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ABSTRACT
A key objective of self-adaptive systems is to continue to
provide optimal quality of service when the environment
changes. A dynamic software product line (DSPL) can ben-
efit from knowing how its various product variants would
have performed (in terms of quality of service) with respect
to the recent history of inputs. We propose a family-based
analysis that simulates all the product variants of a DSPL
simultaneously, at runtime, on recent environmental inputs
to obtain an estimate of the quality of service that each one
of the product variants would have had, provided it had been
executing. We assessed the efficiency of our DSPL analysis
compared to the efficiency of analyzing each product individ-
ually on three case studies. We obtained mixed results due
to the explosion of quality-of-service values for the product
variants of a DSPL. After introducing a simple data abstrac-
tion on the values of quality-of-service variables, our DSPL
analysis is between 1.4 and 7.7 times faster than analyzing
the products one at a time.

1. INTRODUCTION
An important objective of reconfiguration of a self-adaptive

system is to continually provide optimal quality of service
while operating in a changing environment. We study this
problem in the context of a dynamic software product lines
(DSPL), which are a type of self-adaptive system that have
a set of optional features — units of functionality — that
can be activated or deactivated at runtime. A DSPL has
a large but fixed number of product variants or configura-
tions, which are defined by the set of optional features that
are active. As the environment in which a DSPL is executing
changes, the configuration can likewise change, in order to
maintain optimal quality of service. A DSPL would benefit
from knowing how each of its configurations would have per-
formed (with respect to quality of service) in the recent past,
as input to the decision of whether it should reconfigure and
what the target configuration should be.

Existing approaches maintain and update a model of the
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environment that a self-adaptive system encounters at run-
time, and then periodically analyze — using computation-
ally intensive techniques such as probabilistic model check-
ing — the expected quality of service that each configura-
tion would provide [2, 18]. The efficiency of these analyses
is a major concern as they are performed at runtime and
they analyze a large number of configurations. Researchers
have improved the scalability of these analyses by perform-
ing part of the computation in advance and sharing partial-
analysis results across multiple configurations [9, 19], by
performing an approximate analysis that returns the best
configuration found (so far) after a fixed amount of time
has elapsed [20], and by identifying near-optimal configu-
rations [12]. In contrast, trace checking offers an opportu-
nity to very quickly estimate how each configuration of a
self-adaptive system would have performed over the recent
inputs. Alternatively, other approaches use coarse-grained
models that estimate the impact that each adaptation [3] or
each activation/deactivation of a feature [21] would have on
the quality of service. These simpler models can be analyzed
much faster, however they do not capture how the environ-
ment affects the performance of a self-adaptive systems nor
the interactions between multiple features.

We are interested in improving the efficiency of analyz-
ing all configurations by using trace checking to analyze the
performance (with respect to quality of service) of config-
urations as applied to an observed execution trace. Trace
checking is a lightweight quality-assurance technique that
analyzes a single execution of a software system to deter-
mine whether the system satisfies its requirements in the
observed execution. Trace checking has been applied to es-
timate the quality of service provided by a single software
system in an observed execution trace [11]. However, the
number of configurations of a self-adaptive system increases
exponentially with the number of optional features. There-
fore, we propose a family-based analysis that analyzes all the
configurations simultaneously to speed up the analysis.

We evaluated the efficiency of our family-based analysis
on three case studies taken from the literature. Our basic
family-based analysis of the DSPL is between 1.1 and 5.7
times faster than analyzing each configuration individually
in two out of the three case studies. The quality-of-service
performance of many configurations vary only slightly be-
tween each other, which negatively impacts our family-based
analysis that tries to take advantage of commonalities in the
analysis results among configurations. Thus, we introduce a
simple data abstraction over the values of quality attributes
to facilitate sharing of partial analysis results across different
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configurations, by clustering similar quality-of-service values
together. With the data abstraction, our family-based anal-
ysis is between 1.4 and 7.7 times faster than the analyses of
each configuration individually in all case studies.

The main contributions of this paper are:

• A family-based trace-checking algorithm (and its im-
plementation) that analyzes the quality of service that
each configuration of a DSPL would have provided over
recent system inputs.

• An evaluation of the efficiency of such analysis on three
DSPLs case studies taken from the literature.

