
ACM	Copyright	Notice	
© ACM 2019
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Published	in:	Proceedings	of	ACM/IEEE	International	Conference	on	Model	
Driven	Engineering	Languages	and	Systems	-	Demo	Track	(MODELS'19),	
September	2019	

“UCAnDoModels: A Context-based Model Editor for Editing and
Debugging UML Class and State-Machine Diagrams”

Cite as:

BibTex:

DOI: https://doi.org/ 10.1109/MODELS-C.2019.00122

P. Pourali and J. M. Atlee, "UCAnDoModels: A Context-Based Model Editor for Editing and
Debugging UML Class and State-Machine Diagrams," 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Companion (MODELS-
C), Munich, Germany, 2019, pp. 779-783.

@INPROCEEDINGS{8904513,
author={P. {Pourali} and J. M. {Atlee}},
booktitle={2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C)},
title={UCAnDoModels: A Context-Based Model Editor for Editing and Debugging UML Class
and State-Machine Diagrams},
year={2019},
pages={779-783},
doi={10.1109/MODELS-C.2019.00122},
month={Sep.},}

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/275766954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UCAnDoModels: A Context-based Model Editor for Editing and
Debugging UML Class and State-Machine Diagrams

Parsa Pourali
Department of Electrical and Computer Engineering

University of Waterloo, Canada
ppourali@uwaterloo.ca

Joanne M. Atlee
David R. Cheriton School of Computer Science

University of Waterloo, Canada
jmatlee@uwaterloo.ca

ABSTRACT
Practitioners face cognitive challenges when using model editors
to edit and debug UML models, which make them reluctant to
adopt modelling. To assist practitioners in their modelling tasks,
we have developed effective and easy-to-use tooling techniques
and interfaces that address some of these challenges. The principle
philosophy behind our tool is to employ cognitive-based techniques
such as Focus+Context interfaces and increased automation of
modelling tasks, in order to provide the users with valid, relevant
and meaningful contextual information that are essential to fulfil a
focus task (e.g., writing a transition expression). This paper presents
our approach, which we call User-Centric and Artefact-Centric
Development of Models (UCAnDoModels), and discusses two use-
case scenarios to demonstrate how our tooling techniques can
enhance the user experience with modelling tools.

KEYWORDS
User-Centric Software Development, UML Modelling Tools, Mod-
elling Challenges, Focus+Context User Interfaces.
ACM Reference Format:
Parsa Pourali and Joanne M. Atlee. 2019. UCAnDoModels: A Context-based
Model Editor for Editing and Debugging UML Class and State-Machine
Diagrams. In MODELS ’19: EEE / ACM 22nd International Conference on
Model Driven Engineering Languages and Systems (MODELS), September
15–20, 2019, Munich, Germany. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Model-Driven Engineering (MDE) has been proposed to reduce
the complexity of designing software systems by providing tool
supports that facilitate the code generation and early verification of
a system’s design [9]. Key barriers to the adoption of MDE are chal-
lenges in using tools [8][13]. This is partly because tool developers
1) do not systematically analyse users and their tasks to identify
user difficulties, and 2) do not employ human-factors engineering
to improve the tools’ usability. In particular, tools’ features do not
address the modellers’ cognitive challenges, instead usability fea-
tures are based mostly on the model, the meta-model, and their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’19, September 15–20, 2019, Munich, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

properties. This leads to a huge gap between the support that tools
provide and the support that users expect.

Our prior formative study [15] identified information overload
as a major difficulty that modellers face when using model editors.
Modelling languages propose different diagrams to model cross-
cutting concerns of a system. Modellers expect model editors to
assist in dealing with the relevant information that are separated
into different diagrams; but the tools mostly offer navigability fea-
tures rather than understandability features [10]. According to our
formative study [15], an effective model editor should provide fea-
tures to help users with their challenges of remembering and editing
the relevant contextual information (referred to as Context) when
performing editing and debugging tasks (referred to as Focus).

