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Abstract. In this paper, we explore Deep Multilayer Perceptrons (MLP)
to perform an ordinal classification of mobile marketing conversion rate
(CVR), allowing to measure the value of product sales when an user clicks
an ad. As a case study, we consider big data provided by a global mobile
marketing company. Several experiments were held, considering a rolling
window validation, different datasets, learning methods and performance
measures. Overall, competitive results were achieved by an online deep
learning model, which is capable of producing real-time predictions.

Keywords: Mobile Performance Marketing · Multilayer Perceptron ·
Ordinal Classification.

1 Introduction

The massive adoption of smartphones has increased of value of mobile perfor-
mance marketing. These markets are implemented using a Demand Side Plat-
form (DSP), which matches users to ads and is used by publishers and advertis-
ers [9, 11]. A publisher is a web content owner (e.g., games) that attracts users.
The web content is funded by DSP dynamic ads, which when clicked redirects
the user to an advertiser site. When there is a conversion, the DSP returns a
portion of the sale value to the publishers. Under this market, a vital element
is the prediction of the user conversion rate (CVR), i.e., if there will be a con-
version when a user sees an ad [4]. Typically, CVR prediction is modeled as a
binary classification task (“no sale”, “sale”) by using offline learning Machine
Learning methods, namely Logistic Regression (LR) [4], Gradient Boosting Deci-
sion Trees (GBDT) [8], Random Forests (RF) [4] and Deep Learning Multilayer
Perceptrons (MLP) [9].

In contrast with the binary CVR studies (e.g., [4, 8]), in this paper we pro-
pose a novel ordinal classification of mobile CVR, which assumes five classes:
“no sale”, “very low”, “low”, “medium” and “high”. This approach provides a
good proxy to the client Lifetime Value (LTV) [11]. Thus, using such ordinal
classifier, a DSP can better select the best ad campaign for a particular user by
maximizing the expected conversion value. Following a recently proposed binary
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deep learning approach [9], we explore three main MLP strategies to handle ordi-
nal classification: pure classification, regression and ordinal classification. These
approaches are tested using two learning models, offline and online, using a real-
istic rolling window validation and real-world big data from a global DSP. Also,
the deep learning models are compared with a LR method.

2 Materials and Methods

2.1 Data

We collected the data from a worldwide marketing company (OLAmobile). The
DSP generates two main events: redirects – the user ad clicks; and sales – when
there is a conversion. All redirects and sales are stored at the DSP data center,
being associated with a timestamp when they arrive. The DSP managed by the
company generates millions of redirects and thousands of sales per hour.

We had access to a secure web service that allowed us to retrieve NR redirects
and NS sales from the data center. Our computing server, an Intel Xeon 1.70GHz
wth 56 cores and 2TB of disk space, is limited when compared with the data
center and thus we work with sampled data. The data was collected during a
two week period, starting at 30th May of 2019, via a stream engine that uses
K computing cores to continuously retrieve redirects and sales, ‘sleeping” every
SR and SS seconds [9] (Table 1). The analyzed DSP contains two traffic modes:
TEST – used to measure the performance of new campaigns; and BEST – with
80% of the traffic and including only the best TEST performing ads. The Yno
and Yyes columns denote the number of collect “no sale” and “sale” events.
Also, the RY column represents the sales ratio RY = Yyes/(Yno + Yyes). Since
we worked with sample data, the collected data ratio is higher than the expected
real DSP one. To get a more realistic dataset, we randomly undersample [1] the
number of sales (Y ′yes) such that a more realistic ratio (RTarget′) is obtained,
which in this work was fixed to 5% for both BEST and TEST traffic. Thus, for
each traffic mode there are two datasets: collected (C) and realistic (R). Table 2
presents a summary of the collected attributes. Most attributes are categorical
and some present a high cardinality (e.g., city).

Table 1. Summary of the collected DSP datasets

Traffic NR NS SR SS K Yno Yyes Y ′
yes RY RY ′

TEST 100 100 300 10 2 290,279 29,596 15,393 9.3% 5.04%
BEST 100 100 300 10 2 328,028 156,637 17,389 32.2% 5.03%

After consulting the DSP experts, we created the ordinal Y target by group-
ing the value into k = 5 classes (Fig. 1). The grouping was achieved by using
rounded EUR values after using quantiles over the collected sales values (when
>0): “none” – equal to 0; “very low” – > 0 and < 0.03; “low” – >= 0.03 and
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Table 2. Summary of the DSP data attributes

