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Abstract

This paper presents an intelligent human trajectory destination detection system from video.
The system assumes a passive collection of video from a wide scene used by humans in their
daily motion activities such as walking towards a door. The proposed system includes three
main modules, namely human blob detection, star skeleton detection and destination area
prediction, and it works directly with raw video, producing motion features for destination
prediction system, such as position, velocity and acceleration from detected human skeletons,
resulting in several input features that are used to train a machine learning classifier. We
adopted a university campus exterior scene for the experimental study, which includes 348
pedestrian trajectories from 171 videos and five destination areas: A, B, C, D and E. A total
of six data processing combinations and four machine learning classifiers were compared,
under a realistic growing window evaluation. Overall, high quality results were achieved
by the best model, which uses 37 skeleton motion inputs, undersampling on training data
and a random forest. The global discrimination, in terms of area of the receiver operating
characteristic curve is around 87%. Furthermore, the best model can predict in advance the
five destination classes, obtaining a very good ahead discrimination for classes A, B, C and
D, and a reasonable ahead discrimination for class E.
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1. Introduction

Due to advances in information technology (e.g., big data, Internet of things), human
activities are increasingly being automatically recorded in a digital form. In particular, dig-
ital cameras are widely used in indoor and outdoor locations, leading to a growing demand
of intelligent systems to analyze human behavior from video data (Mabrouk and Zagrouba,
2017). Often, these systems address one or more of these three intelligent video analy-
sis aspects: abnormal event detection (e.g., intrusion, loitering, accidents) (Mabrouk and
Zagrouba, 2017; Cermeño et al., 2018); person identification and tracking (e.g., gender de-
tection, person entering into a commercial store, person walking path) (Duque et al., 2007;
Afsar et al., 2015b; Cortez et al., 2016); and activity modeling (e.g., cooking, running, using
a smartphone) (Afsar et al., 2015a). There are several real-world application domains that
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can potentially benefit from such video analysis, such as: security, health and well-being
(Mabrouk and Zagrouba, 2017); gamming (Afsar et al., 2015b); and marketing and retail
management (Cortez et al., 2016).

The problem of tracking and estimating human body keypoints in complex, multi person
videos has been done by (Girdhar et al., 2017). Their approach seems to be very lightweight
yet effective utilizing all of the latest advancements of human detection and video under-
standing. The algorithm has been tested on PoseTrack database using Convolutional Neural
Net (CNN) and 3D mask R-CNN, which obtains state of the art performance. Zhou et al.
(2016) also utilized deep fully convolutional network for the estimation of human pose from
monocular video. Empirical evaluation on the Human3.6M dataset shows that the proposed
approache achieves greater 3D pose estimation accuracy over state-of-the-art baselines. In
order to estimate human pose in unconstrained videos, Zhang and Shah (2015) deployed
tree-based optimization scheme. The proposed approach is based on abstraction and as-
sociation to enforce the intra and inter-frame body part constraints respectively without
introducing extra computational complexity. The algorithm is tested on three publically
available datasets with improved performance.

This work addresses pedestrian trajectory destination estimation, which can be related
with all three video analysis aspects. The final location of a walking person is a relevant
component of pedestrian tracking systems, which can also be used to generate data for the
prediction models. Moreover, several pedestrian destination locations can be associated with
activities (e.g., cashier machine for payment, automatic teller machine for cash withdrawal)
or abnormal events (e.g., violation of a restricted area, person crossing a railway).

Given the importance of this topic, several works have been proposed for pedestrian tra-
jectory prediction. For instance, Lin et al. (2016) utilized a novel localization method (LNM)
based on Markov-chain prediction and neighbor relative RSS (NRRSS), which mainly works
on finger-print technology and Markov chain models for providing accurate location results
with low calibration requirements. The proposed system can provide robust and accurate
location information against device heterogeneity and environmental dynamics. To solve the
problem of occluded objects or objects with similar appearances, Sadeghian et al. (2017)
used Recurrent Neural Networks (RNN) that can reason on multiple cues over a temporal
window using online information without the need to see future frames. The algorithm can
track multiple targets using their motion, appearance and interactions. Following the recent
success of Recurrent Neural Network (RNN) models for sequence prediction tasks, Alahi
et al. (2016) worked on Long Short Term Memory (LSTM, a variant of RNN) to correctly
predict the future path and destinations of pedestrians. Such systems can be help for au-
tonomous vehicle navigating to foresee the future positions of pedestrians and accordingly
adjust its path to avoid collisions. The Robicquet et al. (2016) work is based on a ver-
satile dataset that not only includes pedestrians but also bicyclists, skateboarders, buses,
golf carts sharing the same space. Their research is focused on target trajectory forecasting
and Multi-Target Tracking (MTT), where a learnt model is utilized for enhancing tracking
results. While current trajectory prediction systems are useful in certain applications, they
fail in describing the position and behavior of moving objects in a network constrained en-
vironment. To solve this problem, Qiao et al. (2015) proposed Hidden Markov model-based
Trajectory Prediction (HMTP), that captures the required parameters from real-world in
terms of objects at varying speed. The proposed system is able to predict continuous path
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of moving objects rather than slices of trajectory patterns.
Luber et al. (2010) combined a tracker with a dynamic pedestrian model for more realistic