To alleviate the modellers’ challenges, we took a user-centric
approach and developed an Eclipse-based tool to support Feature-
Oriented and Object-Oriented Modelling. Our approach, called
User-Centric andArtefact-CentricDevelopment of Models (UCAn-
DoModels), employs various tooling features (e.g., Focus+Context
[2] interfaces) to edit and debug Feature Models, Feature Class
Diagrams, and Feature Modules (which are enhanced UML State-
Machine Diagrams) according to the Feature-Oriented Require-
ments Modelling Language (FORML)[20]. Please note that our tool
is not limited to FORML; our tool allows UML modellers to develop
precise and analysable UML Class and State-Machine diagrams
without needing to be constrained by the requirements of Feature-
Oriented Modelling. In this paper, we present our model editor
and explain how our tooling features improve the users’ experi-
ence of editing and debugging Feature Models, Class diagrams, and
State-Machine diagrams.

We conducted two user studies to evaluate the effectiveness
of our tool’s features to edit and debug models [16]. The results
showed significant reductions in users’ efforts to edit and debug
Class and State-Machine diagrams, and significant improvements
in users’ experience of using modelling tools.

The rest of this paper is organized as follows. Section 2 provides
an overview of our UCAnDoModels model editor and a description
of our Focus+Context editors. We explain our tool’s capabilities in
the context of illustrative scenarios in Section 3. Section 4 describes
existing tools that are similar to ours and explains how our tool is
different from them. We conclude our work in Section 5.

2 OVERVIEW OF UCANDOMODELS EDITOR
As shown in Fig. 1, our tool is developed using Eclipse-based frame-
works such as the Eclipse Modelling Framework (EMF) [1], the
Graphical Modeling Framework (GMF)[6], Sirius [21], and Xtext[3].
The tool provides graphical editors to edit the model (i.e., Feature-
Model, Class and State-Machine diagrams) based on ourmeta-model

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MODELS ’19, September 15–20, 2019, Munich, Germany Parsa Pourali and Joanne M. Atlee

Table 1: List of focus element with their contextual information.

ID Diagram Focus of User Action Contextual Elements Allowed Actions on
Contextual Elements

FC1

St
at
e-

M
ac
hi
ne

State-Machine Elements (States, Transitions, Regions) Elements in the corresponding Class diagram Search, View, Modify
FC2 Editing transition expressions Elements in the Class diagram Search, View, Modify
FC3 Editing transition expressions Other Transitions in all of the State-Machine diagrams Search, View, Reuse
FC4 Selecting states in State-Machine diagrams Sub State-Machine diagrams View, Open
FC5

Cl
as
s

D
ia
gr
am Editing classes in the Class Diagram Corresponding State-Machine diagram View, Open

FC6 Editing elements in the Class Diagram All the cross-references (i.e., usages) in the model View, Modify
FC7 Editing feature classes in the (Feature) Class Diagram Feature-Model (feature-tree) View, Modify
FC8

Fe
at
ur
e

M
od

el Editing feature nodes in the Feature-Model Corresponding State-Machine diagram View, Open
FC9 Editing feature nodes in the Feature-Model Relevant elements in the Class diagram View, Modify

FC10

A
ll
/

O
th
er Creating new State-Machine diagrams Existing State-Machines View, Reuse

FC11 Debugging an erroneous model All the inconsistencies in the model View, Modify

(i.e., FORML grammar [20]), which is implemented in Xtext. The
Xtext engine generates a feature-rich textual editor that provides
useful and usable features such as syntax-highlighting, Content-
Assist, and displayed errors and warnings. To improve on these
features, we have extended the Xtext engine with our Distance-
Based Model-Assist, which reports additional errors and warnings,
and enhances the Content-Assist.

Our contributions are highlighted in yellow in Fig. 1, which
are Focus+Context Editors, Distance-Based Model-Assist, Model
Observer, and Consistency Manager.

2.1 Focus+Context Interfaces
A Focus+Context interface, in general, allows users to concur-
rently perform a focus task while viewing and/or editing the rel-
evant information to the task (i.e., context) [2]. The main goal is
to alleviate user’s navigation through several diagrams to locate
specific information relevant to her current task.

