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Abstract

Used for simple voice commands and wake-word detection, keyword spotting (KWS) is
the task of detecting pre-determined keywords in a stream of utterances. A common imple-
mentation of KWS involves transmitting audio samples over the network and detecting tar-
get keywords in the cloud with neural networks because on-device application development
presents compatibility issues with various edge devices and provides limited supports for
deep learning. Unfortunately, such an architecture can lead to unpleasant user experiences
because network latency is not deterministic. Furthermore, the client-server architecture
raises privacy concerns because users lose control over the audio data once it leaves the
edge device. In this thesis, I present Honkling, a novel, JavaScript-based KWS system.
Unlike previous KWS systems, Honkling operates purely on the client-side—Honkling is
decentralized and serverless. Given that it is implemented in JavaScript, Honkling can be
deployed directly in the browser, achieving higher compatibility and efficiency than the ex-
isting client-server architecture. From a comprehensive efficiency evaluation on desktops,
laptops, and mobile devices, it is found that in-browser keyword detection only takes 0.5
seconds and achieves a high accuracy of 94% on the Google Speech Commands dataset.

From an empirical study, the accuracy of Honkling is found to be inconsistent in prac-
tice due to different accents. To ensure high detection accuracy for every user, I explore
fine-tuning the trained model with user personalized recordings. From my thorough exper-
iments, it is found that such a process can increase the absolute accuracy up to 10% with
only five recordings per keyword. Furthermore, the study shows that in-browser fine-tuning
only takes eight seconds in the presence of hardware acceleration.
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Chapter 1

Introduction

Ranging from simple voice commands to virtual assistants, automatic speech recognition
(ASR) systems are becoming increasingly prevalent in our daily lives; for example, they
enable us to dial contacts while driving or search for a recipe while cooking. Due to
the complexity of speech recognition, current ASR systems transmit transcribed audio to
perform speech recognition in the cloud. Unfortunately, such a client-server architecture
has a major drawback. Since network latency is an unpredictable measure, transmitting
an audio block makes the response time of the system non-deterministic [54, 45]. Also,
the privacy and security implications are significant: servers may be accessed by other
people, authorized or not [59]. Thus, ASR systems often use keyword spotting (KWS) on
edge devices to capture the user’s intention for interaction and transmits only the relevant
speech and not all incoming audio [39].

Concretely, KWS is the task of detecting pre-trained keywords in a stream of utterances.
In the above use case, the three most important measures for KWS are accuracy, latency
and power consumption. First, accuracy is desired because the server-side ASR process
triggered by incorrect wake-word detection can lead to unpleasant user experiences and
unnecessary resource usage. Next, latency is often evaluated because users expect real-time
response from a speech-based interaction. Power consumption is important because KWS
systems must be highly available on low power, performance-limited devices. Therefore,
state-of-the-art KWS systems use neural networks [19, 1, 57, 9] with a small number of
parameters and floating operations [J, 55].

Unfortunately, deployment of on-device KWS systems is challenging because each plat-
form requires platform-specific development. Consider the two dominant operating systems
(OS) for mobile devices: 1OS by Apple and Android by Google. iOS application involves



Swift and Objective-C while Android applications are implemented using Java and Kotlin.
In the domain of personal computers, there exist Windows, MacOS, and many more, lim-
iting the applications in different ways. Therefore, developers need to put in extra efforts
to provide a consistent KWS interface across devices; this hinders the rapid deployment of
a unified KWS framework.

Enter JavaScript. JavaScript is a scripting language for web application development.
Unlike the issue of platform specificity in the aforementioned domains, many developers
have further taken the universality of JavaScript to extremes and enabled development
of desktop applications, backend services, and mobile applications with Electron, Node.js,
and React, respectively—JavaScript allows the efficient development of cross-platform ap-
plications as it fulfills the philosophy of “write once, run anywhere”.

Exploiting the universality of JavaScript, I present Honkling, a JavaScript-based KWS
system. Implementing the residual networks introduced by Tang and Lin [57] using Tensor-
Flow.js,! target keywords can be detected purely in browser; voice-enabled user interfaces
on mobile and desktop applications come for free. Furthermore, as it has a serverless and
decentralized architecture, Honkling does not suffer from variable network latency and
keeps user data secured on the client side.

When I evaluate performance of Honkling on various devices, I have consistently ob-
served a high accuracy of 94% on the test set. However, it is found that such high accuracy
is not guaranteed in practice due to various accents that are scarcely represented in the
training dataset—when the same model is evaluated on the user recordings, 80.0% ac-
curacy is observed from a Chinese user and 77.6% is observed from a British user. The
accuracy degradation in the presence of underrepresented accents is a common issue in
speech recognition and numerous techniques have been introduced to minimize the accu-
racy drop [50, 18, 21, 24, 20, 12]. However, they are mostly specific to the underlying
system and little work is known for KWS.

1.1 Contributions

The main contribution of this work is Honkling,? a JavaScript-based KWS system that is
accurate, real-time, cross-platform, and serverless. This work takes one more step toward
accent adaptation and studies how to preserve the high accuracy for users of different
accents. Overall, the contributions of this thesis can be summarized as follows.

https://js.tensorflow.org
’http://honkling.ai
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e By comprehensively evaluating the inference latency of Honkling, I empirically show
that JavaScript is capable of providing real-time keyword detection, refuting the
belief that browsers are not suitable for computationally expensive tasks.

e | extend Honkling to different domains of web applications, desktop software, and
smart home devices and demonstrate the flexibility of JavaScript-based KWS system.

e [ present a study on the effectiveness of fine-tuning KWS model with user recordings
for accent adaptation—it is found that fine-tuning can increase absolute accuracy
up to 10% only with five recordings per keyword. Bringing the findings to fruition,
I implement accent adaptation on Honkling with in-browser fine-tuning. My study
shows that Honkling can be personalized within 8 seconds with hardware acceleration.