Context Attribute Description (a – TEST traffic, b – BEST traffic)

user

country user country: 198b or 225a levels (e.g., Russia, Spain, Brazil)

city user city: 10690a or 13423b levels (e.g., Lisbon, Paris)

region region of the country: 23ab levels (e.g., Asia, Europe)

browser browser name: 14ab levels (e.g., Chrome, Safari)

operator mobile carrier or WiFi: 404b or 448a levels (e.g., Vodafone)

advertiser
vertical ad type: 4a or 5b levels (e.g., video, mainstream, dating)

campaign ad product identification: 1389b or 1741a categorical levels

special smart link or special offer: 1018b or 1101b levels

publisher
account publisher type: 8b or 9a levels (e.g, app developer, webmaster)

manager publisher account manager: 19b or 34a categorical levels

sale value value of the conversion in EUR: numeric (e.g., 0.00, 0.01, 69.34)

< 0.10; “medium” – >= 0.10 and < 0.30; “high” – >= 0.30. As shown in Fig. 1,
when there is a sale, the ordinal classes are relatively balanced. Also, TEST
traffic presents a lower number of sales when compared with BEST traffic.
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Fig. 1. Histograms for the ordinal sale classes for collected BEST and TEST datasets

2.2 Data Preprocessing and Ordinal Approaches

Since several attributes are sparse and present a high cardinality (Table 2), we
applied the Percentage Categorical Pruning (PCP) transformation to all input
attributes [9]. The transform works by merging the least 10% frequent levels
in the training data into a “others” category. Then, the resulting values are



4 Matos et al.

preprocessed using the known one-hot coding, which assigns one binary input per
level. In [9], the PCP transform allowed to substantially reduce the input memory
(e.g., reduction of 94% for the city attribute) and processing requirements.

For the mobile marketing data, the number of conversions (sales) is typically
much lower than the number of ad clicks (redirects). While the target CVR data
is unbalanced, in [9] we found that the binary deep learning MLP classifier was
capable of high quality predictions even without any training data balancing
method. However, when approaching the ordinal task and in particular for the
realistic datasets (which present the lowest 5% conversion rate), the training data
becomes extremely unbalanced. Thus, we opted to balance the realistic training
data by using the SMOTE method [1], which creates new synthetic examples for
the minority classes. This balancing method was only applied to training data
and thus the test sets were kept with the original target values.

In this paper, we apply three approaches for the ordinal classification: Multi-
class Classification (MC), regression and the k-1 ordinal approach (OA). The
first approach discards the ordering and performs a simpler 5-class classification
task. The second approach transforms each ordinal class into a numeric score y,
where y ∈ [0, 1, 2, 3, 4] (R1) or y ∈ [0, 1, 2, 4, 8] (R2). The first regression scale
(R1) uses equal spaced values, while the second one (R2) assigns larger distances
to the highest sales (“medium” and “high”), in an attempt to favor such classes
due to the minimization of squared errors. In both scales, the ordinal class is
associated with the nearest scale value to the prediction (e.g., in R2 a prediction
of 3.1 is assumed as the “medium” class). The third approach transforms the
ordinal target, with the classes V 1 < V 2 < ... < Vk, into k-1 binary tasks [5].
Each classifier learns the probability of P (Y > Vk), k ∈ {1, ..., k − 1}. Then:

P (V1) = 1− P (Y > V1) (1)

P (Vi) = max(0, P (Y > Vi−1)− P (Y > Vi) ), 1 < i < k (2)

P (Vk) = P (Y > Vk−1) (3)

The classifiers are independent and in a few cases we experimentally found it
could occur that P (Y > Vi) > P (Y > Vi−1). Thus, we added the max(0, ...)
function in Eq. (2) to avoid the computation of negative probabilities.

2.3 Deep Learning Methods

In previous work, a very competitive deep learning MLP model was proposed
for binary CVR prediction, outperforming a convolution neural network and a
logistic regression [9]. We adapt the same MLP, also known as Deep Feedforward
Neural Network (DFFN) [6]. Let (L0, L1, ..., LH , LO) denote a vector with the
layer sizes with m ∈ {1, ...,H} hidden layers, where L0 = I is the input layer size
(I is the total number of input levels after the PCP transform) and LO is number
of output nodes. The adopted model consists of a trapezoidal shaped MLP, with
H = 8 hidden layers of decreasing size: (I, 1024, 512, 256, 128, 64, 32, 16, 8, LO).
In all hidden layers ({1, ..., 8}) we used the popular ReLU activation function, due
to its fast training and good convergence properties. For multi-class classification,
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the output layer contains LO=5 nodes and the softmax function is used to output
class probabilities P (Vk) ∈ [0, 1]. For the regression models, only LO = 1 linear
output node is used. Finally, for the k − 1 ordinal classification, one logistic
output node (LO = 1) is used, trained such that P (Y > Vk) ∈ [0, 1].

