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Block Copolymer Templated Synthesis of PtIr Bimetallic 
Nanocatalysts for the Formic Acid Oxidation Reaction  
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Gates,c and David A. Ridera,b

Arrays of PtIr alloy nanoparticle (NP) clusters are synthesized from a method using block copolymer templates, which 

allows for relatively narrow NP diameter distributions (~4–13 nm) and uniform intercluster spacing (~ 60 or ~100 nm). 

Polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer micelles were used to create thin film templates of 

NPs with periodic pyridinium-rich domains that are capable of electrostatically loading PtCl62- and IrCl62- anion precursors 

for the preparation of NP arrays. The composition of PtIr NPs was specified by the ratio of metal anions in a low-pH 

immersion bath. Formic acid oxidation, studied by cyclic voltammetry, shows that the arrays of clusters of PtIr alloy NPs 

are highly active catalysts, with mass activity values on par or exceeding current industrial standard catalysts. The 

uniformity in the NP population in a cluster and the small diameter range established by the block copolymer template 

permit an estimate of the optimal Pt:Ir ratio for the direct oxidation of formic acid, where, ~10 nm Pt16Ir84 alloy NPs were 

the most active with a mass activity of 37 A/g.   

Introduction 

Direct formic acid fuel cells (DFAFCs) have demonstrated excellent 

power densities at ambient temperatures in miniaturized applications 

and, therefore, may replace current conventional batteries in future 

portable electronics.1-3 Typically DFAFCs consist of two electrodes 

installed around a polyelectrolytic membrane (PEM) and produce 

electricity by passing formic acid (HCOOH) through the anode and 

passing oxygen (O2) through the cathode. In idealized high-energy 

efficiency conditions, anodic catalysts completely oxidize HCOOH 

to produce protons (H+), electrons (e-), and carbon dioxide (CO2). 

The protons pass across the PEM, whereas the e- travel through an 

external circuit and back to the cathodic catalysts where they react 

with O2 and the H+ from the PEM to produce water. For nearly seven 

decades, a default electrocatalytic material for many of the steps in 

fuel cells has been monometallic platinum (Pt).4-6 The high cost of 

Pt, its relatively slow kinetics towards the oxygen reduction reaction, 

and its susceptibility to poisoning are the major barriers to 

widespread commercialization of fuel cells.7 Nanoscale and 

multimetallic Pt-containing catalysts have been used to overcome 

many of these barriers.8 Pt-based nanoparticles (NPs) not only have 

a high surface area-to-volume ratio that maximizes access to surface 

Pt atoms, but also exhibit quantum size-dependent effects that are 

often greater than activities that are predicted by miniaturizing of 

bulk properties.9-11  

Complementing Pt with additional metals has identified several 

bimetallic NP (PtxM100-x, where M = Ru, Au, Ni, Co, Pd, etc., and 

subscripts indicate atomic ratios) catalysts with excellent activities 

for both anodic and cathodic fuel cell reactions, as well as the ability 

to oxidize surface adsorbed carbonaceous poisons in PEM-type fuel 

cells like DFAFCs.12-16 Integration of a complementary metal in Pt 

NPs results in an altered geometric and/or electronic structure of the 

exterior NP atoms, which can tune adsorbate bonding and provide 

alternative catalytic pathways for electrochemical transformations. 

Table S1 provides a brief comparison of the catalytic activity of 

several bimetallic NP catalysts. The need to assess catalytic activity 

demonstrates the importance of specifying the stoichiometry and 

structure of Pt-based catalysts in the nanometer scale regime. 

Bimetallic platinum-iridium (PtIr) nanocatalysts in particular 

have demonstrated superior activity for the oxidation of small 

molecule fuels, increased stability,17 improved resistance to 

poisoning,18-20 and higher rates of oxygen reduction.21 Currently, the 

common route for preparing bimetallic Ir-containing nanomaterials 

relies on a solvothermal wet chemical reduction in media with 

dissolved surfactants.22-24 The application of block copolymer 

templates for the preparation of bimetallic Ir-containing NPs has not 

yet been fully explored and represents an opportunity for discovering 

highly active NP catalyst arrangements.25-29   
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Lithography using solution-processable block copolymers 

provides a high degree of the control of the size and inter-particle 

spacing of NPs and NP clusters.30 In related work, a block 

copolymer method for fixing PtPb NPs to a nanoporous carbon 

catalyst has been demonstrated, where the PtPb NP carbon 

composite exhibited improved anodic function in DFAFCs.31 

Conductive palladium-carbon-silica electrodes have also been 

prepared from a hybridized block copolymer/sol-gel route; the 

resulting electrodes exhibited enhanced catalytic activity where 

carbon-based corrosion was supressed.32 Recently, block copolymer-

patterned bimetallic and trimetallic alloy NP arrays were synthesized 

with precise control of size, composition, and intermetallic 

crystalline structure for use in controlling the vertical growth of 

carbon nanotubes with accelerated rates.33 

In this work, we investigate a block copolymer templated-

synthesis for the preparation of arrays of clusters of PtIr NP 

catalysts. Improved electrocatalytic oxidation of HCOOH by PtIr NP 

arrays with diameters of ~4 – 13 nm is demonstrated by our 

methods. We introduce: (i) the details of a block copolymer template 

synthesis of PtIr NP catalyst arrays from thin films of polystyrene-

block-poly(4-vinylpyridine) (PS-b-P4VP)  micelles (Scheme 1); (ii) 

a thorough characterization of the structure and composition of PtIr 

NP arrays; and (iii) a study of the catalytic activity by NP arrays for 

formic acid oxidation.  

Experimental 

Materials 

Block ratios of ~3:1 were selected for the PS-b-P4VP polymers 

which were used as received from Polymer Source, Inc. Specifically, 

two polymers PS1392-b-P4VP471 (PDI = 1.07) and PS552-b-P4VP174 

(PDI = 1.14) were selected as precursors for the templates in this 

study. Dihydrogen hexachloroplatinate hexahydrate 

(H2PtCl66H2O), dihydrogen hexachloroiridate hexahydrate 

(H2IrCl66H2O), anhydrous methanol (99.9%), trace metal grade 

hydrochloric acid (HCl, 34 – 37%), trace metal grade nitric acid (67 – 
70%), hydrofluoric acid (HF, 49%), acetone (ACS grade), potassium 

permanganate (KMnO4, 99.9%), and isopropyl alcohol (ACS grade) 

were all used as received from Fisher Scientific, Inc.(Caution HF is 

highly toxic and extreme care has to be exercised while handling it.) 

Sulfuric acid (H2SO4, 98%) and dichloromethane (99.8%) were both 

used as received from Macron Chemicals. Toluene (Reagent Grade, 

Macron Chemicals) was vacuum distilled and stored under dry N2 

prior to use. Hydrogen peroxide (H2O2, 30%, ACS reagent grade) 

was used as received from EMD Chemicals, Inc. Formic acid 

(HCOOH, 83%) was used as received from J.T. Baker Chemicals. 

Polystyrene (PS, ~200 kg/mol) was used as received from Fluka 

Analytical. Indium tin oxide (ITO) coated SiO2-passivated polished 

float glass (8 – 12 Ω/cm2) plates, acquired from Delta Technologies, 

Ltd., were used as substrates. Silicon oxide (100-nm thick) coated 

silicon wafer substrates were obtained from Virginia 

Semiconductors. All substrates were cleaned by sequential sonication 

in dichloromethane, ultrapure water (18 MΩcm), and isopropyl 

alcohol prior to use.