1.2 Thesis Organization

I start with background information. The three topics I discuss in Chapter 2 are: the
history of KWS, application development with JavaScript, and accent adaptation in the
field of speech recognition. In the next chapter, Chapter 3, I describe how Honkling is im-
plemented step by step: data preparation, model architecture, and challenges I have faced
throughout the development. Then, I conduct a set of efficiency evaluation with Honkling
to understand the feasibility of in-browser keyword detection. In the same chapter, I in-
clude the three applications that support hand-free interaction through Honkling, which
demonstrate the flexibility of JavaScript-based system.

Chapter 4 talks about accent adaptation for KWS. First of all, I evaluate the accuracy
of honkling for users with an accent that the training data do not capture. Next, I study
the effectiveness of fine-tuning for accent adaptation and implement an in-browser fine-
tuning process on Honkling using the best hyperparameter setting found. Chapter 4 closes
with a set of inference latency evaluations on in-browser fine-tuning.

In Chapter 5, I conclude my thesis with future work.



Chapter 2

Related Work and Background

2.1 Keyword Spotting

Used for simple voice commands and wake-word detection, KWS refers to the task of
detecting a set of keywords from an audio stream. Traditionally, speech transcription and
keyword-filler hidden Markov model (HMM) have been the two popular algorithms for
KWS. However, as neural networks show their effectiveness in speech recognition, many
researchers have applied neural networks to KWS and achieve state-of-the-art accuracy.

2.1.1 Speech Transcription
Dynamic-Time-Warping-based Speech Transcription

The first approach taken for KWS involves speech transcription; the input audio is tran-
scribed and target words are searched in the transcription. In order to achieve highly
accurate speech transcription, the audio stream is broken down into blocks of same length,
and each block is queried for the most similar annotated audio sample. To find the most
similar sample, dynamic time warping (DTW) is used, which measures the similarity be-
tween two sequential data [60, 50]. After constructing the transcription, KWS becomes a
simple search problem.
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Figure 2.1: An illustration of keyword-filler HMM.

HMM-based Speech Transcription

From the 1970s to the 1990s, HMM-based speech transcription has been the most popular
technique for KWS. This technique builds a statistical state machine which captures audio
features of each word. There are two types of HMM-based speech transcription differing
the representation of each state: word-based [64, 51] and phonetic-based [32, 31]. Once
HMM is trained, a sequence of hidden states that describes the input audio stream best can
be constructed using Viterbi algorithm [10]. The transcription is simply a concatenation
of the states and the target keywords are searched in the transcription [63, 36, 37, 40].

2.1.2 Keyword-Filler HMM

Even though transcribing an entire audio stream leads to a successful keyword detection,
it transcribes unnecessary words; speech-transcription-based KWS is computationally in-
efficient. The following algorithm, called keyword-filler HMM, overcomes this issue. In
this type of HMM, there exists a state for each target keyword. In addition to keyword
states, some models have extra states called filler states which represent non-target words
(see Figure 2.1). Given a set of speech data where start and end times of each word are
known, training keyword-filler HMM results in capturing different audio features for each
word. Again, the best sequence is constructed using Viterbi algorithm and the sequence is
checked for whether it contains the target keyword or not [18, 17, 53].
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Figure 2.2: Different combinations of CNN and RNN for KWS.

2.1.3 Neural Networks

Chen et al. [3] propose the first neural networks for KWS and demonstrate that deep neural
networks (DNN) are more effective for KWS than the standard HMM. Since this finding,
different types of DNN have been applied for KWS.

Convolutional Neural Networks

Inspired by the connectivity pattern of neurons, convolutional neural networks (CNN) are
designed to extract relevant features better than vanilla DNN [27]. In 2015, Sainath and
Parada [19] introduce the first CNN-based KWS. Tang and Lin [57] then integrate residual
connections and achieves higher accuracy by handling the vanishing gradient issue better.
In the domain of image classification, the idea of residual connection has been taken to
extremes; DenseNet is a network architecture where every layer is connected to each other
by residual connection [19]. It is found that such a high degree of information sharing is
also beneficial for KWS [65, 7].

Recurrent Neural Networks

Though CNN have increased the accuracy of KWS systems remarkably, some researchers
have argued that recurrent neural networks (RNN) are more suitable for KWS because

6



they are designed to operate on sequential data and the input for KWS is an audio sig-
nal. Consequently, RNNs of different architectures—vanilla RNN, long short-term memory
(LSTM), and gated recurrent unit (GRU)—have been explored for KWS§ [8, 1, 55, 66]. It
is found that all of the RNN variations are better at detecting target keywords than vanilla
DNN implementations.

Combination of CNN and RNN

As CNN and RNN have both shown their effectiveness in KWS, the combination of the
two network architectures has been studied to extract meaningful feature effectively and to
utilize the temporal aspects of the speech data [01, 65, 23, 1, 52]. As listed in Figure 2.2,
the architectures presented in these papers are all very similar; first, extract audio features
using CNN and improve detection accuracy using RNN. Though combining CNN and
RNN often guarantees higher accuracy than using one of the two, such an architecture
often ignores constraints on resource usage as it consists of a large number of parameters.

2.2 Application Development with JavaScript

JavaScript is a programming language developed to modify the state of web components
written in HTML and CSS. Therefore, browsers are designed to behave in a uniform way
for a JavaScript instruction. In other words, web applications written in JavaScript are
guaranteed to provide the same functionality across browsers. This also means that the
web applications are ubiquitous; they are available on any device that runs a browser.

