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Abstract

In model-driven engineering, developers express their solu-
tions in domain-specific modelling languages (DSLs) that
support domain-specific abstractions. Big-Step Modelling
Languages (BSML) is a family of extended state-machine
DSLs for creating executable models that have a complex ex-
ecution semantics. In this paper, we present BSML-mbeddr,
which imbeds a large subset of BSML within the mbeddr C
programming environment, thereby extending mbeddr with
language constructs for extended, semantically configurable
state-machines. We also report on three case studies that ex-
ercise the expressiveness of BSML-mbeddr, assess the in-
tegrability of BSML-mbeddr into mbeddr, and demonstrate
the need to provide support for state-machine models with
different execution semantics.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments - Integrated Environ-
ments; D.3.2 [Programming Languages]: Language Clas-
sifications - Specialized Application Languages

Keywords Domain-specific language, State-machine model,
MPS, mbeddr, Language product line

1.

A domain-specific language (DSL) is a language that sup-
ports domain-specific abstractions, which allow domain ex-
perts to express their problems efficiently and effectively.
Extended state-machines are cross-domain DSLs that are
widely applied to interactive and reactive systems in multi-
ple domains, such as network protocols and control systems
of vehicles, elevators, and medical devices. However, mod-
ellers cannot agree on a single semantics for state-machine
modelling languages. In fact, there is ample evidence that
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modellers want to use a wide variety of notations and se-
mantics [18]. Moreover, depending on the domain, it can
be significantly more concise and understandable to model
behaviours in one state-machine semantics versus another
semantics [7]. Modellers need to be able to choose a state-
machine notation, especially semantic features, on the basis
of the domain or even the problem being modelled.

Big-Step Modelling Languages (BSML) [6] is a family
of state-machine modelling languages (e.g., UML StateMa-
chines [16], Argos [14], Statecharts [11], Stateflow [4], etc.).
In BSML, a model reacts to an environment input with a
big-step, which comprises a sequence of small-steps, each
of which represents the execution of a set of transitions. At
the end of a big-step, the output of the model is delivered
to its environment. In previous work by Esmaeilsabzali and
Day [7], the semantic variation points of BSML have been
systematically decomposed into several high-level, mostly
orthogonal aspects, such as whether sets of transitions can
execute concurrently, which variable values are used to eval-
uate expressions, how long events persist in a big-step, what
priorities exist among transitions, and so on. By configuring
the semantic aspects with predefined semantic options, one
can create a wide variety of domain-specific notations.

In this paper, we present BSML-mbeddr: a state-machine
modelling language with hierarchical states, concurrent re-
gions, and configurable semantics, for which support has
been implemented within mbeddr. mbeddr [21] is a DSL
workbench that supports the incremental construction of
modular DSLs on top of the C programming language. By
extending mbeddr with BSML, we have created an envi-
ronment in which the programmer can write normal C code
mixed with interoperable state-machine models. The result-
ing mbeddr program (i.e., mbeddr C plus state machines)
is transformed into C code for execution.

The main contributions of our work are:

* We have built BSML-mbeddr: a non-trivial extension of
the mbeddr ecosystem that allows programmers to create
sophisticated state-machine models within mbeddr.

* We show the feasibility of integrating multiple kinds of
state-machine modelling languages into a programming
language environment, creating an environment where a
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developer can create a program that intermixes C code
with their choice of state-machine model.

* We conducted case studies that evaluate BSML-mbeddr
with respect to its support for big-step semantics, hierar-
chical states and cross-hierarchy transitions, concurrent
regions and inter-region communication, configurable se-
mantics, and code-model interaction and integration.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of mbeddr. Section 3 intro-
duces the syntax of BSML-mbeddr. Section 4 describes the
execution semantics and configurable semantics of BSML-
mbeddr. Section 5 discusses the challenges we have en-
countered. Section 6 describes how BSML-mbeddr has been
tested and evaluated through case studies. Section 7 summa-
rizes related work and Section 8 concludes the paper.

2. Background of mbeddr

BSML-mbeddr is built on top of MPS and mbeddr'. The
JetBrains Meta Programming System (MPS) is a projec-
tional language workbench which provides a suite of lan-
guage tools that support efficient definition, extension and
use of DSLs [17]. In MPS, a language’s structure defines
its abstract syntax. Any inputs from the programmer via
the language’s editor are dynamically interpreted and built
into an Abstract Syntax Tree (AST) that obeys the syntax
rules as defined in the language’s structure. The language’s
generator resembles the code-generation phase of a tradi-
tional compiler — it transforms the abstract syntax into low-
level textual code (i.e., the base language) for execution.
mbeddr [15][21] builds on MPS, by providing support for
C as a base language (mbeddr C). In addition, mbeddr pro-
vides a tool suite that supports incremental construction of
modular DSLs on top of C. By importing the desired DSLs
into an mbeddr program, the developer can write an mbeddr
C program augmented with additional language concepts
and constructs that are native to the problem domain. mbeddr
includes a predefined DSL for basic state machines that have
no concurrency, no inter-machine communication, and a sin-
gle (small-step) execution semantics (Section 7.2, Table 2).

3. Syntax

We first give a light introduction to extended state-machine
models, and then present details about BSML-mbeddr syn-
tax in Section 3.1. A state-machine model contains states,
events, regions and transitions. A state can be simple if it
has no internal structure, or composite if it contains one or
more sub-regions each containing a sub state machine. A
transition represents an execution step in the model from
a source state to a target state. A transition is labelled with
an id, a triggering event, an optional guard condition, and
actions that are performed if the transition is executed; these
are described in detail below.

' We built BSML-mbeddr on mbeddr (nightly-94) and MPS (3.2).
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main on

entry {count_on=count_on+1;}

1 t4: do_trans && —interrupt[true]{
cur_speed=compute(arg);

is_power_on=false;
out(“normal trans”);}

t1: turn_on[is_power_on]

t2: turn_off[true]

t3: interrupt[true]
{fout(“interrupt”);}

(b) State Hierarchy

Figure 1: Illustration of an example model and its corre-
sponding state hierarchy.