human motion predictions, reaching interesting performances when collecting data using
small scenes and laser scanners. Yamaguchi et al. (2011) proposed social force models, which
consider interactions between individuals, in order to predict pedestrian destination. Kratz
and Nishino (2012) used hidden markov model trained on spatio-temporal motion patterns to
predict the next local spatio-temporal motion pattern, aiming to track individuals in crowded
complex scenes. Kim et al. (2015) approached next pedestrian trajectory positions using
human velocity features and scene obstacles computed from video frames. More recently,
Fernando et al. (2017) used deep learning neural network that combined both individual
and neighborhood data to predict future pedestrian motion. In the same year, Lee et al.
(2017) proposed a deep stochastic framework for predicting vehicle and pedestrian motion
trajectories, using historical features related with both individual and neighborhood motion.

Most of the previous works aim to predict continuous pedestrian trajectory, either used
to determine the next probable position of a person (e.g., (Kratz and Nishino, 2012; Kim
et al., 2015)) or predict its whole trajectory in terms of its 2D path (e.g., (Fernando et al.,
2017; Lee et al., 2017)), thus adopting regression tasks. In this paper, and similarly to the
work of (Yamaguchi et al., 2011), we follow a computationally simpler approach where we
directly predict the final pedestrian destination in the scene and thus it can be also viewed as
a modeling task, if some destination areas are highly correlated with activities. For instance,
some destination areas could correspond to activities such as entering a building or executing
a payment near a cashier machine. We assume that a recorded scene contains a set of few
destinations, each defined in terms of a static region of interest (e.g., door, leisure space or
restricted area). Depending on the real-world application, it is reasonable to assume that
such destinations can be previously defined by the domain user for a specific video scene
(e.g., exit door, entrance of commercial store, cashier machine) or automatically collected
by analyzing historical human scene entry and exit points. In particular, we assume a
passive person detection system, where a digital camera is installed in such a way that it can
capture a wide area used by pedestrians. We further note that Yamaguchi et al. (2011) used
clean preprocessed video datasets, thus working directly with tracking sequences that were
complemented by manual annotations of scene obstacles (similarly to (Kim et al., 2015)).
Moreover, Yamaguchi et al. (2011) tested only one classifier, Support Vector Machine (SVM).
In contrast, our proposed system:

i) Works directly with raw video data, recorded on a realistic and semi-constrained en-
vironment (Afsar et al., 2017), related with a university campus outdoor scene with
five destination regions and that included glass reflection, different weather conditions
(e.g., rain and wind) and varying illumination conditions;

ii) Extracts motion features for pedestrian destination prediction (position, velocity and
acceleration) from human skeletons that are automatically identified from raw images,
which includes the human body center of mass and head, hand and leg positions, and
that proved useful for detecting human activities (e.g., walking, sitting) (Afsar et al.,
2015a);

iii) Its fully automatic, thus it does not require manual annotations of scene obstacles
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or events (as in (Yamaguchi et al., 2011; Kim et al., 2015)), only a (optional) prior
definition of static destination regions of interest;

iii) Compares four machine learning classifiers (Multinomial Logistic Regression, Multilayer
Perceptron, SVM and Random Forest), under distinct feature extraction and balanced
training setups; and

iv) Is evaluated using a more realistic growing window procedure, in terms of ahead dis-
crimination capability, measured in terms of the area of the Receiver Operating Char-
acteristic (ROC) curve that is obtained through time, before reaching the destination.

The paper is organized as follows. Section 2 presents the collected video dataset, the pro-
posed system framework and evaluation procedure. Next, Section 3 describes the conducted
experiments and obtained results. Finally, Section 4 draws the main conclusions and sug-
gestions of future work.

2. Material and Methods

2.1. Video Dataset

For this work, a video dataset was recorded at university of Minho. This dataset was
used for different tasks (e.g., detection of walking and sitting actions) in our previous works
(Afsar et al., 2015a, 2017) The dataset was recorded for a total of 7 days during working hours
(from 8h00 to 19h00). For recording the dataset, two cameras HIK Vision and IR Network
were installed, one inside the campus and one outside the campus, as shown in Figure 1. We
adopted a passive collection of videos, where the environment was not controlled and thus
all actions recorded are related with real-life human actions (from students, researchers and
other university staff). Distinct actions were recorded, mostly walking or running, but also
group interactions, talking on mobile, standing and shaking hands. To save disk space, the
videos were only recorded when movement was detected. As such, the dataset is comprised
of hundreds of small videos (with a few seconds to a few minutes each) that correspond to
32GB.