2.2.1 Universality of JavaScript

Cross-platform functionality is fairly difficult to achieve because there are different OSes
for edge devices. For desktops, there are Windows, MacOS, and Ubuntu. The two dom-
inant OSes for mobile are Android and iOS. Each one of these OSes provides a unique
environment to their application and therefore, developers often duplicate their code to
support multiple platforms.

Fortunately, the development of several JavaScript frameworks provides a workaround
for the platform-specificity issue [17, 5, 13]. First of all, Node.js permits the development



of server-side applications in JavaScript. Before the advent of Node.js, server-side applica-
tions are often developed in Java, C#, or PHP.! Node.js has enabled front-end developers
to exploit their JavaScript knowledge for server-side development, blurring the boundary
between front-end and back-end developer. Similarly, React? and Apache Cordova® sup-
port the development of mobile application in JavaScript; code written in HTML, CSS and
JavaScript can be compiled into platform-specific language, reducing the duplicated code-
bases. There is a similar library for desktop development: Electron.* With this library,
a web application can be turned into applications for Windows, MacOS, and Ubuntu.
Many applications we use in our daily lives are developed with Electron—Slack, Atom,
WhatsApp, Skype, as well as Discord.

2.2.2 Serverless Architecture

Standard implementation of a web application involves client-server architecture. Client
applications focus on user interaction, interpreting the user’s intention and responding
to it in an appropriate manner. Server applications, on the other hand, are responsible
for keeping state information of an individual application and executing computationally
expensive tasks that edge devices lack the resources to support. However, browsers are
now capable of exploiting various accelerations available from the underlying hardware and
are found to be much more powerful than what we used to believe.

Previously, Gebaly and Lin [13] explore a JavaScript-based analytical relational database
management system (RDBMS) that runs completely inside a browser with no external de-
pendencies; their RDBMS implementation demonstrates comparable performance to Mon-
etDB, running natively on the same machines. The authors then collaborate with Golab
and further explore in-browser data cube exploration [I4]. Similar to these work, Chen and
Xu [2] implement a browser-based online game purely in JavaScript. In this work, they
use Three.js® for rendering 3D graphics and WebSocket for exchanging messages among
players to minimize the dependencies between client and server.

In the domain of deep learning, Liang et al. [33] have deployed a CNN model directly
in the browser and evaluate the feasibility of in-browser natural language processing; by
conducting a comprehensive evaluation on a wide range of devices including desktops,

https://nodejs.org
2https://reactjs.org
3https://cordova.apache.org
‘https://electronjs.org
Shttps://threejs.org
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Figure 2.3: Accent-clustering-based accent adaptation [50].

laptops, as well as mobile devices, the authors show that in-browser sentence classification
based on sentiment is feasible with hardware acceleration.

Since state-of-the-art techniques for KWS focus on light-weighted neural networks, the
natural direction of research is to explore in-browser KWS with a study on the inference
latency and power consumption.

2.3 Accent Adaptation for ASR

The recent advances in technology has brought ASR systems into reality, redefining the
way we interact with electronic devices around us. However, current ASR systems fail to
provide consistent accuracy for every individual due to the variety in user accents; Huang
et al. [18] show that different accents can degrade the accuracy by 15~30%. Unfortunately,
building an accent-robust ASR system is difficult because there are billions of users, while
existing systems have limited capability in distinguishing different accents.

2.3.1 Accent-Clustering-based Accent Adaptation

Figure 2.3 illustrates a traditional solution for accent adaptation; identifying similar accents
prior to ASR and building accent-specific ASR models [56, 18, 21, 24]. Throughout the
initial process, accents from the same age group or gender are often grouped together [0, 11].
This reduces the variance in accents that the following model needs to deal with, increasing
the accuracy of each model. Tanabian and Goubran [56] have found that this process
can improve the accuracy by 24%. However, the drawback of this solution is clear: the



performance depends on the quality of accent clusters and training multiple models is
unavoidable.

2.3.2 Neural-Networks-based Accent Adaptation

For ASR systems based on neural networks, Huang et al. [20] propose a network archi-
tecture with multiple output layers; each output layer corresponds to a different group of
accents. It is found that such a network architecture helps in building an accent-robust sys-
tem and reduces the error rate by 22%. Another neural-network-based accent adaptation
technique is introduced by Najafian et al. [12]; the key idea of technique is to fine-tune the
trained model using audio of a similar voice traits. Though they observe a 12% reduction
in the error rate, they train their model for hours to obtain a noticeable gain.

Surprisingly, I am not aware of any previous study on accent adaptation for KWS.
Therefore, I study how sensitive KWS is to different accents and demonstrate the effec-
tiveness of fine-tuning with user recordings.

10



Chapter 3

Honkling

In this chapter, I present Honkling, a novel, JavaScript-based KWS system that runs in the
browser without any server-side support [29]. By conducting a comprehensive efficiency
evaluation, I demonstrate that Honkling can support real-time keyword detection on desk-
tops, laptops, tablets, as well as mobile devices. Exploiting the flexibility of JavaScript, I
then extend Honkling to different web applications: desktop software, mobile applications,
and smart home controllers.

3.1 Data and Implementation

3.1.1 Google Speech Commands Datasets

For training a model for KWS, T use a speech commands dataset released by Google [62].
The dataset contains 65,000 one-second long utterances of 30 short words recorded by thou-
sands people of different genders and ages. The dataset also consists of various background
noise samples such as pink noise, white noise, and human-made sounds.

Most experiments conducted on the Google Speech Commands (GSC) dataset aim to
distinguish the following 12 classes: “yes”, “‘no”, “up”, “down”, “left”, “right”, “on”, “off”,
“stop”, “go”, unknown, or silence [1, 57]. The data is split into three; 80% for training,
10% for validation, and the other 10% for test. This split results in roughly 22, 000 samples
for training and 2, 700 samples for both validation and testing. To be consistent with prior
work, models for Honkling are trained with the same training and validation set.