• Improvement over our initial analysis by applying a
simple data abstraction over the values of quality at-
tributes, which improves the efficiency of our family-
based trace checking algorithm.

The rest of the paper is organized as follows. In Section
2 we introduce an example DSPL that is used as a running
example throughout the rest of the paper, in Section 3 we
review background formalisms, and in Section 4 we present
our family-based trace checking algorithm. In Section 5 we
present the results of our evaluations and discuss our find-
ings. In Section 6 we describe related work, and in Section
7 we present our conclusions.

2. RUNNING EXAMPLE
As a running example, consider an Unmanned Aerial Ve-

hicle (UAV) that has to satisfy a series of mission requests
that are either searching for a target or delivering a pack-
age to a specified location. This UAV has three optional
features that can be activated or deactivated at runtime to
help it complete its missions: a Global Positioning System
(GPS) that can help it determine its location, a Computer
Vision (CV) subsystem that can aid with navigation, and
an additional Motor (M) that can be activated to provide
additional power.

When the UAV receives a mission to search for a target,
the UAV can navigate towards the target either by relying
exclusively on the computer vision subsystem or by relying
on a combination of the GPS and the computer vision sub-
system. A key objective for the UAV is to minimize the
rate of energy consumption while still successfully complet-
ing its assigned missions. The GPS consumes energy at a
high rate, so the UAV should activate the GPS only when
it is necessary to locate its target. If the environment visi-
bility is good, the computer vision subsystem will suffice to
successfully guide the UAV to its target. If the UAV en-
counters an environment with low visibility, the UAV will
require combining information from both the GPS and the
computer vision subsystem to successfully reach its target.

The UAV can be requested to deliver a package to a spec-
ified location. If the package is heavy, then the UAV may
need to engage the extra motor, but at the cost of consum-
ing more energy. If the package is light, the UAV would
consume less energy by keeping the additional motor idle.

Thus the ideal configuration of the DSPL varies with the
conditions of the the environment.

3. BACKGROUND
In this section we provide an overview of dynamic soft-

ware product lines (DSPLs), techniques for modelling the
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Figure 1: Feature model for an unmanned aerial
vehicle dynamic software product line.
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Figure 2: A weighted featured transition system for
the unmanned aerial vehicle DSPL.

behaviour and quality of service provided by a DSPL, and
tools for analyzing such models. Specifically, we review tran-
sition systems, featured transition systems, weighted fea-
tured transition systems, and trace checking.

3.1 Dynamic Software Product Lines
A dynamic software product line (DSPL) [15] is a type

of self-adaptive system that leverages tools and techniques
from software product-line (SPL) engineering to facilitate
self-adaptation. In the context of DSPLs, a feature is a co-
herent unit of user-visible functionality. A feature can be
either mandatory or optional. A specific software product
variant, called configuration, comprises of mandatory fea-
tures and a selected subset of optional features.

Not all combinations of features are valid software config-
urations. A feature model [16] is used to distinguish between
valid and invalid software configurations. A feature model
is visually represented as a hierarchical tree-like diagram
whose nodes represent the features of an SPL and whose
edges represent dependencies (or constraints) between fea-
tures. Figure 1 shows a feature model for our example un-
manned aerial vehicle DSPL. A white circle indicates that a
feature is optional (e.g., the additional motor feature) and a
black circle indicates that a feature is mandatory (e.g,. the
navigation feature). The black semi-circle below the node
for feature Navigation indicates that at least one of its child
features, GPS or Computer Vision, must be selected in any
product that includes feature Navigation.



Definition 1. A feature model is represented as d = (N, px)
where N is the set of all features and px ⊆ P (N) is a subset
of the power set of N representing all valid configurations.

In traditional software product-line engineering, variabil-
ity is resolved at design time by selecting which of an SPL’s
optional features to include in the product being derived.
In contrast, in a dynamic software product-line, variability
can be resolved and can change at runtime by dynamically
activating or deactivating features. Thus, a DSPL can re-
spond to changes in its execution environment by modifying
its active configuration at runtime.

3.2 Behaviour Models
Transition systems are traditionally used to model and

analyze the behaviour of software systems. A transition
system (TS) contains a set of states of computation and
transitions that capture allowable progressions of execution
from one state of computation to another in response to the
occurrence of actions. A set of initial states represent the
possible starting states of a system’s execution.

