
IEEE	Copyright	Notice	
Copyright	(c)	2019	IEEE	
Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	
other	uses,	in	any	current	or	future	media,	including	reprinting/republishing	this	material	
for	advertising	or	promotional	purposes,	creating	new	collective	works,	for	resale	or	
redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	
other	works.	

Published	in:	Proceedings	of	the	Seventh	International	Workshop	on	
Models	in	Software	Engineering	(MiSE'15)),	May	2015	

	

Incremental and Commutative Composition of State-Machine
Models of Features

Cite as:

BibTex:

DOI: https://doi.org/10.1109/MiSE.2015.10

S.	Beidu,	J.	M.	Atlee	and	P.	Shaker,	"Incremental	and	Commutative	
Composition	of	State-Machine	Models	of	Features,"	2015	IEEE/ACM	7th	
International	Workshop	on	Modeling	in	Software	Engineering,	Florence,	2015,	pp.	13-
18.

@INPROCEEDINGS{7167396,		
author={S.	{Beidu}	and	J.	M.	{Atlee}	and	P.	{Shaker}},		
booktitle={2015	IEEE/ACM	7th	International	Workshop	on	Modeling	in	
Software	Engineering},		
title={Incremental	and	Commutative	Composition	of	State-Machine	Models	of	
Features},		
year={2015},		
pages={13-18},		
month={May},}

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/275766963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Incremental and Commutative Composition of
State-machine Models of Features

Sandy Beidu, Joanne M. Atlee, Pourya Shaker
David R. Cheriton School of Computer Science

University of Waterloo, Canada
{sbeidu,jmatlee,p2shaker}@uwaterloo.ca

Abstract—In this paper, we present a technique for incre-
mental and commutative composition of state-machine models
of features, using the FeatureHouse framework. The inputs
to FeatureHouse are feature state-machines (or state-machine
fragments) modelled in a feature-oriented requirement modelling
language called FORML and the outputs are two state-machine
models: (1) a model of the whole product line with optional
features guarded by presence conditions; this model is suitable for
family-based analysis of the product line; and (2) an intermediate
model of composition that facilitates incremental composition of
future features. We discuss the challenges and benefits of our
approach and our implementation in the FeatureHouse.

I. INTRODUCTION

We are interested in supporting feature modularity in require-
ments modelling of feature-rich systems - especially software
product lines (SPLs), where families of similar products are
understood, constructed, managed, and evolved in terms of
their features. In previous work, we presented a feature-
oriented requirements modelling language called FORML [1],
in which behavioural requirements are expressed in a UML-
like state-machine language. Features are specified as distinct
modules, and the requirements of the SPL are derived by
composing all of the feature modules into a single SPL model.
An SPL model represents behaviours of all possible products
derivable from a product line. This model enables family-
based analysis where the whole product line is analyzed
together instead of analyzing individual products. It has been
shown that family-based model checking of an SPL is more
efficient than model checking all products individually because
the analysis can exploit the commonalities among different
products [2].
Distinguishing aspects of FORML include (1) support for
modelling new features as state-machine fragments that ex-
tend existing feature modules, (2) language constructs for
explicitly modelling intended interactions among features (so
that analyses that detect interactions can exclude the intended
interactions), and (3) a composition operator that is commu-
tative and associative. A commutative composition operator
has considerable advantages. For one, engineers do not need
to identify an order of composition to derive a product or an
SPL model from a collection of features. Second, the order of
composition does not affect analysis results.
In [1], we presented the requirements for a commutative and
associative composition of state machine models of features

into an SPL model. In this paper, we present the seman-
tics of the feature composition and its implementation using
FeatureHouse [3]. We explain how FeatureHouse composition,
based on superimposition, applies to state-machine models
– especially how technical challenges posed by fine-grained
state-machine fragments and commutative composition are
addressed. We conclude with a discussion of our experiences
and our plans for future work.

II. PRELIMINARIES

This section provides an overview of feature-oriented require-
ment modelling and a supporting language, FORML. Through-
out this paper, we use example models from an automotive
system comprising a Basic Driving Service (BDS) and a small
set of optional features.