Accordingly, our Focus+Context interfaces aim to alleviate the
challenges of remembering contextual information when editing
and debugging models. Table 1 shows a list of focus elements or
tasks, the diagrams in which they exist, the contextual information
relevant to the focus elements, and the type of actions that the user
can perform on the contextual information. For instance, FC2 refers

Figure 1: Overall architecture of our UCAnDoModels editor

Figure 2: Our Focus+Context Transition Editor

to viewing and modifying the model elements in the Class diagram
when editing a transition expression, as these model elements are
among the vocabulary used to write precise transitions. The main
purpose of FC2 is to help modellers to recollect the elements to be
used in the transition expression without needing to switch back
and forth among different diagrams.

For example, we developed a Focus+Context Transition Editor
(see Fig. 2) that eases the modeller’s task of editing a transition
expression, by helping the modeller recall, understand, and edit
the related contextual information. The main five sections of the
editor (which are outlined by red boundary boxes in the figure)
are: 1) Left section: displays and allows users to edit (and create)
the classes in a Class diagram as well as their relationships (i.e.,
associations), 2) Middle section: displays and allows users to edit
the properties (i.e., attributes and operations) of a selected class
from the Left section, 3) Top section (search-bar): allows users to
search for an intended element, 4)Upper-Right section: the focus
section where the user expresses the event, guard, and actions of the
transition currently being edited, and 5) Bottom-Right section:
allows the user to search and reuse the event, guard, or actions from
other transitions when editing the transition in the focus section.

A Focus+Context based UML Model Editor MODELS ’19, September 15–20, 2019, Munich, Germany

Table 2: List of Head and Tail Actions

Head Action Tail Action(s)
Create a new model element Generate/Set a unique name for it
Create new Region r1 Create new Initial Pseudo-State in

r1
Create new Initial Pseudo-State
si in r1

Create new State s1 in r1 and create
a transition from si to s1

Use an undefined operation or
attribute in a State diagram

Define the missing Operation or At-
tribute in the Class diagram

Move a Class attribute or ele-
ment to another Class

Update moved element’s navigation
paths to the new navigation paths.

2.2 User-Interactive Consistency Management
The Model Observer continuously listens to the model and notifies
the Consistency Manager if any of the consistency rules (predefined
in the tool) are violated as a result of a model edit. The Consistency
Manager uses three types of error-resolution techniques, namely
Auto-Fix,Quick-Fix, and Interactive-Fix. Auto-Fix is used when
there is only one predefined fix for an inconsistency (e.g., renaming
an element should be propagated to all its uses). Quick-Fix is used
when the Consistency Manager finds a small number of predefined
fixes for an inconsistency (e.g., if state S1 in a State-Machine is not
connected to any other state, the user is prompted to either delete
S1, or select another existing state to connect with S1). Interactive-
Fix is used in more complex situations that require the modeller
to intervene, such as the inconsistency introduced by deleting an
attribute that is referenced in other parts of the model.

2.3 Auto-Completion
The Model Observer not only helps to maintain model consisten-
cies, but also performs a modeller’s next edit in predefined situa-
tions, either automatically or by offering a set of options to select
from. This limited form of auto-completion is performed based
on well-formedness and semantic-correctness rules. For each auto-
completion rule, we define an atomic Head Action followed by one
or more Tail Actions. The Head Action is a change to the model that
is initiated by the modeller. The Model Observer listens for Head
Actions; when one occurs, it automatically triggers one or more
corresponding Tail Action(s). For example, if the modeller moves
an operation from a class to another class, the tool automatically
updates all the navigation paths (e.g., guard expressions) that use
the element to the new navigation path expression. In Table 2, we
present a few Head and Tail Actions as examples of our rules.

3 ILLUSTRATIVE SCENARIO
In this section, we present scenarios showing a user’s experience
in editing and debugging of a model for a parking lot system. Due
to the lack of space, this paper discusses only two scenarios that
cover the most-important interfaces of our tool, namely FC2, FC3,
and FC11. Interested readers can refer to our paper [16] for a more
comprehensive description of our tool’s features.