Figure 1: Installation setup of passive cameras for capturing indoor (left) and output (right) campus envi-
ronments, source: (Afsar et al., 2015a)

The videos were recorded for indoor and outdoor scenes, as depicted in the examples of
Figure 2. Since we adopted a real environment, the recorded data includes several restrictions
that pose challenges: the cameras were set in front of a glass window (thus some reflection is
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Figure 2: Examples of images from the collected videos (top four images are related with outdoor scenes,
while the bottom four images are from indoor scenes).

captured), and far away from the human walking environment (some humans are captured
with a low pixel definition); there are different weather conditions in the outdoor campus
environment (e.g., rain and wind) and varying illumination in both indoor and outdoor areas
due to different daytime recordings; there are clutter scenes in both areas due to the presence
of trees and bushes; often, the human clothing includes colors that are very similar when
compared with the background; and other uncontrolled conditions. The images from both
indoor and outdoor scenes were used to test the human and star skeleton detection compo-
nents (modules 1 and 2 of the proposed system). However, the final pedestrian prediction
area (module 3) was tested only on the outdoor environment, since it was associated with a
richer set of human trajectories and destination areas.

2.2. Intelligent System

The overall framework of the proposed intelligent system is shown in Figure 3. The
whole system is composed of three main modules: human detection (module 1), star skele-
ton detection (module 2) and trajectory destination prediction (module 3). The intelligent
system accepts a video as an input to the human detection module. This module detects
all of the human blobs in the current video frames, performs background subtraction and
output the respective blobs (detected objects). The output from module 1 (processed videos
with detected blobs) serves as an input for the module 2. This subsystem works on further
enhancing the detected blobs by performing shadow and highlight removal. Star skeleton is
obtained from the detected blobs which is basically calculated by extracting the silhouette
and finding peak points of the zero-crossing function. The peak points are connected to the
center body of mass. The output from this module is a star skeleton that is further used
by module 3 for prediction of destination trajectories. (Figure 10 shows some examples of
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the detected star skeletons). Motion features for destination prediction system are extracted
from this star skeleton and classification is performed using oversampling and undersam-
pling with growing window validation. The final output from this module is the destination
prediction, as provided by the prediction model. These modules are detailed in the next
subsections. All system components were implemented in the Matlab system (Borse, 1996),
except for the classification, which was implemented using the rminer library of the R tool
(Cortez, 2010).

Figure 3: Overall framework of the system

2.2.1. Human detection

The field of human action recognition can be connected to many other disciplines that
analyze human motion from videos. The recognition of basic human actions from monocular
images and videos (e.g., sitting, walking, waving hands, jumping) is an important task in
many computer vision applications, such as video content retrieval, surveillance and human
computer interaction. Over the years, researchers have proposed many approaches for human
action recognition. A detail survey is presented in (Afsar et al., 2015b).

The human detection of our system is detailed in (Afsar et al., 2017) and it will be briefly
described here. It is based on segmentation method and blob detection. Segmentation is
the process of partioning or dividing a digital image to look for objects of interest. Blob
detection aims at detection regions in a digital image that differ from its surrounding pixels
in terms of brightness or color. We tested two methods for image segmentation: usage of
Gaussian mixture models (Kaewtrakulpong and Bowden, 2002) and the simpler background
subtraction used in (Duque et al., 2007). The former method required more computational
effort and also provided worst results. As exemplified in Figure 4, the method is not able to
detect the legs separately, while the simpler image subtraction approach is. Therefore, we
selected the simpler background subtraction, where a color image is compared against the
background frame to identify if the pixels belong the background or moving object. This
image differencing allows the definition of a foreground mask used by the blob detection
algorithm, which groups pixels that most likely correspond to objects. Mask image is the
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final image obtained after the subtraction of background image and current frame. After
preliminary experiments, we set a minimum pixel area of 2000 pixels (e.g., 45×45, 60×34)
for blob selection and that allows to reduce noisy non-human elements. The final result
of this first module is a human detection model. It should be noted that our system only
addresses individual human blobs and not crowds. This means that our system can track
several pedestrians in the same video scene, but only if these pedestrians are not closer to
each other. It means pedestrians that overlap (with no clear separating space) from the
camera angle point of view (on a scale that is more close to 1/10 of a meter).

Figure 4: Example of segmentation results (first column denotes the original input frame; second column
shows the Gaussian mixture model result; and third column the background subtraction result).