Figure 1a® depicts an example state machine that contains
a main region, within which there are two states — state off
and state on. There are transitions between states off and
on that are triggered by events turn_on and turn_off. State
off is a simple state with no internal structure, whereas state
on is a composite state with two concurrent regions r1 and
r2, each of which contains two states as well as a transition
triggered by event do_trans.

Figure 1b represents the hierarchy of states and regions in
the example machine. A transition may cross the boundaries
of states or regions (called a cross-hierarchy transition),
such as the transition 73 from state b2 to state off.

3.1 State-Machine Elements in BSML-mbeddr

Figure 2 illustrates the BSML-mbeddr code for the exam-
ple model in Figure 1. A state machine (Line 1) is the
root node of a state-machine’s state hierarchy; it contains a
main region. A region (Line 2) is a concurrent component
of the full state-machine model. It comprises a sub-machine
that executes concurrently with the sub-machines that reside

2 For space reasons, we have omitted from the model the declarations of
events and variables that are referred in the model.



in sibling regions. Each region contains one or more states,
transitions, local events, local variables and other utility el-
ements. Each region must designate an initial state (Line
2) that specifies the default current state whenever the ma-
chine’s execution enters the region. A state that contains
zero regions is a simple state (Line 17). A state that con-
tains one or more regions is a composite state (Line 18).
Each region contains a sub machine whose elements (states,
transitions, variables) are declared within the region. A ma-
chine’s state hierarchy forms a tree with interleaved layers
of states and regions (Figure 1b) — simple states are leaves
in the hierarchy, whereas regions and composite states are
internal nodes in the hierarchy.

Two states (regions) overlap if they are the same or one
is an ancestor of the other (states on and bl overlap). The
lowest common ancestor of two states (regions) in the
state hierarchy is the lowest node that is an ancestor of both
states (regions) (state on is the lowest common ancestor of
regions r1 and 72). Two states (regions) are orthogonal if
they do not overlap and their least common ancestor is a
state, not a region (states al and bl are orthogonal). The
scope of a transition is the lowest common ancestor — either
a state or a region — of the source and target state (region
main is the scope of t1). The arena of a transition is the
lowest region in the hierarchy that is the ancestor of both the
source and target states (region main is the arena of ¢1).

An event is defined within a region (Line 3-7). The struc-
ture of an event in BSML-mbeddr is similar to that of a func-
tion declaration — it has a name and zero or more typed ar-
guments. Additionally, an event can have an optional bind-
ing to a function that is defined in the environment?. There
are three possible types of events: in-event, out-event, and
internal-event. An in-event (Line 3-6) is expected to be
generated by the environment of the state machine; an out-
event (Line 7) delivers state-machine output to its environ-
ment via a call to a bound function in the environment; an
internal-event is used for private communication among sub
machines inside the model.

A transition (Line 13-15) specifies a trigger event or
conjunction of trigger events, a guard condition, a source
state, a target state, and an optional code block called
action. A trigger event refers to an event declaration. A
guard condition is a boolean expression that can refer to lo-
cal variables and arguments of the triggering event, and can
query the state of the environment. A transition is enabled if
(1) all of its trigger events are present and all negated events
are absent; and (2) the guard condition evaluates to true; and
(3) source state is among the machine’s current execution
states. An action is a list of statements that is executed when
the transition is executed. A state or region may optionally
contain an entry block of statements that is executed every

3 Environment in this paper consistently refers to the mbeddr C environ-
ment that defines normal C functions, global variables, etc., with which the
state machines interact.

1 | statemachine SM {

2 region main initial = off {

3 in event turn_on();

4 in event turn_off();

5 in event interrupt();

6 in event do_trans (double arg);

7 event out(string msg) => handle_out;

8 boolean is_power_on = true;

9 double cur_speed = 0.0;

10 static int count_on = 0;

11 Status status = ON;

12 SM instance;

13 transition tl: turn_on[is_power_on] off —> on;

14 transition t2: turn_off[true] on —> off;

15 transition t3: interrupt[true] b2 — off {

16 out("interrupt");}

17 state off { };

18 state on {

19 entry {count_on = count_on+1;}

20 region rl initial = al {

21 state al { };

22 state a2 { };

23 transition t4: do_trans && —interrupt|[true] al
—> a2 {

24 cur_speed = compute(arg);

25 is_power_on = false;

26 out("normal trans"); }}

27 region r2 initial = bl { ... }}}

28 |}

29 int main() {

30 SM:x ml = sm_start(SM) ;

31 trigger_events (ml);

32 sm_trigger (ml, turn_on());

33 SM:# m2 = sm_start (SM) ;

34 SM var = xm2;

35 trigger_events (m2);

36 sm_trigger(&var, do_trans (2.0), interrupt());

37 sm_terminate(&var) ;

38 sm_terminate (ml) ;

39 return 0;

40 |}

41 | void trigger_events (SM= arg) {

42 sm_trigger(arg, turn_on());

43 sm_trigger(arg, do_trans (2.0));

44 sm_trigger(arg, turn_off());

45 |}

46 | void handle_out(string arg) { printf("%s", arg); }

47 | [isQuery]

48 | double compute(double speed) {

49 // This function is called in an action to conduct

computation or read status of environment.
50 |}
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Figure 2: Code for Example Model and Environment

time its associated state or region is entered. An entry block
(Line 19) or action (Line 24-26) may manipulate local vari-
ables, read arguments of triggering events, call functions,
query the state of the environment, or generate events.

3.2 Language Features

In this section we highlight language features that are in-
troduced by BSML-mbeddr. Usages of language features in
Figure 2 are referred to by line number.

m Event with Arguments An event may have arguments
(Line 6) of primitive type (e.g., boolean, int, double) or
compound type (e.g., struct, enum, state-machine type).
When the event is generated during program execution,
actual arguments must be provided, and their types must
match the declared types. Arguments of a generated event



can be used in the guard condition or the action of a tran-
sition triggered by the presence of the event.