11



type m r n Par. Mult. type m r n  Par. Mult.

conv. 3 3 45 405 1.80M conv. 3 3 19 171 643K
avg-pool 2 2 45 - 45K avg-pool 4 3 19 - 6.18K
res x3 3 3 45 109K 28M res x3 3 3 19 19.5K 5.0M
avg-pool - - 45 - 45 avg-pool - - 19 - 19
softmax - - 12 540 540 softmax - - 12 228 228

Total - - - 110K 30M Total - - - 19.9K 5.7M

Table 3.1: Parameters used for res8 (left) and res8-narrow (right).

In order to train models that are robust against noise, 80% of the training audios are
randomly selected and augmented with noise. For each target audio, a noise sample is
randomly chosen from the background noise set. I first reduce the volume of the noise by
factor of ten and mix it with the target audio. The last step is shifting; the augmented
audio is shifted randomly by Y milliseconds, where Y ~ UNIFORM[—100, 100].

3.1.2 Feature Extraction

As the first step of preprocessing, I remove noises captured in both low and high frequencies
by applying band-pass filters of 20Hz and 4kHz. Then, I construct forty-dimensional Mel-
Frequency Cepstrum Coefficient (MFCC) frames, which is a standard feature extraction
technique for speech recognition. MFCCs represent short-term power spectrums of the
audio in mel frequency scale. With a 30ms window with 10ms shift in frame, one-second
long utterances result in a matrix of size 101 x 40.

3.1.3 Model Architecture

Previously, Tang and Lin [57] integrate residual connections to a CNN architecture and
achieve state-of-the-art accuracy. This type of architecture is called a ResNet and has
been first explored by He et al. [10]; for an input z, it learns the residual H(x) = F(z) +x

instead of the true mapping F(x). In their work, it is found that the direct connection
can speed up the learning process by reducing the impact of vanishing gradients; ResNet
achieves the best accuracy in the ILSVRC 2015 Image classification task with 3.57% error
rate and shows 28% relative improvement on the COCO object detection dataset.

12
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Figure 3.1: An illustration of res8, taken from Tang and Lin [57].

Figure 3.1 shows the ResNet of Tang and Lin. The first two layers are the convolu-
tional layer and the average pooling layer. The following components are residual blocks.
A residual block consists of two convolutional layers with rectified linear unit activation
followed by a batch-normalization layer. After the residual blocks, the output is average-
pooled and fed into a fully-connected softmax layer to construct output of the target size.
In the original paper, the authors introduce three variations of ResNet which differ by the
number of residual blocks: res8, res15, and res26—with 3, 6, and 12 residual blocks,
respectively. Surprisingly, three residual blocks are sufficient to achieve a high accuracy of
94% and the benefit of additional residual blocks is found to be small.

A convolutional layer in this network has weights w € R"™*"*" where m, r, and n
represent the width, height, and number of feature maps, respectively. With 45 feature
maps, res8 requires about 110K parameters and 30 million multiplications (see Table 3.1,
left). To find models that require less computation, the authors also study how accuracy
changes with respect to the number of feature maps. It is found that 90% accuracy can be
achieved with res8-narrow, a variation of res8 with 19 feature maps. With fewer feature
maps, res8-narrow only has 19K parameters and 5.7 million multiplications (see Table
3.1, right). In this work, my goal is to support KWS on a wide range of user-facing devices
including desktops, laptops, tablets, and mobile devices. Since hand-held devices are not
built for computationally expensive tasks, Honkling focuses on the shallowest models, res8
and its variation, res8-narrow.
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Figure 3.2: Keyword spotting on Honkling (silence is considered as unknown class).

3.1.4 Implementation

Honkling achieves KWS in browser using TensorFlow.js, a JavaScript library for numerical
computation and large-scale machine learning. From my initial evaluation, it is found
that training ResNet with TensorFlow.js requires much longer time than training with the
original PyTorch implementation for ResNet, Honk.! Hence, I train the model for Honkling
offline; its PyTorch parameters are stored as a JSON object and loaded to initialize its
TensorFlow.js model when the page is loaded. Unfortunately, PyTorch and TensorFlow.js
use different names for each of their network components. Therefore, Honkling initialization
involves renaming each of the PyTorch components.

Manipulating audio with JavaScript is found to be difficult; Web Audio API is the
only stable library for in-browser audio processing and many standard browsers restrict
the sample rate of the input audio to 44.1kHz. Since the official PyTorch implementation
extracts MFCCs using LibROSA, a well-known audio processing library for Python [38],
Honkling is implemented with Meyda [10], a JavaScript implementation of LibROSA. Un-
fortunately, even though Meyda claims to provide the same functionality, the values of
MFCCs extracted with Meyda are different from the values generated with LibROSA due
to the aforementioned restrictions. Therefore, I have patched Meyda comprehensively to
minimize the mismatches.

https://github.com/castorini/honk
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Device RAM CPU GPU

Desktop 16 GB i7-4790k (quad) GTX 1080 Ti
MacBook Pro (2017) 16 GB 15-7287U (quad) Intel Iris Plus 650
MacBook Air (2013) 4 GB i5-4260U (dual) Intel HD 6000
Galaxy S8 (2017) 4 GB  Snapdragon 835 (octa) Adreno 540

Table 3.2: The four devices used to evaluate in-browser inference latency.

