in q and 0 in b and
r2(q,b) , ‖¬q∧ b‖H denotes the number of bits that are 0 in q and 1 in b (where ¬ and
∧ are bitwise negation and logical AND operators). Therefore, all codes with the same
value of r1(q,b) and r2(q,b) lie at the same angle from the query. We say that the code
b lies at the distance tuple (e, f) from q or equivalently b is a (e, f)-neighbor of q, if we
have (e, f) = (r1(q,b), r2(q,b)).

As discussed previously, to carry out KNN search in the Hamming space, one can
increase the search radius until K neighbors are retrieved. To employ a similar approach for
solving the angular KNN, we must first find the correct sequence of tuples that corresponds
to the decreasing values of sim and then for each tuple such as (e, f) the HWT must be
searched to retrieve the binary codes lying at distance tuple (e, f). The correct sequence
of tuples can be found efficiently using the sequential algorithm proposed in [40]. We next
show how to search the HWT in order to find codes lying at a specific distance tuple.

Note that the binary codes that correspond to the tuple (e, f) lie at the Hamming
distance e + f from the query. Therefore, a simple solution for retrieving desired codes
involves solving the r-neighbor problem with r = a+b and then linearly scanning retrieved
candidates to find the codes corresponding with tuple (e, f). However, this approach may
search some unnecessary nodes. For example, suppose we are looking for codes lying at
distance tuple (2, 2) from the query with ‖q‖1 = 64 in a depth-one Hamming weight tree
for 128-bit codes. Our algorithm would search among the nodes with Hamming weights
60,62,64,66,68 to find the codes lying at Hamming distance of 4 from the query. However,
it is easy to see that only node 64 must be searched because codes lying at distance tuple
(2,2), have equal Hamming weights to that of the query.

To find all (e, f) neighbors of q, we need to determine the nodes that the search algo-
rithm must recurse on. To this aim, we first show the relationship between the Hamming
weight patterns of two codes lying at a specific distance tuple.
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Proposition 4.3. For binary code b lying at distance tuple (e, f) from q, we have:

d∑
i=1

[
‖q(i)

d ‖H − ‖b
(i)
d ‖H

]
+
≤ e, (4.17)

d∑
i=1

[
‖b(i)

d ‖H − ‖q
(i)
d ‖H

]
+
≤ f, (4.18)

‖q‖H + (f − e) = ‖b‖H , (4.19)

where [.]+ = max(0, .) is the standard hinge loss function.

Proof. If (4.17) is not satisfied then at least e + 1 set bits in q are flipped to zero in b
which contradicts the fact that b lies at distance tuple (e, f) from q. Also, if (4.18) is not
satisfied, at least f + 1 clear bits in q are flipped to one in b. (4.19) can be easily derived
from the fact each distance tuple uniquely specifies the Hamming weights of the codes of
interest. �

To find all the points that lie at the distance tuple (e, f) in a Hamming weight tree,
we again have two options: i) scan all children and recurse on nodes satisfying condi-
tions (4.17)- (4.19), ii) compute all possible Hamming weight patterns that satisfy (4.17)-
(4.19) and directly recurse on those nodes.

To use the second option, at a HWT node with Hamming weight pattern of [φ1, . . . , φw],
the algorithm finds the promising children by solving the following system of equations and
the recurse on the children with the Hamming weight pattern of [x1, . . . , x2w].



x1 + x2 = φ1

. . .

x2w−1 + x2w = φw∑2w
i=1

[
‖q(i)

d ‖H − xi
]

+
≤ e∑2w

i=1

[
xi − ‖q(i)

d ‖H
]

+
≤ f

xi ∈ N0

‖q‖H + (f − e) =
∑2w

i xi

(4.20)
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The last condition in (4.20) can be easily satisfied by simply forcing the search algorithm
to recurse on only one node at the first level which has the pattern of ‖q‖H +(f−e). Doing
that, (4.20) can be rewritten as:

∑w
i=1

[
‖q(2i−1)

d ‖H − x2i−1

]
+

+
[
‖q(2i)

d ‖H − φi + x2i−1

]
+
≤ e∑w

i=1

[
x2i−1 − ‖q(2i−1)

d ‖H
]

+
+
[
φi − x2i−1 − ‖q(2i)

d ‖H
]

+
≤ f

xi ∈ N0

(4.21)

By using the fact that [a]+ = 1
2
(a+ |a|), we have:

∑w
i=1

∣∣∣‖q(2i−1)
d ‖H − x2i−1

∣∣∣+
∣∣∣‖q(2i)

d ‖H − φi + x2i−1

∣∣∣ ≤
2e−

∑w
i=1

(
‖q(2i−1)

d ‖H + ‖q(2i)
d ‖H − φi

)
∑w

i=1

∣∣∣‖q(2i−1)
d ‖H − x2i−1

∣∣∣+
∣∣∣‖q(2i)

d ‖H − φi + x2i−1

∣∣∣ ≤
2f +

∑w
i=1

(
‖q(2i−1)

d ‖H + ‖q(2i)
d ‖H − φi

)
xi ∈ N0

(4.22)

Considering that
∑w

i=1

(
‖q(2i−1)

d ‖H + ‖q(2i)
d ‖H − φi

)
= e − f , solving (4.20) reduces to

finding all solutions of the following inequality:

w∑
i=1

∣∣∣‖q(2i−1)
d ‖H − x2i−1

∣∣∣+
∣∣∣‖q(2i)

d ‖H − φi + x2i−1

∣∣∣ ≤ e+ f (4.23)

which is same as (4.8) with r = e + f . Thus, the search algorithm recurses on the nodes
satisfying two conditions. First, they should satisfy the weight condition, ‖q‖H +(f−e) =∑w

i=1 φw. Second, they must be a (e + f, w)-neighbor pattern of the query. The first
condition is satisfied by making sure that at the first level the algorithm selects the node
with weight ‖q‖H + (f − e). Then, to satisfy the second condition, the algorithm solves
the (e + f)-near neighbor problem on the subtree of the selected node. Therefore, as in
the Hamming KNN, angular KNN search can performed by only solving instances of the
r-neighbor problem.
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4.4 Experiments

To answer RQ 4.3, in this section we empirically gauge the performance of HWT in compar-
ison with the linear scan baseline, MIH of [95], AMIH of [40], and four popular tree-based
search algorithms namely Annoy, kd tree, ball tree and RP forest. The following exper-
iments are run on a single core 2.0 GHz CPU with 128 GB of RAM. Linear scan and
HWT are both coded in C++ and compiled with GCC 4.4.4 using the same flags. We
used the publicly available implementation of MIH and AMIH in our experiments. Our
implementation of HWT is also available at https://github.com/sepehr3pehr/hwt.

4.4.1 Datasets

We evaluate the performance of HWT on two well-known real-world datasets which are
publicly available: (1) ANN 1B [60] with 1 billion 128D SIFT vectors, and (2) 80 millions
384D GIST descriptors from the 80 million tiny images [123]. Each experiment requires
two sets of items; base set for populating HWT and the query set that comprises the query
points. For 80M Gist descriptors, we randomly select 1000 points to form the query set
and use the remaining as the base set. The ANN 1B corpus is already divided into 1
billion base data points and 104 query points from which we randomly select 1000 query
points. Therefore, each experiment involves 1000 queries for which the average run-time
is reported.

To map real-valued SIFT and GIST vectors to binary codes, for the Hamming distance
experiments, we use the well-known hyperplane LSH [25] which utilizes sign-random pro-
jection. More specifically, after zero-centering the data, to encode each bit, first a random
hyperplane is selected where each component of the direction is generated from a normal
density, then the value of the bit is specified depending on which side of the hyperplane
the point lies. For the angular distance, we implemented AQBC [46] and applied on the
real-valued vectors to produce angular preserving binary codes. We also make our im-
plementation of AQBC publicly available (https://github.com/sepehr3pehr/AQBC). As
opposed to the hyperplane LSH which is a randomized technique with no learning phase,
AQBC is data-depedent and requires the parameters of the hash function to be learned.
The ANN 1B dataset comes with a predefined learning set of 100 million SIFT vectors
from which we randomly select one million points. Similarly, for 80M Gist descriptors
dataset, we randomly select 300K points from the dataset to form the learning set.

For each dataset and similarity measure, we generate 32, 64 and 128 bit binary datasets.
With two datasets, three different code lengths, and two distance measures, we obtain 12
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Figure 4.5: Average query time of the nearest neighbor search for τ=100, 1000 and 10000
on ANN 1B dataset.

binary datasets.

4.4.2 Results

Effect of Threshold Value

We first investigate the effect of parameter τ on the average query time. This parameter
determines the maximum number of binary codes that can be assigned to a leaf node. We
have a natural trade-off for different settings of this parameter. Large values of τ form
shallow trees and therefore less pruning takes place which increases the required number
of distance computations. Meanwhile, for each query, fewer node traversals and child
checkings are required. In the extreme case, we can create a depth-one tree by setting τ
to be sufficiently large. Such a tree exhibits a performance similar to linear scan. On the
other hand, small values of τ create trees with higher depths which causes further pruning
but more node traversals and higher storage cost.