Definition 2. A transition system (TS) is a tuple ts =
(S,A, I, T ), where S is a set of states, A is a set of actions,
I ⊆ S is a set of initial states, and T ⊆ S × A × S is a set
of transitions.

Each action is labelled as either a system action (!) or an
environment action (?). An execution π of a transition sys-
tem is an alternating infinite sequence of states and actions,
π = s0α1s1α2 . . ., such that s0 ∈ I and for all execution
steps (si, αi+1, si+1) ∈ π corresponds to some transition in
T .

A transition system models the behaviour of an individ-
ual software product, whereas a software product-line (in-
cluding a DSPL) has many product variants, or configura-
tions. Classen et al. [6] introduce Featured Transition Sys-
tems (FTSs) to model an SPL and the behaviour of all its
configurations in a single model. Each optional feature is
represented by a boolean feature variable, whose value de-
notes whether the feature is activated (true) or deactivated
(false). Thus, a software configuration can be represented
by an assignment of values to all the feature variables. In an
FTS, each transition is annotated with a feature expression
— a propositional formula ranging over feature variables —
that denotes the set of configurations that exhibit that tran-
sition. For example, the feature expression GPS ∧ CV de-
notes all the configurations that include both feature GPS
and feature CV. The set of all propositional formulas rang-
ing over feature variables is denoted B(N). More formally:

Definition 3. An FTS is a tuple fts = (S,A, I, T, d, γ),
where (S,A, I, T ) is a transition system, d = (N, px) is a
feature model, and γ : T → B(N) labels each transition with
a feature expression.

A transition system for a specific software configuration can
then be derived from an FTS model by including only the
transitions whose feature expressions are satisfied by the
configuration’s feature-variable assignment. For example,
a configuration of the UAV that includes only the feature
GPS would exhibit only transitions t1, t2, t5, t6, and t7.

To model the quality aspects of a system, transition sys-
tems (and featured transition systems) have been extended
with weights [1]. Transitions are annotated with a weight

(also called a reward in the context of probabilistic model
checking) that represents the effect of executing a transi-
tion on a quality aspect of interest. For example, the weight
could represent the amount of energy consumed by execut-
ing a transition. The sum of weights in an execution trace
then represents the total amount of energy consumed during
that execution trace. A weighted transition system (WTS)
models the quality of service (for a specific quality) on all
transitions in a single configuration of a DSPL, whereas
a weighted featured transition system (WFTS) models the
quality of service on all transitions in all configurations of a
DSPL. More formally:

Definition 4. A weighted featured transition system (WFTS)
is a tuple wfts = (S,A, I, T, d, γ,W ), where (S,A, T, I, d, γ)
is an FTS and W : T → R is a function that annotates each
transition with a weight value.

3.3 Trace Checking
Trace checking [8, 11] is a lightweight formal-analysis method

that analyzes whether an observed execution trace of a sys-
tem satisfies its functional or quality-of-service requirements.
Trace checking can compute summary statistics, such as sum
or average, about the weights associated with an execution
trace of a weighted transition system [11]. These summary
statistics can represent the quality of service provided by a
configuration of a DSPL (represented by a weighted transi-
tion system) over an observed execution trace. An observed
execution trace can be simulated over different configura-
tions of a DSPL (e.g., different weighted transition systems)
to estimate the quality of service that each configuration
would have provided. However, as the number of configu-
rations of a DSPL grows exponentially with the number of
features of a DSPL, this approach might be too time con-
suming when the number of features of a DSPL is large.

4. APPROACH
In this section we present a family-based algorithm that

estimates the quality of service that each configuration of
a DSPL would have provided over an observed execution
trace. We also extend this approach with data abstraction
to improve its runtime performance.

4.1 Family-based Trace Checking
Different configurations will react to environmental inputs

in different ways — transitioning to different states of com-
putation and exhibiting different qualities of service. Thus
a family-based trace-checking algorithm needs to track how
each configuration’s execution would have progressed with
respect to its sequence of states as well as its its performance
(quality of service). Our algorithm maintains a custom data
structure that tracks for each software configuration the ac-
cumulated reward and system state that would result from
the execution of that software configuration on a sequence
of environmental actions. As the execution of many soft-
ware configurations (over a given trace) can have common
behaviours, our algorithm groups together sets of software
configurations that would result in the same system state
and same accumulated reward.