Synthesis of Bimetallic PtIr NP Arrays 

The synthesis of PtIr NPs follows a modified protocol as outlined by 

Aizawa et al.34 Preparation of PtIr bimetallic catalysts can be 

summarized by three steps: (1) the self-assembly and thin film 

processing of PS-b-P4VP diblock copolymer micelles; (2) the 

simultaneous absorption of PtCl6
2- and IrCl6

2- ions into the PS-b-

P4VP film by immersion into an aqueous solution; and (3) the 

thermal annealing/reduction to remove the polymer and form PtIr 

catalyst NPs. The entire process for creating PtIr NP arrays can be 

carried out with standard laboratory equipment and does not require 

sophisticated photolithography or metal evaporation equipment or 

other clean-room-based fabrication techniques. 

Block copolymer precursor solutions were prepared by first 

dissolving PS-b-P4VP in anhydrous toluene (4 mg/mL) at 90 oC 

under stirring for 12 h, and then allowing equilibration to room 

temperature before use. All substrates were subjected to an argon 

plasma etch for 10 min at ~0.3 Torr (Harrick Plasma, PDC 32G, 

18W) directly prior to use. Thin films of PS-b-P4VP were prepared 

by spin-casting filtered polymer precursor solutions (Millipore 

syringe filters, PTFE, 0.45 µm pore size) directly onto substrates at 3 

krpm for 60 s (Lite Laurell Spin Coater WS-400B-6NPP). Substrates 

coated with block copolymer films were then placed face up in 

methanol for 10 min causing micellar inversion as described by Chai 

and Buriak.35 Substrates were dried with filtered air after removal 

from methanol and then submerged in 100 mM H2SO4 baths 

containing H2PtCl6 and H2IrCl6. The metal ions made up a total 

concentration of 10 mM in various ratios. Following metal ion 

loading, substrates were rinsed with ultrapure water and dried once 

more by filtered air. The metal ions that were loaded into the PS-b-

P4VP template were reduced to an oxidation state of zero by 

annealing in a quartz tube furnace (Lindberg Blue M Mini-Mite) at 

600 oC for 3 h with a minimum flow rate of 20 L/min of argon. 

Trace amounts of oxygen in the tube furnace should be avoided in 

order to supress the loss of Ir via the sublimation of IrO2.36 The 

atmosphere in the quartz tube was purged for 1 hr prior to annealing 

in order to mitigate loss of Ir content. The process for PtIr NP 

synthesis is depicted in Scheme 1.  

General Instrumentation 

Scanning force microscopy (SFM) was conducted using a Digital 

Instrument Nanoscope IIIa multimode instrument operated in 

tapping mode and equipped with conical silicon probes 

(Nanoscience Instruments) with resonant frequencies close to 300 

kHz. Scanning transmission electron microscopy (STEM) and 

energy dispersive X-ray spectroscopy (EDS) were performed with a 

FEI Tecnai Osiris TEM system (accelerating voltage of 200 kV and 

a beam energy of 200 keV) equipped with an Analytical TWIN (A-

TWIN) objective lens and an integrated Super-X EDS detection 

system. Transfer of PtIr NP arrays to a TEM grid for analysis was 

conducted with a polymer overcasting method. The PtIr NP arrays 

were created on silicon wafers bearing a 100-nm thick thermal oxide 

layer using the steps outlined above. The arrays were then 

transferred to a PS layer by spin coating (toluene solution of ~1% by 

wt., 3.5 krpm, 60 s). Substrates were then immersed in concentrated 
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Scheme 1. General procedure for the synthesis of PtIr bimetallic catalysts using thin films of PS-b-P4VP micelles: (i) solution state self-
assembly of PS-b-P4VP into spherical micelles in toluene; (ii) spin coating micelles onto an electrode substrate followed by thin film 
reconstruction into an array of inverted-micelles by soaking in methanol; (iii) simultaneous loading of PtCl6

2- and IrCl62- ions into the micellar 
array by immersion into a stoichiometrically tuned aqueous solution of the respective metal ions; and (iv) removal of PS-b-P4VP template by 
thermal annealing under Ar. The x and y coefficients indicate the amount of IrCl62- and PtCl62- of metal ions incorporated into a single PS-b-
P4VP micelle domain, while the z coefficient refers to the incorporated sulfate ions from the 100 mM H2SO4 ion-loading immersion bath. 

HF for ~30 s, which caused etching of the thermal oxide layer and 

release of the PS film containing the embedded PtIr NP arrays. TEM 

grids were then used to capture the floating films and rinsed with 

ultrapure water and stored for later analysis by STEM and EDS. This 

TEM transfer method has previously been shown to not significantly 

alter the composition of Pt-based NPs from that found on ITO 

electrodes.28  

X-ray photoelectron spectroscopy (XPS) measurements were 
performed with a Physical Electronics Quantera Scanning X-ray 

Microprobe. This system used a focused monochromatic Al Kα X-

ray (1486.7 eV) source for excitation. The instrument has a 32 

element multichannel detection system. The X-ray beam was 

incident normal to the ITO-supported samples and the photoelectron 

detector was at 45o off-normal. High energy resolution spectra were 

collected using a pass-energy of 69.0 eV with a step size of 0.125 

eV. For the Ag 3d5/2 line, these conditions produced a FWHM of 

1.07 eV. The binding energy (BE) scale was calibrated using the Cu 

2p3/2 feature at 932.62 ± 0.05 eV and Au 4f7/2 at 83.96 ± 0.05 eV. 

The atomic concentrations were quantified using standard sensitivity 

factors contained in the ULVAC-PHI, Inc. MultiPak software 

V9.6.1.7 dated 10/2016. Peak area intensities required for 

quantification were calculated after applying a Shirley background 

subtraction. These quantification results include the instrument 

transmission function, source angle, and asymmetry corrections.  

Quantitative elemental analysis of PtIr NPs was conducted by 

inductively coupled plasma mass spectrometry (ICP-MS) on an 

Agilent 7500ce. An integration time of 0.1 s was applied using an 

on-axis octopole reaction system operated in collision mode using 

ultra-high purity He. All glassware used in the process was stored in 

a concentrated HCl bath overnight. Calibration standards were 

prepared by dissolving calculated amounts of H2PtCl6 and H2IrCl6 in 

a solution of 5% nitric acid (v/v), resulting in concentrations in the 

range of 0.01 – 10 ppm. The concentrated metal solution was diluted 

by 10-fold serial dilutions for a total of eight standards with an 

identical matrix composition of 5% nitric acid (v/v). PtIr catalysts 

mounted on ITO of known dimensions were dissolved in 

concentrated aqua regia (CAUTION: Aqua regia solution is 

extremely corrosive and must be handled with caution) for a 

minimum of 15 min (lack of conductivity from ITO substrates 

confirmed the full dissolution of PtIr NPs) and diluted to 5% (v/v) in 

sterile polycarbonate 50 mL volumetric tubes.  

Electrochemical Methods 

Stringent cleaning procedures were used on all glassware and 

samples in order to reduce the influence of organic contaminants 

during electrochemical measurements. The electrochemical cell and 

fritted glass tube for sparging were both soaked overnight in a strong 

oxidizing bath of aqueous 1 M H2SO4 and ~1 mM KMnO4. The 

resulting residue from the glassware was removed by rinsing with 

piranha (CAUTION: Piranha solution reacts violently with organics 

and should be handled with extreme caution) and lastly with 

ultrapure water. The ITO substrates supporting PtIr nanocatalysts 

were cleaned with acetone using a Soxhlet extractor for a minimum 

of 12 h prior to electrochemical measurements. 

Electrochemical characterizations were carried out on either a 

WaveDriver 20 Bipotentiostat or a WaveNow Potentiostat (Pine 

Research Instrumentation). Electrochemical measurements were 

obtained at ambient temperatures using a standard three-electrode 

electrochemical cell that consisted of a ferricyanide-corrected 

silver/silver chloride reference electrode (Ag/AgCl), a wire platinum 

counter electrode and ITO coated glass with PtIr NP catalysts as the 

working electrode. The geometric area of the working electrode was 

immediately measured after electrochemical testing using a digital 

caliper, which allowed for cyclic voltammetric (CV) plots to be 

reported in a mass specific current (A/g) when required.   