Regarding the background subtraction, it was done by using the same position of the
bounding box obtained through blob detection, as both frames (current image and back-
ground image) are of the same size. Initially, mask image was obtained using Equation 1
while both images (current image and background image) are in Red-Green-Blue (color RGB
model based on additive color primaries) color space.

M = |B − I| (1)

In Equation 1, M represent the resultant “mask image”, B denotes the “background image”
and I represents the “current frame”. The resultant mask M is converted into grayscale
and then to binary using Otsu’s thresholding (Otsu, 1975). The major drawback of this
approach is when the clothing of a pedestrian is similar to the background, in such cases, the
results are not good due to information loss. For example, Figure 5 shows the original input
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image a, the absolute subtraction image b and the resulting binary mask c which contains
two blobs related with the same person rather than one. For solving this problem we used

Figure 5: a) Original input image, b) result of absolute subtraction, c) binary image and d) result with
shadow removal and highlight detection

Equation 2:

M ′(x, y) =

{
1 if M(x, y) ≥ τ .

0 otherwise.
(2)

where M ′ is the final mask, M(x, y) is the pixel value of the mask at location x and y, and τ
is a threshold. Several values for τ were tested (e.g., τ ∈ {10, 20, 30}). The best results were
achieved with with τ = 30 (as shown in Figure 6) and thus this was the selected threshold
value.

Figure 6: a) Original image, b) mask for τ=20, c) mask for τ=30 and d) grayscale mask for τ=30

2.2.2. Star skeleton detection

In order to obtain a correct human star skeleton, a perfect silhouette is necessary. In
(Afsar et al., 2017) we explored several techniques to achieve this silhouette, such as thin-
ning and zero-crossing. The best results were achieved using a shadow and highlight removal
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combined with a zero-crossing star skeleton method, as detailed in the second module com-
ponents of Figure 3.

To improve silhouette detection results, we used the shadow and highlight removal
method proposed in (Duque et al., 2007) and that involves computing M ′ (Equation 2)
using the Hue, Saturation, and Value (HSV) instead of RGB space, as exemplified in Figure
7. The resultant image SM (shadow mask) and LM (Highlight mask), represent the areas
in the image where shadow and highlight are present and are computed as:

SM(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if α ≤ IV (x,y)
BV (x,y)

≤ β

∧ | IS(x, y)− BS(x, y) |≤ τS

∧ IS(x, y)−BS(x, y) |≤ τH

0 otherwise

(3)

SM(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 1
β
≤ IV (x,y)

BV (x,y)
≤ 1

α

∧ | IS(x, y)− BS(x, y) |≤ τS

∧ IS(x, y)−BS(x, y) |≤ τH

0 otherwise

(4)

In Equations 3 and 4, the value “1” denotes the pixels where there is a shadow or highlight.
Also, the Hue, saturation and value components at coordinate (x,y) of input image I is
represented by IH(x, y), IS(x, y) and IV (x, y) respectively. The same notion is applied for
background image B. The main parameter is α and its value depends on the light source,
radiance, and reflectance properties of the object in the scene. High reflective and high
intensive light sources or irradiant objects can have low α values. For our dataset, α varies
from 0.60 to 0.90. Decreasing the value below 0.60 causes information loss and increasing
the value above 0.90, increases the noise in the final image.

Figure 7: a) Original image, b) HSV image, c) Value component, d) binary image and e) result after shadow
and highlight removal

We tested the algorithm with different α values, within the range {0.65,0.66,67,...,0.90}
and the best results were achieved for α=0.70. After setting the value for α, we experimented
different values for β, this prevents misclassification and the value varies in the data from
0.75 to 0.79. Since this is a less relevant parameter, we experimented distinct values but
achieved the same results, thus this parameter was fixed to β = 0.75. The parameters τS
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and τH are the maximal variation allowed for the saturation and hue components. We define
τS as 15% of the digitizers saturation range. The variation of hue should not pass the 60
degrees. This value is obtained through the division of the hue range (360◦) by the six colors
(red, yellow, green, cyan, blue and magenta). The results obtained were satisfactory, as
shown in Figures 5 d), 7 e) and 8.

Figure 8: Example of extracted human silhouettes using background subtraction combined with shadow and
highlight removal

After achieving a human silhouette, the next step is to detect a star skeleton, which con-
nects the extreme points (head, legs, hands) with the centroid (the body of mass). We note
that human star skeleton is a key element in human action recognition systems (Fujiyoshi
et al., 2004) and in our previous work it was quite useful for detecting human activities (e.g.,
walking, sitting) (Afsar et al., 2015a). In this paper, we compute a 5-star skeleton with the
head, hands and legs points. This skeleton allows the estimation of movement features (used
in by the third module) when considering point changes in two consecutive frames.