The custom data structure M records triplets of feature
expressions, system state, and accumulated reward. The al-
gorithm updates the data structure as actions from the ex-
ecution trace are processed. It refines (splits) a tuple when



Alg. 1: Family-based simulation of a DSPL

Procedure Simulate-FTS-Execution(Trace)
1 Input: Trace = s0α0s1, s1α1s2 . . .
2 begin
3 M ← {(s0,>, 0)}
4 for each st = si, αi, si+1 ∈ Trace
5 M ′ ← {}
6 if IsEnvironmentAction (α):
7 for each (s, γ, r) ∈ M, t =(s, β, sdst) ∈ T, αi = β
8 MergeTriplets(M ′, (sdst,γ ∧ γ(t), r +W (t)))
9 else:
10 for each (s, γ, r) ∈ M, t =(s, β, sdst) ∈ T
11 s.t. γ ∧ γ(t) 6|= ⊥ and IsSystemAction(β)
12 MergeTriplets(M ′, (sdst, γ ∧ γ(t), r +W (t)))
13 M ← M ′

14 end
Procedure MergeTriplets (M′, (s, γ, r))

15 begin
16 if ∃ψ s.t. (s, ψ, r) ∈M ′

17 M’ ← M’ \{(s, ψ, r)}
18 M’ ← M’ ∪{(s, γ ∨ ψ, r)}
19 else
20 M’ ← M’ ∪{(s, γ, r)}
21 end

different configurations in its feature expression would re-
sult in different accumulated rewards or system state. For
example, a tuple with feature expression > (representing all
configurations), system state s1, and an accumulated reward
of 0 would be split into two different tuples after processing
action N !: tuple < GPS, s2, 5 > resulting from the exe-
cution of transition t2, which has a weight of 5; and tuple
< CV ∧¬GPS, s3, 2 > resulting from the execution of tran-
sition t3, which has a weight of 2. Similarly, the algorithm
merges tuples if they share the same accumulated reward
and resulting system state after processing an action; the
feature expression in the merged tuple is the disjunction of
feature expressions from the tuples being merged.

Our algorithm is listed in Algorithm 1. It starts by initial-
izing the custom data structure M to contain a single triplet
consisting of the feature expression > (representing all con-
figurations), the initial state, and an accumulated reward of
zero (line 3). The algorithm then sequentially considers each
action in the observed trace and determines the transitions
that it triggers in all configurations.

When an environment action α is encountered (line 6),
the algorithm determines the next state of execution of each
configuration as a result of executing the transitions trig-
gered by the configurations’ current state and the trace’s
environment action. For each tuple < s, γ, r > in M and for
each transition t triggered by action α (line 7), a new tuple is
generated that applies the effects of t. The generated triplet
< sdst, γ ∧ γ(t), r + W (t) >, has resulting state sdst (the
destination state of transition t); feature expression γ ∧ γ(t)
(the conjunction of the tuple’s feature expression γ and t’s
feature expression γ(t)); and accumulated reward r+W (t).
For example, if M comprises two tuples < so, GPS, 10 >
and < so,¬GPS, 6 > when environment action D? occurs
(which would trigger transition t6), then two new tuples
would be generated: < s4, GPS, 10 > and < s4,¬GPS, 6 >
as transition t6 has destination state s4 and a weight of 0.

As we saw in lines 1-8, when the current configuration re-
acts to an environment action α, the algorithm determines
how other configurations react to the same event. In con-
trast when the current configuration executes a system ac-
tion, other configurations may execute different system ac-
tions. Specifically, when the current configuration executes
a system action α (line 9), our algorithm, for each tuple
< s, γ, r > in M (line 10), considers any transition t that
has a matching source state s and whose feature expression
γ(t) is compatible with the tuple’s feature expression (γ)
(lines 10-12), to generate a new tuple (line 12).

After processing an action, the resulting triplets are col-
lected into a new version of M, denoted M ′. The procedure
MergeTriplets is responsible for updating M’ as new tuples
are generated. MergeTriplets verifies whether a given pair
of system state s and accumulated reward r already exists in
M. If it does, then it updates the existing feature expression
associated with them in M (ψ) to a new feature expression
that is the disjunction of ψ and the new feature expression
γ (lines 17-18). If the pair s and r doesn’t already exist in
some tuple in M’, then the algorithm updates M’ to include
the new tuple (s, γ, r) (line 20).