Electrochemical surface area (ECSA) was evaluated by CO-

stripping using a modified protocol as outlined by Jerkiewicz et al.37 
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High purity argon (Ar, 99.999%) was bubbled through a 0.5 M 

H2SO4 electrolyte for 30 min prior to measurements. High-purity CO 

was purged through the electrolyte for 5 min at a constant 

chemisorption potential of 0.1 V. The electrolyte was purged once 

more with argon for 30 min at the same potential to displace any 

remaining CO in the cell. Oxidative stripping voltammograms and 

subsequent CVs were then acquired at a scan rate of 20 mV/s.  

Oxidation of HCOOH and multi-cycle testing was carried out in 

0.5 M H2SO4 and 0.1 M HCOOH purged with argon for 30 min prior 

and a constant flow of argon gas was allowed to flow in and out of 

the headspace of the cell during electrochemical testing. A scan rate 

of 10 mV/s was used for 25 consecutive cycles between -0.25 and 

1.30 V or until steady-state conditions were reached. The exposed 

catalytic area of the working electrode was immediately measured 

upon removal from the measurement using a digital calliper. 

Results and Discussion 

Arrays of PtIr NPs from Diblock Copolymer Templates 

The arrays of PtIr NPs discussed in this work were synthesized from 

diblock copolymer templates created from self-assembled micelles 

of PS-b-P4VP.38-40 Specifically, two size regimes for PtIr NP arrays 

are investigated, which are defined by two different block 

copolymers, namely PS1392-b-P4VP471 and PS552-b-P4VP174. The 

subscripts indicate the average number of repeat units for each 

block. A PS:P4VP block ratio of approximately 3:1 was chosen in 

order to achieve a spherical micelle morphology in toluene, a PS 

block-selective solvent.41 In toluene, P4VP chains collapse into a 

micelle core that is stabilized by a highly solvated PS corona. Spin 

coated films from these micellar solutions yield monolayer arrays of 

quasihexagonally packed PS-b-P4VP micelles that consist of a 

continuous matrix of vitrified PS with embedded P4VP micelle 

cores. The height mode SFM images of ITO-supported films of 

quasihexagonally packed micelles from PS1392-b-P4VP471 and PS552-

b-P4VP174 are shown in Fig. 1a and 1b. Both the molecular weight 

of the block copolymer and the processing conditions determine the 

dimensions of self-assembled features in this type of micellar film.42 

Table S2 in the Supporting Information file reports the periodicity, 

the average full width at half-maximum (FWHM), and height values 

of the micelles in both films. The higher molecular weight block 

copolymer, PS1392-b-P4VP471, creates an array of larger micelles 

with an approximate periodicity of 101 nm while the lower 

molecular weight PS552-b-P4VP174 creates an array of smaller 

micelles with an approximate periodicity of 63 nm. Similarly, the 

height and FWHM values for the larger block copolymer are greater 

than those of the smaller block copolymer. 

The approach for loading aqueous metal ion precursors into the 

P4VP domains of the micelles requires a priming step that 

reconstructs the continuous PS matrix that results from spin casting. 

Initially, the PS acts as a barrier between aqueous ions and pyridinyl 

sites in the micelle cores. The PS-b-P4VP micelles readily undergo 

inversion when exposed to orthogonal solvents like alcohols.43-46 In 

this reconstruction step, the P4VP domains in the micelle films 

become highly swollen in alcohol and increase in size by several-

fold, creating large swelling forces at the P4VP/PS boundary.47, 48 

The solvent-swollen P4VP chains can, therefore, breach across any 

PS overlayer in order to better contact the solvent. Local fixation of 

P4VP chains to the surface is facilitated by the solvophobic PS

matrix

present in between micelles, which focuses the reconstruction to the 

region above the embedded P4VP cores. Solvent-swollen P4VP 

chains collapse back onto the films upon drying and transform a 

hemi-spherical micellar feature in the films (Fig. 1a and 1b) into a 

toroidal analogue (Fig. 1c and 1d). This methanol-triggered 

reconstruction step (Scheme 1, step ii) was found to improve the 

metal ion loading step and has been included in the process for 

defining the block copolymer templates. Each SFM image confirms 

that the reconstruction step has successfully positioned P4VP chains 

at the surface of the film, which allows for more effective interaction 

with aqueous phase metal ions. 

The pKa of the pyridinyl residues in the P4VP core is ~ 4.5 and, 

therefore, these groups can be protonated at low pH values.49, 50 The 

immersion baths that load NP precursors into the templates have 

been defined to include dissolved PtCl6
2- (from H2PtCl6) and IrCl62- 

Fig. 1 SFM height mode images (2 x 2 µm2) for as cast (a) PS1392-b-
P4VP471 and (b) PS552-b-P4VP174 templates created by spin-coating 
onto ITO. The corresponding SFM images for the inverted micelles 
are shown in (c) and (d). Insets images are 250 x 250 nm2 and use 
the same height scale. Representative bright field STEM images of 
PtxIr100-x NP cluster arrays created by thermoreductive annealing of 
(e) PS1392-b-P4VP471 and (f) PS552-b-P4VP174 templates that were 
loaded from a 100 mM H2SO4 aqueous solution of 9.0 mM H2PtCl6 + 
1.0 mM H2IrCl6. The corresponding particle diameter histograms
are shown as insets in (e) and (f).
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anions (from H2IrCl6), as well as H2SO4 in order to access a low pH 

media and to convert pyridinyl groups into their cationic form. The 

negatively charged IrCl6
2- and PtCl6

2− are expected to mainly 

coordinate to cationic pyridinium groups by an electrostatic 

interaction.51 A series of ten immersion baths were investigated in 

this work (see Supporting Information Table S3), where the 

immersion time was held constant for 10 min, only six of the baths 

are shown in Table 1. Each immersion bath is defined to include 100 

mM H2SO4 and a total metal ion concentration of 10 mM, each 

differentiated by the following Pt:Ir molar ratios: 10:0, 9.75:0.25, 

9.5:0.5, 9.0:1.0, 8.0:2.0, 7.5:2.5, 7.0:3.0, 5.0:5.0, 2.4:7.6, and 0:10. 

After recovering PtCl6
2-- and/or IrCl6

2- loaded block copolymer 

templates, a thermoreductive annealing step [3 h, 600°C, flowing 

Ar(g)] was used to remove the PS-b-P4VP template, reduce the metal 

ions, and alloy Pt and Ir into NPs (Scheme 1, step iv).  

Samples for STEM analyses were created by transferring the PtIr 

NP arrays synthesized on thermal SiO2 coated Si wafers to TEM 

grids. PtIr NP arrays were synthesized on the wafers, embedded in a 

PS homopolymer layer by spin coating, and floated off the substrate 

using aqueous HF and transferred to a TEM grid. While some 

distortion of the arrays occurs, the dimensional characteristics of the 

arrays of NP that are transferred to the TEM grid are generally close 

to those determined for the same arrays supported on ITO substrates 

and investigated by SFM (see Fig. S1 for representative SFM). 

Shown in Figure 1e-f are representative STEM bright field images of 

the NP arrays that are created from the PS1392-b-P4VP471 and PS552-

b-P4VP174 templates prepared from the immersion bath containing a 

9.0:1.0 molar ratio of Pt:Ir, respectively. A complete set of STEM 

bright field images for both block copolymer templates matched to 

each immersion bath can be found in the Supporting Information file 

(Fig. S2 and S3). The thermoreduction of a metal-ion-loaded P4VP 

domain leads to PtIr NP arrays in the form of clusters. The number 

of NPs per cluster found for each PS1392-b-P4VP471 and PS552-b-

P4VP174 template-immersion bath combination was determined and 

is reported in Table 1 and Table S3. For higher Pt-content target 

bimetallic NPs (immersion baths with ≥ 95 mol% Pt), the PS1392-b-

P4VP471 template leads to arrangements with ~6-7 NPs per cluster. 