= Event Binding An out-event can be bound to a function
that is called when the event is generated (Line 7). The
number and types of arguments in the event and in the
bound function must match. The bound function might be
an imported library function (e.g., printf, memcpy, free).

m Negation of Triggers A transition may be triggered not
only by the presence of events but also by the absence of
events; the latter is specified by tagging a triggering event
with a negation symbol “—”. For example, the transition
on Line 23 is triggered when event do_trans is present
and negated event interrupt is absent.

m Transition with Multiple Triggers A transition may be
triggered by conjunction of in-events, so that the tran-
sition is enabled only if all of its non-negated triggering
events are present, and all of its negated triggering events
are absent (Line 23).

= Expression Language BSML does not specify a concrete
expression language. To fill the gap, BSML-mbeddr uses
mbeddr C expressions and statements to express actions
in transitions (Line 24-26) and entry blocks (Line 19).
BSML-mbeddr actions can assign values to local vari-
ables, call functions, query the state of the environment,
use control structures (if/while statements), use nested
code blocks, etc.* In addition, language constructs from
other DSLs that inherit from mbeddr C statements can
also be used in BSML-mbeddr actions.

m Cross-hierarchy Transition BSML-mbeddr allows cross-
hierarchy transitions that cross the boundaries of states,
including the proper exit and entry of concurrent regions,
and the execution of a transition’s action and the entry
blocks of states or regions that the transition enters.

m Big-step Start (End) Block A big-step start (end) block
belongs to the environment and it is executed immedi-
ately before (after) a big-step begins. It allows to ac-
cess the status of state-machine models by reading state-
machine variables, and perform any operations that are
allowed in the environment code. It helps improve the in-
tegration of state machines and their environment.

m State-Machine Variable Variables defined in the envi-
ronment code are not accessible inside the state ma-
chines, and vice versa. A state-machine variable can
be static, meaning that it is initialized when the state-
machine instance is created, and its value persists be-
tween entries to its defining state or region. For exam-
ple, static variable count_on (Line 10) is initialized with
value 0, and incremented by 1 each time state on is en-
tered (Line 19), thereby counting the number of times
state on is entered.

4+ We employ static analyses, described in Section 4.3, to prohibit statements
from changing the values of environment variables.
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m Function Call We introduce query functions as a lan-
guage construct to facilitate a state-machine to query
environment variables in the middle of a big-step, Any
function that does not change the status of the environ-
ment can be tagged as isQuery and thus can be called
inside a state machine (e.g., inside a region, action, entry
block, or guard condition). Such functions can be used
to retrieve the current values of environment variables, or
they can be used as helper functions within more com-
plex computations (Line 24).

= Name Scoping A fully qualified name is assigned to each
state-machine element or variable, and the search scope
for variable references is defined modularly. For exam-
ple, the code on Line 19 can access local variables that
are defined in the entry block or in the main region,
whereas variables defined in other entry blocks, actions
and orthogonal regions are not accessible.

m Multiple Instances of a State-Machine Model The mod-
eller is able to create multiple concurrent instances of the
same state-machine model (Line 30 and 33), and may
send environment inputs to each of them without the ma-
chines interfering with each other, as long as the user
keeps bound functions thread-safe (Line 32 and 36).

m Input with Multiple Events An environment input may
contain instances of multiple in-events (Line 36) that sim-
ulate a “combo” action (e.g., a passenger of an elevator
pushes multiple call buttons at the same time). However,
an environment input is not allowed to generate multiple
instances of the same in-event.

3.3 Interaction with Environment

BSML-mbeddr state machines are implemented as first-class
citizens, so that they are defined on par with global variables,
functions, structs, and enums, which form the environment
of state machines®.

Consider the environment code listed in Figure 2, Line
29-50. A state-machine model SM is instantiated and ini-
tialized with an sm_start(sm_ref): launching a thread
for the state-machine instance, creating an input queue for
the machine, and returning a pointer to the machine (i.e., a
sm_handle). Multiple instances of the same machine can
be declared (Line 30 and 33). An sm_trigger(sm_handle,
event, ...) statement (Line 42-44) takes as arguments a
pointer to a state-machine sm_handle, and a set of in-
events; it generates an environment input comprising the set
of in-event instances, and puts the environment input into
the machine’s input queue. A sm_terminate(sm_handle)
statement (Line 37-38) safely terminates a state-machine
instance after all pending environment inputs are processed.

5 This paper describes the result of integrating BSML into mbeddr. Anyone
who is interested in the details of design, implementation, test cases, or case
studies may look at Zhaoyi’s thesis [13] and BSML code base https:
//github.com/z91luo/BSML-mbeddr.



Because variables of a state-machine type are imple-
mented as first-class citizens, they can be assigned to other
variables (Line 34), returned from functions, or passed as
arguments (Line 35). BSML-mbeddr imposes strict con-
straints and type-checking rules to ensure that (1) variables
whose types are different kinds of state-machines cannot be
assigned to each other, nor to variables that are not of state-
machine types; (2) sm_start(sm_ref) can be assigned
only to a variable of type pointer to the same kind of state-
machine type as sm_ref; (3) in sm_trigger(sm_handle,
event, ...), sm_handle must be a pointer to a state-machine
model, and all event arguments must be events declared in
the state-machine model that smn_handle points to; (4) argu-
ments to in-events, if any, must be provided and their types
must match the declared types; and so on.

Delivering output from a state machine to its environment
is achieved through event binding. In our example, event out
is bound to function handle_out() (Line 7), which means
that handle_out() is called whenever event out is generated
and determined to be an out-event®.

4. Semantics

Accept
Input

Determine
Enabled
Transitions

Configurable Semantics
apply to here

Add transition
to result set
if there is no confljct

f E! transitions ,:

Figure 3: BSML-mbeddr Execution Semantics.