Fig. 4.5 shows the average query time for different values of τ . The figure indicates that
smaller values of τ result in a faster query time. This shows that further pruning of the
search space often results in a better average query time, even with the overhead imposed
for finding the promising children of nodes. Nonetheless, since we create a hash table
for each internal node, we observed that the memory footprint increases as we decrease
τ . Interestingly, this parameter can be set based on the available memory of the target
platform to balance the query time and memory requirement. We observed similar patterns
for the angular distance but the results are omitted due to the space limit.
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Figure 4.6: Average query time of HWT and linear scan on the ANN 1B dataset for solving
the Hamming NNS.

Note that in some limited cases the query time decreases for larger sizes of dataset. This
is mainly due to the fact that increasing the number of points often makes the required
search radius for retrieving the nearest neighbor smaller. This in turn lets the tree to
search among a fewer number of nodes. However, the dominant trend is that the query
time increases with the size of dataset.

For the following experiments, we set τ = 1000. For this choice, our current implemen-
tation of HWT requires 50 GB, 62 GB, and 73 GB of memory to index 1 billion 32-bit,
64-bit, and 128-bit codes, respectively, which is comparable with that of MIH [95].

HWT vs Linear Scan

In this experiment, we focus on comparing the average query time of HWT and linear
scan on all datasets. First, we report the average query time when all items are inserted
in the tree (batch data), and then we illustrate the query time when the data is inserted
sequentially (online data). Table 4.1 reports the average query time of the linear scan
baseline and HWT along with speed up factors gained by using HWT for different KNN
problems. For a large range of code lengths and different values of K, HWT can achieve
orders of magnitude speed up in comparison with the linear scan. Note that the running
time of linear scan neither depends on K nor on the underlying distribution of points,
however, both factors affect HWT. As K increases, the required search radius also increases
which causes longer query time. This is reflected in the reduction of speed up factors when
the value of K increases. Also for longer codes, the difference between HWT and linear
scan becomes smaller.
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Table 4.1: Average running time of nearest neighbor search with HWT and linear scan
(LS) algorithms on ANN 1B and GIST 80M.

Hamming Angular

#bits Method K Time Speedup Time Speedup

A
N

N
1B

32

LS - 18.14 1× 30.65 1×

HWT 1 0.0008 22675× 0.0084 3649×

HWT 10 0.0055 3088× 0.0099 3095×

HWT 100 0.015 1029× 0.034 901×

64

LS - 22.47 1× 31.78 1×

HWT 1 0.049 458× 0.029 1095×

HWT 10 0.078 150× 0.084 378×

HWT 100 0.249 90× 0.39 81×

128

LS - 32.11 1× 49.34 1×

HWT 1 0.07 459× 0.25 197×

HWT 10 0.09 356× 0.38 129×

HWT 100 0.366 88× 0.79 62×

G
IS

T
80

M

32

LS - 1.02 1× 3.05 1×

HWT 1 0.003 340× 0.006 508×

HWT 10 0.005 204× 0.009 338×

HWT 100 0.003 340× 0.012 254×

64

LS - 1.22 1× 3.79 1×

HWT 1 0.009 113× 0.019 199×

HWT 10 0.015 81× 0.037 102×

HWT 100 0.053 23× 0.077 49×

128

LS - 2.5 1× 4.93 1×

HWT 1 0.08 31× 0.15 32×

HWT 10 0.15 16× 0.39 12×

HWT 100 0.5 5× 0.71 7 ×
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Figure 4.7: Average query time of HWT and MIH for the task of Hamming nearest neighbor
search. The value of m denotes the number of hash tables used in MIH.

HWT vs MIH

We also compare the performance of HWT with MIH [95] and angular MIH (AMIH) [40]
which to the best of our knowledge have the best query time for solving the exact NN
problem for Hamming and angular distances. To set the number of hash tables for MIH,
Norouzi et. al [94] used a hold-out validation set of the dataset entries. From that set,
the running time of the algorithm for different values of m (number of hash tables) is
estimated, and the one with the best result is selected. They empirically observed that
the optimal value for m is typically close to p/ log2 n. However, in online settings the data
points become available sequentially thus the value of n varies over time and the items of
dataset are not available in advance.

In our experiments, we execute MIH and AMIH with different values of m for different
sizes of the dataset to investigate the relative performance of these two techniques. Not
surprisingly, there is a natural trade-off between large and small values of m. Too large
values result in assigning fewer number of bits to each table. Therefore, each bucket of hash
table can be assigned with several codes and consequently the query must be compared
with more codes. In the extreme case if one bit is assigned to each hash table then we have
m = p and the query must be compared with all points. On the other hand, too small
values lead to forming hash tables with many empty buckets. In this case, to retrieve K
nearest neighbors, the required radius of search per hash table must be increased. This
translates to checking many empty buckets.

Fig. 4.7 and Fig. 4.8 show the average query time of MIH vs HWT for Hamming
distance and HWT vs AMIH for the angular distance applied to the task of nearest neighbor
search (1NN). For MIH and AMIH, we tried all values of m ∈ {1, . . . , 10} and measured
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Figure 4.8: Average query time of HWT and AMIH for the task of angular nearest neighbor
search.

the average query time (some values resulted in segmentation fault due to high memory
overhead) but here we only report those that exhibit better performance than HWT for at
least one of the dataset sizes. The figure shows that, for each value of m, there is often a
range of dataset size in which MIH and AMIH outperforms HWT (often when m is close
to p/ log2 n). This trend can be seen more clearly in 64-bit and 128-bit codes, nevertheless
outside of this range the HWT performs better. Moreover, for large number of codes HWT
often exhibit superior performance. Due to the lack of space, the average performance of
techniques over different sizes of dataset is omitted from this section, but it indicates that
for all lengths of code the average query time of HWT (averaged over different sizes of
dataset) is the smallest. In general, MIH and AMIH in their optimal parameter setting
have a marginally better performance than HWT but when the number of hash table
deviates from its optimal value, HWT outperforms MIH. Therefore, when all binary codes
are available at one time, using HWT is not the best choice as compared with the MIH.

HWT vs tree search algorithms

Next, we compare the performance of HWT with some of the well-known branch and bound
nearest neighbor search techniques. For the experiments of this section we use the ann-
benchmark [6], a tool for evaluating the performance of in-memory approximate nearest
neighbor search. This tool provides a standard interface for measuring the performance and
quality achieved by nearest neighbor algorithms on different standard datasets. To make
our algorithm usable by ann-benchmark, we implemented a python wrapper for our code
and added the parameters to be tested to the configuration file. We compare HWT with
tree-based search algorithms of ann-benchmark that support Hamming distance, namely
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Annoy, KD tree, Ball Tree and RP forest. Discussing the details of these techniques is
beyond the scope of this study but we briefly introduce them here.

Annoy [15] decomposes the search space using multiple trees to achieve sublinear search
time. Each intermediate node splits the space into two half-spaces by sampling two points
from the subset and taking the hyperplane equidistant from them. Each leaf node stores
a subset of data points that lie in the region of space defined by its ancestors. Given the
indexed dataset, the search algorithm prunes the search by only considering the points in
the subspace where the query falls. Annoy incorporates a forest of such trees to increase
the chance of colliding query with the nearest neighbor in at least one tree.

KD tree [14] is one of the long-standing nearest neighbor search algorithms. Each
intermediate node in KD tree selects one of the input dimensions as the discriminators to
partition the space using axis-aligned hyper-planes. Therefore, each leaf node represents a
subset of point lying in the hypercube described by its ancestors.

Ball tree [96], as the name suggests, partitions the input space into disjoint hyperspheres
each represented with a center and a diameter. While hyperspheres may intersect, each
point is assigned to one ball per level according to its distance from the centers.

RP forest [41] works by creating a set of binary random projection trees. In each tree,
dataset points are recursively partitioned based on the cosine of the angle of the points
and a randomly drawn hyper-plane where the median angle is used as the pivot point.

Each of the selected algorithms are called with a set of parameters which directly affect
the query-time vs recall rate trade-off. We run all algorithms multiple times each with a
different parameter setting using the same configurations suggested by the ann-benchmark.
To have a fair comparison with our exact technique, among the different settings we report
the results of the one with the highest recall rate, defined as ratio of the number of points in
the retrieved items being the true nearest neighbors and the number K of the true nearest
neighbors. The dataset used for the experiments is the 1 million 256-bit SIFT dataset
provided along with the ann-benchmark.

Table 4.2 compares the performance of HWT against the four selected tree based al-
gorithms. Results indicate that HWT significantly outperforms traditional tree indexing
approaches KD tree and Ball tree. The proposed approach also achieves a modest speed-
up of 2× speed-up compared to the state-of-the-art Annoy with less memory overhead.
For the angular distance, among the four selected techniques only Annoy supports angu-
lar nearest neighbor search which achieves average query time of 0.091 seconds whereas
HWT takes 0.064 seconds. It is worth mentioning that the tree-based algorithms used in
this section are more general techniques capable of working with several distance measures
in addition to the Hamming distance. We believe that modifying them to better handle
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Table 4.2: Performance of different tree based techniques applied to the 256-bit SIFT
dataset with 1 million items to find the Hamming nearest neighbor.

Method Time (ms) Memory (KB) Recall Indexing Time (min)

Annoy 9.32 24169 99.23 32

Ball tree 197.32 1224 1 24

KD tree 181.30 1486 98.12 78

RP forest 34.12 9486 97.23 37

HWT 4.36 14896 1 24

binary data through bitwise manipulations can result in performance boost but doing so
requires a considerable amount of human effort and is out of the scope of this research.