Figure 9 represents the overall procedure for obtaining a star skeleton. The original
distance is plotted using the contour of the human silhouette. In order to smooth the human
silhouette, a convolution method was applied. The peaks in this smooth distance function
represents the points of star skeleton. Euclidean distances to the centroid were computed
for all silhouette points, following a clock-wise order when processing the points. In the
distance space, extreme points are associated with high peaks, which were detected using
a zero crossing analysis over distance differences. Since often this method detects a large
number of peaks, we defined a neighborhood threshold in the silhouette space and that was
set to 40. Thus, all candidate points within the neighborhood range were aggregated by
considering the median of such points, leading to a representative extreme point for that
region. For instance, the left hand point, shown in the middle of Figure 10, was computed as
the median of two neighbor peaks. Finally, for the construction of star skeleton, the detected
points are connected with center body of mass. Also, in Figure 9, the points A, B, C, D, E
and F represent the 5-star skeleton. Since both A and F are neighbor points, we assume the
median of both and use it as a single representative point.

The full steps for the construction of a star skeleton algorithm are:
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Figure 9: Process flow for the construction of a star skeleton

Figure 10: Some examples of star skeleton a) Binary Image b) our skeleton algorithm

1 Calculate the centroid of the contour of the input image (xc, yc).

xc =
1

N b

Nb∑
i=1

xi

yc =
1

N b

Nb∑
i=1

yi

(5)

where Bn are the number of boundary points and (xc, yc) denotes the centroid of the
input contour.

2 Determine the distance di from each boundary point (xi, yi) to centroid (xc, yc).

di =
√
(xi − xc)2 + (yi − yc)2 (6)

3 To remove the noise or unwanted peaks, the distance function is smoothed using con-
volution.

4 Find the local maximum by detecting zero crossing of the distance function differences
(di+1 − di).

Figure 10 shows three result examples of the adopted star skeleton algorithm.

2.2.3. Pedestrian destination prediction

Once the star skeleton is achieved, we track its trajectory and extract its position and
movement features, which are based on velocity measures (Kim et al., 2015). We assume
that the video scene contains a priori set of human entry and exit areas. In particular, in this
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paper, we assume the five entry and exit regions that are present in Figure 12. Nevertheless,
we note that if such information is not available, the proposed system could automatically
assign these entry and exit areas by analyzing a training set of trajectories. For each new
human that is detected as entering and exiting scene (A, B, C, D or E), we create a new
trajectory. Then, for all trajectory frames except the first two, we compute several measures
for both x and y axis. These include the absolute center body mass position and the relative
positions (distance to body of mass) of the head, hands and legs. Also, we compute the
absolute velocity and acceleration of the body of mass and relative velocity and acceleration
values for the five star peaks (head, hands and legs).

To assign human body part labels to the detected points, we have adopted several heuris-
tics that were defined after analyzing a preliminary and small set of detected pedestrians.
The heuristics are: head is the highest y value, legs are the lowest y values and hands are
the middle y values. In most cases, the full star skeleton was detected. However, in some
situations some start points are not detected (e.g., only one hand is detected in middle ex-
ample of Figure 10). To solve this, we adopted these heuristics; when one hand is visible and
the other is not, the second hand is set as the first one or it is assumed to be at the center
body of mass Figure 11 a; when both hands are not detected, we assign them to the centroid
Figure 11 c; when only one leg is detected, we assume that both legs are together; finally,
if additional points are missing (e.g., head), we set them as the same position detected in
the previous frame. The heuristics worked well in all cases analyzed. Figure 11 shows some
examples of the labels detected.

Figure 11: Example of heuristics used a) Hand2 assumed to be at the center body of mass b) All of the
points detected (leg1 and leg2 are assumed together as the legs are clsoed) c) Hand1 and Hand2 assumed to
be at the center body of mass d) Hand1 and Hand2 assumed to be at the center body of mass.

Each classifier (Multinomial Logistic Regression, Multilayer Perceptron, Random Forest,
Support Vector Machine) uses data known at a particular data frame, corresponding to cur-
rent time tc. A total of 37 inputs are used: one nominal entry point (A, B, C, D or E) and 12
numeric values for the position (centroid, head, hands and legs with respective x and y val-
ues), velocity and acceleration measures. As the target variable, it considers the nominal exit
point: A, B, C, D and E (Figure 12). The analyzed exterior scene dataset includes a total of
171 videos related with 348 distinct pedestrian trajectories. Most pedestrian trajectories are
short. The minimum pedestrian path required only 0.1s, the median pedestrian trajectory
time is 4.4s, the average trajectory time is 5.3s and the maximum trajectory involves a total
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of 62.4s. For each trajectory, there are several supervised learning examples, matching the
37 inputs of a particular trajectory frame with the target destination value. In total, the
dataset contains 52,379 learning examples. The destination output class is also unbalanced,
as some exit regions are much more common than others, namely: A - 36%, B - 4%, C - 2%,
D - 48%, E - 5% and F - 5%.