3.1 Illustrative Application
Consider that a model of the parking policies at a gated Parking Lot.
The parking lot provides surface-level parking for customers (for

Figure 3: Partial Class diagram for the Parking Lot system

a fee) and a free underground parking level for employees. Four
gates (labelled A,B,C,D) control access to both levels of parking.
Employees’ cars have transponders that the gates can sense. Some
gates open only for cars that have valid transponders. Each of the
gates closes 5 seconds after it opens, unless a blockage is detected,
in which case it waits for another 5 seconds. A partial Class diagram
of the parking lot system is shown in Fig. 3.

3.2 Scenario A
In Scenario A, the modeller needs to set the event, guard condition,
and actions of a transition expression based on the following de-
scription:
To open Gate B, the system checks if the approaching car has a
transponder and that the transponder is valid (e.g., not expired). If the
conditions are met, the gate’s position should be set to open. Moreover,
the system needs to keep track of the number of cars that have passed
through the gate. For this purpose, the gate should have a counter vari-
able which is incremented by one every time the gate opens. To specify
the action requirements, the modeller needs to create a GateCounter
class which has an increaseCounter operation.

The following is a step-by-step explanation of how a user per-
forms the above edit.

Step (1). Suppose that the modeller wants to specify the tran-
sition’s triggering event using the Sensor class’s operation that
checks whether an approaching car has a transponder, namely Sen-
sor.transponderSensed(). Our interface offers two ways of doing this
to accommodate different user preferences (e.g., “keyboard-” vs.
“mouse-” oriented preferences):

i. The modeller edits the Event text-field in the Upper-Right
section: 1) user presses the Control+Space keys to invoke
Content-Assist, 2) user starts typing the name of the in-
tended element (i.e., Sensor...), 3) Content-Assist proposes
(and continuously updates) valid model elements that can be
used as a triggering event, and 4) user selects the intended
element from the proposed list.
To help modeller find an intended element faster, our Distance-
Based Model-Assist [16] employs an Association-based ranking
mechanism to sort the proposed elements based on their associ-
ation distance to the class whose State-Machine model is being
edited. The elements are ranked as follows: 1) elements of the
current class, 2) elements of the super-classes, 3) elements of the
directly associated classes, 4) elements of the indirectly associ-
ated classes, 5) elements of indirectly associated classes, and 6)
elements of non-related classes. Furthermore, if the modeller

MODELS ’19, September 15–20, 2019, Munich, Germany Parsa Pourali and Joanne M. Atlee

types in only a part of the element’s name, the editor uses the
Levenshtein edit-distance algorithm [11] to find the elements
throughout the model that have similar names to what the user
has typed, and the user selects among the listed elements. This
feature is especially useful when the user is unable to recall
the exact name of an element, such as when modelling a large
complex system.

ii. Alternatively, the user can select the Sensor class from the
list of available classes shown in the Left section, to view
its attributes and functions in the Middle section. By doing
so, the user can then see the transponderSensed operation in
the Middle section. This assumes that the modeller recalls
that the Sensor class offers transponderSensed operation. If
the modeller cannot recall the Sensor class, then she can use
the Top section (search bar) to search for the transponder-
Sensed element in the model, and if found, the tool displays
and highlights the element in the Middle section. The user
then drags the transponderSensed operation from the Mid-
dle section and drops it into the Event text-field. The tool
automatically parses the dropped element and assigns it to
the transition’s event. The user can use analogously drag-and-
drop to set other parts of the transition (i.e., guard or actions),
as well.
The tool offers multiple capabilities to keep the modeller from
having to search through an extensive list of all available
classes: 1) the search bar finds potential intended elements
based on a partial name, and 2) Distance-Based Model-Assist
ranks the model’s classes in the Left section based on their rela-
tionship to the current class. The intuition behind this ranking
is that the modeller is more likely to use the elements of an
associated class than the elements of a non-associated class.
In this example, the Sensor class has a (direct) composition
relationship with the Gate class, so the user easily finds the
Sensor class in the list of Direct Relationship classes.