3.2 Efficiency of In-Browser Keyword Detection

When designing a system that involves many network requests, developers often focus on
reducing the number of network requests because they are unpredictable. For instance,
when I ping the Google server using my university WiFi connection, I experience the
average latency of 25ms with a standard deviation of 20ms. When a network call carries
data, latency increases linearly as the amount of data being transferred over the network
increases. With a Python server located in Newark, New Jersey, I measure an average
latency of 481ms with a standard deviation of 183ms for one second of 16kHz mono-channel
audio data sent from Waterloo.

Written purely in JavaScript, Honkling achieves KWS in the browser without any
server-side support. In other words, it does not suffer from the network delays. Further-
more, users are now freed from security and privacy implications, such as eavesdropping
of network traffic or collection of personal speech data [59]. In this section, I further show
the stability of the serverless architecture by conducting a comprehensive evaluation on
the efficiency of in-browser keyword detection.

3.2.1 Evaluation Setup

To be consistent with the previous experiments, this evaluation is conducted on the GSC
test set and detects the same 12 classes of keyword. The two metrics I report are accuracy
and inference latency. Since inference latency can be a processor dependent measure, |
include different desktop, laptop, and smartphone configurations; Table 3.2 describes the
hardware specifications of each device. Among the wide range of browsers, Chrome (v78.0)
and Firefox (v71.0) are chosen for the evaluation because they are the most popular. Since
TensorFlow.js provides optimized operations when the browser supports WebGL accelera-
tion, the evaluation is conducted in both settings, with and without hardware acceleration.
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res8

res8-narrow

Device Processor Platform
Lat. (ms) Acc. (%) Lat. (ms) Acc. (%)
Desktop GTX 1080 Ti PyTorch 1 94.3 1 91.2
Desktop GTX 1080 Ti Firefox 8 94.1 7 90.9
Desktop GTX 1080 Ti Chrome 9 94.0 7 90.8
MacBook Pro (2017) Intel Iris Plus 650 Firefox 17 94.0 10 90.8
GPU  MacBook Pro (2017) Intel Iris Plus 650 Chrome 24 94.0 11 90.8
MacBook Air (2013) Intel HD 6000 Firefox 36 94.0 20 90.8
MacBook Air (2013) Intel HD 6000 Chrome 25 94.0 12 90.8
Galaxy S8 (2017) Adreno 540 Firefox 60 94.1 43 89.0
Galaxy S8 (2017) Adreno 540 Chrome 54 93.9 33 90.9
Desktop i7-4790k (quad) PyTorch 10 94.3 2 91.2
MacBook Pro (2017) i5-7287U (quad) PyTorch 12 94.2 3 91.2
Desktop i7-4790k (quad) Firefox 354 94.1 86 90.9
Desktop i7-4790k (quad) Chrome 109 94.0 30 90.8
CPU " MacBook Pro (2017) i5-7287U (quad) Firefox 348 94.0 112 90.8
MacBook Pro (2017) i5-7287U (quad) Chrome 91 94.0 48 90.8
MacBook Air (2013)  i5-4260U (dual) Firefox 566 94.0 120 90.8
MacBook Air (2013)  i5-4260U (dual) Chrome 125 94.0 37 90.8
Galaxy S8 (2017) Snapdragon 835 (octa) Firefox 1105 94.1 265 89.0

Table 3.3: Latency (lat.; 90" percentile) and accuracy (acc.) results on different platforms
for the res8-* models.

Unfortunately, Chrome evaluations on CPU are missing a number for Galaxy S8 because
hardware acceleration cannot be disabled for Chrome running on a mobile device.

3.2.2 Evaluation Results

Table 3.3 summarizes 90" percentile latency and accuracy for both res8 and res8-narrow
on various devices. Along with Firefox and Chrome, the table includes baseline perfor-
mance measured with the original PyTorch implementation. Even though there are small
differences in accuracy among the entries, JavaScript implementation reports accuracy of
around 94% with res8 and around 91% with res8-narrow on every device. This concludes
that the JavaScript implementation is correct and the mismatches between LibROSA and
Meyda are negligible.

Inference latency is found to be strongly dependent on the underlying platform and
processor. First, Firefox is found to be about 4 times slower than Chrome across devices.
This is due to the difference in JavaScript engine; V8 of Chrome is faster than Spider-
Monkey of Firefox [11]. Another finding is that inference latencies are much smaller on
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GPUs. In the case of res8, the only CPU configuration that responds within 100ms is the
2017 MacBook Pro (91ms). On the other hand, the highest latency observed from GPU
configurations is 60ms of Galaxy S8, a mobile device. I have observed a similar pattern
with res8-narrow; the latency ranges from 7 to 43ms on GPUs and while it ranges from
30 to 265ms on CPUs.

In the experiments conducted by Miller [11], it is found that humans expect some
communicative response within 2 seconds with the most effectiveness at about half a second.
In other words, these delays are perceived by humans to be near instantaneous; Honkling
supports real-time interactions on a wide range of devices including mobile devices.

3.3 Applications

Interestingly, JavaScript is not limited to web application development; with the devel-
opment of several recent frameworks, we can develop applications for other platforms in
JavaScript. Exploiting the flexibility of the JavaScript-based KWS system, I present three
voice-enabled applications in vastly different domains [30].

3.3.1 Voice-enabled 2048

2048 is a popular game with four directional commands: “up”, “down”, “left” and “right”.
Recognizing its simplicity, I have integrated Honkling with an open-source JavaScript im-
plementation of 2048 (see Figure 3.3).? Achieving hands-free interaction with the user,
voice-enabled 2048 provides a unique experience. Such integration illustrates how Hon-
kling can easily transform a traditional web application into voice-enabled application.
Furthermore, by the nature of JavaScript, it is guaranteed to behave uniformly on every
standard-compliant web browsers; the application is accessible through various hands-on
devices ranging from desktops to mobile devices.