For lower Pt-content target bimetallic NPs (immersion baths with < 

95 mol% Pt), the PS1392-b-P4VP471 template leads to clusters of NPs 

with ~1-2 NPs per cluster. The use of the PS552-b-P4VP174 template 

results in analogous cluster definition. When high Pt-content is 

targeted for PtIr NPs, ~4-7 NPs per cluster result for this lower 

molecular weight template. Similarly, lower Pt-content in the PtIr 

NPs favours ~1-2 NPs per cluster from the same lower molecular 

weight template. In the high Pt-content targets, the observation of 

fewer NPs per cluster between templates (6-7 vs 4-7 NPs per cluster) 

suggests that the size of the P4VP domain in the block copolymer 

template specifies the number of NPs that can be isolated from a 

single micellar domain.  

Table 1. Comparison of twelve compositionally tuned particle clusters synthesized from immersion into 100 mM H2SO4 with 10 mM [H2IrCl6 

+ H2PtCl6].

a n and m represent the average number of repeat units of the PS and P4VP blocks, respectively.  b Average of 100 particles.  c Average of 25 
clusters.  d Average of 15 clusters.  * Continuous metal phase present in nanoring formation.

Pt : Ir molar ratio in 

immersion bath 
NP and Cluster Parameters 

PSn-b-P4VPm Diblock copolymer templatea and

TEM estimated dimensions (Std. Dev.)

PS1392-b-P4VP471 PS552-b-P4VP174 

10 : 0 

NP Diameterb 10 ± 4 nm 6 ± 3 nm 

NPs per Clusterc 2 ± 1 7 ± 3 

Periodicityd 116 ± 7 nm 56 ± 9 nm 

Stoichiometry Estimated by XPS Pt100Ir0 Pt100Ir0 

9.5 : 0.5 

NP Diameterb 4 ± 1 nm 6 ± 2 nm 

NPs per Clusterc 6 ± 3 4 ± 2 

Periodicityd 144 ± 19 nm 74 ± 11 nm 

Stoichiometry Estimated by XPS Pt91Ir9 Pt79Ir21 

8.0 : 2.0 

NP Diameterb 13 ± 5 9 ± 1 

NPs per Clusterc 1.6 ± 1.0 1.8 ± 1.2 

Periodicityd 116 ± 14 nm 45 ± 7 nm 

Stoichiometry Estimated by XPS Pt33Ir67 Pt36Ir64 

7.0 : 3.0 

NP Diameterb 9 ± 1 9 ± 1 

NPs per Clusterc 2.4 ± 1.1 1.2 ± 0.5 

Periodicityd 128 ± 7 nm 49 ± 8 nm 

Stoichiometry Estimated by XPS Pt18Ir82
 Pt20Ir80 

5.0 : 5.0 

NP Diameterb 11 ± 3 10 ± 1 

NPs per Clusterc 2.2 ± 1.3 1.2 ± 0.4 

Periodicityd 112 ± 15 nm 49 ± 8 nm 

Stoichiometry Estimated by XPS Pt19Ir81 Pt16Ir84 

0 : 10 

NP Diameterb 13 ± 5 nm 10 ± 4 nm 

NPs per Clusterc n/a* n/a* 

Periodicityd 123 ± 13 nm 66 ± 12 nm 

Stoichiometry Estimated by XPS 

Stoichiometry Estimated by XPS

Pt0Ir100 Pt0Ir100 
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Further quantification of the STEM images was conducted, and 

Table 1 also reports the average distance between clusters 

(periodicity) and NP diameter and for each template / immersion 

bath combination. The periodicity values were found to be close to 

those of the parent block copolymer micellar films (Table S2). 

Lastly and in general, the thermoreductive isolation of block 

copolymer templated PtIr NP clusters yields NPs that are between 4-

13 nm in diameter. The diameter distribution histograms for PtIr NPs 

from the PS1392-b-P4VP471 and PS552-b-P4VP174 templates loaded 

with the 9.0:1.0 Pt:Ir immersion baths are reported as insets in Fig. 

1e-f while all others are reported in the Supporting Information file 

(Fig. S2 and S3). The relatively narrow distribution in NP diameter 

found for all NPs from each series is a testament to the controlled 

synthetic conditions for NP nucleation and growth that are imparted 

by the block copolymer template.  

 The prevalence of several small NPs per cluster across the 

series suggests several aspects of the NP growth mechanism: (i) the 

high temperature thermoreductive and/or annealing step initially 

yields several NP nuclei per ion-loaded micelle domain; and (ii) 

coalescence of neighbouring NPs into larger NPs can occur but is 

minimized during this annealing process.52-54 The smallest average 

NP diameter values were found for Pt-rich NPs created from both 

polymer templates loaded with immersion baths with ≥ 95 mol% 

Pt. Other morphological exceptions are found for the arrays of 

monometallic Ir NPs created from both block copolymer templates. 

In these cases, a single ring-like NP of Ir was created from each 

IrCl6
2- loaded P4VP domain (rather than a cluster; see Fig. S2s and 

S3s in the Supporting Information file). The suppression of the 

growth mechanism in the clusters is proposed to be linked to the 

oxophilicity and low mobility of monometallic Ir.55-58 Overall, the 

STEM investigation confirms that the processing steps taken with 

the two PS-b-P4VP templates and immersion baths are capable of 

creating arrays of quasihexagonally organized clusters of PtIr NPs.  

Composition and Structure of PtIr NP Arrays 

A more detailed understanding of the composition and structure of 

the NPs created from the block copolymer template approach is 

derived from STEM-coupled EDS analysis. The monometallic NPs 

created from immersion baths containing only PtCl6
2- or IrCl6

2- 

anions were not investigated by STEM-EDS analysis. The Lα X-

ray emission signals for Pt and Ir at 9.44 keV and 9.17 keV and the 

Mα X-ray emission signals at 2.05 keV and 1.98 keV were resolved 

in Bremsstrahlung-corrected EDS spectra for arrays of PtIr 

bimetallic NPs and NP clusters. These signals were used to: (i) 

create elemental maps; (ii) determine the Pt:Ir ratios for isolated NP 

clusters; and (iii) analyze the same for large regions of clusters 

(areas  of 0.12 µm2 and 0.056 µm2 for PS1392-b-P4VP471 and PS552-

b-P4VP174 templated arrays, respectively). Bremsstrahlung-

corrected EDS spectra are presented in the Supporting Information 

(Fig. S4, S5, and S6). Shown in Fig. 2a-b are the representative 

high angle annular dark field (HAADF) images for arrays of 

clusters of PtIr NPs created from thePS1392-b-P4VP471 and PS552-b-

P4VP174 templates loaded using 100 mM H2SO4 aqueous solutions 

of 8.0 mM H2PtCl6 + 2.0 mM H2IrCl6. The corresponding elemental 

maps for Pt and Ir are shown in Fig. 2c-d and Fig. 2e-f, respectively. 