4.5 Summary

In this work, we focused on the K nearest neighbors search problem in binary datasets
when both the query points and dataset items become available gradually. Based on the
branch and bound paradigm, we proposed a tree data structure that solves the nearest
neighbor problem for both Hamming and angular distances. The empirical results show
that the proposed approach retrieves the nearest neighbor much faster than the linear scan
and exhibit superior performance than MIH and AMIH for dynamic applications.
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Chapter 5

Deep Spherical Quantization

Not surprisingly, with the dawn of deep learning, most of recent research effort in com-
pact coding has been directed towards using deep networks for producing compact and
functional binary codes. Deep hashing methods simultaneously learn the representation
and hash coding from raw images. Similarly, deep MCQ has been the topic of study in
recent years [21, 57]. Surprisingly enough, although MCQ is a more powerful model as it
enables producing many more possible distinct distances, due to the lack of research, its
performance in the context of deep supervised compact coding is inferior to state-of-the-
art in supervised binary hashing [68]. Most of existing deep supervised MCQ techniques
incorporate an unsupervised quantization (usually Product Quantization (PQ) [59]) on
top of the features generated by a deep architecture. Nevertheless, the adopted networks
often produce deep features with relatively high norm variance which adversely affects the
quality of quantization [134].

5.1 Contributions

This chapter reformulates the quantization problem by L2 normalizing deep features to re-
move norm variance. By exploiting the fact that resulting features lie on a hypersphere, we
propose a novel MCQ algorithm, dubbed Deep Spherical Quantization (DSQ), that drops
the hard orthogonality constraint of product quantization to achieve lower quantization er-
ror. Furthermore, to encourage better discriminating performance, inspired by the recently
proposed center loss [133], we add a supervised quantization loss term to the final objec-
tive function to increase inter-class variance. Finally, we propose a sparse extension of our
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quantization algorithm which is necessary for dealing with large codebooks [142]. Compre-
hensive empirical studies on three standard image retrieval benchmarks testify that DSQ
generates compact binary codes which outperform many state-of-the-art methods. Our
goal in this chapter is to answer the following research questions:

RQ 5.1: How can we eliminate the negative effect of norm variance on the supervised
MCQ?

RQ 5.2: How can we achieve supervised MCQ formulation that is easier to optimize
and also support sparse quantization?

These research questions are related to the high-level research question RQ2 discussed in
Chapter 1.

5.2 Deep Spherical Quantization

In similarity retrieval, we are given a training set of n points, X = {xi ∈ Rd}ni=1, with
each point associated with a class label, yi ∈ {1, . . . , l}. The goal, given query point
q ∈ Rd, entails (approximately) finding items in X that are semantically closest to q so
that the found neighbors share the same class label as q. This study follows the idea of
compact coding techniques that is converting database vectors into compact code and then
performing the similarity search in the resulting space which has the advantage of lower
memory cost and fast distance computation.

In this work, we propose to use a deep network that maps the input points into a
discriminative space, and simultaneously perform a form of a supervised MCQ on the
embedded points to achieve fast retrieval with low computational and storage overhead.
To this aim, we define a loss function comprising four terms, softmax loss, center loss,
quantization loss, and discriminative loss each of which will be discussed in the following.

5.2.1 Softmax and Center loss

In deep retrieval systems, obtaining a robust and discriminative representation is crucial
for achieving good performance. Usually, this is achieved by applying the softmax loss
to the representation layer of the network. However, the resulting features optimized
with the supervision of softmax loss are often not discriminative enough as the softmax
loss only focuses on finding a decision boundary that separates different classes without
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considering the intra-class compactness which is crucial to the accuracy of nearest neighbor
search [51, 133].

To increase the intra-class variations while keeping the features of different classes
separable, we adopt the state-of-the-art center loss [133] on top of the softmax loss.

Let f(·; θ) : Rd → Rp, with p � d, denote the feed-forward network that embed the
input vectors into p-dimensional deep features, also let zi denote deep feature representation
of input xi, zi = f(xi; θ), then, the center loss is defined as:

LC =
n∑
i=1

‖zi − φyi‖2
2 (5.1)

where yi is the classes label associated with zi and φyi denotes the yi-th class center of deep
features. Intuitively, center loss learns a center for the features of each class and meanwhile
aims at pulling the deep features of the same class close to its corresponding center. It has
been shown that joint supervision of softmax loss and center loss can produce significantly
better discriminative deep features [133].

5.2.2 Quantization Loss

To address RQ 5.1, we constrain the deep features to lie a p-dimensional unit hypersphere,
i.e., ‖f(x; θ)‖2 = 1. Other than decreasing the intra-class variability of deep features [126],
there are two advantages in normalizing feature vectors: 1) norm variance is strictly zero,
and 2) Euclidean nearest neighbor search is equivalent to Maximum Inner Product Search
(MIPS) as for unit norm vectors we have ‖q− x‖2

2 = 2− 2qTx.

The main benefit of dealing with MIPS is that, unlike Euclidean distance (see (2.11)),
inner product naturally satisfies the distributive law, that is 〈q,

∑
j tj〉 =

∑
j〈q, tj〉. MCQ

works well in large part due to the fact that it permits the distance between query and a
quantized point to be computed as the summation of partial distances between query and
selected codewords. Given the query, the distances between query and all codewords are
stored in query-specific lookup tables and then used to calculate the distance between query
and all quantized points. However, to make Euclidean distance satisfy the distributive law,
we either need to enforce strong [59, 92]/weak [141, 142] orthogonality constraints over the
codewords of different dictionaries which reduces the fidelity of model and often leads to
non-convex optimization, or we have to store the inner product between the all codewords
in lookup table [7, 78] which increases storage cost and distance computation time.
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To reduce the approximation error of MIPS, we need to minimize the distance recon-
struction error of MCQ. Since the Euclidean distance on the unit sphere is equal to the
negative dot product plus a constant, distance reconstruction error can be rewritten as:

Eq∼P (q)

[ n∑
i=1

|〈zq, zi〉 − 〈zq, z̄i〉|
]

=

Eq∼P (q)

[ n∑
i=1

〈zq, zi − z̄i〉
]
≤

n∑
i=1

‖zi − z̄i‖2

(5.2)

where z̄i denotes the approximation of zi using MCQ and zq = f(q; θ).

This suggests that the search accuracy directly depends on the quantization error; low
quantization error leads to high search accuracy.

Therefore, the cost function we aim to optimize is the quantization loss:

LQ({Cj}, {bi}) =
n∑
i=1

‖zi − [C1, . . . , Cm]bi‖2
2

bi = [bTi1, . . . ,b
T
im]T

bij ∈ {0, 1}h, ‖bij‖1 = 1

j = 1, . . .m

(5.3)

The benefit of such a simple formulation, in comparison to those that enforce multiple
constraints on the codewords [59, 92, 141] are multi-fold; it causes a straightforward opti-
mization procedure and also less implementation overhead.

5.2.3 Discriminative Dictionary Learning

Finally, we also incorporate the supervisory information during quantization procedure. In
particular, we encourage the quantized points to be closer to their centers. To achieve this
goal, we use the following loss:

LD =
n∑
i=1

‖φyi − Cbi‖2
2 (5.4)
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Intuitively, (5.4) penalizes the cases where the point z̄i is not assigned to the clusters that
are close to φyi .

The overall loss for training model takes the form:

L = Lsoftmax + αLQ + λLC + γLD (5.5)

where α, λ and γ are the hyper-parameters that control the effect of each term.

5.2.4 Optimization

The objective function composes of four sets of learnable parameters, the parameters of
the deep network θ, the centers φyis, the codewords in matrix C, the codeword assign-
ment matrix B. We use alternative optimization to solve the problem with each iteration
updating one set of parameters while fixing others.

Updating θ. With C, φyis, and B fixed, the parameters of the network are updated
through back-propagation as all of the terms in the loss are differentiable.

Updating Φ. We follow a similar procedure to [133] for updating the centers. In par-
ticular, to avoid large perturbation caused by few mislabelled instances, we use a learning
rate parameter ζ for training the centers:

φt+1
yi

= φtyi − ζ∆φyj (5.6)

∆φyj =

∑n
i=1 1(yi = j) · [λ(φyi − zi) + γ(φyi − Cbi)]

1 +
∑n

i=1 1(yi = j)
(5.7)

where 1(condition) equals 1 if the condition is satisfied and 0 otherwise. Ideally, the
centers should be updated in each iteration based on the whole training set which would
be extremely costly. To reduce the cost, the update is performed on the mini-batches.

Updating C. Given B, φyis and θ fixed, the resulting optimization problem is:

α‖Z − CB‖2
2 + γ‖Φ− CB‖2

2 (5.8)

where Z = [z1, . . . , zn], B = [b1, . . . ,bn], and Φ = [φy1 , . . . , φyn ]. This is a quadratic
function in C and therefore a closed-form solution exists:

C =
1

α + γ
(αZ + γΦ)BT (BBT )−1 (5.9)
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It is easy to observe that the optimization problem decomposes over each of the p
dimensions. Thus, we can reduce the computational cost by solving p least square problem
each with mh variables.

min
C(t)

α‖Z(t) − C(t)B(t)‖2
2 + γ‖Φ(t) − C(t)B(t)‖2

2

∀ t = 1, . . . , p
(5.10)

Each of the p problems is a least squares problem with a closed form solution. Online
learning algorithms can also be leveraged for acceleration [76].