3.3.2 JavaScript-based Virtual Assistant

As a library developed for Node.js, Electron enables cross-platform desktop application
development with JavaScript, HTML, and CSS. Here, I introduce a cross-platform voice-
enabled virtual assistant. The virtual assistant supports a wide range of actions such as

’https://github.com/gabrielecirulli/2048
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Figure 3.4: From left to right, photographs of the 2048 game, the desktop virtual assistant,
and the smart home controller.

displaying the current memory and CPU usage, opening search results in the browser, con-
trolling the volume, and filesystem navigation—needless to say, all operations are triggered
by voice commands. While different virtual assistants already exist for desktop environ-
ments (e.g., Siri and Cortana), they only provide a fixed set of functionalities. On the other
hand, a Honkling-based virtual assistant enables arbitrary customization since everything
is transparently implemented in JavaScript.
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3.3.3 Smart Home Controller

To further demonstrate the benefits of an efficient customization, I have integrated a smart
home device with the virtual assistant. Among the various devices on the market, I have
chosen Philips Hue light bulbs because they expose an API for controlling various features.
With these light bulbs, users can turn light on and off and adjust the brightness through
a mobile application. Therefore, I provide reliable hands-free interaction between the user
and smart home devices by explicitly training a model that can detect four commands:
“on”, “off”, “up”, and “down”.
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Chapter 4

Personalized Keyword Spotting

Achieving KWS purely in JavaScript, Honkling enables speech-based interaction for a wide
range of applications. However, KWS is sensitive to accents and therefore, it may struggle
to detect keywords for some users. In this chapter, I study how Honkling behaves in the
presence of underrepresented accents. To minimize the accuracy drop, I propose training
a model with the GSC dataset and fine-tuning with user recordings. In this chapter, I
conduct a set of experiments to find the best hyperparameter setting that gives the biggest
gain in accuracy. Bringing the results to fruition, I enable personalization of Honkling with
in-browser accent adaptation.

4.1 KWS Accuracy with Underrepresented Accents

Implementing res8-narrow, Honkling achieves an accuracy of 91% on the GSC dataset.
However, such a high accuracy is not guaranteed in practice because the users are not
always native speakers of English. To determine the effect of accents, I evaluate the
accuracy of Honkling on the other accents.

4.1.1 User Recordings

For the following evaluation, I have collected recordings of 8 different accents: two Cana-
dian, one British, two Korean, two Chinese, and one American. Since Honkling depends on
the GSC dataset, each participant is asked to record the 30 keywords of the GSC dataset;
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Dataset Accent  Accuracy (%)

Google Speech Commands American 91.5
User A Canadian 89.2
User B Canadian 86.9
User C British 77.6
User D Korean 91.4
User £ Korean 81.9
User F Chinese 91.7
User G Chinese 80.0
User H American 89.2

Table 4.1: Accuracy of res8-narrow on GSC test set and user test sets.

50 samples are collected for the 10 positive classes and 10 samples are collected for the
other 20 classes—total of 700 samples.

4.1.2 Evaluation Setup

First, I train res8-narrow the same way as described in Section 3.1. I report accuracy
on the 8 test sets constructed for each participant. The test set has 40 samples for each
class; with 12 classes, the total number of samples is 560. Since we have 50 recordings for
each of the positive classes, 40 recordings are randomly selected from them. For silence, 40
samples are selected from the original GSC background noise set. Lastly, unknown samples
are randomly chosen from the 200 recordings of negative classes.

In the previous section, I have mentioned that training a model with TensorFlow.js
is slower than training with the original PyTorch implementation. Since I have already
demonstrated that Honkling successfully replicates the functionality of the original imple-
mentation, this evaluation is conducted in PyTorch.

4.1.3 Evaluation Results

Table 4.1 summarizes the average accuracy collected from 100 evaluations. The first row
is the accuracy measured on the GSC test set. While the model has an accuracy of 91.5%
on the GSC test set, its accuracy on the user test sets varies from 77.6% to 91.7% —the
high accuracy is not observed from every user.
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Unsurprisingly, the model can detect Canadian and American accents with high accu-
racy; Accuracy of 89.2% and 86.9% are reported for the two Canadian accents and the
American user also shows 89.2% detection accuracy. A British accent, on the other hand,
introduces absolute accuracy degradation of 13.9%. The accuracy varies most when the
user is Asian—possibly due to the fact that they are not native speakers of English. For
the Korean accents of user D and E, res8-narrow reports accuracy of 81.9% and 91.4%,
respectively. Accuracy reported from the Chinese users also have high variance; while one
user shows an accuracy of 91.7%, the other user demonstrates limited accuracy of 80.0%.

4.2 User Accent Adaptation by Fine-Tuning

The main topic of this section is fine-tuning with user recordings for minimizing the accu-
racy degradation. The key assumption is that, as the base model is fine-tuned, the model
will learn the difference in accents, increasing the accuracy for the target user.

In order to achieve accent adaptation by fine-tuning, the system needs two things. First,
the system needs to collect audio samples from the user. Second, the system needs time
and resources for fine-tuning. Since these have a strong correlation with the amount of
effort the user needs to devote, the optimal accent adaptation process must require minimal
recordings and efficiently fine-tune the model. Needless to say, the fine-tuned model should
demonstrate higher detection accuracy for the target user.

With the goal of minimizing user interaction throughout the accent adaptation process,
I conduct a set of hyperparameter experiments and find a configuration that adapts to the
user accent best.