The Pt and Ir elemental maps from the PS1392-b-P4VP471 (Fig. 2c and 

2e) show that the arrangement of Pt and Ir signal intensities 

correspond with one another and are also associated with the 

arrangement of the NPs found in the corresponding HAADF image 

(Fig. 2a). The Pt:Ir ratio found for a large area of the array was 

59:41, while the ratio for three selected clusters within this region 

had a range of ratios from 44:56 to 47:53. The difference in the 

EDS-determined Pt:Ir ratio between individual NP clusters and large 

areas of the array can be attributed to the presence of diffuse Pt and 

Ir for the more comprehensive area analyses. The Pt:Ir ratio is 

consistent between individual NPs within an array, which confirms 

that the composition of PtIr NP cluster arrays is quite uniform. The 

Fig. 2 HAADF STEM images of PtIr NP clusters created by the 
thermoreduction of (a) PS1392-b-P4VP471 and (b) PS552-b-P4VP174 
templates that were loaded with PtCl62- to IrCl62- from 100 mM H2SO4 

aqueous solutions of 8.0 mM H2PtCl6 + 2.0 mM H2IrCl6. For (a), the 
corresponding Lα X-ray emission Pt and Ir elemental maps are 
depicted in (c) and (e) while those for (b) are depicted in (d) and (f), 
respectively. The circled regions indicate the EDS-estimated 
composition of the PtIr NPs. 

6



 ARTICLE 

Please do not adjust margins 

Please do not adjust margins 

conclusions for the Pt and Ir elemental maps from the PS552-b-

P4VP174 template are largely similar. The isolated NPs in Figure 2b 

have a Pt:Ir range of 54:46 to 59:41, while the overall ratio within 

this area of interest was 66:33. A solid–solution alloy structure is 

therefore suggested for the NPs. 

 Similar structural conclusions are found in the STEM-EDS analysis 

of the arrays of PtIr NPs created from the PS1392-b-P4VP471 and 

PS552-b-P4VP174 templates loaded with the other immersion baths 

(see Supporting Information Figures S4, S5, and S6). Pt and Ir were 

found to be commonly located and matched in position to the NPs 

identified by HAADF-STEM. 

The complex nanostructures in the PtIr NPs found by HAADF 

STEM analysis were further investigated by high-resolution 

transmission electron microscopy (HRTEM). Shown in the 

Supporting Information file (Fig. S7, S8, and S9) are the HRTEM 

analyses and corresponding Fast-Fourier Transform (FFT) images 

for individual NPs isolated from arrays of clusters of PtIr NPs 

prepared using the PS1392-b-P4VP471 and PS552-b-P4VP174 templates 

loaded with the 8.0:2.0, 7.5:2.5, and 2.4:7.6 Pt:Ir immersion baths. In 

general, the unit cell dimensions of the NPs were in agreement with 

bulk solid solutions of Pt and Ir59-64 and also support the assignment 

of the alloy structure as inferred from the STEM EDS data. The 

particle size does not change significantly with Pt:Ir mole ratio when 

the range of composition lies between ~60:40 and ~18:82. 

In this study, the composition of the block copolymer templated 

PtxIr100-x NPs was controlled by varying the ratio of PtCl6
2- to IrCl6

2- 

in the immersion baths. Characterization by XPS was used to 

determine the oxidation state and the relative content of Pt and Ir 

elements in the PtxIr100-x NPs. The high-resolution XPS (HRXPS) 

plots for the 4f core electron regions were qualitatively similar for all 

PtxIr100-x NPs synthesized from each of the two block copolymer 

templates. Fig. 3a depicts the HRXPS spectra for the Pt and Ir 4f 

core electron region for the NPs created from the PS1392-b-P4VP471 

block copolymer template. From the peaks found in the bottom-most 

curve (curve i), monometallic Pt NPs exhibit two energy bands at 

74.1 eV and 70.7 eV corresponding to Pt 4f5/2 and Pt 4f7/2 core 

electrons, respectively. The position of these peaks and the BE 

associated with the doublet splitting (ΔE = 3.4 eV), both strongly 

indicate the presence of metallic Pt(0).65-67 From the peaks found in 

the top-most curve (curve viii), monometallic Ir NPs exhibit only 

two energy bands at 63.3 eV and 60.1 eV corresponding to Ir 4f5/2 

and Ir 4f7/2 core electrons, respectively. Similarly, the position of 

these peaks, and the doublet splitting BE (ΔE = 3.2 eV), strongly 

indicate metallic Ir(0).65-67 

The HRXPS plots of bimetallic PtxIr100-x NPs are largely a 

combination of the spectra for the monometallic NPs, but with subtle 

differences that indicate mixing of the two metals. As the amount of 

Pt is decreased in favour of increased Ir content in the bimetallic NP 

analogues, the intensity of the Pt 4f5/2 and Pt 4f7/2 peaks decreases 

while that for Ir 4f5/2 and Ir 4f7/2 peaks increases. The BE of all peaks 

are largely indicative of a zero oxidation for Pt and Ir in the 

bimetallic NPs and exhibited little evidence for shoulders or 

secondary peaks at higher BE confirming the complete reduction of 

the PtCl6
2- and IrCl6

2- ions within the templates. As the Ir content is 

decreased in a template series, the Pt 4f5/2 and Pt 4f7/2 peaks were 

observed to shift to lower BE values, while those for the Ir 4f5/2 and 

Ir 4f7/2 had more constant BE values. The Pt 4f5/2 and Pt 4f7/2 BE 

shift results from the electron transfer from Pt to Ir and is suggestive

of highly mixed or alloyed Pt and Ir in the NPs.68, 69 Shown in Fig.

3b is the plot of the BE for Pt 4f7/2 versus the XPS-determined

percentage of Pt in the PtIr NPs in this series. A uniform trend in the

BE for Pt 4f7/2 results as the amount of electronegative Ir is increased

in the series.

 The HRXPS characterization of the arrays of clusters of PtIr 

NPs created from the smaller length scale PS552-b-P4VP174 template 

was largely similar to that of the series of NPs from the higher 

molecular weight block copolymer template. The Pt 4f5/2 and Pt 4f7/2 

peaks and Ir 4f5/2 and Ir 4f7/2 peaks of the monometallic Pt and Ir 

NPs indicated metallic characteristics and the intensity of each set of 

4f peaks was tracked with the composition of Pt and Ir in the 

bimetallic analogues (see Fig. 4a). All 4f peaks exhibited little 

evidence for shoulders or secondary peaks at higher BE which 

confirms the complete reduction of the PtCl6
2- and IrCl6

2- anions in 

the templates as well. Similarly, as the Ir content is decreased in this 

series, the Pt 4f5/2 and Pt 4f7/2 peaks were observed to shift to lower 

BE values. Similar to data in Fig. 3b, the data in Fig. 4b show that 

the BE of the Pt 4f7/2 peak shifts to a lower BE as the XPS-

determined percentage of Pt in the NPs increases; once again 

Fig. 3 (a) Offset HRXPS plots of PtIr NPs synthesized from PS1392-b-
P4VP471 [the XPS-estimated composition of the PtIr NPs are (i) 
Pt100Ir0, (ii) Pt91Ir9, (iii) Pt60Ir40, (iv) Pt33Ir67, (v) Pt36Ir64, (vi) Pt18Ir82

 δ, 
(vii) Pt19Ir81, (viii) Pt0Ir100]. (b) Plot for the BE of the Pt 4f7/2 as a
function of the atomic Pt percentage in the NPs as determined
from the XPS analysis. The dotted line is intended to guide the eye.