During the training phase, we used the AdaDelta gradient function [6], which
is based on a stochastic gradient decent method. Following our previous work [9],
we used two approaches to avoid overfitting: dropout, which randomly ignores
neural weights (dropout values of 0.5 and 0.2 for hidden layers m = 4 and
m = 6); and early stopping, which stops the training when the validation error
does not improve 1% within 3 epoch runs of after a maximum of 100 epochs.

Since we work with stream data, the learning models should be dynamic,
assuming a continuous learning through time. We compare two MLP learning
modes (proposed in [9]) for ordinal classification: reset – offline mode, when new
training data is available (new rolling window iteration, Section 2.4), the whole
neural weights are randomly set; and reuse – online learning, any new train-
ing starts with the previous fitted MLP weights (from previous rolling window
training) and only the new input node (due to appearance of new input levels)
to first hidden layer connections are randomly set.

2.4 Evaluation

The learning models are evaluated using robust rolling window validation [10],
which simulates a classifier usage through time, with multiple training and test
updates. In the first iteration (u = 1), the model is adjusted to a training
window with the W oldest examples and then predicts T test predictions. In
the next iteration (u = 2) , the training set is updated by discarding the oldest
T records and adding T more recent ones. A new model is fit, producing T
new predictions, and so on. In total, this produces U = D − (W + T ) model
updates (training and test iterations), where D is the data length (number of
examples). After consulting OLAmobile experts, we opted to use the realistic
values of W = 100, 000 and H = 5, 000, which results in the model updates:
U = 43 – collected TEST traffic; U = 76 – collected BEST traffic; U = 41
realistic TEST traffic; and U = 49 realistic BEST traffic.

For each rolling window iteration, we collect the test data measures and
the computational effort (in seconds). We compute the F1-score, F1k for each
class Vk, which considers both precision and recall [13]. The global measure is
obtained by using the Macro-averaging F1-score (MF1), which weights equally
the F1-score for each class. We note that the ordinal classes are unbalanced,
and thus other F-score averaging measures, such as micro or weight averaging,
would favor mostly models that classify well the no conversion “none” class.
As a secondary global measure, we adopt the Mean Absolute Error for Ordinal
Classification (MAEO) [12], which computes how far (using absolute errors) are
the predictions from the target (e.g., the error is 2 if the prediction is “low”
and the target is “high”). This measure is often used in ordinal classification
but, similarly to the micro and weight averaging F1-score measures, it tends to
produce low values when the classifier is more biased to correctly predict the
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“none” class. The rolling window results are averaged over all U iterations and
the Wilcoxon test is used to check if paired MF1 differences are significant [7].

3 Results

The experiments were coded in Python using the Keras library [2]. We tested
two types of datasets (C and R), two types of traffic (BEST and TEST), three
ordinal methods (MC, R1/R2, OA), two MLP learning modes (reset, reuse)
and a LR baseline model. Table 3 shows the obtained average rolling window
classification results. Overall, the best learning algorithm is MLP reuse, which
tends to produce the highest MF1 values, often with statistical significance when
compared with MLP reset or LR model. When compared with LR, MLP reuse
presents an MF1 improvement that ranges from 7 to 15 percentage points. The
reuse learning always requires less computational effort when compared with
the reset mode. As for the ordinal methods, the multi-class (MC) and k− 1 OA
achieve the best overall MLP reuse results, with slight F1-score differences. In
general, the regression ordinal scales (R1 and R2) produce worst F1-score results.
Only in two cases (R BEST and TEST), R2 obtained the best F1-score for the
“high” conversion class (V5). The k − 1 OA method requires more computation
than the MC approach. Yet, we note that in this work we used one processing
core for each model, thus the OA effort could by substantially reduced if k − 1
cores were used to fit each of its individual binary models.

4 Conclusions

In this paper, we used big data from a mobile marketing company. The goal
was to predict the type of conversion rate (CVR) when an user clicks an ad, set
in terms of five ordinal classes. Using a realistic rolling window validation, we
compared three main ordinal methods (multi-class – MC, regression – R1/R2
and k− 1 ordinal approach – OA) using two deep learning approaches (offline –
MLP reset; and online – MLP reuse) and a logistic regression (LR) model.

The best results were achieved by the MLP reuse model and the MC and
OA approaches. Such model is capable of real-time predictions. For instance, the
5,000 predictions for the C BEST MC setup require 42 s, which results in an
average 8 ms per prediction. Interesting results were achieved for the collected
(C) datasets, with most F1-scores above 50%, macro F1-scores of 64% and 54%,
as well as a low MAEO error (lower than 0.5). As for the realistic (R) datasets
(with lower amount of conversion cases), while low MAOE errors where obtained
(e.g., lower than 0.30), the individual F1-scores are lower when compared with
the collected datasets, resulting in an average macro F1-score of 38% and 45%.