A. Feature-Oriented Requirements Modelling

Feature-oriented requirements modelling is an approach to
manage the complexity in specifying and analyzing a soft-
ware system by decomposing the system into features, where
a feature is a coherent and identifiable bundle of system
functionality [4]. In product-line development, a family of
related software products (e.g. automobile models) share a
common set of mandatory features, and products are differ-
entiated by their variable (optional or alternative) features.
The behavioural requirement for each feature is modeled
independently as a feature module. An individual product
variant of the product line is derived by composing a subset
of features. A composed model of all the features in the
product line is called a 150% model (a.k.a virtual product or
metaproduct or product simulator). In most cases this model
is not a valid product because usually there are mutually-
exclusive features. A 150% model can be converted into an
SPL model where feature-specific behaviour is guarded by
feature variables that represent the presence or absence of a
feature in a particular product variant.

B. Overview of FORML

This sub-section provides an overview of a feature-oriented
requirement modelling language called FORML. A FORML
behaviour model comprises a set of feature modules, each
of which is a set of state machines or state-machine frag-
ments, called feature machines or feature-machine fragments,
respectively. The behaviour of an SPL product is the parallel

on

waitSteer

waitAccelerate

waitAccelerate

feature BDS

feature-machine main

t2: IgniteOff() /
a1: car.ignition := off

deceleration

t4 > t3: Decelerate() /
a1: car.accel := decel_fn()

t1: IgniteOn() /
a1: car.ignition := on

steering

acceleration

t5: steer /
a1: car.steerDirection := steerDirection_fn()

off

t3: Accelerate() /
a1: car.accel := accel_fn()

Fig. 1. Basic Driving Service (BDS) standalone feature machine

execution of its feature machines extended by its fragments.
Details of FORML can be found in Shaker’s PhD thesis [5].
In addition, a FORML model includes a feature model that
defines valid configurations of features – that is the product
variants of the SPL.
1) Feature Machines: The notation for a FORML feature
machine is based on UML state machines [6]. A feature
machine consists of a set of states and transitions between the
states. A state may be a basic state or a superstate containing
one or more orthogonal regions, where each region models a
concurrent sub state machine. For example, Figure 1 shows a
feature machine for a Basic Driving Service (BDS) feature
that models the behaviour of an automobile. The machine
consists of a basic state off and a superstate on, which
represents the vehicle’s ignition being off or on. The superstate
on has three orthogonal regions that represent the vehicles
concurrent behaviour wiht respect to acceleration, braking
and steering, when the ignition is on. Transitions between
states are triggered by events and conditions over variables in
the SPL’s environment, and transition actions are assignments
to environmental variables. There are no internal variables.
FORML provides a rich transition label with several exten-
sion points that allow for fine-grained extensions of feature
machines. A transition between states has a label of the form:

id : te [gc] / id1 : [c1]a1, . . . , idn : [cn]an
where id is the name of the transition; te is an optional
triggering event; gc is a boolean guard condition; and a1...an
are concurrent actions, each with its own name idi and guard
condition ci. An execution step consists of the execution of
all concurrently enabled transitions and their actions.
2) Feature-Machine Fragments: An SPL evolves by incre-
mentally adding new features. This is modelled by adding a
new feature machine that executes in parallel with existing
machines or by adding a fragment that extends existing feature
machine or fragment1. Specifically, a new feature can add new
behaviours, or can remove or replace behaviours at specified
locations of an existing feature.

1When a feature B extends a feature A, then the presence of feature B in a
product requires the presence of feature A. This dependency must be specified
in the feature model.

t9: Accelerate()[driverOverride_fn()]

t7:SetCruiseSpeed() /
 a1:CC.cruiseSpeed := Car.speed

t6:after(timeout_fn()) /
 a1:Car.accel := accelCC_fn() ,
 a2:CC.goalAccel := accelCC_fn()

main

t8: Accelerate()[driverOverride_fn()]

active inactive

fragment cntrlAccel extends BDS{main.on}
 transition BDS{t3}:[strengthen with s1: not instate(main.enabled.main.engaged.main.active) or driverOverride_fun()]

feature CC

main fragment cntrlSpeed extends BDS{main.on}

main

enabled

t5: [not engageCnd_fn()]

t2: DisableCC()t1: EnableCC()

t4: Decelerate()

t3: SetCruiseSpeed [engageCnd_fn()] /
 a1: CC.cruiseSpeed := Car.speed,
 a2: CC.goalAccel = 0