Figure 12: Example of possible trajectories between the five A, B, C, D and E entry/exit regions.

We explore four classifiers in order to create the destination prediction models: Multino-
mial Logistic Regression (MLR), a Multilayer Perceptron (MLP) ensemble, Random Forest
(RF) and Support Vector Machine (SVM). The classifiers were adopted with their default
parameters, as defined by the rminer package of the R tool (Cortez, 2010). The MLR is
the extension of the common logistic regression method for multiclass tasks. The MLP is
a popular neural network where processing neurons are grouped into layers and connected
by weighted links. The MLP hidden nodes were fixed to half of the input nodes and the
MLP ensemble fits three networks, averaging their output responses into a single output.
The RF uses an ensemble of 500 unpruned decision trees. Finally, the SVM is based in the
standard regression model with a Gaussian kernel. The default SVM hyperparameters are
C = 1, while the kernel parameter is set using a training data estimation heuristic defined
in (Caputo et al., 2002).

Since our target class is unbalanced, we explore two balancing data methods (Menardi
and Torelli, 2014) that tend to improve classification results for the minority classes: under
sampling and over sampling. The formed method assumes all minority class examples and
random replicates of other classes such that all classes are balanced. The latter method builds
a larger balanced set by considering all majority class patterns plus a random over sampling
of the minority classes. Both methods are only applied to training data and test data is kept
with the original class distributions. We also explore a feature extraction method based on
the well known Principal Component Analysis (PCA) method (Abdi and Williams, 2010).
Using training data, we select the principal components that explain 95% of the variance,
which allowed a reduction in the number of inputs from 37 (original inputs) to 25 (principal
components). In total, each classifier (MLR, MLP, RF, SVM) is run using 6 data processing
combinations, according to three balancing (no sampling, under sampling and over sampling)
and two feature (all inputs and PCA extraction) setups.
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2.3. Evaluation

We adopt the growing window evaluation scheme (Lopes et al., 2011), also known as
incremental retraining evaluation, as presented in Figure 13. This scheme simulates a real
usage of a classifier through time, in which the classifier is periodically updated. For instance,
in the first day, the collected videos could be used to train (dataset initial size of W ) a
classifier, allowing it to produce predictions for the next day (test set of size T ). At the end
of the second day, the newly collected videos could be added to the training set (increasing the
size of W ), allowing the retraining of the classifier such that it can produce new predictions
for the third day, and so on. Thus, under the growing window scheme, several iterations are
executed, assuming a growing training set (as more data arrives) and a fixed test set size.
In this work, the train test split is based on a timely ordering of the collected videos. In the
first iteration, the oldest W videos are used to fit the classifier (training set), which then
predicts the destinations for the frames of the next T videos (test set). In the next iteration,
the test set is slided by adding data from a new video and discarding the oldest test set
video data frames, which are merged into the training set, thus increasing its size. Similar
iterations are then executed, until all videos are considered. In total, this scheme produces
U = L− (W + T ) classifier updates (training and test iterations), where L is the data video
length (the total number of videos in the dataset).

U

1
2
3

training set

......

test settraining set

training set

training set

TW

L

test set

test set
test set

dataset

iterations

Figure 13: Schematic of the growing window evaluation.

To access the classification performance, we adopt the area under the curve (AUC) of the
popular Receiver Operating Characteristic (ROC) curve analysis. A classifier can output
a class probability (p ∈ [0, 1]) that according to a decision threshold D is interpreted as a
positive class if p > D. Depending on the user selected threshold value (D), the classifier
can produce a more sensitive (if a low D is selected) or specific response (high D value). The
ROC curve shows the discrimination performance of the classifier for all possible D values,
plotting the specificity (x-axis) versus the sensitivity (y-axis). In general, the quality of the
AUC values are often interpreted as: up to 50% – poor (equivalent to a random classifier);
60% to 70% – good; 80% – very good; 90% – excellent; and 100% – perfect. Following
the recommendations of Fawcett (2006), we compute the individual AUC class values, for
each class, and also the global AUC, which weights the individual AUC values by each class
prevalence in the data. Moreover, we execute a vertical aggregation method to estimate the
median AUC curve, over all U runs, and its respective 95% confidence intervals, according to
the Wilcoxon non parametric test. We also compute the ahead time (ta, in seconds) in which
the classifier predictions are computed (tc) when compared to the time when the pedestrian
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reaches the destination area (td). This time measure allows us to detail the quality of earlier
predictions by plotting the AUCa (AUC for a particular class and ahead time ta, y-axis)
versus the ahead time (x−axis) graphs. The measure also allows us to compute the quality
time (tq), the amount of ahead time in which the obtained AUCa is higher than a quality
threshold Q:

ta = td − tc
tQ = max {ta : AUCa ≥ Q} (7)

3. Results

All experiments were executed on a personal laptop running a Mac operating system.
As previously explained, we only consider the exterior scene videos (L = 171) with five
destination regions (A, B, C, D and E). We executed all steps of the proposed system
(Figure 3) using a frame rate of 30 frames per second. During the classification stage, the
initial training set size was defined to include around 2/3 of the videos (W = 114) and the
test set was set with T = 48 videos, in a setup that results in U = 14 growing window runs.