Considering all obtained results, we recommend the MC MLP reuse model,
which requires the training of just one classifier and is capable of real-time pre-
dictions. This model is potentially capable of providing value to the analyzed
marketing company, since it currently does not have any method to estimate the
value level of a conversion. In particular, for TEST traffic the company uses a
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Table 3. Classification results (best values in bold; best models highlighted in gray ).

Global F1-score per class
Data Traffic Meth. Model

MAEO MF1 F11 F12 F13 F14 F15

Effort
(s)

C

BEST
(U=76)

MLP reset 0.48 0.57 0.87 0.49 0.35 0.54 0.58 61
MC MLP reuse 0.45 0.64a 0.88 0.56 0.48 0.61 0.66 42

LR 0.51 0.57 0.86 0.51 0.38 0.51 0.59 35

R1
MLP reset 0.63 0.22 0.85 0.22 0.03 0.01 0.00 46
MLP reuse 0.61 0.24 0.84 0.30 0.04 0.00 0.00 44

R2
MLP reset 0.77 0.28 0.83 0.00 0.00 0.31 0.24 49
MLP reuse 1.02 0.28 0.77 0.00 0.00 0.26 0.39 47

MLP reset 0.47 0.59 0.87 0.51 0.43 0.54 0.61 117

OA MLP reuse 0.45 0.64b 0.88 0.55 0.48 0.61 0.67 94
LR 0.51 0.54 0.86 0.47 0.35 0.49 0.54 39

TEST
(U=43)

MLP reset 0.25 0.19 0.95 0.00 0.00 0.00 0.00 46
MC MLP reuse 0.19 0.51 0.96 0.36 0.22 0.45 0.55 45

LR 0.21 0.43 0.96 0.26 0.14 0.36 0.45 31

R1
MLP reset 0.22 0.22 0.96 0.08 0.02 0.01 0.01 51
MLP reuse 0.22 0.23 0.96 0.15 0.03 0.00 0.00 45

R2
MLP reset 0.28 0.30 0.95 0.00 0.00 0.24 0.33 50
MLP reuse 0.27 0.31 0.95 0.00 0.00 0.24 0.34 47

MLP reset 0.21 0.31 0.96 0.10 0.09 0.20 0.19 118

OA MLP reuse 0.18 0.54b 0.96 0.34 0.31 0.50 0.57 109
LR 0.21 0.42 0.96 0.24 0.13 0.34 0.41 39

R

BEST
(U=49)

MLP reset 0.37 0.37 0.91 0.20 0.19 0.24 0.29 100
MC MLP reuse 0.31 0.38c 0.93 0.21 0.19 0.26 0.30 84

LR 0.93 0.26 0.76 0.13 0.12 0.13 0.15 120

R1
MLP reset 0.32 0.21 0.88 0.10 0.07 0.01 0.00 106
MLP reuse 0.30 0.21 0.89 0.10 0.07 0.00 0.00 87

R2
MLP reset 0.68 0.25 0.87 0.00 0.00 0.08 0.28 104
MLP reuse 0.61 0.26 0.89 0.00 0.00 0.08 0.33 88

MLP reset 0.34 0.37 0.92 0.19 0.19 0.24 0.30 278
OA MLP reuse 0.37 0.36 0.92 0.20 0.19 0.22 0.25 219

LR 0.89 0.25 0.73 0.10 0.10 0.14 0.19 109

TEST
(U=41)

MLP reset 0.23 0.44 0.96 0.27 0.26 0.33 0.40 130
MC MLP reuse 0.22 0.45c 0.96 0.27 0.26 0.35 0.41 99

LR 0.69 0.30 0.83 0.13 0.11 0.17 0.23 156

R1
MLP reset 0.19 0.25 0.95 0.18 0.10 0.03 0.00 132
MLP reuse 0.18 0.23 0.95 0.17 0.04 0.00 0.00 103

R2
MLP reset 0.30 0.28 0.95 0.00 0.00 0.14 0.33 130
MLP reuse 0.29 0.31 0.95 0.00 0.00 0.15 0.46 97

MLP reset 0.21 0.44 0.96 0.24 0.24 0.34 0.42 303
OA MLP reuse 0.21 0.44 0.96 0.25 0.26 0.33 0.42 240

LR 0.65 0.29 0.81 0.09 0.11 0.18 0.28 123

a – Statistically significant when compared with MC reset and LR.

b – Statistically significant when compared with OC reset and LR.

c – Statistically significant when compared with MC LR.
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random selection of ads, which produces much lower macro F1-scores. For in-
stance, for the realistic TEST dataset, the random class assignment results in
an average macro F1-score that is around 10%. In future work, we intend to
improve the realistic ordinal results by adopting a multi-objective (F1-score for
each class) evolutionary learning to train the MLP model [3].
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