Step (2). Next, the modeller sets the guard expression to check
that the car’s transponder is valid. In addition to the discussed above
ways of setting a transition’s event, guard, or action segments, our
interface allows the user to reuse text from other transitions in
the model. In the Bottom-Right section of the interface, the user
looks for an existing transition based on its name, containing State-
Machine’s name, triggering event, guard expression, or action. In
our scenario, the modeller can simply search for “transponder”. As
shown in Fig. 2, the name is found in transition tran3 in the State-
Machine SM_ExitGateD. Finally, the user clicks on the Use button
that corresponds to the Guard text box, and the tool automatically
copies tran3’s guard expression to the current transition’s guard.

Step (3). The action includes two sub-actions: 1) set the gate’s
position to up, and 2) increase the counter. For the first sub-action,
a modeller simply drags the gate’s position attribute and drops it
into the Action text-field. The editor then automatically creates an
assignment statement and places the attribute into the Left-Hand-
Side (LHS) of the statement (i.e., “Gate.position=”). The editor then
uses the Distance-Based Model-Assist to provide the user with a
prioritized list of possible elements and values that can be assigned
to the Right-Hand-Side (RHS) of the assignment based on the type of
the position attribute. GatePos enumeration literals UP and DOWN

Figure 4: Our User-Interactive Fix Interface

top the list, and the user selects UP. The editor analogously assists the
user when they drop an attribute or operation into the guard text-field,
to complete a conditional expression.

With respect to the second sub-action, the modeller needs to
create a GateCounter class and increaseCounter operation in order
to specify an action that increments a counter. For this, the user
creates a new class by entering the name GateCounter in the text
box located on the Bottom-Left side of the editor and clicking on
the Create New Class button. By default, the newly created class is
assigned to the No Relationship category; the user drags the newly
created class and drops it into the list of Direct Relationship classes
in order to create an association link between the current and new
classes. Afterwards, the user creates the increaseCounter operation
in the GateCounter class by using the text box and the create button
in the Middle section. Using the same steps a user can create a new
attribute for a class.

3.3 Scenario B
In Scenario B, the modeller needs to resolve inconsistencies that
are introduced into the model as a result of her edits.
The user removes the Gate’s id attribute. As a result of this deletion, the
modeller is expected to resolve the inconsistencies that are introduced
to various diagrams that use the id attribute.

We discuss the user experience in debugging models as follows.
Step (1). The user deletes the id attribute from the Gate class.

As the id attribute is used in other diagrams, the Model Observer
detects the uses of an undefined id attribute and notifies the Con-
sistency Manager to handle the inconsistencies.

Step (2). The Interactive-Fix pops up our Interactive-Fix Consis-
tency Management interface. In the Top Left section of the interface
shown in Fig. 4, the editor lists all of the inconsistent elements in
a hierarchical (tree-style) view, where the leaf nodes of the hier-
archy identify all of the inconsistent elements and the root nodes
identify the diagrams containing the inconsistent elements. For
instance, Fig. 4 shows that deleting the id attributes introduces
inconsistencies to three guard elements in three different State-
Machines diagrams: Feature-Module GateA, Feature-Module GateB,
and Feature-Module GateC. The main goal of using a hierarchical
view is to inform the modeller about all of the model elements that
play a role in the inconsistency.

Step (3). The modeller selects a resolution action for each incon-
sistency by using the Action-To-Do menu. The modeller can select

A Focus+Context based UML Model Editor MODELS ’19, September 15–20, 2019, Munich, Germany

to either edit the elements that use the id attribute (e.g., rewrite the
guard conditions), delete the erroneous guard elements, or just delete
the guards’ parent transitions. Based on the type of action, an icon of
Delete or Edit will be shown beside the edited lead node.

Step (4). The user chooses to edit the first inconsistent guard,
which bring up a feature-rich textual editor on the right side of the
interface. In addition to the textual representation, the modeller can
view the graphical diagrams and edit the elements graphically by
selecting the “View Graphical Editor on Edit Action” located below
the textual editor.