4.2.1 Experimental Setup

Again, I start from res8-narrow trained with the GSC dataset for the 12 classes (see
Section 3.1 for details). Then, the model is fine-tuned with the user recordings collected
for the accuracy evaluation in Section 4.1. From my initial evaluation, I found that 10
recordings are sufficient for adapting the target accent. Therefore, I set aside 10 samples
from each class for constructing the fine-tuning set. The remaining samples are used to
construct the test set. To reduce the effect of outliers, I repeat the experiment 100 times
and report averaged accuracy along with 95% confidence interval. For each trial, the fine-
tuning set is reconstructed with a different random seed. On the other hand, I keep the
test set static for fair comparisons among the fine-tuned models; the test set consists of
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the remaining 40 recordings for each positive class and 40 samples are randomly selected
for the unknown class.

Since the size of the fine-tuning set refers to the number of recordings that Honkling
need to collect from users, it is important to understand how accuracy changes with respect
to the size of the fine-tuning set. Hence, I evaluate the three different sizes: one, three,
and five samples per keyword. For each experiment, the target number of samples are
randomly selected from the ten samples set aside for fine-tuning set construction.

Another goal of this experiment is to understand the relationship between the accuracy
and different types of hyperparameters. The three types of hyperparameters I examine are:
number of epochs, optimizer, and learning rate. Since the learning rate and the optimizer
are often closely related, I first evaluate different optimizers and provide a study on the
learning rate for the best optimizer.

In the following graphs, I have two types of accuracy reported: original-* and
personalized-*, denoting the accuracy on the original test set and the user test set,
respectively. In Figures 4.1 and 4.3, dashed lines refer to original-* and solid lines refer
to personalized-*. Similarly, transparent bars are used for original-* and opaque bars
are used for personalized-* in Figure 4.2. The number that follows each label denotes
the number of recordings per keyword.

4.2.2 Experimental Results
Fine-Tuning Progress across Epochs

First, I describe how the accuracy changes as the number of epochs increases. In this
experiment, the learning rate is fixed to 0.01 and each model is trained with the Stochastic
Gradient Descent (SGD) optimizer. Unsurprisingly, the accuracy on the user test set
increases across epochs while the accuracy on the original test set decreases. In Figure
4.1, diminishing returns are observed with more epochs; 50 epochs seem to be sufficient to
maximize the accuracy.

At convergence, every user shows 4~10% increase in absolute accuracy on the corre-
sponding user test set. Before fine-tuning, res8-narrow achieves an accuracy of 77.6% on
user C’s test set. However, when the model is fine-tuned with five recordings per keyword,
the model accuracy increases to 86.7%. Surprisingly, 86.7% is the lowest fine-tuning ac-
curacy reported from the eight participants for the fine-tuning set of five recordings per
keyword. On the other hand, user H shows the highest accuracy of 95.6% with 6.4%
increase in absolute accuracy.
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Figure 4.1: Change in accuracy across epochs, along with 95% confidence interval (shaded).

The accuracy decrease on the original test set also converges around 50 epochs. Inter-

keywords for non-target users with decent accuracy.

Fine-Tuning Dataset Size

estingly, the lowest accuracy is 86.8% indicating that the fine-tuned model can still detect

Surprisingly, a single recording per keyword is found to be sufficient for personalization as

the models achieve higher accuracy on the user test set than on the original test set for
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Figure 4.2: Change in accuracy for Adam, Adagrad and SGD optimizer.

every user except user C. In general, an increase in accuracy is observed as more recordings
are added to the fine-tuning set; more training data leads to a better representation of
a user’s speech patterns. However, diminishing returns are observed with the accuracy
after a mere five recordings per keyword; such a trend is evident for every user (compare
personalized {1,3,5} in Figures 4.1, 4.2, and 4.3). Concretely, the accuracy gap
between one and three recordings is substantially greater than the gap between three and
five, suggesting that each additional recording provides rapidly diminishing returns. Such
a trend is well captured in the graphs of user C and G. In Figure 4.1, the final accuracy of
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user C on the test set are 81%), 85%, and 87% for one, three, and five samples per keyword.
Similarly, I observe accuracy of 87%, 91%, and 92% from user G, respectively. Since the
marginal benefit of two more recordings is quite large, results suggest that having at least
three recordings is desirable although using one sample per keyword helps.
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Figure 4.3: Change in accuracy while varying learning rate, along with 95% confidence
interval (shaded).
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Fine-Tuning with Different Optimizers

Since each optimizer has different strategies for updating weights, the three optimizers,
Adam, Adagrad, and SGD optimizer, lead to differences in accuracy. From an initial ex-
periments, it is found that the Adagrad optimizer reports the highest fine-tuning accuracy
when trained with learning rate of 0.01, while the Adam optimizer achieves the highest
fine-tuned accuracy with learning rate of 0.001. Therefore, I set learning rate to 0.001 for
the Adam optimizer while 0.01 is used for the Adagrad and SGD optimizers.

Figure 4.2 summarizes how the accuracy changes when res8-narrow is trained with
different optimizers for 25 epochs. Though the three optimizers show minimal differences,
the Adagrad optimizer consistently achieves the highest accuracy on the user test sets.
Unfortunately, the high accuracy comes at the cost of low accuracy for non-target users—
the lowest accuracy on the original test set is also observed from the Adagrad optimizer.
The optimizer with the highest accuracy on the original set after fine-tuning is the SGD
optimizer, which also shows a comparable increase on the user test set.

Fine-tuning Progress across Learning Rates

In this experiment, I have trained each model with the SGD optimizer and performed
linear search on the learning rate from 0.1 to 0.0001, stepping by a factor of ten. Each
model is trained for 25 epochs. As shown in Figure 4.3, learning rate of 0.01 consistently
leads to the highest accuracy for the target user. When a model is trained with a learning
rate of 0.1, its accuracy on the user test set is shown to be similar to the accuracy from
learning rate of 0.01. However, the former model has much lower accuracy than the latter
model on the original test set.