Consider Figure 2, which shows a weighted featured tran-
sition system for our running example unmanned air vehicle
DSPL. The different mission assignments are modeled as
environment actions: T? for a mission to search for a tar-
get and D? for a mission to deliver an object to a specific
location. The responses of the UAV are modeled as sys-
tem actions: N ! for navigating to its target, C! for carrying
an object to its destination, and F ! for following its tar-
get. The weights represent the units of energy consumed
by the execution of each transition. Consider the execution
trace s0,T?,s1,N!,s2,F!,s0 for the configuration exclusively
contains feature GPS.

Our algorithm first processes environment action T?, which
triggers transition t1 that has destination state s1 and a
weight of 0. Thus, the algorithm updates data structure
M to comprise a single tuple that has feature expression >,
representing all configurations, system state s1, and an ac-
cumulated reward of 0: < >, s1, 0 >. The next transition,
s1,N!,s2, contains a system action, so the algorithm identifies
all the transitions that originate from s1, and are compati-
ble with feature expression > – that is transitions t2 and t3.
For each, the algorithm computes a tuple of feature expres-
sion, a resulting system state, and an accumulated reward:
< GPS, s2, 5 > for transition t2 and < CV ∧¬GPS, s3, 2 >
for transition t5. The algorithm attempts to merge these
two tuples, but is unable to do so as they have different sys-
tem states and accumulated rewards. To process the next
action F!, which is a system action, the algorithm identi-
fies all system transitions that either originate from s2 and
are compatible with feature expression GPS, or that orig-
inate from s3 and are compatible with feature expression
CV ∧¬GPS. These are transitions t5 and t4. After the algo-
rithm computes the resulting tuples for those transitions, the
custom data structure M comprises triplets < GPS, 1, 6 >
and < CV ∧¬GPS, 1, 3 >. These result suggest that a con-
figuration that satisfies the feature expression CV ∧ ¬GPS
will consume 50% less energy than a configuration that con-
sists of only feature GPS. We hypothesize that this informa-
tion could be useful to a DSPL to decide whether it would
be advantageous to reconfigure.

We implemented our family-based algorithm by extending



Table 1: Average time taken by product-based, family-based, and abstract family-based trace checking.

System # of fea-
tures

# of con-
figurations

# of
states

Product-based
analysis (s)1

Family-based anal-
ysis (s)1

Family-based analysis
with abstraction (s)1

Tele-Assistance 6 9 51 2.22 ± 0.02 2.56 ± 0.03 1.60 ± 0.02

E-Commerce 7 24 15 4.15 ± 0.36 3.73 ± 0.40 0.54 ± 0.07

Elevator 8 256 217 69.81 ± 31.03 12.33 ± 3.18 12.33 ± 3.18
1mean ± std. dev. The times for

ProVeLines [7], which is a family-based model checker for
software product line models. We extended ProVeLines with
a product-based analysis that performs trace checking on the
execution of each configuration of an SPL individually. The
product-based approach generates each product and then
simulates executing each product over the observed trace.

4.2 Data Abstraction
Family-based analyses typically outperform product-based

analyses, because they can reuse partial analysis results that
apply across multiple products. When analyzing quality-of-
service values, different products might result in quality-of-
service values (accumulated rewards) that differ by small
amounts, which prevent sharing of partial analysis results
across those products. However, for some systems, it may
be acceptable to disregard small differences when making
reconfiguration decisions. We use data abstraction on the
value of transition weights to obtain a faster family-based
analysis. Specifically, we categorize transitions into those
with a high weight (e.g., high-energy consumption in the ex-
ample DSPL) and those with a low weight (e.g., low-energy
consumption in the example DSPL). Our algorithm then
calculates the number of high-weight transitions that each
set of configurations would have executed. Our algorithm is
then able to group two configurations together if they would
have executed the same number of high-weight transitions.

In the above description, we have only considered analysis
of a single quality attribute. Our approach can be extended
to multiple quality attributes by introducing a vector of
weights for each transition. However, when analyzing multi-
ple quality attributes simultaneously aggressive abstraction
would be necessary as otherwise every configuration could
provide a slightly different vector of accumulated rewards.