Fig. 4 (a) Offset HRXPS plots of PtIr NPs synthesized from PS552-b-
P4VP174 [the XPS-estimated composition of the PtIr NPs are (i) 
Pt100Ir0, (ii) Pt79Ir21, (iii) Pt58Ir42, (iv) Pt36Ir64, (v) Pt28Ir72, (vi) Pt20Ir80, 
(vii) Pt16Ir84, (viii) Pt0Ir100]. (b) Plot for the BE of the Pt 4f7/2 as a
function of the atomic Pt percentage in the NPs as determined from
the XPS analysis. The dotted line is intended to guide the eye.
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confirming the charge transfer between the highly-mixed Pt and Ir, 

which supports an alloy phase for these 

particles. The extent of shifting of the Pt 4f7/2 peak is largely 

similar between the two polymer templates. The slope of the BE 

shift curves appear to differ slightly, which may be due to subtle 

effects caused by reduced NP size, charging effects from differing 

surface contamination or oxide formation unaccounted for in the 

analysis.70 

The relative area of the Pt and Ir 4f peaks from the HRXPS 

plots is indicative of the composition of PtIr NPs. Curve fits were 

applied to each spectra in order to determine the intensity ratio and 

hence the atomic ratio of Pt:Ir in the NPs created from each 

template. Table 1 reports the NP composition in the format of 

PtxIr100-x where the subscripts indicate the XPS-estimated atomic 

percentage of each metal. The PtIr ratios of PtxIr100-x NPs created 

from the identical immersion baths, but with different templates are 

largely similar with only the NPs from the 9.5:0.5 and 2.4:7.6 

immersion baths having a minor discrepancy. The composition 

data reported in Table 1 suggest that tailoring the composition of 

the immersion baths provides access to a wide compositional range 

for the PtIr bimetallic system regardless of the size-scale of the 

block copolymer template. The non-linear correlation between the 

Pt:Ir ratio of the immersion bath with the XPS-determined 

composition confirm that P4VP domains in the templates are 

preferentially loaded with IrCl6
2- ions during the immersion 

procedure (see Fig. S10). It should also be noted that the non-linear 

ion loading relationship resulted in identical XPS-determined 

composition for immersion baths 7.0:3.0 and 2.4:7.6 from the 

PS1392-b-P4VP471. The symbols δ and γ are used to distinguish 

between the two Pt18Ir82 compositions from the 7.0:3.0 and 2.4:7.6 

baths, respectively (see Table S3). 

Controlled Mass Loading of Pt and Ir into PtIr NP Arrays using 

Diblock Copolymer Templates 

The block copolymer template approach for preparing PtIr NP 

arrays has several advantages that are reflected in mass loading 

profiles of the arrays relative to the bath composition. Platinum mass 

loading was determined by dissolving ITO-supported arrays of PtIr 

NPs in aqua regia and this data was combined with atomic ratio 

information to calculate the corresponding iridium mass loading 

values. Shown in Fig. 5a are the Pt and Ir mass loading values for a 

subset of the samples from Table 1. Trends in the mass loading 

values for the PtIr NPs arrays created from the two block copolymer 

templates are remarkably similar suggesting a highly-controlled NP 

fabrication procedure regardless of the selection of the template. 

Since the percentage of metals on the electrode surface is an 

important factor that influences the catalytic activity of catalysts, 

we have also used this data to determine the percentage of Pt and 

Ir on the electrode surface (see Fig. S11). For both series, as the 

platinum content in the loading baths is increased, a non-linear 

but tightly correlated increase in mass loading of Pt results in the 

NP arrays. The observed non-linear trend may be due to the 

instability of the Ir salts in the acidic aqueous media. Coordination 

of Ir with oxygen species from the aqueous media may lead to 

colloidal precipitates formed in solution.71, 72 Shown in Fig. 5b are 

the total mass loading values for the same set of samples from 

Fig. 5a. The total mass 

loading values also appear to increase in a non-linear, but tightly 

correlated trend as the baths are enriched in PtCl6
2- rather than IrCl6

2-

. The higher and lower molecular weight block copolymer templates 

create PtIr NPs with an overall metal loading in the ranges of ~0.2 to 

0.7 µg/cm2   and 0.2 to 1 µg/cm2,  

respectively. Achieving highly mixed metals in well-defined NPs 

confirm that the synthetic approach involving block copolymer thin 

film templates is a simple but powerful method to access distinct 

compositions of bimetallic NP arrays. Other experimental factors 

that define the metal loading procedure, including total metal anion 

concentration, anion valency, pH, ionic strength, immersion time, 

and temperature are expected to tune the mass loading profiles 

shown in Fig. 5a-b.  The highly correlated mass-loading profiles that 

result from this NP fabrication approach are advantageous in 

understanding variations in catalytic performance (vide infra for 

formic acid oxidation analysis). 

Electrochemical Surface Area (ECSA) of PtIr NP Arrays – CO 

Stripping Voltammetry 

The ECSA values of selected PtIr catalysts from each polymer series 

were determined. The carbon monoxide stripping approach for the 

 Fig. 5 (a) Mass loading data for Pt and Ir quantified by ICP-MS and 
plotted against % Pt and Ir content present in the loading baths for 
NPs synthesized from PS1392-b-P4VP471 and PS552-b-P4VP174. (b) Total 
mass loading by polymer template. 
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with those previously reported for NPs studied under similar 

conditions.75 The area of this peak relative 

to the capacitive charging baseline in the second anodic sweep 

represents the total charge associated with CO oxidation. The ECSA 

(in cm2 catalyst/g) is calculated according to Eq. (1): 

𝐸𝐶𝑆𝐴 =  
𝑄𝐶𝑂

𝑀𝑙  ×  (420 
µ𝐶

𝑐𝑚2)

(1) 

where Qco, is the measured charge associated with CO oxidation in 

µC/cm2 electrode, and Ml represents the total metal mass loading in 

μg/cm2 electrode. The ECSA values for each catalyst in the two 

polymer series are reported in Fig. 6c. The ECSA values of the PtIr 

values would be higher for the NP arrays with a higher population of 

NPs and larger geometric surface areas (a result of the higher 

diameter values). Within each polymer series, there appears to be a 

maximum ECSA where NPs consisting of ~80% Ir (by XPS) exhibit 

ECSA values of 84 m2 catalyst/g and 29 m2 catalyst/g for the PtIr 

catalysts produced from PS1392-b-P4VP471 and PS552-b-P4VP174 

templates, respectively. 

Electrocatalytic Oxidation of Formic Acid by PtIr Bimetallic NP 

Arrays 

The electrocatalytic activity of NP catalysts for the HCOOH 

oxidation reaction is typically studied using CV at low pH.18, 76, 77 In 

this work, we focus on the electrochemical activity of the bimetallic 

catalysts for the oxidation of formic acid. The catalytic performance 

of the monometallic Pt and Ir catalysts produced from the two block 

copolymers is provided in the Supporting Information (Fig. S12). 

For reference, a labelled HCOOH oxidation CV curve is shown in 

Fig. 6 (a-b) Anodic current density (j) vs. potential of CO oxidative 

stripping CV plots for selected PtxIr100-x NPs synthesized from the 

two block copolymer templates. The potential is referenced 

against Ag/AgCl. Data from the first anodic sweep (with a CO 

oxidation peak) is shown in black while data from the second 

anodic sweep is shown red. The inset PtxIr100-x labels report the 

XPS-estimated composition of the NPs formed from (a) PS1392-b-

P4VP471 and (b) PS552-b-P4VP174. (c) Bar chart summary of ECSA 

values for catalysts studied in (a) and (b). 

determination of ECSA from voltammetry relies on forming a 

monolayer of strongly adsorbed carbon monoxide (CO) molecules 

onto the surfaces of the nanocatalysts. A linear, atop binding of CO 

onto metal surface atoms is assumed and that the coulombic charge  

required to subsequently oxidize this type of CO layer to CO2 is 

equal to 420 μC/cm2 of catalyst.73, 74 In this work, the CO oxidative 

stripping CV experiments are conducted with Ar-sparged 

electrolyte and a constant headspace of Ar immediately after a 

potentiostatic CO adsorption step (E = 0.10 V; 5 min).37 Shown in 

Fig. 6 are the plots for two sequential anodic sweeps for the CO-

stripping CV experiment for selected PtxIr100-x NPs. In both anodic 

traces, the capacitive charging of the electrochemical cell is 

responsible for the current associated with the baseline. In the first 

anodic sweep of all PtIr catalysts, an oxidation peak develops with 

peak current values for CO oxidation in the range of 0.63 to 0.68 V. 