engaged

disengaged

disabled

Fig. 2. Cruise Control (CC) feature-machine fragments

fragment ctrlHC extends CC{main.enabled.main.engaged}

feature HC

t1: SetHeadway(v) /
 a1: HC.headway := vinactive

t2: override(CC{t6}) [slowRoadObjAhead_fn()] /
 a1: Car.accel := accelHC_fn()
 a2: CC.goalAccel := accelHC_fn()

active

main

t3: SetHeadway(v) / a1: HC.headway := v

Fig. 3. Headway Control (HC) feature-machine fragment

Adding behaviours: A feature-machine fragment can add new
elements to an existing feature machine at specific extension
points:
• A new region that extends an existing state
• A new transition (and possibly new source and destina-

tions states) that extends an existing feature machine.
• A new action that extends an existing transition
• A weakening clause that extends the guard condition of

an existing transition or action with a disjunct, thereby
weakening the guard condition.

Figure 2 shows the machine fragment for a new feature, Cruise
Control (CC) that extends the feature machine of BDS. CC
is modelled as a new orthogonal region that extends the state
on of BDS; the location of each extension is specified at the
top of the fragment.
Removing behaviours: A new feature can restrict the be-
haviour of an existing feature by extending the guard condition
of one of its transitions or actions with a conjunct, called a
strengthening clause. Strengthening a guard condition results
in the guard condition being satisfied less frequently, and
therefore leads to removed behaviours. For example, feature
CC in Figure 2 adds a strengthening clause (specified as UML
note) to the guard condition of transition t3 of feature BDS.
The clause prohibits BDS from processing Accelerate input
events when CC is active, so that CC can handle those events.
Replacing behaviours: A new feature can replace existing
behaviour by specifying new transitions that are enabled under
similar conditions as an existing transition but that have
different actions. This can be be specified using the following
language constructs:
• t2 > F{t1} : ...

specifies that a new transition t2 has priority over an
existing transition t1 in a feature machine F , whenever

both t2 and t1 are simultaneously enabled.
• t2 : override(F{t1})[c] / : ...

specifies a new transition t2 that overrides an existing
transition t1 in feature machine F . An override differs
from a transition priority in that the enabling condition
of t2 implicitly has the same enabling conditions as t1,
but could be strengthened with an additional guard c.

For example, the Headway Control (HC) feature in Figure 3
adds a new transition t2 that overrides transition t6 of CC
whenever a car gets too close to the car ahead of it.

III. COMPOSING FEATURES IN AN SPL

An SPL model is derived by composing the feature machines
and fragments into a single all-inclusive model, with feature
specific behaviour guarded by feature variables.

A. FeatureHouse Integration

We implemented our feature-machine composition using
FeatureHouse [3]. FeatureHouse provides a generic framework
for structural composition of software artefacts. The frame-
work includes the following tools:
• FSTGenerator that automates the generation of a lexical

analyser, a parser, and pretty printer based on a provided
BNF grammar called FeatureBNF. The parser reads an
input model and produces an abstract syntax tree, called a
feature structure tree (FST) [7] for every feature it parses.

• FSTComposer that composes FSTs using superimposi-
tion.

Our inputs to FeatureHouse are feature machines (or feature-
machine fragments) modelled in FORML, and the outputs
are two state-machine models: (1) an intermediate model of
composition that facilitates incremental composition of future
features; and (2) a model of the whole product line with
optional features guarded by presence conditions. The latter
model is suitable for family-based analysis of the product line.
There were some technical challenges that we had to address in
implementing our state-machine composition in FeatureHouse.
These included: (1) expanding fragments and qualifying model
elements to ensure uniqueness of model element names, which
is necessary for superimposition; (2) ensuring that the com-
position result is insensitive to the composition order and (3)
guarding each feature fragment (which could be as small as a
clause within a complex guard condition) with an appropriate
presence condition and ensuring that transition priorities and
overrides are preserved in the composition.
We discuss and address each of these technical challenges in
the rest of this section.