Updating B. Given θ, φyi and C fixed, optimizing binary matrix B, known as encoding
phase, has been historically identified as the bottleneck of MCQ [7, 78].

It can be seen that the composition indicator vector bi is independent of all other
vectors {bt}t6=i. Thus, the optimization problem with respect to B can be decomposed
into n independent subproblems:

min
bi

α‖zi − Cbi‖2
2 + γ‖φyi − Cbi‖2

2

bi = [bTi1, . . . ,b
T
im]T

bij ∈ {0, 1}h, ‖bij‖1 = 1

i = 1, . . . , n j = 1, . . . ,m

(5.11)

The problem is essentially a high-order Markov Random Field (MRF) problem which
is NP-hard. Following [78], we use Stochastic Local Search (SLS) method to optimize bi.
The idea of SLS for escaping local minima is to iteratively alternate between a local search
procedure, and a randomized pertubation to the current solution. For the local search,
we again use alternative optimization technique. Given {bij}j 6=t fixed, bit is updated by
exhaustively checking all codewords of Cj and finding the element that minimizes the
objective function in (6.9). For the perturbation procedure of SLS, we randomly choose k
codes by sampling from the uniform distribution U(1,m). The selected codes are perturbed
by setting each of them to a uniformly selected random value between 1 and h. The
resulting perturbed solution is then accepted as the starting point of the next local search
procedure. Although this procedure is computationally demanding, it can be accelerated
using GPU implementation [79, 80], making encoding even faster than codebook learning.

5.2.5 Asymmetric Distance Computation

Given the query, the search process starts by embedding the query using the trained
network, zq = f(q; θ). Then, the inner product between zq and all codewords are stored in
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m× h query-specific lookup table. Finally, inner product between query and all database
vector is approximated with:

〈zq, zi〉 ≈
m∑
j=1

〈zq, Cjbij〉 (5.12)

Therefore, computing the inner product between query and each database item takes O(m)
lookups and O(m) addition operations (same as PQ), plus the time required to embed the
query into the deep feature space.

5.2.6 Sparse Codebook Learning

In sparse codebook learning, the optimization problem is augmented with sparsity con-
straint on the codewords. The key advantage of sparse coodebooks is that the distance
between the query and every codeword can be computed efficiently using sparse vector ma-
nipulations. This is practically important as for large codebooks, with many codewords,
the time required for online construction of lookup tables become non-negligible. Zhang et
al. [142] have shown that sparse codewords can increase the search speed up to 30%. As
the name suggests, the Sparse Composite Quantization (SCQ) technique proposed in [142]
adds sparsity constraint to the CQ [141] formulation and uses coordinate descent to solve
the optimization problem. However, CQ itself involves a hard optimization problem and
adding the sparsity constraint makes the problem even harder.

In contrast, DSQ formulation reduces codebook optimization to a linear regression prob-
lem, thus adding the sparsity constraint changes the objective to a regularized quadratic
problem. In particular, using straightforward algebraic manipulations (5.8) can be rewrit-
ten as:

(α + γ)‖αZ + γΦ

α + γ
− CB‖2

2 −
‖αZ + γΦ‖2

2

α + γ
+ α‖Z‖2

2 + γ‖Φ‖2
2 (5.13)

Since only the first term depends on C, we can write the objective function of sparse
quantization as:

min
C
‖αZ + γΦ

α + γ
− CB‖2

2 s.t. ‖C‖0 ≤ ε (5.14)

The resulting optimization is non-convex because of L0 regularization term. Commonly,
such problems are relaxed by replacing L0 norm with convex L1 norm. Therefore, our final
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objective function for learning sparse codebooks is defined as:

min
C
‖αZ

T + γΦT

α + γ
−BTCT‖2

2 s.t. ‖C‖1 ≤ ε (5.15)

which is essentially a linear regression problem with L1 norm regularization on the coef-
ficients, known as Lasso in the statistical literature. It can be efficiently solved using a
wide range of heavily-optimized off-the-shelf Lasso solvers such SPGL1 solver [125]. This
answers RQ 5.2.

5.3 Experiments

In this section, we gauge the performance of the proposed supervised quantization approach
by comparing it with the state-of-the-art against three different datasets.

5.3.1 Datasets and Evaluation

We conduct experiments on three standard datasets: CIFAR-10 [65], NUS-WIDE [28] and
ImageNet [33].

CIFAR-10 dataset consists of 60,000 32× 32 color images evenly divided into 10 cate-
gories. We follow the official split of the datasets and use 50K images as the training set
and 10k images as the query set.

NUS-WIDE is a set of 269,648 images collected from Flickr. This is a multi-label
dataset where each image is associated with one or multiple labels from a given 81 con-
cepts. Following [112, 129], we collect 193,752 images that are from the 21 most frequent
labels for evaluation, including sky, clouds, person, water, animal, grass, building, window,
plants, lake, ocean, road, flowers, sunset, relocation, rocks, vehicles, snow, tree, beach,
and mountain. For each label, we randomly sample 100 images as query points and the
remaining images form the training set.

The dataset ILSVRC 2012, named as ImageNet here, contains over 1.2 million images
covering 1,000 categories. Following the settings in [22, 27], we select 100 categories and
use images associated with them in the provided training set and the validation set as the
training and the query sets, respectively.

Parameter setting. There are trade-off parameters in the objective function (5.5): α
for quantization loss, λ for center loss and γ for discriminative loss. We select parameters
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via validation. In particular, we choose a subset of the training set (same size as the query
set), and the best parameters are chosen so that the average performance in terms of MAP
is maximized against the validation set. We fix ζ to 0.5 and k to 4.

Following almost all MCQ techniques [7, 92, 142], we choose k = 256 to be the codebook
size, so that each subindex fits into one byte of memory. This let us store B as a m × n
uint8 matrix. We vary m = {2, 4, 6, 8} such that m log2 k is equal to the desired bit-rates
which are {16, 32, 48, 64}.

Experimental settings. Raw images are used as the input for all deep methods, but
the images are resized to fit the input of the adopted model. For fairness of comparison,
for all deep compact coding methods here, Alexnet is adopted as the core architecture.
To reduce the size of deep features, a fully connected layer is added to the network which
transforms the output of the network into a 256-dimensional feature space, thus p = 256.
The size of feature space is not tuned for saving time while we think that tuning it might
yield better performance. The L2 normalization is performed on the 256-dimensional deep
features using a L2 normalize layer [103].

We fine-tune layers conv1fc7 copied from the AlexNet model pre-trained on ImageNet
and train the last layer which maps the feature layer via back-propagation. As the last
layer is trained from scratch, we set its learning rate to be 10 times that of the other
layers. We use mini-batch stochastic gradient descent (SGD) with 0.9 momentum as the
solver, and cross-validate the learning rate from 10−5 to 10−2 with a multiplicative step-size√

10. We also fix the mini-batch size of images as 128 and the weight decay parameter as
0.0005. Following [78], we use SPGL1 as the lasso solver for the sparse extension of our
algorithm [125]. For non-deep methods, we extract the outputs of the layer fc7 in the deep
model [34] as input features.

Methods. DSQ is compared with a wide range of supervised compact coding methods
including binary hashing methods: KSH [74], ITQ [47], SDH [112], CNNH [135], DPSH [69],
DSH [72], HashNet [22], and supervised quantization techniques: SQ [129], SUBIC [57],
DQN [21] and DTQ [71]. We implemented SQ in Python as its source code is not available
at the time of writing this chapter. We tried our best to be faithful to the experimen-
tal settings of the paper [129]. Other techniques are executed using the implementation
generously provided by the authors.

5.3.2 Results

Single domain retrieval. Single-domain retrieval is the main experimental benchmark
in the supervised binary hashing literature in which the query and training items belong
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CIFAR-10 NUS-WIDE ImageNet

Method 16 32 48 64 16 32 48 64 16 32 48 64

KSQ 0.3216 0.3285 0.3371 0.3384 0.4061 0.4182 0.4264 0.4436 0.1620 0.2818 0.3422 0.3934

ITQ 0.2412 0.2432 0.2482 0.2531 0.5573 0.5932 0.6128 0.6166 0.3115 0.4632 0.5223 0.5446

SDH 0.4199 0.4301 0.4392 0.4465 0.5342 0.6282 0.6298 0.6335 0.2729 0.4521 0.5329 0.5893

CNNH 0.5373 0.5421 0.5765 0.5780 0.6221 0.6233 0.6321 0.6372 0.2888 0.4472 0.5328 0.5436

DPSH 0.6367 0.6412 0.6573 0.6676 0.7015 0.7126 0.7418 0.7423 0.3226 0.5436 0.6217 0.6534

DSH 0.6192 0.6565 0.6624 0.6713 0.7181 0.7221 0.7521 0.7531 0.3428 0.5500 0.6329 0.6645

HashNet 0.6857 0.6923 0.7183 0.7187 0.7331 0.7551 0.7622 0.7762 0.5016 0.6219 0.6613 0.6824