4.3 In-Browser Accent Adaptation

Bringing all the previous threads together, I have implemented in-browser fine-tuning,
exploiting the decentralized and serverless nature of the JavaScript-based KWS system. In
this section, I measure the efficiency of in-browser fine-tuning on a wide range of devices.

4.3.1 Implementation

Figure 4.4 illustrates how Honkling supports personalization with accent adaptation. From
the previous experiment in Section 4.2.2, I have shown that the number of recordings has
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Figure 4.4: The four steps of accent adaptation with Honkling.

a high correlation with the quality of personalization. Therefore, Honkling first asks the
number of recordings that user is willing to provide; users have option to record one, three,
or five samples per keyword. Once the recordings are collected, the base model is fine-tuned
in the browser, with the SGD optimizer for 50 epochs at a learning rate of 0.01.

To prevent repetitive personalization, I also store the fine-tuned model in the browser.
At startup, Honkling loads the stored model if it exists; users can keep the personalized
KWS system even after the current browser session ends.

4.3.2 Evaluation Setup

The efficiency of in-browser fine-tuning is evaluated on two types of devices: a desktop and
a laptop. The desktop runs Ubuntu 18.04 and has 16GB RAM, an i7-4790k CPU, and a
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Number of Recordings

Device Processor Platform
1 3 5
Desktop - GTX1080Ti 1 PyTorch — 02sec  02sec  02sec
Desktop GTX 1080 Ti Firefox 3.9 sec 5.9 sec 7.6 sec
GPU  Desktop GTX 1080 Ti Chrome 3.0 sec 4.8 sec 6.6 sec
MacBook Pro (2017) Intel Iris Plus 650 Firefox 7.2 sec 12.6 sec 27.0 sec
MacBook Pro (2017) Intel Iris Plus 650 Chrome 7.2sec 13.2 sec 19.8 sec
Desktop i7-4790k (quad) PyTorch 3.3 sec 6.0 sec 8.0 sec
- MacBook Pro (2017)  i5-7287U (quad) _ PyTorch  20sec  5.9sec  10.7sec
cpyu Desktop i7-4790k (quad) Firefox 254 min 75.8 min 128.1 min
Desktop i7-4790k (quad) Chrome 89 min 26.9 min  45.4 min

MacBook Pro (2017) i5-7287U (quad) Firefox 29.5 min 86.3 min 139.2 min
MacBook Pro (2017) i5-7287U (quad)  Chrome 6.8 min 20.4 min  34.1 min

Table 4.2: In-browser fine-tuning latency for res8-narrow under different configurations.

GTX 1080 Ti GPU. The laptop configuration is 2017 MacBook Pro that runs High Sierra.
It has 16GB RAM, a i5-7287U CPU, and Intel Iris Plus 650 GPU. Similar to the previous
efficiency evaluation, the evaluation is conducted on Chrome (v78.0) and Firefox (v71.0)
with and without hardware acceleration.

To reduce the effects of outliers, I repeat the evaluation ten times. For each trial, I
randomly select one of the eight user recording sets and reconstruct the fine-tuning set by
selecting the target number of recordings at random. In this evaluation, I use res8-narrow
to report the fine-tuning time for all three variations of fine-tuning set size—one, three,
and five recordings per keyword.

4.3.3 Evaluation Results

Table 4.2 summarizes the averaged in-browser fine-tuning latency. The table also includes a
measurement from the original PyTorch implementation for reference. First of all, Chrome
is again found to be more optimized than Firefox. From this evaluation, it is also found
that personalization time increases with the data size. On CPU, fine-tuning with single
sample per keyword takes about 10 minutes on Chrome and 30 minutes on Firefox. When
a user provides five samples per keyword, Firefox requires 2.3 hours while only 45 minutes
are needed on Chrome. Since training data size correlates with the final accuracy, users
have the option to trade off time and quality.
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Fortunately, GPU acceleration can significantly decrease the fine-tuning time. On the
laptop configuration, the same process that consumes up to 2.3 hours on a CPU can be
completed within 27 seconds. Similarly, fine-tuning with GPU only takes eight seconds on
the desktop for five recordings per keyword—Honkling can increase the absolute accuracy
up to 10% with only eight seconds of fine-tuning (see Section 4.2.2).
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Chapter 5

Conclusions and Future Work

Realizing the importance of the “write once, run anywhere” philosophy, I present Honkling,
a novel, JavaScript-based KWS system. With the support of different cross-platform de-
velopment libraries, Honkling provides a reliable KWS-based interaction on a wide range
of applications running on desktops, laptops, as well as mobile devices. In my evaluation,
I find that Honkling can detect the target keywords in the browser within 0.5 seconds on
modern devices including mobile—the JavaScript-based KWS system supports real-time
speech-based interaction between the user and the application.

Exploiting the decentralized and serverless architecture of Honkling, I also support in-
browser fine-tuning for increasing the detection accuracy for each user. By conducting
thorough experiments, I find that a 10% accuracy increase can be achieved with a meager
five recordings per keyword, which takes only eight seconds to fine-tune in the browser, in
the presence of hardware acceleration.

Following this work, I believe reducing the model size would further improve the user
experience. The process of deleting irrelevant parts of a network is called network pruning,
and common techniques include network slimming [35] and weight-based pruning [15].
Since fine-tuning can take up to 2.3 hours without hardware acceleration, reducing the
model size prior to fine-tuning would greatly speed up the process.

Even though the concept of voice-enabled user interfaces is fairly young, it has changed
the shape of our daily lives in many ways. I believe Honkling has contributed to this
change by enabling efficient and accurate keyword detection on a wide range of user-facing
applications. With the advance in technology, I am excited to see the convenience that
Honkling will bring to everyday life.
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