B. Expanding Fragments and Qualifying Model Elements

A feature-machine fragment specifies the extension point
within another feature where it should be attached. This eases
the specification of fragments and avoids duplicating parts of
other feature machines which have already been specified. It
was challenging to create the BNF grammar of fragments
because we had to ensure that superimposition matches the

context of a fragment with the correct extension point of exist-
ing feature. Prior to composition, each fragment is expanded to
ensure this correct matching. The fragment expanded machine
includes only model elements from the extended feature-
machine that is necessary to reach the extension point. For
example feature CC in Figure 2 is a fragment whose context is
state BDS{main.on} from BDS in Figure 1. This fragment
must be expanded into a feature machine which has region
main and state on from feature machine BDS. Other model
elements like state off , regions acceleration, deceleration
and steering from BDS are not necessary in the CC’s
expanded machine, and are not included.
Also in order for superimposition to work in FeatureHouse, all
model element names must be unique, to ensure that model
elements can be easily referenced and extended. The problem
is that different features can introduce elements with the same
name. For example, both features CC and HC introduce a
distinct region main in CC’s engaged state. To eliminate
such name clashes, we pre-process the feature machines and
fragments, and qualify the name of each model element n
with the name of the feature F that introduces it. For instance,
weakening and strengthening clauses are named and qualified
with the name of the feature that introduced them so that they
can themselves be strengthened or weakened. In Figure 2, the
strengthening clause introduced by feature CC is named s1
and can be referenced by another feature as CC{s1}.

C. Superimposition of state-machines

An SPL model is derived by composing feature machines and
fragments using superimposition. Superimposition is the pro-
cess of composing software artifacts of different components
by merging their common substructures.

behaviour-model ::= state-machine+ macro*
state-machine ::= state* initial-state? transition*
state ::= region*
region ::= state+ initial-state?
transition ::= src? dest? (trigger | override-spec)?

targets* condition? action*
action ::= override-spec? targets* condition? WCA?
condition ::= predicate? clause*
clause ::= predicate? clause-type? clause*

Fig. 4. Grammar definition of an FST: nonterminal and terminal symbols are
denoted with different fonts. + denotes one or more, * denotes zero or more,
and ? denotes zero or one repetitions of the preceding syntactic element.

Feature machines and fragments are represented by an
abstract-syntax-tree called feature structure trees (FSTs) [7].
Figure 4 shows a grammar definition of an FST. FST nodes
specify the name and type of a model’s elements, including
state-machines, regions, states, transitions, conditions, etc. An
FST node may be a non-terminal such as a transition, in
which case it represents a composite element whose struc-
ture is exposed as subtrees of the node. The non-terminal
nodes correspond to the extension points of feature modules.
Whereas, a terminal node, such as transition’s triggering event,
represents a model element whose structure is atomic and thus
cannot be extended by a feature fragment.

Fig. 5. Superimposition of FSTs of features BDS (unshaded area with
continuous outline), CC (shaded area without outline) and HC (pattern-
filled area with a dashed outline). FST non-terminal nodes are rectangles
with a dashed outline whereas terminal nodes are rectangles with continuous
outlines. The · · · represents omitted information.

A fragment is located in the FST of the feature that introduces
the fragment. The context of a fragment (i.e. the extension
point in another feature where the fragment is attached)
is mirrored in the fragment FST as a path from the FST
root to the root of the fragment. For example, in Figure 5,
the context of CC’s strengthening clause CC{s1} is the
path BDS{main}.t3.t3: BDS{main} machine, transition
t3 in that machine, guard condition t3 of that transition.
Composition of the feature machines and fragments is the
superimposition of the features’ FSTs. Superimposition of
FSTs is effectively an overlay of the FSTs, where elements
with the same name and type are merged. Figure 5 shows
the superimposition of the FSTs of the feature machines
of BDS and the machine fragments of CC and HC. The
superimposition of a set of (qualified and expanded) feature
machines F ′1 · · ·F ′n is denoted by the expression

F ′1 • · · · • F ′n
where • is the superimposition operator which takes two
feature modules as operands and returns a composed feature
module. The superimposition operator is commutative, which
means that the order in which feature machines are super-
imposed does not affect the results. The superimposition is
also associative, which means that all parenthesizations of the
above expression have the same result. The proofs 2 are based
on the commutativity and associativity of the operations used
to combine model elements that are not merged:
• the union of parallel machines in an integrated model
• the union of concurrent regions in a machine
• the union of states and transitions in a region
• the union of concurrent actions in a single transition
• the conjunction of strengthening clauses in a guard; where

one conjunct is the disjunction of weakening clauses and
the original guard condition of the transition.