For each
transition

@

4.1 Execution Semantics

In BSML-mbeddr, a model’s execution step starts with in-
put from the model’s environment. The model responds with
a big-step, comprising a sequence of small-steps, each of
which executes a set of transitions. Specifically, a big-step
in BSML-mbeddr (shown in Figure 3) starts by accepting
an environment input. Then a sequence of small-steps exe-
cutes. Within each small-step, (1) the set of enabled transi-
tions is identified, (2) the enabled transitions are sorted ac-
cording to their priority, and (3) a maximal, consistent subset
of highest-priority enabled transitions (called the result set)
is deduced through a greedy approach — each enabled transi-
tion, in decreasing order of priority, is considered for inclu-
sion in the result set and is added if and only if the transition
does not conflict with any transition that is already in the
result set, regarding to the semantic configuration. A small-
step ends by executing all transitions in the result set and by

6 Whether an event is determined to be an out-event depends on the semantic
aspect External Output Event (Section 4.2.6).

Deliver
Output
yes
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calculating the new status of the state machine. At the end of
the big-step, the model’s outputs are delivered to the envi-
ronment. If an environment input enables no transitions, then
the result set is empty and the big-step ends without perform-
ing any small-steps. The difference of semantics between
BSML [5] and BSML-mbeddr is that in BSML semantics,
all possible maximal, consistent, highest-priority result sets
are computed, from which one is arbitrarily selected. In con-
trast, BSML-mbeddr computes a single result set. In [13],
we prove that the result set constructed by the greedy pro-
cess of BSML-mbeddr is one of the result sets constructed
by the BSML execution semantics.

4.2 Configurable Semantics

In this section we introduce the configurable execution se-
mantics of BSML-mbeddr in terms of semantic aspects (i.e.,
variation points) and their options. To ease the presentation
of descriptions, we present language syntax in bold, seman-
tic aspects in font Sans Serif, and semantic options in font
SMALL CAP. Unless otherwise noted, the semantic aspects
and options originate from Esmaeilsabzali and Day’s work
on BSML semantic deconstruction [5][7].

We implemented configurable semantics using mbeddr’s
native support for program configuration. Each mbeddr
program has a configuration file, within which the devel-
oper chooses an option for each semantic aspect. BSML-
mbeddr’s generator specifies how executable code is gen-
erated according to the semantic configuration.

4.2.1 Big-step Maximality

The semantic aspect Big-step Maximality determines when a
big-step ends. In option TAKE MANY, a big-step ends when
no more transitions can be executed. In TAKE ONE, an exe-
cuting transition inhibits other transitions in overlapping are-
nas from executing in the same big-step. In option SYNTAC-
TIC, there is a syntactic language feature to tag a state as
being stable: when an executing transition enters a stable
state, no other transitions in overlapping arenas can execute
in the same big-step.

4.2.2 Concurrency

The semantic aspect Concurrency determines whether mul-
tiple transitions can execute in the same small-step. In op-
tion SINGLE, only one transition can execute in a small-step,
whereas in option MANY, multiple transitions can execute in
a small-step.

4.2.3 Consistency

The semantic aspect Consistency applies only if the Concur-
rency option is MANY — it determines which transitions can
execute together in the same small-step. In option ARENA
ORTHOGONAL, the transitions’ arenas must be orthogonal
in order for them to execute in the same small-step; whereas
in option SOURCE-TARGET ORTHOGONAL, the transitions’
source states and target states must be pairwise orthogonal.



Table 1: BSML-mbeddr Semantic Aspects and Options.

Aspect | Semantic Option | Definition
TAKE MANY A big-step ends only when no more transitions can be executed.
An executing transition inhibits other transitions in overlapping arenas from exe-
Big-Step TAKE ONE executing : pping
Maximalit cuting in the same big-step.
y SYNTACTIC When an executing transition enters a stable state, no other transitions in overlap-
ping arenas can execute in the same big-step.
SINGLE Only one transition can execute in a small-step.
Concurrency - — -
MANY Multiple transitions can execute in a small-step.
ARENA . .
Two transitions whose arenas are orthogonal can execute in the same small-step.
Small-Step ORTHOGONAL
Consistency || SOURCE-TARGET | Two transitions whose source states and target states are pairwise orthogonal can
ORTHOGONAL execute in the same small-step.
If an interrupting and its interrupted transitions are executed in the same small-
NON-PREEMPTIVE | step, both their actions are executed. The state machine enters the target state of the
Preemption interrupting transition.
PREEMPTIVE The interrupting and interrupted transitions cannot execute in the same small-step.
PRESENT IN . .
A generated event is present only in the next small-step.
Event NEXT SMALL
ifeli PRESENT IN . .
Lifeline A generated event is present for the rest of the big-step.
REMAINDER
SYNTACTIC In-events (out-events) are determined syntactically.
RECEIVED IN
FIRST SMALL / | An event received in the first small-step is determined to be an in-event. An event
External GENERATED IN | generated in the last small-step is determined to be an out-event.
Input/Output || LAST SMALL
Event An event received at the start of a big-step and never generated in the model is
HYBRID determined to be an in-event. An event generated in the last small-step and not a
triggering event for any transition in the model is determined to be an out-event.
Memory BIG STEP Values of variables are read from the start of the big-step.
Protocol SMALL STEP Values of variables are read from the start of the current small-step.
Priorit EXPLICIT Explicit priority is assigned to each transition.
Y HIERARCHICAL The priority of transition is implicitly inferred from the state hierarchy.
main main : In option NON-PREEMPTIVE, the actions of both the in-
OO O‘//\\O terrupting and interrupted transitions are executed, but the
(@ EEEn— state machine enters the target state of the interrupting tran-
b{p—'o Oprr 1O sition. In option PREEMPTIVE, only one of the transitions is
selected to be executed’. Intuitively, the NON-PREEMPTIVE
(a) (b) option allows the preempted transition to finish its “last

Figure 4: Two ways in which transition ¢ interrupts ¢'.

4.2.4 Preemption

The semantic aspect Preemption applies only if the Concur-
rency option is MANY; it determines whether an interrupting
transition can preempt the interrupted transition. A transition
t interrupts transition ¢’ if their source states are orthogo-
nal, both ¢ and ¢’ are enabled, but ¢’s target state determines
the machine’s next state if selected for execution — either be-
cause ¢ exits t'’s arena (Figure 4a) or because ¢’s target state
is a descendant of ¢'’s target state (Figure 4b)).
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wish” actions, whereas the PREEMPTIVE option does not.