DTQ 0.7037 0.7191 0.7319 0.7373 0.7511 0.7812 0.7886 0.7892 0.5128 0.6123 0.6727 0.6916

SUBIC 0.6555 0.6789 0.6854 0.7014 0.7021 0.7131 0.7555 0.7568 0.5547 0.5597 0.6462 0.6622

SQ 0.6212 0.6438 0.6545 0.6578 0.7126 0.7138 0.7303 0.7423 0.3865 0.5586 0.6279 0.6618

DQN 0.5979 0.6097 0.6099 0.6133 0.6913 0.7121 0.7471 0.7562 0.5065 0.6205 0.6669 0.6912

DSQ 0.7212 0.7346 0.7418 0.7589 0.7785 0.7899 0.7918 0.7988 0.5769 0.6541 0.6800 0.6940

Table 5.1: Single-domain category retrieval performance of DSQ versus the state-of-the-art
with 16, 32, 48 and 64 bit codes.

to the same set of class labels. To evaluate performance of different techniques, we adopt
the widely used Mean Average Precision (MAP). We report the results of MAP@5000
and MAP@1000 for NUS-WIDE and ImageNet datasets respectively. Table 5.1 shows
the single-domain retrieval performance of DSQ against a wide-range of techniques. The
observation is that our proposed method consistently delivers the best performance for
different length of codes. We attribute the performance improvement to the proposed
loss that aims at jointly preserving similarity information and controlling the quantization
error. Also, dropping the orthogonality constraint increases the fidelity of codebooks which
in turn reduces the approximation error of nearest neighbor search. Finally, back-proping
the proposed supervised quantization loss can remarkably enhance the quantizibilty of the
deep representation.

Figure 5.1 also shows the performance of different techniques in terms of the precision-
recall curves for 64-bit codes. From the curves, we can observe that DSQ delivers higher
precision than the state-of-the-art compact coding methods at the same recall rate. This
shows that DSQ is also favourable for precision-oriented retrieval systems. Although the
query time comparison is not presented here due to space limit, we observed that all deep
MCQ techniques in this study exhibit similar query time mainly because they adopt the
same core architecture (AlexNet). However, binary hashing techniques are often faster
than deep MCQ as they incorporate Hamming distance to compare binary codes.

Sparse coding. We also show the performance of sparse extension of DSQ. To the
best of our knowledge, sparse DSQ is the first attempt to explore supervised sparse multi-
codebook quantization for semantic similarity search. Nevertheless, we compare our tech-
nique with two unsupervised sparse quantization techniques, SCQ [142] and SLSQ [78]
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Figure 5.1: Precision-recall curves on the CIFAR-10, NUS-WIDE and ImageNet datasets
for 64-bit codes.

applied to the deep features of the fc7 layer of the deep model in [34].

Following [141], we evaluate the sparse version of our algorithm, Sparse Deep Spherical
Quantization (SDSQ) , using two degrees of sparsity: SDSQ1 with ‖C‖0 ≤ ε = h · p and
SDSQ2 with ‖C‖0 ≤ ε = h · p + p2. Since the former criterion imposes a harder sparsity
constraint on the codebooks, we would naturally expect to achieve lower search accuracy
but better query time. We compare against SCQ1 and SCQ2 from [142] and SLSQ1 and
SLSQ2 from [78].

Figure 5.2 shows the performance of different techniques against three different datasets.
Again, in this scenario, we observe that SDSQ comfortably outperforms the baselines with
a large margin mainly because sparse DSQ jointly optimizes the quantization error while
preserving the semantic similarity and satisfying the sparsity constraint, whereas the other
benchmarks separately apply unsupervised sparse quantization, which merely minimizes
the quantization error.

Cross-domain retrieval. To further evaluate our supervised quantization method,
we follow an alternative evaluation protocol from [107] wherein the model learned on a
given set of training classes is tested on a new, disjoint set of test classes. This protocol is
used to show how each method is capable of preserving the semantic information of certain
classes implicitly even if the class samples are not included in the training set.

Toward this aim, we partition the samples based on their class labels such that 70% of
the labels belong to the training and the remaining labels are used to form the base and
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Figure 5.2: Mean Average Precision performance of different sparse quantization techniques
against three datasets.

query set. Note that in this scenario the training set is used to optimize the parameters of
the model. Once learning is completed, the training set is removed and the items of base set
are mapped into compact codes using the trained model. Finally, the average performance
over the query set is reported. We use 80% of the samples with unseen classes as the
training set and the rest as the query set. This process is repeated 5 times with random
class splits and the average results is reported. For this setting, during the encoding phase,
we drop the LC term from loss because the trained centers do not correspond to any of
the labels in the base set. Similarly, the regression loss term in SQ [129] is dropped during
encoding as it directly depends on the class labels of training set.

Table 5.2 demonstrates the results of this experiment which shows the superiority of
DSQ for different lengths of code. We also observe that the MAP performance of methods
are generally higher than that of the previous protocol since there is less variation in the
base set consisting of only 3 classes and fewer samples to retrieve from. Also the rank of
techniques is different from the single domain experiments. For example, SUBIC exhibits
the closest performance to DSQ whereas in single-domain setting DTQ is the closest.

5.3.3 Ablation Study

We also perform an ablation study to showcase the contribution and importance of loss
function components on the final performance of the model by empirically comparing dif-
ferent variants of DSQ. We evaluate this experiment across different models to understand
the sensitivity of DSQ to different terms: 1) Lsoftmax + LQ, 2) Lsoftmax + LQ + LC , 3)
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Method 16 32 48 64

CNNH 0.6241 0.6456 0.6478 0.6491

DPSH 0.6894 0.7134 0.7198 0.7256

HashNet 0.7826 0.7941 0.7989 0.8010

SUBIC 0.7832 0.7931 0.8032 0.8077

DSH 0.7316 0.7388 0.7437 0.7456

SQ 0.7112 0.7126 0.7319 0.7389

DQN 0.7562 0.7612 0.7649 0.7655

DTQ 0.7525 0.7685 0.7700 0.7895

DSQ 0.7944 0.8165 0.8195 0.8218

Table 5.2: Mean Average Precision performance of different techniques for the task of cross
domain performance on CIFAR-10.

Lsoftmax+LQ+LD, and 4) LC +LD. For each model, the coefficients of different terms are
again tuned using cross validation and the average performance of model for 64-bit codes
against CIFAR-10 dataset is reported in Figure 5.3.

The first observation is that all of the loss components contribute in improving MAP.
Also, the plot indicates the importance of softmax loss. This is due to the fact that
the softmax loss is the only term in the objective function that uses that class labels to
force the deep features of different classes staying apart, without it, the resulting loss
function degrades all inputs points to be projected onto a single point. The figure also
demonstrates considerable contribution of discriminative loss, LD, showing the effectiveness
of our framework in incorporating semantic information during quantization.

5.4 Summary

In this study, we propose a deep supervised quantization technique for efficient and fast
image retrieval. By incorporating L2 normalized features, we propose a simple yet efficient
multi-supervised MCQ algorithm for encoding large-scale datasets with similarity preserv-
ing binary codes. We also show that our algorithm can be easily extended to accommodate
sparsity constraint in the codebooks which is necessary for learning large-scale codebooks.
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Figure 5.3: Difference in MAP, when different loss components are excluded from DSQ
objective function. The experiments are conducted on 64-bit codes of CIFAR-10 dataset.

Comprehensive experiments justify that DSQ and its sparse extension generate compact bi-
nary codes that yield state-of-the-art retrieval performance on three standard benchmarks,
CIFAR-10, NUS-WIDE, and ImageNet.
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Chapter 6

Augmented Vector Quantization

6.1 Contributions

As discussed in 2.3.2, with higher number of parameters, non-orthogonal MCQ techniques
tend to outperform their orthogonal counterparts, however, this comes at the cost of either
a higher storage cost to encode the norms, or longer query time to calculate the code-
book inner product term. In this chapter, we first put forward a non-orthogonal MCQ
technique, which in contrast to its predecessors, does not require a separate norm quan-
tizer and also benefits from efficient codebook learning as well as fast query time. This is
achieved through applying two distinct vector transformations on database and query vec-
tors which allows casting the Euclidean NNS to Maximum Inner Product Search (MIPS)
– a problem that can be solved more efficiently with MCQ. We gauge the performance of
our quantization approach on the task of nearest neighbor search against three large-scale
datasets. The results indicate that the proposed approach can achieve better recall rates
and faster optimization without increasing the memory cost.

Second, we provide a generalization bound for MCQ. As the number of potential centers
grows exponentially with the number of codebooks, MCQ is at risk of over-fitting: the
codebooks optimized on a training set may fail to achieve a low quantization error for
unseen test points. We show, however, that the sample complexity grows only polynomially
with the number of codebooks. To the best of our knowledge, this is the first distribution-
independent sample complexity bound for MCQ techniques. The goal of this this chapter
is to answer the following research questions:

RQ 6.1: How can we reformulate unsupervised MCQ in order to learn non-orthogonal
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codebooks and without the need for a separate norm encoder?

RQ 6.2: What is the sample complexity of MCQ family?

6.2 Augmented Vector Quantization

To answer RQ 6.1, this section details our non-orthogonal MCQ technique, dubbed Aug-
mented Vector Quantization (AVQ).