Table 1 shows the obtained predictive results, in terms of the median AUC values (in %)
for all classifiers and data processing setups. In general, excellent AUC values were achieved
for class A (higher than 90%) and a very good discrimination was obtained for destination
classes C and D (higher than 80%). Reasonable performances (AUC higher than 70%) were
achieved for class E and some models, while the poorest discrimination was obtained for
class B (ranging from 28.4% to 65.6%). Also, there seems to be no advantage in using
PCA, as in general higher AUC values are achieved by the models that use all inputs. The
discrimination performance seems more affected by the classifier type, with better overall
results for the RF model, rather than the balancing sampling method.

For further analysis, we detail the classification results of two selected models. The first
model is related with the best global AUC result and it corresponds to the RF using all
inputs and the under sampling processing. For the second model, we wanted to select a
classifier with a good class B AUC value (higher than 60%), since B is the most difficult
class to discriminate. Since four SVM models provide such class B AUC values (bold values
in Table 1), we selected one of these models as the representative of a good class B pre-
diction, namely the SVM using all inputs and no sampling. This model was selected since
it corresponds to one of the two preselected classifiers with the highest global AUC value
(81.5%) and a better class B AUC value (65.4%) when compared with the all inputs and no
sampling SVM classifier (64.5%).

For demonstrative purposes, we show the detailed results for the two selected models and
three classes (A, B and D). The ROC curves of Figures 14 and 15 are plotted in terms of the
vertical median and respective 95% confidence interval values. In the ROC graphs, the class
destination performances are compared with a random classifier baseline (AUC=50%). The
achieved ROC curves for the selected models confirm the excellent discrimination capability
for class A (Figures 14 a and 15 a) and very good discrimination for class D (Figures 14 c
and 15 c). For class B, the RF discrimination is weak (Figures 14 b and 15 b), similar to
a random classifier, while the SVM performance is reasonable. Figures 14 and 15 also plot
the ahead time versus AUC value for the same two selected models and three classes. The
ahead time plots were computed using a time scale that goes up to 14s, which includes 95%
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Table 1: Discrimination performance on test data (median AUC values, in %; first model selected criterion
values are underlined and the second model criteria values are in bold).

All Undersampling Oversampling No sampling
MLR MLP RF SVM MLR MLP RF SVM MLR MLP RF SVM

class A 88.9 94.6 96.3 93.7 89.7 95.7 95.5 89.5 92.9 94.9 95.5 92.4
class B 51.4 42.0 49.9 53.7 57.5 45.8 49.9 65.4� 59.9 41.7 46.6 64.5
class C 69.3 86.4 91.4 77.1 70.7 87.4 89.4 79.1 40.4 89.1 88.5 74.1
class D 80.2 81.8 84.1 78.2 79.4 83.2 84.5 80.2 75.6 82.9 83.8 78.8
class E 66.8 68.1 72.2 63.6 69.9 73.0 72.7 64.6 64.8 72.2 69.7 64.3
Global 80.8 84.3 86.9� 81.5 81.2 86.0 86.7 81.5 78.7 85.6 86.0 81.5
PCA Undersampling Oversampling No sampling

MLR MLP RF SVM MLR MLP RF SVM MLR MLP RF SVM
class A 94.2 94.0 94.3 93.1 93.2 94.9 93.2 88.7 95.2 94.3 94.2 91.6
class B 32.7 40.4 49.8 53.0 35.2 46.9 46.3 65.6 28.4 39.3 48.8 65.3
class C 85.7 86.9 84.0 79.7 84.2 89.0 84.3 81.1 81.4 87.6 84.0 76.6
class D 80.5 81.8 81.7 78.7 80.2 82.7 82.1 80.1 79.1 82.2 82.7 78.6
class E 71.2 69.6 69.0 64.5 71.9 70.9 69.7 64.9 68.5 69.9 66.7 64.0
Global 83.7 84.3 84.3 81.9 83.4 85.4 84.0 81.3 83.0 84.6 84.5 81.3