4.2.5 Event Lifeline

The semantic aspect Event Lifeline determines how long
a generated event remains present in a big-step and able
to continue triggering transitions. In option PRESENT IN
REMAINDER, the generated event is present in all future
small-steps of the current big-step. In option PRESENT IN

7Note that the semantics of Preemption itself does not impose any bias
as to which transition is selected to be executed. To impose bias towards
the interrupting rather than its interrupted transition, the modeller may use
negated triggering events or explicit priority.



NEXT SMALL, the generated event is present only in the
next small-step. The modeller may specify a distinct Event
Lifeline option for in-events, out-events, and internal-events.

In addition, BSML-mbeddr supports rendezvous commu-
nication for events that are syntactically tagged rendezvous.
When a rendezvous event is generated, it is present and able
to trigger other transitions only in the same small-step in
which the event is generated®.

4.2.6 External Event

The determination of whether an event is an in-event or out-
event depends on semantic aspects. An event that is neither
an in-event nor an out-event is treated as an internal-event.

For aspect External Input Event, the option SYNTACTIC
applies when the modeller is responsible for tagging in-
events. Option RECEIVED IN FIRST SMALL applies when
in-events are inferred to be those events received at the start
of a big-step (i.e., generated by the environment, or received
from the input queue). In the HYBRID option, an event that
is received at the start of a big-step and is never generated in
any transition or entry block is determined to be an in-event.

For aspect External Output Event, the option SYNTACTIC
treats any event that is syntactically bound to a function as an
out-event. In option GENERATED IN LAST SMALL, events
that are generated in the last small-step are inferred to be
out-events. In the HYBRID option, an event is inferred to be
an out-event only if it is generated in the last small-step and
is not a triggering event for any transition in the model.

4.2.7 Memory Protocol

The semantic aspect Memory Protocol determines which
variables values are used to evaluate guard conditions and
assignment expressions. In option BIG STEP, expressions
are evaluated using variable values from the start of the
big-step; in option SMALL STEP, expressions are evaluated
using values from the start of the current small-step.

4.2.8 Priority

The Priority semantic aspect determines the order in which
enabled transitions are considered for inclusion in the result
set (Section 4.1). The option EXPLICIT applies when the
modeller indicate priority by syntactically assigning a posi-
tive integer to a transition. An unassigned priority is effec-
tively an infinite value, indicating the lowest priority. If two
transitions have the same priority, we use the textual order
of their declarations to resolve nondeterminism — that is, the
transition that is declared first has higher priority.

In option HIERARCHICAL, transition priority is deter-
mined implicitly by the state hierarchy: (1) on the Basis of
the transitions’ SOURCE, TARGET, or SCOPE; (2) according
to a Scheme that gives priority to PARENT or CHILD states or
scopes. For example, our default option is SCOPE-PARENT,

8In BSML, rendezvous communication is supported with the option
PRESENT IN SAME; whereas in BSML-mbeddr, rendezvous is always en-
abled and only for syntactically tagged rendezvous events.
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which gives higher priority to a transition whose scope is the
parent (ancestor) of the scope of other transitions’.

4.2.9 Other Semantic Options

There are three categories of BSML semantic options that
we did not implement in BSML-mbeddr: (1) A few options
require dataflow analysis over a full big-step to determine
if a transition is enabled in a small-step. We deemed these
options to be too computationally expensive to implement.
(2) Combo-steps add further structure to a big-step, such
that a big-step comprises a sequence of combo-steps, each
of which comprises a sequence of small-steps. We omitted
combo-step options from BSML-mbeddr because combo-
steps are rarely used and their semantic options are similar to
already-supported options. (3) Components decompose a
state-machine into encapsulated sub machines that commu-
nicate with each other through interface events and variables.
Because the semantic options for inter-component commu-
nication are similar to the semantic options for communica-
tion among regions, we chose not to implement them.

4.3 Static Analysis

Making use of MPS constraint and type-system language
aspects, we have embedded within BSML-mbeddr a number
of static analyses that aim to ensure that BSML-mbeddr code
is correct by construction. Specifically, static analyses check:

1. Consistency rules on the state-machine hierarchy. For
example, states, entry blocks, state-machine variables,
and transitions can be defined only within their parent
region; and actions can be defined only within transition
or entry-block definitions.

2. Type-checking on state-machines, to ensure that state-
machine instances are used correctly as first-class citi-
zens in the environment code (i.e., are assigned to state-
machine variables of the same type, passed as arguments
to parameters of the same type, addresses of and de-
references are assigned to variables of the correct type,
etc.).

3. Type-checking rules on the arguments of sm_start,
sm_trigger, and sm_terminate, to ensure that state
machines interact with the environment code correctly.

4. Other type-checking rules to ensure that the guard condi-
tions of transitions are of boolean type; the number and
types of arguments of bound functions match those of the
corresponding event declarations; etc.

5. Scope rules on references to declared language con-
structs, to ensure that only those that are visible in the

91If the Basis of one transition is neither a descendant nor an ancestor of the
Basis of the other transition, we resolve the nondeterminism as follows:
the lowest common ancestor of the transitions’ Basis is identified; and
the transitions are prioritized according to the textual order in which the
ancestors of their Basis states or scopes are declared within the lowest
common ancestor.



current scope can be referred to. For example, sm_trigger
can only trigger events that are actually defined in the tar-
get state machine and are determined as in-events.

. Constraints on the expression language, to enforce big-
step semantics. For example, expressions cannot change
environment variables within a big-step. Thus expres-
sions cannot modify global variables, assign values to de-
referenced pointers, or perform self-mutation operations;
and function calls in expressions must be queries.

5. Challenges

In this section we discuss issues we have encountered from
our experiences building BSML-mbeddr. Much of the ac-
tual engineering was done in previous work, in defining the
BSML family and expressing the family’s semantics in terms
of semantic variation points and options. But in order to re-
alize BSML as an executable language, we had to make en-
gineering decisions and fill in gaps, including (1) handling
multiple, simultaneous instances of events; (2) communica-
tion of model outputs to the environment; (3) thread safety;
(4) consistency between BSML syntax and semantic options
(especially when configurations evolve); and (5) construct-
ing a concrete expression language and action language.