5. EVALUATION
We assess the efficiency of our analysis technique on three

subject systems taken from the literature: a tele-assistance
system, a small e-commerce system, and an elevator system.
We compare the performance of our family-based algorithm
(with and without data abstraction) against a product-based
analysis that analyzes each configuration individually. We
obtain mixed results for the performance of our family-based
algorithm without data abstraction, whereas with data ab-
straction our family-based algorithm is between 1.4 and 7.7
times faster than the product-based approach in all case
studies. We discuss hypotheses for why our family-based
analyses performs better on some systems than on others.

5.1 Subject Systems
The first case study is a tele-assistance system (taken from

[25]). The tele-assistance system monitors a patient with a
chronic condition to remotely manage his condition. The

system collects vital parameters from the patient and sends
those parameters to a medical-analysis service. Based on
the results of the medical analysis, the system either calls
an alarm service to dispatch help to the patient or main-
tains/modifies the current medication dosage being given to
the patient. Additionally, the system allows the patient to
press a button to call an alarm service. The system can call
three different medical analysis services and three different
alarm services. Each one of those services has a different
cost and cost is the quality of interest. For data abstraction,
we manually partition services (represented by transitions)
into those with a high cost and those with a low cost. We
manually translated a model of this system into a version of
Promela that is extended with support for features [6]. This
system has six features that conform 9 configuration.

A second case study is an e-commerce application taken
from [14]. The application allows users to compare prices of
products found in a local store with prices of those products
on the web and in nearby stores. The application provides
alternative implementations for recognizing the barcode of
products and for determining the location of the user. It
also provides optional features such as sorting results by
distance to the users location. Each implementation of a
feature is annotated with the amount of time it would take
to execute it. For data abstraction, we manually classified
features (represented as transitions) into those that were fast
and those that were slow. We manually translated a model
of this system into a version of Promela that is extended
with support for features [6]. This application has seven
features that conform 24 configurations.

A third case study is a model of an elevator system de-
veloped by Plath and Ryan [23] and extended by Classen
et al. [5]. The elevator has features such as Park, which
sends the elevator to a specific floor when idle, and Shuttle,
which makes the elevator move to its target floor without
stopping. The elevator system exhibits more functional vari-
ability than the other two systems. We use a version of the
elevator system that has two passengers and four floors. We
set the cost of moving the elevator one floor to one unit, so
we do not use any data abstraction in this case study. The
elevator model has eight features and 256 configurations.

5.2 Experimental Setup
We generated 20 random traces for each subject system.

We set the length of the traces at 20000 transitions for the
tele-assistance system and at 150000 transitions for the e-
commerce application. We executed our family-based algo-
rithm, with and without data abstraction, and the product-
based approach 20 times on each trace and recorded the time
taken by each execution.

The elevator system has much more nondeterminism than
the other two systems, so our trace checking has to keep
track of a much larger number of possible system states and



takes a longer time to analyze the system. Thus in the eleva-
tor case study, we used a much smaller trace that consists of
consisting of 10 target floor choices (for each of the two pas-
sengers) — that is, our trace records the floors that each of
the two passengers will request when they enter the elevator.

5.3 Results and Discussion
Table 1 shows the average and standard deviation for the

time taken by our family-based analysis, with and without
data abstraction, and by the product-based analysis for each
one of the three subject systems.

Our family-based trace-checking analysis without data ab-
straction is 5.7 times faster than the product-based anal-
ysis on the elevator system, it is 1.1 times faster on the
e-commerce system, but it is 1.2 times slower for the tele-
assistance system. For both the tele-assistance system and
the e-commerce system, we observe little to no reduction in
execution time for family-based analysis — which is some-
what surprising given the savings observed in other family-
based analyses (e.g., [5, 6]). The elevator’s analysis time has
a large overall standard deviation, but the standard devia-
tion of the time to analyze each individual trace (20 times) is
very low (not shown). Thus, we think each trace causes the
trace checking algorithm to explore a significantly different
number of configurations and states.