If multiple weakening (w1 · · · wn) and strengthening clauses
(s1 · · · sn) extend the same guard condition c, we define a
canonical composition of the guard and clauses as:

2A complete proof is provided in [5].

Fig. 6. SPL model with features BDS, CC and HC. Light-gray and gray areas
represent feature fragments of CC and HC introduced into feature machine
of BDS, respectively.

(c ∨ w1 ∨ · · · ∨ wn) ∧ s1 ∧ · · · ∧ sm
This canonical composition ensures that the set of possible
valuations is insensitive to the order in which the features are
composed.

D. Generating the Product Line Model

The default output of FeatureHouse after superimposing a
collection of FSTs is a 150% model - a composed model for
a product that has all the features in the SPL. We convert
the 150% into an SPL model by guarding each feature-
specific behaviour with a presence condition [8] that makes the
presence of that behaviour conditional on whether its feature
is present in the product. Specifically, a presence condition
is a boolean variable that is named after a feature. Presence
conditions are added to the guard conditions of the transitions
and actions that are introduced by an optional feature. Let F
be an optional feature in an SPL, for which we introduce a
corresponding presence condition F .
• For a transition or action whose guard condition is gc,

the presence condition is added as a conjunct resulting in
a new guard: F ∧ (gc).

How to augment a clause with its presence conditions is
less obvious. Let W be an optional feature that introduces a
weakening clause and S be an optional feature that introduces
a strengthening clause to the above guard gc.
• A weakening clause w (a disjunct) affects its guard only

if its feature W is present and the clause holds:
F ∧ (gc ∨ (W ∧ w)).

• A strengthening clause s (a conjunct) contributes only if
its feature S is present: F → (gc ∧ (S → s)).

The final step is to construct the canonical composition of each
guard condition and its (possibly multiple) clauses. Weakening
and strengthening clauses have lower precedence than the
presence condition of the element they extend3. If a presence
condition P is applied to a condition p (note that p can be a

3Recall the footnote on feature dependencies in Section II-B2: if a feature
P is not present, then the features that introduce extensions to P cannot be
present.

guard condition, or a weakening or strengthening clause) that
is extended by a set of weakening clauses w1...wn (introduced
by W1...Wn, respectively) and a set of strengthening clauses
s1...sm (introduced by features S1...Sm, respectively), the
resulting condition is as follows:
• If p is a guard condition or a weakening clause:

P ∧
[

(p ∨ (W1 ∧ w1) ∨ · · · ∨ (Wn ∧ wn)) ∧
(S1 → s1) ∧ · · · ∧ (Sm → sm)

]
• If p is a strengthening clause:

P →
[

(p ∨ (W1 ∧ w1) ∨ · · · ∨ (Wn ∧ wn)) ∧
(S1 → s1) ∧ · · · ∧ (Sm → sm)

]
For example, in Figure 6 (an SPL model composed of BDS,
CC and HC), if BDS were an optional feature, the canon-
ical composition of t3’s guard (True) and the strengthening
clause introduced by feature CC (not instate · · ·) would have
resulted in the condition

BDS → (True ∧ (CC → (not inState...)))

Since BDS is not an optional feature in this example, there
is no addition of presence condition BDS, resulting in the
expression shown in the figure.

E. Implementation in FeatureHouse

When integrating a new language into FeatureHouse one has
to decide if the merging of terminal nodes is allowed or not.
If the merging of terminal nodes is allowed, composition rules
for each terminal node type should be specified. For example,
in a Java-like language, two method fields (which are terminal
nodes) can be composed by replacing value of one method
field with the value of the other. The issue with such composi-
tion rules is that it becomes difficult to achieve commutativity,
which enables incremental composition. We therefore disallow
the merging of terminal nodes in our composition. During the
superimposition step only nonterminal nodes are merged to
produce a composed FST. The 150% and SPL models are
generated from the composed FST.
Both outputs (150% and SPL models) were implemented
using variants of the Printer class which is responsible for
generating the output of FeatureHouse from the composed
FST. This modified versions of the Printer class rewrite the
conditional expressions of transitions using the rules described
in Section III-D. Running our version of the FeatureHouse tool
therefore generates two outputs: (1) The 150% model with the
canonical composition of clauses but without presence condi-
tions and (2) an SPL model with both presence conditions
and canonical composition of clauses. The first model allows
for incremental composition of future feature machines and
fragments while the second allows for model checking the
whole product line.
Figure 7 depicts FeatureHouse architecture with FORML
integration. The Pre-processor shown in Figure 7 expands
fragments and qualifies model elements to produce the Feature
Modules. The addition of presence conditions and canonical
composition of clauses are implemented in the Printer pro-
cesses. The arrow from the 150% model back to the input of