Step (5). After addressing all of the inconsistencies, the user
clicks on the Apply Changes button to apply all the resolutions. If
the user clicks on the Cancel button, the model will revert back to
latest correct state (i.e., before deleting the id attribute).

4 SIMILAR TOOLS
Many UML model editors [4, 5, 7, 12, 14, 17–19] ease the editing
and debugging of models by proposing artefact-centric techniques,
rather than by considering the human user in the loop (i.e., user-
centric techniques). For example, Capella [19], MagicDraw [7], and
VisualParadigm [14] are proficient model editors which (in general)
aggregate and augment the most useful features of other similar
editors and adequately address modellers’ concerns regarding ex-
pected usefulness. Although these tools provide various graphical
and textual widgets that improve usability, they do not explicitly
design their editors to target and alleviate the users’ cognitive chal-
lenges. For instance, MagicDraw and VisualParadigm only allow
the modeller to write a transition’s guard expressions as plain text,
which is very error-prone when referring to model elements with
complex navigation path names. Capella provides a Content-Assist
to help the modeller choose among the available model elements
when developing guard expressions; however, its Content-Assist
proposes an exhaustive list of all the model elements, which is
cumbersome to search through.

MDE editors should balance artefact-centric approaches (i.e.,
techniques that mostly consider the properties of the model and the
meta-model) required by MDE tools and user-centric approaches
that are needed and expected by modellers. That is, tool vendors
need to paymore heed tomodellers, and avoid designing tools based
only on the written standards and specifications. For instance, based
on UML specifications, the structural and behavioural aspects of
a system should be specified in separate diagrams (for the sake of
separation of concerns). Most of tools do not tackle the problem of
information that is separated in different diagrams, requiring the
modeller to search back and forth amongst different diagrams to
find a piece of information. However, the relationships between
diagrams also need to be captured in the separate diagrams. It is
crucial that the tools assist modellers in fetching and understanding
these inter-related information.

5 CONCLUSION
We described our tool which facilitates the development of Feature-
Oriented and UML-like models by employing and balancing the
user-centric and artefact-centric techniques. The rationale behind
our tool is to alleviate the cognitive challenges of modellers when

remembering the contextual information that is relevant to per-
forming a particular task. Furthermore, our tool generally aims to
reduce the cognitive efforts of developing models of formal lan-
guages by applying semi-automated repairs and auto-completions
in the course of (formal) modelling. We believe that the proposed
techniques provide insight for tool vendors into how to improve the
usability and utility of model editors, by employing human-centric
features that reduce users’ cognitive challenges.

REFERENCES
[1] Stefan Berlik. 2007. Eclipse Modeling Framework. Addison-Wesley. 1–14 pages.
[2] Andy Cockburn, Amy Karlson, and Benjamin B Bederson. 2009. A review of

overview+ detail, zooming, and focus+ context interfaces. ACM Computing
Surveys (CSUR) 41, 1 (2009), 2.

[3] Sven Efftinge and Markus Völter. 2006. oAW xText: A framework for textual
DSLs. InWorkshop on Modeling Symposium at Eclipse Summit, Vol. 32. 118.

[4] Miguel a. Garzon, Hamoud Aljamaan, and Timothy C. Lethbridge. 2015. Umple:
A framework for Model Driven Development of Object-Oriented Systems. In
2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). 494–498. https://doi.org/10.1109/SANER.2015.7081863

[5] Sébastien Gérard, Cédric Dumoulin, Patrick Tessier, and Bran Selic. 2007. Pa-
pyrus: A UML2 tool for domain-specific language modeling. In Proceedings
of the International Dagstuhl Conference on Model-Based Engineering of Em-
bedded Real-Time Systems (MBEERTS’07). Springer-Verlag, 361–368. https:
//doi.org/10.1007/978-3-642-16277-0_19

[6] Markus Herrmannsdoerfer, Daniel Ratiu, and Guido Wachsmuth. 2009. Language
evolution in practice: The history of GMF. In International Conference on Software
Language Engineering. Springer, 3–22.