To attain our objective function, we first introduce a pair of vector transformations 1)
f : Rd → Rd+1 for transforming database vectors, and 2) g : Rd → Rd+1 for transforming
queries, as:

f(x) = [x,
‖x‖2

2

2
] and g(q) = [q,−1]. (6.1)

Now we have:

‖q− x‖2
2 = ‖q‖2

2 − 2〈q,x〉+ ‖x‖2
2 = ‖q‖2

2 − 2〈g(q), f(x)〉. (6.2)

Considering the fact that ‖q‖2
2 is constant for a fixed query, we obtain the following iden-

tity which establishes the connection between distance minimization and inner product
maximization:

arg min
x∈X

‖q− x‖2
2 = arg max

x∈X
〈g(q), f(x)〉. (6.3)

This indicates that NNS in Euclidean space is equivalent to solving the Maximum Inner
Product Search (MIPS) among the augmented vectors. Next, we show how we can use
MCQ to solve MIPS.

6.2.1 MCQ for MIPS

To reduce the approximation error of MIPS using MCQ, we need to minimize the distance
reconstruction error for the transformed query y = g(q) and the transformed database
vector z = f(x):∑

z

|〈y, z〉 − 〈y, z̄〉| =
∑
z

|〈y, z− z̄〉| ≤
∑
z

‖y‖2‖z− z̄‖2 = ‖y‖2

∑
z

‖z− z̄‖2. (6.4)

The upper bound depends on the `2 norm of the query, but for a fixed query, the
solution of MIPS is independent of the query norm. This shows that, similar to Euclidean
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NNS, the search accuracy of MCQ for MIPS directly depends on the quantization loss; low
quantization loss leads to high search accuracy.

Therefore, the cost function we aim to optimize is the quantization loss:

min
{Cj},{bi}

n∑
i=1

‖zi − [C1, . . . , Cm]bi‖2
2

bTi = [bTi1, . . . ,b
T
im],bij ∈ {0, 1}k, ‖bij‖1 = 1

i = 1, . . . , n j = 1, . . .m.

(6.5)

It it easy to observe that our objective function is hyper-parameter-free with no code-
book constraints, and as we will see in the following, does not require additional codebooks
for encoding the cross codebook term.

6.2.2 Querying

Given q, C and bi’s, after applying the transformation y = g(q), the distance between
query and a database vector is approximated with:

〈y, zi〉 ≈ 〈y, z̄i〉 = 〈y,
m∑
j=1

Cjbij〉 =
m∑
j=1

〈y, Cjbij〉. (6.6)

Note that inner product naturally satisfies the distributive law (unlike Euclidean distance),
and as a result the cross codebook inner product term of (2.11) does not appear in inner
product computation. This allows us to efficiently compute (6.6) using an m × k lookup
table in O(m) time. The only additional storage cost here is a single extra dimension of
codebooks which is constant with respect to the number of database vectors.

6.2.3 Optimization

The quantization problem in (6.5) is a mixed-integer programming consisting of two groups
of unknowns, codebooks {Cj}mj=1 and assignment vectors {bi}ni=1. We use an alternating
optimization method, where each step updates one group of variables.

Updating codebooks, C. Let C = [C1, . . . , Cm] ∈ R(d+1)×mk denote the matrix of
codebooks. Given B fixed, (6.5) is quadratic in C, thus a closed-form least squares solution
exists:

C = ZBT (BBT )−1, (6.7)
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where Z(d+1)×n = [z1, . . . , zn]. It is easy to observe that the optimization problem
decomposes over each of the d + 1 dimensions. Thus, we can reduce the computational
cost by solving d+ 1 least square problems each with mh variables.

min
C(t)
‖Z(t) − C(t)B(t)‖2

2 ∀t = 1, . . . , d+ 1. (6.8)

Each of the d+ 1 problems is a least squares problem with a closed form solution.

Updating assignment vectors, B. Given C fixed, optimizing the assignment matrix
B = [b1, . . . ,bn] is in general NP-hard [7, 78]. It can be seen that the assignment vector
bi is independent of all other vectors {bt6=i}. Thus, the optimization problem with respect
to B can be decomposed into n independent sub-problems:

min
bi

‖zi − Cbi‖2
2

bi ∈ {0, 1}k, ‖bi‖1 = 1, i = 1, . . . , n
(6.9)

The problem amounts to a high-order Markov Random Field (MRF) inference problem
which is NP-hard [29]. Following [78], we use Iterated Local Search (ILS) to optimize bi.
The idea of ILS for escaping local minima is to iteratively alternate between a local search
procedure, and a randomized perturbation to the current solution. For the local search,
we again use an alternative optimization technique. Given {bij}j 6=t fixed, bit is updated
by exhaustively checking all codewords in the Cj and finding the element that minimizes
the objective function in (6.9). For the perturbation procedure of ILS, we randomly choose
e (set to 4 in our experiments) segments of bi by sampling from the uniform distribution
U(1,m). The selected codes are perturbed by setting each of them to a uniformly selected
random value between 1 and k. The resulting perturbed solution is then accepted as the
starting point of the next local search procedure.

Every update step in the algorithm assures that the objective function value weakly
decreases after each iteration.

6.2.4 Implementation Details

Instead of using (6.7) for updating the codebooks, we use diagonal loading which adds a
constant λ to the diagonal elements of BBT , thus we have:

C = ZBT (BBT + λI)−1 (6.10)
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which is in fact the solution to the least squares problem with `2 regularization. Although
we are not looking for regularized formulation in our problem, this will render the solution
numerically stable as BBT + λI is guaranteed to be full-rank even if BBT is not. In
addition, the solution (6.10) can be used both when B is tall and when B is wide. The
matrix inversion can thus be performed directly with the help of Cholesky decomposition
in O(m3h3) time. By setting λ to a very small value (λ = 10−5 in our experiments), one
can minimize the effect of the regularization on the learned cobebooks.

6.3 A Generalization Bound for MCQ

One of the benefits of using MCQ compared to VQ is reducing the quantization error. In
fact, with using m codebooks of size k, we can have km possible assignments; therefore, the
effective number of codewords/centers can be exponential in m. This flexibility, however,
comes with the risk of over-fitting. In other words, a codebook with low distortion on the
training data may have high expected distortion on the test data (e.g., on the base set).
The following uniform convergence result shows that, fortunately, the sample complexity
grows polynomially with m.

Theorem 6.1. Let D be an arbitrary distribution supported on the unit ball of Rd, and let
{xi}ni=1 be an i.i.d. sample of size n generated from D. Then with probability at least 1− δ
we have

∀C ∈ C,

∣∣∣∣∣ 1n
n∑
i=1

min
bi

‖xi − Cbi‖2
2 − Ex∼D

(
min
b
‖x− Cb‖2

2

)∣∣∣∣∣
≤ (m+ 1)2

2
√
n

(
28k + (m+ 1)k

√
ln(16nm2) +

√
2ln(1/δ)

)
where C corresponds to the set of possibilities for m codebooks each having k codewords,
where each codeword is in the unit ball of Rd.

As it can be seen, Theorem 6.1 establishes a distribution-free (worst-case) bound on
the distortion, and holds uniformly for all C. Therefore, it works for both orthogonal
and non-orthogonal choices of C. The proof is based on the work of Maurer and Pontil
[84] which establishes a framework for bounding the Radermacher complexity of functions
corresponding to coding schemes. A nice feature of this bound is that it is independent on
d (as long as the distribution is supported on the unit ball of Hilbert space). The proof as
well as more details can be found in Section B. This answers the RQ 6.2.
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6.4 Experiments

6.4.1 Setup

Datasets. We demonstrate the performance of our technique on SIFT1M [59], Con-
vNet1M [80], and Deep1M [10] datasets which are often used in benchmarking the perfor-
mance of nearest neighbor search. These datasets have three partitions: train, base and
query. We follow the standard protocol and use the train set to learn the codebooks C.
After learning is completed, we remove the training data and use the resulting codebooks
to encode the base set and obtain B. Finally, we use the query set to find the approx-
imate nearest neighbors in the compressed base set and report the average performance.
SIFT1M, ConvNet1M, Deep1M contain 128, 128 and 96 dimensional vectors respectively.
All datasets have 100K training points, 1M base points and 10K query points.

Baselines. We compare our approach, AVQ, with several state-of-the-art methods
which include orthogonal techniques: PQ [59], OPQ [44, 92], as well as non-orthogonal
techniques: CQ [141, 128], Residual Vector Quantization (RVQ) [26], and also enhanced
version of LSQ++ (with SR D perturbation method) [80]. For PQ and OPQ, we use
the implementation provided by Norouzi et al. [92]. Likewise, for CQ we adopt the C++
implementation due to Zhang et al. [141]. Finally, for RVQ and LSQ++ (referred here
as LSQ), we use Rayuela.jl which is a highly optimized MCQ library written in Julia
with C++ and CUDA bindings to enhance encoding. We also implemented our technique
on top of Rayuela.jl and adopted similar GPU enhancements to speed up manipulations.
Following most of previous studies, we use k = 256 in all experiments so that each sub-index
fits into one byte. This let us store B as a m×n UINT8 matrix. All algorithms are executed
for m = {8, 16} codebooks which results in index lengths of m× log k = {64, 128} bits. We
use 20 optimization iterations for all techniques to train the codebooks. Other than that,
we use the default hyper-parameters as provided in their respective code releases. Finally,
following [80], the number of ILS iterations for the encoding step of LSQ and AVQ is set
to 32.