5.1 Consistency between Language Features and
Configurable Semantics

When adding a new language feature to BSML-mbeddr, we
must make sure to give it appropriate syntactic and seman-
tic meaning that neither confuses the modeller nor conflicts
with the existing syntax and semantics of BSML. With con-
figurable semantics, we also need to decide whether its se-
mantics shall be fixed or configurable.

For example, we introduce the language feature event
binding to deliver outputs from a state-machine model to
its environment. Before adding this feature, we asked our-
selves: Shall event binding apply to all types of events or
just out-events? A reasonable potential usage for event bind-
ing with in-events would be to trigger environment input — an
in-event is triggered whenever its corresponding bound func-
tion is called in the environment. However, we are not able to
instrument functions imported from libraries in order to im-
plement this. A second question is: If event binding applies
to out-events only, how do we recognize which events are
out-events when aspect External Output Event is not SYN-
TACTIC — that is, when out-events are determined at runtime?
Moreover, if aspect External Output Event is SYNTACTIC,
then there are two means to designate an event as an out-
event — with a syntactic tag or with an event binding. This
might confuse the modellers, given that only the event bind-
ings associated with out-events can be executed.

Our solution is to let event binding be the syntactic nota-
tion that determines whether an event is an out-event. If Ex-
ternal Output Events is SYNTACTIC, then all event-binding
calls are executed because an event with a binding is always
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deemed an out-event no matter when the event is generated.
If External Output Events is not SYNTACTIC, then the only
event-binding calls that are executed are whose events are
determined at runtime to be out-events. This semantics for
event bindings are both consistent with BSML’s External
Output Events semantic aspect, and make sense from the
modeller’s perspective.

5.2 Evolving Semantic Configuration

An obstacle to implementing configurable semantics is to
consider semantic-dependent syntax, given that the config-
uration of semantic options might change during develop-
ment. For example, when semantic aspect Big-step Max-
imality is SYNTACTIC, states can be tagged as stable. If
the modeller changes the option from SYNTACTIC to TAKE
MANY, then the stable tags make no sense and should be re-
moved. Instead of removing the syntax from the model, we
hide stable tags from the user and ignore them during the
code generation. If Big-step Maximality is changed back to
SYNTACTIC, the hidden stable tags will show up again and
take effect during code generation. This helps to reduce loss
of information about semantic-dependent syntax when the
semantic configuration evolves.

5.3 Event with Multiple Instances

BSML-mbeddr allows multiple instances of an event to exist
at the same time. Distinct instances of the same in-event can
be generated within multiple environment inputs, each of
which is put into an input queue and processed by a state ma-
chine with a big-step. For out-events, all event-binding calls
associated with generated out-events are executed at the end
of a big-step. For example, Esterel [2], a member of BSML
family, allows multiple instances of the same out-event to be
generated simultaneously. In Esterel, the modeller can as-
sociates a combination function with each out-event. Si-
multaneous multiple instances of the same out-event result
in the combined execution of the event’s combination func-
tion, instantiated with the arguments of each out-event in-
stance. Because BSML-mbeddr collects all instances of out-
events and calls their bound functions at the end of a big-
step, BSML-mbeddr is able to support Esterel semantics by
storing arguments of each out-event instance (e.g., by stor-
ing them in static or global variables of array type) in the
bound function and combine them in the same way as in a
combination function.

However, multiple instances of the same internal-event
are hard to resolve. The semantic aspect Internal Event Life-
line regulates how long a generated internal-event is present
in a big-step: it may disappear after a small-step without be-
ing processed, or it may remain present in the big-step even
after being processed by a transition. If the latter, and multi-
ple instances of the same internal-event continue to be gen-
erated in the same big-step, which event instances (and ar-
guments) are processed by triggered transitions? In BSML-
mbeddr, we resolve this by retaining at most one instance of



an internal-event. If an internal-event is generated multiple
times in a big-step, then each instance overwrites earlier in-
stances, so that any transition enabled by the internal-event
sees only the latest instance and its arguments.

5.4 Big-step Semantics

In this section we address several issues considering the
regulation of the big-step semantics.

First, BSML requires that the result of a big-step not be
observable by the environment until the end of a big-step.
We use the following strategies to achieve this goal:

* The bound function of a generated out-event is not called
immediately. Instead, we collect all the event-binding
calls and delay their execution to the end of a big-step.

In the state machine, we ban any operation that might
change the status of the environment, including global-
variable references on the left-hand-side (LHS) of an as-
signment, pointer dereferences on the LHS, self incre-
mental or decremental operation on global variables, etc.

A function can be called in a state machine only if it is
tagged as isQuery. A query cannot change the status of
the environment, nor call any function that is not a query.

A state machine cannot directly call any function that is
imported from an external C library. Because the source
code of a library function is not accessible, we cannot
analyze whether the function may change the status of
environment. Thus, to preserve the semantics of a big-
step, we banned such calls.

Second, it is desirable to let multiple instances of the
same state machine run concurrently without the machines
interfering with each other, so BSML-mbeddr maintains sep-
arate copies of the runtime data for each machine instance.
Multiple state-machine instances can call the same query
without interfering with each other, because queries affect
only internal-variables and are thus thread-safe. The problem
raises when multiple state-machine instances may call the
same non-query function through event bindings — function
calls are executed at the end of a big-step and thus consis-
tent with big-step semantics, but may not be thread safe. The
modeller is responsible for keeping bound functions thread-
safe if they are called by multiple state-machine instances.

6. Evaluation
6.1 Correctness

We have tested all implemented semantic options (Sec-
tion 4.2) and all language features (Section 3.2) of BSML-
mbeddr. Each of our test suite has (1) a semantic configura-
tion, (2) one or more state-machine models, (3) environment
code that drives the machines, and (4) statements that check
state machine output against expected value.