Fig. 7. FeatureHouse architecture showing FORML integration (shaded
boxes).

FSTComposer indicates that new features can be composed
into an existing composed (150%) model.
We have exercised our tool by using it to construct an SPL
model from feature modules modelling automotive features.
The resulting SPL model was used in a case study to evaluate
some SAT-based model checkers for software product-line
requirements [9].

IV. DISCUSSION

One of the main goals of this work is to support feature-
oriented software development of a software product-line.
With feature modularity, features are modelled separately.
However, the modeller will eventually want to visualize and
(manually or automatically) analyze feature combinations
corresponding to products of the SPL. One simple way to
achieve this is through superimposition, which is essentially
the union of all the features such that each new feature
and its behaviours are added as variations to the original
system. The issue is how to deal with features’ elements that
cannot be unioned (because they represent explicit overrides).
For example, transition conditions cannot simply be unioned
since they may be strengthening or weakening (i.e. overriding)
the same existing condition. One way to address this is by
specifying composition rules for dealing with such elements.
We wanted our composition to be commutative and associative
to enable incremental development. Adding conjuncts and dis-
juncts arbitrarily to an original guard condition is not commu-
tative or associative. To achieve these properties in our feature
composition, we define a canonical composition of clauses
in which all conjunctions have priority over disjunctions,
or vice versa; either priority order results in a composition
that is both commutative and associative. Previously [1], we
used an ordering that matches the operator precedence used
in logic and programming languages. Based on our experi-
ments of using these modelling constructs, we now promote
giving strengthening clauses priority over weakening clauses
– because strengthening clauses typically model resolutions
to known feature interactions, whereas weakening clauses
typically liberalize the enabling conditions of behaviours in
other features. We view resolutions to undesired interactions
as being more critical than liberalizing the enabling conditions
of behaviour. But this hypothesis needs to be tested.
When it came to implementing a tool, we wanted to create a
robust tool which could be implemented within a short amount

of time. But often, the process of implementing a new tool is
time consuming and error prone. For instance, to implement a
tool from scratch that automates the composition of FORML
state-machines, we would need to develop a parser, a composer
and a pretty printer. Instead of manually developing our tools
from scratch, we followed our own recommendation [10]
to extend and adapt existing well-developed standard tools,
by integrating FORML in the FeatureHouse framework. Our
experience with FeatureHouse has been a positive one. One
main challenge we faced was that composition rules could not
be used to implement our canonical representation because the
rules are only for merging terminals and clauses are nonter-
minals (so that they can be extended). Another challenge we
faced initially was the lack of proper documentation on how to
integrate a new language. Also, while FeatureHouse generates
a lot of the tools automatically, there are currently still some
manual tasks (e.g. adding a builder and printer classes and
registering the new language) that from our experience can be
automated.