Initialization. Like AQ, CQ, and LSQ, we use an auxiliary quantization method
to initialize B and C in our optimization procedure. We run OPQ, followed by a sim-
ple method similar to optimized tree quantization [9] but simplified to assume that the
dimension assignments are given by a natural partition of adjacent dimensions.

Evaluation metrics. We follow previous works and evaluate the performance of our
technique in terms of Recall@R which is defined as percentage of queries for which the
actual nearest neighbor lies among the R estimated nearest neighbors. The goal is to
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Figure 6.1: Recall@R curves for AVQ and orthogonal techniques.

obtain the highest recall for a given R. We also compare different techniques in terms of
the optimization time. We do not provide the query time comparison here as for a fixed
number of codebooks all selected techniques perform the same number of lookups and
additions thus exhibit similar query time. All techniques are executed on a desktop with
a 12-core i7-5930K CPU @ 3.50 GHz, 64 GB of RAM and a GeForce RTX 2080 Ti GPU.

6.4.2 Results

We report the Recall@R results for all three datasets in Figure 6.1 where it is immediately
clear that AVQ outperforms orthogonal techniques for all values of R with a large margin.
Tables 6.1 and 6.2 also show the comparison between AVQ and non-orthogonal techniques
for two length codes, where AVQ consistently exhibits superior recall performance. Not
surprisingly, some of the non-orthogonal techniques are closer competitors to AVQ as they
learn full-dimensional codebooks with more trainable parameters. CQ, however, tends to
perform even worse than orthogonal techniques. This is in line with other studies [80] which
argue that often with CQ, the learned codebooks on the train set do not generalize well
to the base set. Particularly, CQ performs well on the non-standard train/query protocol
in which there are only two partitions of data; the codebook learning and encoding is run
directly on the train set and the recall performance is also evaluated on the queries with
respect to the train set [80].

Using the highly optimized CUDA bindings of Rayuela.jl library, our AVQ implementa-
tion manages to achieve similar optimization time as LSQ (the optimization time reported
here is for SIFT1M and ConvNet 1M which have identical sizes and dimensions). Both
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techniques are significantly faster than other benchmarks which are all executed on CPU
and do not benefit from parallelism.

6.5 Comparisons

LSQ vs AVQ. There is a close connection between our closest competitor, LSQ, and our
technique. LSQ is an extension of AQ [7] that adopts iterated local search to boost the
performance of encoding step. LSQ and AQ expand the Euclidean distance between query
and a compressed point as:

‖q− x̄i‖2
2 = ‖q‖2

2 − 2.
m∑
j=1

〈q, Cjbij〉+ ‖x̄‖2
2. (6.11)

Similar to AVQ, both techniques use dot-product lookup tables to accelerate the compu-
tation of the second term of (6.11). However, to estimate the last term, AQ first proposes
using a second mh ×mh lookup table that stores the inner products between codebooks
(note that we have, ‖x̄i‖2

2 = ‖
∑m

j=1Cjbij‖2
2 =

∑m
j=1

∑m
t=1〈Cjbij, Ctbit〉). However, the au-

thors noticed that this increases the distance computation time from O(m) to O(m2) and
also makes encoding harder. Alternatively, they suggest using a separate scalar quantizer
to approximate the norms of the compressed vectors. This approach, also adopted by LSQ,
increases the memory cost linearly with respect to the number of database vectors. More-
over, for a fixed length of code, the best split of memory budget between the two quantizers
is not clear. In practice, LSQ assigns m − 1 codebooks to quantize the database vectors
and the remaining single codebook to quantize the norm. This ad hoc approach, however,

Table 6.1: Detailed recall@R rates and optimization time for m = 8 (64-bit codes).

SIFT1M ConvNet1M Deep1M

@1 @10 @100 @1 @10 @100 @1 @10 @100 Time

CQ 17.18 59.12 90.12 12.32 52.11 91.19 15.49 51.10 88.41 ∼40 mins

RVQ 22.38 61.29 92.40 14.09 53.39 92.73 16.43 54.81 89.65 ∼3 mins

LSQ 29.79 72.54 96.27 18.60 62.46 96.17 20.15 62.33 94.89 ∼1 min

AVQ 31.98 74.25 98.69 19.62 63.74 97.55 21.29 64.12 95.47 ∼1 min
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Table 6.2: Detailed recall@R rates and optimization time for m = 16 (128-bit codes).

SIFT1M ConvNet1M Deep1M

@1 @10 @100 @1 @10 @100 @1 @10 @100 Time

CQ 34.25 81.25 92.58 30.25 83.25 98.72 30.63 79.14 92.18 ∼70 mins

RVQ 42.95 89.32 99.74 31.48 84.14 99.62 36.14 86.09 99.53 ∼6 mins

LSQ 51.33 94.49 99.95 41.44 93.21 99.97 41.18 88.86 99.72 ∼2 mins

AVQ 53.29 96.51 100 42.89 94.25 100 43.24 91.22 100 ∼2 mins

may not necessarily be the best split of the budget. On the other hand, AVQ treats the
`2 norms as one of the input features and lets the optimization algorithm automatically
decide on the split of quantization budget. Furthermore, unlike AQ and LSQ which adopt
k-means to quantize the norms, AVQ leverages MCQ; allowing the number of potential
centers for compressing the norm to grow exponentially in the number of parameters. The
only additional cost of AVQ is a single extra dimension of the codebooks which is constant
with respect to the number database vectors.

Asymmetric mapping. The general idea of using distinct mappings, one for database
objects and the other for queries, has been investigated in other studies as well [48, 61, 113].
For example, Shrivastava and Li [116] argued that there is no symmetric LSH family
for solving MIPS and proposed asymmetric mappings to cast inner product search into
Euclidean NNS (reverse of what AVQ does) for which there exist efficient LSH functions.
Neyshabour et al. [88] also studied the effectiveness of asymmetric mappings in the context
of binary hashing. They showed that even if the target similarity function is symmetric,
using asymmetric binary hashes can be more powerful and allow better approximation of
the target similarity with shorter codes.

6.6 Summary

This chapter introduces a compact coding approach, Augmented Vector Quantization, to
perform fast nearest neighbor search among high-dimensional items. The new formula-
tion allows unconstrained codebooks learning without increasing the length of compressed
codes. The first distribution and dimension independent generalization bound for the
family of MCQ techniques is also introduced in this chapter.
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Chapter 7

Conclusion and Future Directions

Here we recap the contributions and discuss possible directions of research to advance this
work.

7.1 Contributions

This dissertation develops several algorithms with different flavors for solving large-scale
nearest neighbor search, all of which are centred around using CDR to avoid exhaustive
search and accelerate distance computation. Here, we revisit the research questions intro-
duced in the first chapter and provide short answers based on our findings.

7.1.1 RQ1: How can we preprocess the compact discrete codes
to achieve fast nearest neighbor search?

To answer this question, we propose two non-exhaustive search algorithms for solving
nearest neighbor search among large-scale binary datasets:

• Angular Multi-Index Hashing (AMIH), a method for building multiple hash tables
to enable exact angular NNS among binary codes, is introduced in Chapter 3. The
approach is based on pigeon-hole principle, is simple, and easy to implement. The the-
oretical analysis on uniformly distributed data shows sublinear search time. Also, the
empirical results on non-uniform large-scale benchmarks indicate substantial speedup
in comparison to linear scan and other standard techniques.
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• Hamming Weight Tree (HWT), introduced in Chapter 4, is another technique for
solving exact Hamming and angular nearest neighbor search. The proposed data
structure is simple and intuitive yet enables fast nearest neighbor search as well as
efficient insertion of new items which is necessary for dealing with dynamic datasets.

7.1.2 RQ2: How can we design efficient compact code that are
more faithful to the given notion of similarity and are easy
to optimize?

As answers to this question, the last two chapters propose supervised and unsupervised
quantization-based techniques in order to achieve fast distance computation:

• Chapter 5 proposes Deep Spherical Quantization (DSQ), a deep supervised quantiza-
tion technique for efficient and fast image retrieval. By incorporating `2 normalized
features, DSQ achieves a simple yet efficient supervised MCQ algorithm for encoding
unit normalized data points with similarity preserving compact codes. Due to its
simple formulation, it can be easily extended to accommodate sparsity constraint
in the codebooks which is necessary for learning large-scale codebooks. Extensive
empirical evaluation shows the superiority of the proposed techniques in comparison
to the state-of-the-art in supervised hashing.

• Finally, Chapter 6 discusses Augmented Vector Quantization (AVQ), an unsupervised
multi-codebook quantization technique for minimizing the approximation error of
nearest neighbor search. By augmenting the database vectors with their `2 norms
and query vectors with a constant, AVQ maps Euclidean nearest neighbor search into
maximum inner product search which can be solved more efficiently with MCQ. The
new formulation enables unconstrained codebooks learning without increasing the
length of compressed codes. Along with that, the first distribution and dimension
independent generalization bound for the family of MCQ techniques is provided.

The contributions of this thesis, linked with the publications, are summarized in Ta-
ble 7.1.

7.2 Future Works

The proposed techniques laid the groundwork for several interesting future directions of
research, some of which are proposed here:
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Binary hashing Quantization

Learning – DSQ [39], AVQ

Search AMIH [40], HWT [37, 38] –

Table 7.1: Relationship between proposed techniques.