[7] No Magic Inc. 2013. Magicdraw, UML. (2013).
[8] Rodi Jolak, Truong Ho-Quang, Michel RV Chaudron, and Ramon RH Schiffelers.

2018. Model-Based Software Engineering: A Multiple-Case Study on Challenges
and Development Efforts. In Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems. ACM, 213–223.

[9] Stuart Kent. 2002. Model Driven Engineering. In International Conference on
Integrated Formal Methods. Springer, 286–298.

[10] Mik Kersten. 2007. Focusing knowledge work with task context. Ph.D. Dissertation.
University of British Columbia.

[11] V. Levenshtein. 1965. Binary codes capable of correcting spurious insertions and
deletions of ones. Problems of Information Transmission 1 (1965), 8–17.

[12] Andreas Muelder. 2011. Yakindu Statechart Modeling Tools.
[13] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty HC

Cheng, Philippe Collet, Benoit Combemale, Robert B. France, Rogardt Heldal,
James Hill, et al. 2014. The relevance of model-driven engineering thirty years
from now. (2014), 183–200.

[14] Visual Paradigm. 2013. Visual paradigm for uml. Visual Paradigm for UML-UML
tool for software application development (2013), 72.

[15] Parsa Pourali and JoanneMAtlee. 2018. An Empirical Investigation to Understand
the Difficulties and Challenges of Software Modellers When Using Modelling
Tools. In Proceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. ACM, 224–234.

[16] Parsa Pourali and Joanne M Atlee. 2019. A Focus+Context Approach to Alleviate
Cognitive Challenges of Editing and Debugging UMLModels. In Proceedings of the
22th ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems. IEEE.

[17] Steffen Prochnow and Reinhard von Hanxleden. 2007. Statechart Development
Beyond WYSIWYG. InModel Driven Engineering Languages and Systems. Lecture
Notes in Computer Science (LNCS), Vol. 4735. Springer Berlin Heidelberg, 635–
649. https://doi.org/10.1007/978-3-540-75209-7_43

[18] Jason E. Robbins and David F. Redmiles. 2000. Cognitive support, UML adherence,
and XMI interchange in Argo/UML. Information and Software Technology 42, 2
(2000), 79–89.

[19] Pascal Roques. 2016. MBSE with the ARCADIA Method and the Capella Tool. In
8th European Congress on Embedded Real Time Software and Systems (ERTS 2016).
Toulouse, France. https://hal.archives-ouvertes.fr/hal-01258014

[20] Pourya Shaker, Joanne M. Atlee, and Shige Wang. 2012. A feature-oriented re-
quirements modelling language. In 20th IEEE International Requirements Engineer-
ing Conference, RE 2012. IEEE, 151–160. https://doi.org/10.1109/RE.2012.6345799

[21] Vladimir Viyović, Mirjam Maksimović, and Branko Perišić. 2014. Sirius: A rapid
development of DSM graphical editor. In INES 2014 - IEEE 18th International
Conference on Intelligent Engineering Systems, Proceedings. IEEE, 233–238. https:
//doi.org/10.1109/INES.2014.6909375

https://doi.org/10.1109/SANER.2015.7081863
https://doi.org/10.1007/978-3-642-16277-0_19
https://doi.org/10.1007/978-3-642-16277-0_19
https://doi.org/10.1007/978-3-540-75209-7_43
https://hal.archives-ouvertes.fr/hal-01258014
https://doi.org/10.1109/RE.2012.6345799
https://doi.org/10.1109/INES.2014.6909375
https://doi.org/10.1109/INES.2014.6909375

	MODELS19Tools.Copyright
	MODELS19Tools
	Abstract
	1 Introduction
	2 Overview of UCAnDoModels Editor
	2.1 Focus+Context Interfaces
	2.2 User-Interactive Consistency Management
	2.3 Auto-Completion

	3 Illustrative Scenario
	3.1 Illustrative Application
	3.2 Scenario A
	3.3 Scenario B

	4 Similar Tools
	5 Conclusion
	References