A language feature or semantic option may be tested
multiple times in different contexts. For example, cross-
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hierarchy transitions included cases where the target state
is the ancestor or descendant of the source state, as well as
cases where the target state and source state are in orthog-
onal regions; variables were tested with respect to their use
in guard conditions, entry blocks, actions, and assignment
expressions; tests on the semantic option ARENA ORTHOG-
ONAL included cases where two transitions were: (1) arena
orthogonal, (2) not arena orthogonal but source-target pair-
wise orthogonal, and (3) neither source-target pairwise or-
thogonal nor arena orthogonal; and so on.

6.2 Case Studies

We have also conducted three case studies to exercise the ex-
pressiveness of BSML-mbeddr. Our motivation has been to
assess the applicability and integrability of BSML-mbeddr
into the mbeddr C programming environment, and to ver-
ify that the modeller can use BSML-mbeddr to build state-
machine models with various semantic requirements. The
case studies are: (1) a Ground Traffic Control (GTC) sys-
tem [18] which exercises concurrent regions and big-step
semantics; (2) a Dialler System case study, adopted from
example models in BSML [7], which exercises config-
urable semantics, big-step semantics, concurrent regions,
and cross-hierarchy transitions; and (3) a State-Machine
Factory case study that we created ourselves, and exer-
cises the model-environment interactions and integration.
The third case study demonstrates an approach to implement
the synchrony hypothesis in BSML-mbeddr.

6.2.1 Ground Traffic Control

The Ground Traffic Control (GTC) case study is adopted
from the work by Prout [18], originally developed by Bultan
and Yavuc-Kahveci [23]. GTC simulates an airport control
system that receives and sends signals to schedule airplanes
to exclusive access to runways and taxiways that intercon-
nect runways. We select GTC as one of our case studies be-
cause of its complex communications between parallel ma-
chines through shared variables and events, which helps to
exercise the expressiveness of BSML-mbeddr.

GTC schedules the usage of two runways, RW1 and
RW2, and three taxiways TW1, TW2 and TW3 that each
extend from runway RW1 to RW2 to the hanger. The airport
may be used by an arbitrary number of airplanes that may
take off or land on either runway. Arriving airplanes landing
on RW1 must taxi on a taxiway and cross RW2 to reach the
hanger. The following properties must hold for the system:

1. Only one airplane can use a runway at a time.
2. Only one airplane can use a taxiway at a time.

3. An airplane can use runway RW1 (RW2) only if no
airplane is using RW2 (RW1).

. Landing have higher priority than take-off requests.

5. An airplane on a taxiway can cross runway RW2 only if
no airplane is using it.
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Figure 5: GTC Model

6. An airplane can land or take off on RW2 only if no
airplane is on a taxiway.

We model GTC as a state machine with several concur-
rent regions: an Airport Controller, a Taxiway Controller
for each taxiway, and a Runway Controller for each run-
way (Figure 5). The case includes similar models for taxi-
ways TW2, TW3 and runway RW2 (not shown in the figure).
The Airport Controller receives from an airplane a req(act)
event that requests an action (e.g., request to take off, land,
enter a taxiway) and generates an ack(act) event that grants
the action, if the action is safe. The generated ack event trig-
gers transitions in the indicated taxiway or runway machines
over the course of several small-steps; at the end of the big-
step, the airplane is notified to take the requested action.

For semantic options, we chose SYNTACTIC for External
Input/Output Event, and PRESENT IN REMAINDER for their
Event Lifeline. We chose TAKE ONE for Big-step Maximal-
ity and SINGLE for Concurrency, which is simple and under-
standable, yet expressive enough for this model.

The environment code instantiates multiple airplanes and
simulates their concurrent interaction with GTC. For verifi-
cation, we express the properties described previously as as-
sertions that must hold. For example, to verify property 3, in
the entry blocks of states Landing and Takeoff within region
RunwayRW1, we check that runway RW2 is in use. Addi-
tionally, properties 3, 4, and 5 are verified at the end of each
big-step, to make sure that they hold when the state machine
is in a stable state. The original model uses rendezvous
events to keep the Controller and Runways and Taxiways
constantly in sync. In contrast, BSML-mbeddr uses normal
events for inter-region communication, which are sensed in
the next small-step. This semantics ensures that the ma-
chines are in sync and that all properties hold at the end
of a big-step; they may be inconsistent in between small-
steps, but this is not observable by environment. In a second
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version of GTC, we modelled inter-region communications
using rendezvous events in BSML-mbeddr. Specifically, we
changed the ack event in the above model to a rendezvous
event, which results in a model that works correctly as well.

6.2.2 Dialler System

Adopted from Esmaeilsabzali’s thesis [5], the Dialler Sys-
tem case study exercises big-step semantics, hierarchical
states, and inter-region communication. In the Dialler Sys-
tem, a user can dial the digits of a phone number, or simply
redial the previously dialled number. In addition, if the max-
imum concurrent calls are reached, the dialling process is
interrupted. The state-machine model (shown in Figure 6)
contains a state with two regions Dialler and Redialler, and a
state Max that is entered when the limit on concurrent calls is
reached. Region Dialler accepts dialled digits one at a time
(in-event dial(d)) and outputs only the first ten digits out(d)
to establish a phone connection. When the user hangs up the
phone, in-event reset() is generated that triggers ¢ to reset
the status of Dialler and save the previously dialled number
in last_lp. When in-event redial() is received, the Dialler
System dials all digits of the previously dialled number in
a single big-step. Specifically, region Redialler reacts to in-
event redial() by executing t5 and ¢4 that generate dial(d)
for each digit d in last_Ip. Each generated rendezvous event
dial(d) triggers transition ¢ or ¢5 in the same small-step.

The selection of semantic options (shown in Figure 7)
affects the correctness of the model:

* Big-step Maximality is SYNTACTIC, with three states
marked as stable states: Wait ForDial, Wait For Redial,
and Max.

* Event dial is a rendezvous event, so it can trigger transi-
tions in the same small-step in which it is generated. For
example, when dial is generated by transition t5 (¢), it
triggers transition o (t3) in the same small-step.
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GC Memory Protocol SMALL STEP * Preemption is PREEMPTIVE, so that when tg is enabled,
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Priority HIERARCHICAL : SCOPE-PARENT alling/redialling process is aborted.