The current profiles and peak potentials are largely in agreement 

Fig. 7 (a) Representative HCOOH oxidation CV (11th cycle from 
Pt79Ir21 NP from PS552-b-P4VP174) for one complete cycle outlining 
peaks of interest. (b) Relevant electrochemical steps (I1a, I1b, I2 and 
I3). 
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Fig. 7a with relevant electrochemical steps for this potential range 

outlined in Fig. 7b. The anodic sweep typically exhibits three 

positive peaks while the cathodic sweep exhibits a single positive 

peak. The first anodic peak (I1a) occurs at ~ 0.2 V and corresponds to 

the direct oxidation of HCOOH to CO2 by the dehydrogenation 

reaction, listed at the top of Fig. 7b. A second anodic peak (I1b) at ~ 

0.6 V, indicates the indirect oxidation pathway for formic acid 

through an adsorbed CO intermediate.18, 76, 77 Adsorbed CO (COads) 

intermediates formed in the dehydrogenation pathway occur after the 

formation of surface hydroxides at 0.5 V.78 Ir-rich NPs are 

particularly advantageous for these steps due to the  

favourable binding of oxygen-rich species to Ir sites at low potentials 

and, thus, favouring complete oxidation of adsorbed intermediates 

including COads. Consequently, the reaction mechanism for PtIr is 

bifunctional.79, 80 As potential continues beyond 0.7 V the HCOOH 

oxidation ceases and the oxygen evolution reaction occurs at the 

surfaces of the catalyst, represented by current peak I2.81 During the 

reverse cathodic sweep, small amounts of HCOOH act as a local 

reducing agent for the surface oxides. Reduction of the catalyst 

surfaces allow for reinitiation of catalytic oxidation of HCOOH (I3 

peak). 

In order to assess the catalytic activity of block copolymer-derived 

arrays of bimetallic PtxIr100-x NP arrays for the formic acid oxidation 

reaction, a 25-cycle CV experiment was conducted (Fig. S8a and 

S8b in the Supporting Information). The current information was 

combined with the mass loading information in order to report CV 

curves in a specific current format (in units of A/g catalyst). The 

representative CV plots acquired after stabilization (15th cycle) for 

HCOOH oxidation for the PtxIr100-x NPs synthesized from the two 

block copolymers are reported in Fig. 8a and 8b. The Fig. 8c and 8d 

report the evolution of the maximum current density for I1a with 

cycle number for each series of PtxIr100-x NP clusters and the 

analogous plots for I3 are found in the Supporting Information file 

(Fig. S13 and S14). Precisely estimating peak current values for I1b, 

and I2 during each cycle was not possible for all cycles for each 

catalyst and are not included in this study. In general, the I1a mass-

specific peak current values were higher for bimetallic catalysts 

afforded from the smaller block copolymer. The most active NP 

catalyst clusters created from the PS1392-b-P4VP471 and PS552-b-

P4VP174 templates for the I1a pathway during the 25 cycles were 

Pt18Ir82
γ
 (cycle 5; 24 A/g) and Pt16Ir84 (cycle 3; 37 A/g), respectively. 

It is logical that Ir-rich catalysts would be more active during these 

steps due to the favourable binding of oxygen containing species by 

Ir.  

The increasing binding energy for Pt (Fig. 3b and 4b) suggests that 

the bond strength of adsorbed key intermediates for formic acid 

oxidation may also be affected by the Pt:Ir ratio.  Fig. S16 in the 

supporting information file reports possible correlations between the 

catalyst activity for the I1a  pathway with the BE of the Pt4f7/2 peak

found by XPS. Using the peak current for I1a as a metric for catalyst 

activity, it was found that the cycle 3 activity of PtxIr100-x NPs 

produced from the PS1392-b-P4VP471 roughly followed a volcano-

type trend with the BE of Pt 4f7/2. By cycle 15, this correlation was 

lost, perhaps indicating a change in the surface composition and/or 

structure of the catalysts away from the condition of samples studied 

in the XPS section above. Other factors such as interparticle and 

intercluster spacing are expected to contribute to this catalytic 

activity as well. A more consistent correlation in the dependency of 

the cycle 3 and cycle 15 catalytic activity on BE of Pt 4f7/2 was 

found for PtxIr100-x NPs synthesized using the smaller PS552-b-

P4VP174, which suggests a more consistent NP structure and 

condition over many cycles of catalysis. An interesting plateau in the 

dependency of the I1a catalyst activity was found for this series, 

suggesting that the surface bonding characteristics that are associated 

with Pt binding energy are not the ultimate factor for determining the 

catalyst activity. The elucidation of which factors affect activity and 

stability and their evolution with ongoing catalyst cycle number is 

past the scope of this study and represents a topic of current 

research. After stabilization, the I1a mass activity values were found 

to be close to that of other work.82-84 Interestingly, the most active 

NP catalyst clusters created from the PS1392-b-P4VP471 and PS552-b-

P4VP174 templates for the I3 pathway during the 25 cycles were 

Pt91Ir9 (cycle 5; 32 A/g) and Pt79Ir21 (cycle 3; 19 A/g), respectively. 

The shift in catalyst activity to a more Pt-rich NP catalyst for the I3 

Fig. 8 Representative CV plots acquired after stabilization. The 15th CV cycle of selected bimetallic catalysts of PtIr NP arrays synthesized 
from (a) PS1392-b-P4VP471 and (b) PS552-b-P4VP174. (c) Specific current (normalized for mass loading) for I1a versus cycle number for the 
same catalysts studied in (a). (d) Specific current (normalized for mass loading) for I1a versus cycle number for the same catalysts studied 
in (b). All PtIr NP arrays are supported on ITO. The CV data was acquired in 100 mM HCOOH and 100 mM H2SO4. The subscripts in the 
label denote the XPS-estimated composition. 
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diameter bimetallic NPs can be accessed from lower molecular 

weight templates with smaller micellar feature size and may permit 

more fundamental studies, such as stability, coarsening, cluster 

definition, uniform mass loading, and the effect of catalyst 

distribution. 

The identification of high activity bimetallic catalysts for the 

HCOOH oxidation reaction (on a mass loading basis) warrants an 

analysis of the ECSA. It is clear from Fig. 8c and 8d that the 

electrocatalytic activity of the PtxIr100-x NPs evolve to lower values 

with cycle number, but stabilize to a non-zero value at ~ 15 cycles. 

The discussion of the ECSA-specific current, therefore, focuses on 

catalyst activity associated with CV traces in the 15th cycle.

pathway is due to surface contamination (i.e. poisoning) that results 

from incomplete formic acid oxidation reactions that occur prior to I2 

current and limit I1a and I1b processes. The highly oxidizing 

conditions that arise during the I2 pathway decontaminate the 

surfaces of these catalysts and may permit otherwise poisoned 

surfaces to contribute to the current in the I3 peak. Since Pt is known 

to poison easily, it is reasonable that more Pt-rich bimetallic 

catalysts will show improved activity immediately following a high  

potential oxidation like that established during the generation of the 

current for I2. Alloyed PtRu is an industry and research standard for 

fuel cell anode development.85 A commercial (BASF) carbon- 

supported PtRu catalyst was recently investigated for HCOOH 

electrooxidation under similar conditions. Mass activities of 11 and 

30 A/g were reported for I1a and I3,  respectively.86 Many of the 

bimetallic PtIr NPs isolated from the block copolymer template 

approach are higher in activity than this industry/research standard 

as well as others (see Table S1 in the Supporting Information file).  

The multi-cycle activity of these bimetallic catalysts was evaluated 

using Pt18Ir82
δ and Pt20Ir80 from immersion bath 7.0:3.0 as 

representative arrays of NPs for the series. 