In the e-commerce and the tele-assistance systems, every
feature directly impacts the transitions’ weights, and most
transitions exhibit different weights for many configurations.
Thus, most configurations would likely generate different ac-
cumulated rewards for those two systems in the analyzed
traces. In contrast, in the elevator system only transitions
that cause the elevator to move between floors have a non-
zero weight. We observed that for the elevator system many
configurations would share the same accumulated reward in
the analyzed traces. Thus, we hypothesize that the sharing
of accumulated reward values across different configurations
is why our family-based algorithm obtains a large speed-up
on the elevator system, but no or marginal speed-ups on the
other two systems. We hypothesize that our analysis, with-
out data abstraction, will perform well on systems that have
only a few different values for their transition’s weights.

In contrast, our family-based algorithm, with data ab-
straction, performs much better and is faster than the product-
based analysis for all three case studies. We observe that
such algorithm is 1.39 times faster than the product-based
approach for the tele-assistance system and 7.7 times faster
for the e-commerce system (for the elevator system no data
abstraction is possible as weights are already abstracted to
two values: zero versus one).

6. RELATED WORK
A class of approaches [4, 21, 22] associate with each feature

or adaptation a static value for quality of service and a static
value for cost or resource usage. These values apply (or not)
depending on whether (or not) the feature is active in a
configuration. Approach [21, 22] uses a genetic algorithm to
search for an optimal configuration that optimizes for quality
of service within current resource constraints. At runtime,
the availability of resources is monitored, and a change in
resource constraints may trigger a new runtime search for
a more optimal configuration. Approach [24] introduces a
language to model the probabilities and constraints of ac-
tivating/deactivating features at runtime. In contrast, our

models of features record how a feature’s contributions to
quality of service can vary with the features’ behaviour and
actions (i.e., depending on which transitions are executed).
This allows for a more accurate assessment of a system’s
quality that takes into account not only changes of the oper-
ating environment but also changes in the executing system.

In approaches that use rewarded Discrete-Time Markov
Chain (DTMC) models [2, 10, 13], some transition proba-
bilities and rewards are represented as uncertain variables,
which are updated at runtime in response to changes to the
system’s configuration or environment. In [2], a self-adaptive
system periodically updates such a model at runtime and
verifies, using computationally-intensive probabilistic model
checking, whether its quality-of-service requirements will con-
tinue to be met. If not, it exhaustively analyzes each one
of its configurations to reconfigure to the optimal one. [12]
improves such analysis performance by caching previously
seen configurations and preemptively analyzing configura-
tions that will likely be encountered. To reduce runtime
analysis time, [9, 10] compute, at design-time, a single poly-
nomial expression (consisting of constants and variables)
that can represent the quality of service (e.g., reliability,
energy consumption) of any system configuration and envi-
ronment; this expression can be efficiently re-evaluated at
runtime when estimates for the variables’s values are up-
dated. Similarly, Ghezzi et al. [13] model a DSPL as a
sequence diagram (which is transformed to an equivalent
DTMC) where features can introduce new transitions and
are assumed to be independent. They leverage the analysis
of [9] to compute a polynomial for the base DSPL and for
each feature, which allows them to efficiently evaluate the
quality of service of any configuration at runtime. In con-
trast, our work does not assume feature to be independent
and permits transitions to depend on multiple features.

Proactive adaptation [18] uses nondeterminism to model
the latency of each adaptation, the uncertainty about the
future states of the environment, and the choices among the
different adaptations. At runtime, the probabilistic model
checker PRISM [17] is used to decide which adaptation maxi-
mizes the overall utility over a small look-ahead period. For
scalability, [20] adapts an approximate optimization algo-
rithm to find near-optimal configurations much faster. In
contrast, instead of attempting to predict the future, our
approach uses the recent past as a proxy to the environ-
ment’s near-future behaviour and selects the configuration
that would have performed the best in the recent past.

7. CONCLUSIONS
We have presented a family-based trace-checking analysis

that estimates the quality of service that each configuration
of a DSPL would provide. We have assessed the efficiency
of such a family-based analysis on three case studies from
the literature. Without data abstraction, our family-based
analysis is substantially faster than analyzing each configu-
ration individually in only one system. With a simple data
abstraction, the efficiency of our family-based analysis im-
proves substantially and our analysis is between 1.4 and 7.7
times faster than analyzing each configuration individually.

In future work, we plan to study specialized data abstrac-
tions for different quality attributes, including the unique
ways in which a specific type of quality attribute evolves
over time. This way we expect to ease the task of identify-
ing suitable abstractions for quality attributes.
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