We have designed test cases that validate that the dialling,

dialling, and limit functionalit k ted.
Figure 7: Dialler System Semantic Configuration reciaiing, anc wmit unctionality Work as expetle

6.2.3 State-Machine Factory

* Concurrency is MANY, which allows multiple transitions The State-Machine Factory case study exercises the way
to be executed in the same small-step, in order to support that state machines interact with their environment. This
the rendezvous semantics. case study also demonstrates how to support the synchrony

* External Input Events is RECEIVED IN FIRST SMALL. hypothesis in BSML-mbeddr, such that a reaction (big-
We do not choose SYNTACTIC because event dial is both step) of the state machine is considered to be atomic.

. : R : : - B
an in-event and an internal event, making it impossible In our model (Figure 8), a state machine SMFactory

to tag it as an in-event. Note that even though dial is is responsible for creating instances of machines Single-
declared a rendezvous event, the in-event dial does not ton and NonSingleton. The environment code creates an
have a PRESENT IN SAME event lifeline because only instance of SMFactory (Line 2), and generates in-events
get_singleton_inst() and get_nonsingleton_inst() to get
instances of Singleton and NonSingleton, respectively (Line
6). SMFactory keeps an instance of Singleton and returns a
reference (Line 21, 23), whereas it creates a new instance
of NonSingleton (Line 28). Note that an environment input

internal-events can initiate rendezvous communications.

* Priority is HIERARCHICAL, with sub-options SCOPE-
PARENT. This ensures that ¢g has higher priority and can
interrupt any transition inside state Dialler'®

10 An alternative is to choose EXPLICIT priority and assign higher priority 1 The scoping rules of mbeddr C allow use before declaration. Thus, the
to tg than to other transitions. use of SMFactory in Line 2 before its declaration in Line 9 is allowed.
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may contain multiple in-events. To ensure that the SMFac-
tory acts atomically (i.e., the SMFactory finishes process-
ing a big-step before the environment code proceeds), we
use a mutex to synchronize interactions between the state
machine and the environment. A mutex is locked before a
sm_trigger() statement (Line 5), as well as before the first
time the returned state-machine instance is accessed (Line
7). The SMFactory releases the mutex to unblock the envi-
ronment code after completing a big-step (Line 30).

7. Related Work

Our work is based on the high-level, systematic deconstruc-
tion of BSML semantics, which covers a more comprehen-
sive range of semantics than previous studies on BSMLs [7]
(e.g., Statecharts variants [22][12], Synchronous languages
[10], Esterel variants [3][20], UML StateMachines [19]).
BSML-mbeddr has a powerful execution semantics which
is regulated by big-steps and small-steps — in each small-
step, the set of enabled transitions and the set of transitions
for execution are determined on the basis of semantic con-
figuration. In contrast, many other state-machine modelling
languages [4][8][15] have simpler execution semantics — the
set of enabled transitions is considered by some order, and a
single transition is executed.

7.1 Semantically Configurable Code Generator

Prout et al. [18] have implemented a prototype of a seman-
tically configurable Code-Generator Generator (CGG) for a
family of state-machine modelling languages. It supports se-
mantic variability based on template semantics and uses pre-
processor directives and conditional compilation to achieve
configurable code generation. CGG supports 26 semantic
parameters, 89 parameter values and 8 composition opera-
tors, but not all combinations of parameter values result in a
consistent semantics definition — configuring CGG’s seman-
tics requires considerable expertise to understand the con-
sequences of the decisions and their interdependencies [18].
In contrast, BSML raises the abstraction level of semantic
deconstruction by decomposing the semantics of the same
family of languages into only 12 mostly orthogonal seman-
tic aspects and around 30 semantic options, which makes the
semantics easier and more intuitive to be configured.

7.2 Code-model Co-development

mbeddr provides support for basic state-machine models
though a predefined DSL mbeddr.statemachine [15]. Sim-
ilar to BSML-mbeddr, mbeddr.statemachine allows a
mixture of code and state-machine models, and provides
event binding and triggering event as methods for commu-
nication between C code and the model. However, they have
a simple execution semantics and no support for concurrent
regions. In Table 2, we provide a comparison of the language
and semantic features supported in both languages.

Umple [1][8][9] is a programming/modelling language
and development environment that supports programming in
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Language Features BSML- | mbeddr
mbeddr | statemachine

Configurable Semantics v’

Concurrent Region v’

Event Binding/Event Argument v’ v’
Input with Multiple Events v’

Transition with Multiple Triggers v’

Negation of Triggers v’
Cross-hierarchy Transition v’

Entry Block v’ v’
Variable v’ v’
Function Call v’ v’
Name Scoping v’ v’
Priority v’

Multiple State-Machine Instances v’ v’
Asynchronous Execution v’

Table 2: Comparison between BSML-mbeddr and
mbeddr.statemachine

code or models, and Umple keeps the two views in sync.
Umple supports multiple modelling notations such as class
diagrams and state machines), and multiple programming
languages such as Java, PHP, and C++. Umple supports most
of UML StateMachines [16] semantics, including events,
signals, guards, transition actions, entry or exit actions, com-
posite states and concurrent states. However, the execution
of Umple state machine is not regulated by big-step and the
execution semantics are not configurable.

8. Conclusion

In this paper, we have introduced BSML-mbeddr: a state-
machine modelling language with hierarchical states, con-
current regions and configurable semantics for which sup-
port has been integrated within the mbeddr C programming
language environment. BSML-mbeddr is a non-trivial ex-
tension of the mbeddr eco-system that allows one to cre-
ate sophisticated state-machine models within mbeddr. We
have shown the feasibility of seamlessly integrating multiple
kinds of state-machine models into a programming environ-
ment, thereby creating a programming environment where
a developer can create a program that intermixes C code
with the developer’s choice of state-machine models. We
have evaluated the correctness and expressiveness of BSML-
mbeddr through tests and case studies.
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