Adapting data to index. The space partitioning data structures developed in Chap-
ter 3, Chapter 4, and the multi-index hashing based proposed by Norouzi et al. [95] all can
provably support sublinear search time for uniformly distributed datapoints but it may
not be true for other distributions. This can be problematic if we want to responsibly
utilize these algorithms in scenarios with serious impact, where it is important to delineate
regimes with reliable answers. Very recently, Sablayrolles et al. [106] discussed the idea
of adapting data to index. In a nutshell, they propose to learn a mapping such that the
output follows a specific distribution under which the subsequent indexing algorithm per-
forms better. Similar ideas can be used in binary hashing techniques to make sure that the
output of binary hashing technique not only preserves the neighborhood but also favors a
uniform distribution to enhance search among the binary codes.

Non-exhaustive search among quantized vectors. The MCQ framework, such as
techniques proposed in Chapters 5 and 6, in general provides better recall performance in
comparison to the binary hashing techniques mainly because it allows many more possible
distances. However, the problem of non-exhaustive search among the quantized points
seems unsettled. Adopting a two-step quantization in which a coarse quantizer (such as
k-means) partitions the database vectors and then encoding the residual error with a high
resolution quantizer of MCQ family has been shown to be effective in avoiding retrieval. In
this setting, the query is only compared with vectors that belong to the nearest bucket(s)
of the coarse quantizer. However, such inverted indexing systems are unsupervised, and are
built by a process of carefully designed manual parameter tuning. Further research in this
direction can adopt simultaneous quantizer learning (for better recall) and partitioning of
the space (for non-exhaustive search). The work by Jian et al. [58] takes the initial steps in
this direction where the quantization error is back-propagated to the indexing structure,
however, their study is basically based on binary hashing as they use Hamming distance
to compute the distances.

Learning mixture of Gaussians with MCQ. There are strong connections between
k-means and mixture of Gaussians. We also developed MCQ models that are in fact a
generalization k-means. An interesting avenue for future research concerns formulations
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of MCQ mixture models. Such models can make use of multiple codebooks, each of which
is assigned to a subset of datapoints. At training and test time, one considers all of the
codebooks and their codewords and picks the ones that minimize quantization error. The
main research question is whether such mixture models will lead to a sufficient reduction
in quantization error to justify the increase in encoding and storage cost.
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Appendix A

Proof of Theorem 4.1

We start the proof of Theorem 4.1 by defining the event of collision over d-patterns, and
then provide an upper bound on the probability of such collision.

Definition A.1 (Collision). Let Xn = {xi}ni=1 be a set of p-dimensional binary vectors,
i.e., xi ∈ {0, 1}p. We say that query q ∈ {0, 1}p d-collides with Xn if

∃i ∈ [n], s.t. Qd(x
i) = Qd(q)

Lemma A.1. Let Xn = {xi}ni=1 and q be n + 1 iid random variables generated from the
uniform distribution over the p-dimensional binary cube. Then, for every 0 < d ≤ p, the
probability that q d-collides with Xn is at most n(d

p
)
d
2 .

Proof. Note that because q is uniformly generated, the distribution of its Hamming weight
(i.e., distribution of ‖q‖H) is binomial. Similarly, the distribution of the Hamming weight
of the all substrings of q are binomial, i.e., ‖qd‖H ∼ Bin(p

d
, 1/2). Now with an application

of union bound, and the fact that the d different patterns are generated independently we
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have:

Pr
[
∃i ∈ [n] s.t. Qd(x

i) = Qd(q)
]
≤ n.Pr
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2

where we used the fact that the binomial pmf, Bin(p
d
, 1/2)|j, is maximized when j = p

2d
.

Now we are ready to prove Theorem 4.1. We first bound the computational cost of
search associated with a single layer, and then aggregate the cost over all of the layers.

In depth s, each node corresponds to a d-pattern where d = 2s. Also, for any query
q, the number of (r, d)-neighbors patterns (r-vicinity) for q are at most r

(
d+r−1
r

)
≤ dr.

In other words, in layer s, there are at most dr = 2rs different potential nodes that are
the (r, d)-neighbor patterns of q. The critical observation is that any operation in layer s
is performed on a subset of these nodes, but not all of these potential nodes are actually
materialized.

In fact, a node is accessed only it is (i) non-empty, and (ii) d-collides with a point
in r-vicinity of q. But based on Lemma A.1, the expected number of such nodes—i.e.,
non-empty nodes in layer s that d-collide with a point in r-vicinity of q—is bounded by

2rs min
(

1, n(2s

p
)2s−1

)
. For each of these nodes, we check at most 2rs potential solutions to
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Equation 4.8. Therefore, in layer s, in total we would have at most 2rs2rs min
(

1, n(2s

p
)2s−1

)
many patterns to check.

The cost of checking whether two d-dimensional binary vectors have the same d-pattern

is O(p). Hence, the total cost associated with layer s is O
(
p22rs min

(
1, n(2s

p
)2s−1

))
.

Finally, we have at most log p layers, so the total cost is O
(

22rs min
(

1, n(2s

p
)2s−1

)
p log p

)
,

which we claim is in fact O (p log p(log n)4r). This is clear when s < 1 + log log n. Also, if
s ≥ 1 + log log n, we can assume p > s

2
(because the last layer will not have any children)

so 22rs min
(

1, n(2s

p
)2s−1

)
≤ (log n)4 which completes the proof. �
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Appendix B

Proof of Theorem 6.1

In this section, we provide the proof of Theorem 6.1. Let us recall the definition of quanti-
zation error for a set of points {xi}ni=1 and for the (set of m) codebooks C = [C1, . . . , Cm].

n∑
i=1

min
bij∈B

‖xi −
m∑
j=1

Cjbij‖2
2 =

n∑
i=1

min
bi∈Bm

‖xi − Cbi‖2
2 (B.1)

where B = {b | b ∈ {0, 1}k, ‖b‖1 = 1} and Bm = {[b1, . . . ,bm] | ∀i ∈ [m],bi ∈ B}.
In other words, B is the set of possible assignments for VQ and Bm is the set of possible
assignments for MCQ.

We assume that the distribution that is generaing the data is supported on the unit
ball of Rd which we denote by X .1 It is therefore natural to work with codewords who
belong to X as well. Therefore, we define C, the set of all possible codebooks, to be
C = {[c1, . . . , ckm]|∀i ∈ [km], ci ∈ Rd, ‖ci‖ ≤ 1} (corresponding to m codebooks each
having k codewords). Define

‖C‖Bm = sup
C∈C

sup
b∈Bm
‖Cb‖2

b = sup
x∈X

sup
C∈C

min
b∈Bm

‖x− Cb‖2
2

The following theorem – which is a translation of Theorem 2 in [84] to suit our purposes
– establishes a uniform convergence result for Z-dimensional coding schemes.

1One can scale the points to work with any compact subset of Rd.
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Theorem B.1 ([84]). Let D be an arbitrary distribution over X , and let {xi}ni=1 be an
i.i.d. sample of size n generated from D. Then with probability at least 1− δ we have

∀C ∈ C,

∣∣∣∣∣ 1n
n∑
i=1

min
bi∈Bm

‖xi − Cbi‖2
2 − Ex∼D

(
min
b∈Bm

‖x− Cb‖2
2

)∣∣∣∣∣
≤ Z√

n

(
14‖C‖Bm +

b

2

√
ln(16n‖C‖2

Bm)

)
+ b

√
ln(1/δ)

2n

where in our case, Z = km, is the dimensionality of the assignments (i.e., C ∈ Rd×Z).

In order to use this theorem, we need to find upper bounds for ‖C‖Bm and b in our
MCQ application. The following proposition establishes this for us.

Proposition B.1.

‖C‖Bm = sup
C∈C

sup
b∈Bm
‖Cb‖2 ≤ m

b = sup
x∈X

sup
C∈C

min
b∈Bm

‖x− Cb‖2
2 ≤ (m+ 1)2

Proof. The first part holds because

‖C‖Bm = sup
C∈C

sup
b∈Bm
‖Cb‖2 = ‖C‖Bm = sup

{Cj}mj=1

sup
bj∈{e1,...,ek}

∥∥∥∥∥∥
∑
Cj

Cjbj

∥∥∥∥∥∥
2

≤ sup
{Cj}mj=1

∑
Cj

sup
bj∈{e1,...,ek}

‖Cjbj‖2 ≤ m sup
C1

sup
bj∈{e1,...,ek}

‖C1bj‖2 ≤ m

where {e1, . . . , ek} are the standard unit vectors in Rk. For the second part we have

b = sup
x∈X

sup
C∈C

min
b∈Bm

‖x− Cb‖2
2 ≤ sup

x∈X
sup
C∈C

min
b∈Bm

(
‖x‖2

2 + ‖Cb‖2
2

)
≤ sup

x∈X

(
‖x‖2

2

)
+ ‖C‖2

Bm ≤ m2 + 1 ≤ (m+ 1)2

�
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Using Theorem B.1 together with this proposition we have

∀C ∈ C,

∣∣∣∣∣ 1n
n∑
i=1

min
bi

‖xi − Cbi‖2
2 − Ex∼D

(
min
b
‖x− Cb‖2

2

)∣∣∣∣∣
≤ (m+ 1)2

2
√
n

[
28k + (m+ 1)k

√
ln(16nm2) +

√
2ln(1/δ)

]
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