� - median 95% confidence interval within the range [86.0, 87.8], statistically significant under a pairwise
comparison against all other models except: all over sampling MLP and RF; all no sampling MLP and
RF; and PCA MLP over sampling.
� - median 95% confidence interval within the range [64.1, 65.0], statistically significant under a pairwise
comparison against all other models except: all input no sampling SVM; PCA over sampling SVM; and
PCA no sampling SVM.
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of all pedestrian trajectories. For class A (Figures 14 d and 15 d), the ahead time plots show
an almost stable discrimination performance for both RF and SVM selected models. More
importantly, the ahead time graphs reveal that a high quality predictive performance (higher
than Q = 80%) is achieved for classes B (Figures 14 e and 15 e) and D (Figures 14 f and 15
f) (and the same selected models), although for a shorter advance time. For example, for
class B and RF model, the time quality is tq =6s when Q = 80% and tq = 7 when Q = 60%.
The full time quality values, for all classes, two selected models and two quality values (very
good – Q = 80%, and reasonable – Q = 60%) are shown in Table 2. These time quality
results confirm the first model (all inputs, undersampling, RF) as the best model, since it
provides better ahead quality times for all classes except B. And even for class B, the second
selected model improvement is small (3 seconds for Q = 80% and 2 seconds for Q = 60%).
In effect, the selected RF provides very good ahead time quality values for four classes (A,
B, C and D) and a reasonable ahead quality performance for class E.
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Figure 14: Overall ROC curve (top) and ahead time vs AUC graphs (bottom) for selected model 1 (all input
under sampling RF) and destination classes A (left), B (middle) and D (right).

4. Conclusions

Nowadays, human daily activities are increasingly being recorded using digital cameras.
In this paper, we present an intelligent system to predict the final destination area of pedestri-
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Figure 15: Overall ROC curve (top) and ahead time vs AUC graphs (bottom) for selected model 2 (all input
over sampling SVM) and destination classes A (left), B (middle) and D (right).

ans moving freely in real-world environments. The proposed system adopts a passive collec-
tion of video, works directly with raw video data and extracts motion features for pedestrian
destination prediction (position, velocity, acceleration) from automatically detected human
skeletons (with positions of the body of mass, head, hands and legs). It includes three main
modules: human blob detection – based on background subtraction; star skeleton detection
– encompassing shadow removal and contour peak detection; and the final destination area
prediction, based on preprocessing (dimensionality reduction and balancing sampling meth-
ods) and four classification methods: logistic regression, neural network, Random Forest
(RF) and Support Vector Machine (SVM).

As a case study, we analyzed an exterior scene from a university campus and that includes
five main destination areas (A, B, C, D and E). The collected dataset consisted of 348 pedes-
trian trajectories from 171 videos. The experimentation setup included a realistic growing
window evaluation and the testing of four classifiers under six data processing combinations.
The best results were achieved by the all inputs, under sampling and RF model. This model
obtained the best global Area Under the Curve (AUC) of the Receiver Operating Character-
istic (ROC) analysis, which corresponds to a high quality class discrimination (median AUC
of 87%). Moreover, the suggested model provided very good ahead time predictions for four
of the classes (A, B, C and D) and a reasonable ahead discrimination performance for class
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Table 2: Quality time (values in s).

Q =80% Q =60%
class Model 1 Model 2 Model 1 Model 2
A 14∗ 11 14∗ 14∗

B 6 9 7 9
C 8 2 11 8
D 8 0 10 10
E 0 0 7 6

∗ - at least 14s.

E.
The proposed intelligent system for destination area prediction from video achieved in-

teresting results in the analyzed university campus case study. While tested in this case
study, the system was designed for usage in a wide range of pedestrian walking real-world
scenarios, since: it works directly from raw video data, captured using commonly used digi-
tal Closed-Circuit Television Cameras (CCTV); it assumes a passive collection of pedestrian
paths (humans might not even know that the system exists); and it requires a minimum
manual setting (e.g., initial adjust of the alfa parameter for shadow and highlight removal;
optional setting of the destination areas of interest). As such, we believe the proposed sys-
tem could be useful for other real-world application scenarios. For instance, it could be set
to capture the interior of a large commercial store, anticipating when would a consumer
approach a an important promotional product or cashier machine, triggering a temporal
need for an employee (e.g., commercial vendor or cashier) at that position. Moreover, the
same system could be used outside a factory with several near buildings and doors, anteci-
pating the need for preparing more meals or waiting staff (e.g., when entering a canteen) or
triggering a warning or security alarm (e.g., when approaching a very restricted zone).

In future work, we aim to test our system in these application environments. Moreover,
we intend to enrich our system with additional features, such as scene obstacles (Kim et al.,
2015) neighborhood motion (Fernando et al., 2017) and other body part motion capture
(e.g., knees, limbs) attributes. In particular, motion capture technology, such as proposed
in (Zhang and Shah, 2015; Girdhar et al., 2017), could be relevant for the detection of more
advanced body parts.
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