V. RELATED WORK

Although superimposition has been primarily applied to
code [3], [11], its application to state-machine models has also
been explored in AHEAD-based approaches [12]. However,
all these approaches have limited or no support for explicitly
modelling intended interactions (like priorities and overrides)
in state-machine models which FORML supports. Other ap-
proaches such as DFC [13] and fSMV [14] use composition
order to specify intended feature interactions, and this can
result in unintended behaviour overrides.
Commutative composition has been proposed in other SPL de-
velopment paradigms such as in delta-modelling [15], aspect-
oriented programming [16] and action-based approaches[17].
In the feature-oriented software development paradigm, many
existing approaches typically sacrifice commutativity for the
sake of modelling intended interactions. Our approach is
commutative and still supports explicit modelling of intended
interactions.
Most of the languages currently integrated into FeatureHouse
are programming languages (e.g. Java, C, Alloy, Python and
Haskell) [3]. In [18], the Java Modelling Language (JML) was
integrated into FeatureHouse for generating a metaproduct.
Apel et al. [19] also explored the feasibility and expressiveness
of superimposition as a model composition technique using
FeatureHouse to compose UML class, state, and sequence dia-
grams. Our composition operation simplifies the generic merge
operation defined in the FOSD algebra [7] by excluding the
merging of common terminal nodes. Also the terminal nodes
in our approach are more fine-grained than the terminal nodes
in previous approaches that merge state machines thereby
giving us more compositional expressiveness. Finally our
composition in FeatureHouse is commutative which facilitates
incremental composition of future features.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a technique using FeatureHouse for
incremental and commutative composition of state-machine
models of features, preserving the intended interactions in
the composition. We discussed some of the main challenges
in achieving a commutative composition of state-machines
and our approaches to addressing these challenges. We are
currently investigating family-based analysis of the SPL model
that can be generated from this work. This involves translating
the SPL models into the input language of an existing model
checker and using model checking to detect unintended feature
interactions.

REFERENCES

[1] P. Shaker, J. M. Atlee, and S. Wang, “A feature-oriented requirements
modelling language,” in Requirements Engineering Conference (RE),
2012 20th IEEE International, pp. 151–160, IEEE, 2012.

[2] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in Proc. Int. Conf. on Software
Engineering (ICSE), pp. 335–344, 2010.

[3] S. Apel, C. Kästner, and C. Lengauer, “FeatureHouse: Language-
independent, automated software composition,” in Proc. Int. Conf. on
Software Engineering (ICSE), pp. 221–231, 2009.

[4] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[5] P. Shaker, A Feature-Oriented Modelling Language and a Feature-
Interaction Taxonomy for Product-Line Requirements. PhD thesis,
University of Waterloo, 2013.

[6] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[7] S. Apel, C. Lengauer, D. Batory, B. Möller, and C. Kästner, “An
algebra for feature-oriented software development,” Tech. Rep. MIP-
0706, University of Passau, 2007.

[8] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A
template approach based on superimposed variants,” in Generative Pro-
gramming and Component Engineering, pp. 422–437, Springer, 2005.

[9] S. Ben-David, B. Sterin, J. M. Atlee, and S. Beidu, “Symbolic model
checking of product-line requirements using SAT-based methods,” in
Proceedings of the 37th International Conference on Software Engi-
neering, 2015. to appear.

[10] J. M. Atlee, S. Beidu, N. A. Day, F. Faghih, and P. Shaker, “Recommen-
dations for improving the usability of formal methods for product lines,”
in Proc. of ICSE Workshop on Formal Methods in Software Engineering
(FormaliSE), pp. 43–49, 2013.

[11] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Trans. on Software Engineering, vol. 30, pp. 355–
371, 2004.

[12] S. Apel and C. Kästner, “An overview of feature-oriented software
development,” Journal of Object Technology, vol. 8, pp. 49–84, 2009.

[13] P. Zave and M. Jackson, “A component-based approach to telecommu-
nication software,” IEEE Software, vol. 15, no. 5, pp. 70–78, 1998.

[14] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay, “Symbolic
model checking of software product lines,” in Proc. Int. Conf. on
Software Engineering (ICSE), pp. 321–330, 2011.

[15] D. Clarke, M. Helvensteijn, and I. Schaefer, “Abstract delta modeling,”
in Proceedings of the Ninth International Conference on Generative
Programming and Component Engineering, GPCE ’10, (New York, NY,
USA), pp. 13–22, ACM, 2010.

[16] S. Gélineau, Commutative Composition. PhD thesis, McGill University,
2009.

[17] S. Mosser, M. Blay-Fornarino, and L. Duchien, “A commutative model
composition operator to support software adaptation,” in Modelling
Foundations and Applications, pp. 4–19, Springer, 2012.

[18] J. Meinicke, “JML-based verification for feature-oriented programming,”
Bachelorarbeit, University of Magdeburg, Germany, pp. 2–21, 2013.

[19] S. Apel, F. Janda, S. Trujillo, and C. Kästner, “Model superimposition
in software product lines,” in Theory and Practice of Model Transfor-
mations, pp. 4–19, Springer, 2009.

	MiSE15.Copyright
	MiSE15