In general, the PtIr NPs show significant formic acid activity for 

more than 200 cycles of oxidation (see Supporting Information file, 

Fig. S17). A four-fold increase in mass activity was demonstrated for 

the Pt16Ir84 catalyst from the PS552-b-P4VP174 template when 

compared to the I1a pathway for a BASF commercial standard. The 

block copolymer template approach is, therefore, a highly relevant 

method for creating highly active and durable electrocatalysts for the 

formic acid oxidation reaction. Previous research has suggested that 

a 2-nm diameter Pt50Ir50 NP exhibits a maximum current density for 

compositionally varied PtIr catalysts for the I1a pathway for formic 

acid oxidation.76 Previous work has shown that the minimum feature 

size of block copolymers can be less than 5 nm.87-90 The block 

copolymer template approach described herein has shown that 

bimetallic catalysts often have diameters are smaller than the micelle 

feature size in the template. We, therefore, expect that very low 

The ECSA values from Fig. 6 were combined with selected CV 

data and used to report the ECSA-specific current in Fig. 9. It is still 

apparent that the catalytic activity of the arrays of PtIr NPs afforded 

from the smaller block copolymer template are more active than 

those created from the larger block copolymer derivative. Since the 

identification of a near-optimal composition for PtIr catalyst for 

HCOOH oxidation has already been reported,77 we direct our 

attention to general comparisons between NP catalysts between 

polymer analogues. It is reasonable to conclude that the mass 

loading or the ECSA parameters are not the only properties that lead 

to the differences in catalytic activity within a polymer series. 

Recent work has shown that the activation of water at both the 

catalyst surface as well as at the surface of oxide support materials 

(ITO in this case) can increase the population of surface hydroxyl 

groups, which is a major factor in the removal of rate-limiting 

carbonaceous intermediates and may play a role in the mechanism 

for the catalytic oxidation of formic acid and any adsorbed CO 

(COads).91 The ITO electrode support used in this work is comprised 
of a complex polycrystalline bixbyite-type indium tin oxide whose 

surface hydroxyl distribution is complex and sensitive to surface 

treatments.92 Indeed the exact surface composition of ITO films is 

often debated.93, 94 The population of surface hydroxyl groups on 

both the surface of the bimetallic NP catalysts and the substrate need 

to be carefully understood and better quantified in order to 

understand the catalytic activity of ITO-supported arrays of PtIr NP 

catalysts for the formic oxidation reaction. 

Conclusions 

Controlled syntheses of Pt-based electrochemical catalysts that 

specify the structure and stoichiometry on the nanoscale are of great 

importance to energy technologies. Arrays of PtIr alloy NP clusters 

are synthesized from an approach using block copolymer templates. 

The block copolymer template method allowed for both relatively 

narrow diameter distributions (~4 – 13 nm) and uniform intercluster 

spacing (~60 or ~100 nm) to be established in this work. The 

reconstruction of spin coated PS-b-P4VP block copolymer micelle 

films into an array of pyridinium-rich domains defines a template 

that is capable of electrostatically loading PtCl6
2- and IrCl6

2- anions 

into a periodic array. Both anionic species are simultaneously loaded 

into the template from low-pH aqueous immersion baths with 

codissolved hexachloroplatinic and hexachloroiridic acid. The 

thermoreductive annealing under inert atmosphere at 600°C 

simultaneously reduces the metal anions, alloys the resulting metals, 

Fig. 9 Plots of the ECSA-specific current for the I1a peak in cycle 15 
for selected PtxIr100-x catalysts prepared from PS1392-b-P4VP471 (top) 
and PS552-b-P4VP174 (bottom). 
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and degrades the block copolymer template. The HRTEM studies 

confirm that each pyridinium-rich domain yields NPs and in some 

cases clusters of crystalline PtIr NP alloys with the number of NPs 

determined by the size of the pyridinium-rich domain of the block 

copolymer template. The composition of the NPs was determined by 

EDS and XPS and is set by the ratio of anions in the loading bath. A 

non-linear relationship between the Pt:Ir ratio in the loading baths 

with the Pt:Ir ratio in the NPs was found. The NP lattice 

characterization by STEM-EDS, the BE shift of Pt 4f core electrons 

and the shift in the potential for the oxide reduction as observed from 

the CV measurements further support the formation of an alloy 

structure in the NPs. Catalytic activity for the formic acid oxidation 

reaction was studied by CV and shows that the arrays of clusters of 

PtIr alloy NPs are highly active catalysts with mass activity values of 

24 A/g and 37 A/g for the Pt18Ir82
γ and Pt16Ir84 from the PS1392-b-

P4VP471 and PS552-b-P4VP174, respectively. Many of the bimetallic 

PtIr NPs isolated from the block copolymer template approach are 

much higher in activity than typical industry/research standards. The 

most active array of Pt16Ir84 NPs had mass activities for HCOOH 

oxidation that were four-fold higher than that of a PtRu industrial 

research standard. The arrayed NP catalysts like those described 

herein continue to offer advantages owing to their ease of fabrication 

and their well-defined size, shape, spacing and allow for model 

studies that lead to more insight into the mechanistic aspects of 

electrocatalysis.95-96 Generally, we expect that this approach for 

creating bimetallic catalysts from block copolymer templates will be 

more applicable in the future as more active and more inexpensive 

metals are investigated. Therefore, a block copolymer template-

based method of preparing highly active clusters of low-diameter, 

PtIr NPs will have a positive impact on several emerging areas in 

nanoscience, such as energy devices, solar fuels, and heterogeneous 

catalysis. 
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Srivastava, Chem. Ing. Tech. 2008, 80 (9), 1267.

17. M. Zeng; X. X. Wang; Z. H. Tan; X. X. Huang; J. N. Wang, J.

Power Sources 2014, 264, 272-281.

18. Q. Yi; A. Chen; W. Huang; J. Zhang; X. Liu; G. Xu; Z. Zhou,

Electrochem. Commun. 2007, 9 (7), 1513-1518.

19. A. Allagui; M. Oudah; X. Tuaev; S. Ntais; F. Almomani; E. A.

Baranova, Int. J. Hydrogen Energy 2013, 38 (5), 2455-2463.

20. E. Gyenge; M. Atwan; D. Northwood, J. Electrochem. Soc.

2006, 153 (1), A150-A158.

21. M. B. Vukmirovic; J. Zhang; K. Sasaki; A. U. Nilekar; F. Uribe;

M. Mavrikakis; R. R. Adzic, Electrochim. Acta 2007, 52 (6), 2257-

2263.

22. K.-J. Chen; K. C. Pillai; J. Rick; C.-J. Pan; S.-H. Wang; C.-C. Liu;

B.-J. Hwang, Biosens. Bioelectron. 2012, 33 (1), 120-127.

23. Y. M. López-De Jesús; A. Vicente; G. Lafaye; P. Marécot; C. T.

Williams, J. Phys. Chem. C 2008, 112 (36), 13837-13845.

24. T. Miyao; K. Minoshima; S. Naito, J. Mater. Chem. 2005, 15

(23), 2268-2270.

25. J. R. Croy; S. Mostafa; L. Hickman; H. Heinrich; B. R. Cuenya,

Applied Catalysis A: General 2008, 350 (2), 207-216.

26. L. K. Ono; B. Roldán-Cuenya, Catal. Lett. 2007, 113 (3-4), 86-

94.



 ARTICLE 

 13

Please do not adjust margins 

Please do not adjust margins 

27. D. A. Boyd; Y. Hao; C. Li; D. G. Goodwin; S. M. Haile, ACS

nano 2013, 7 (6), 4919-4923.

28. K. Mikkelsen; B. Cassidy; N. Hofstetter; L. Bergquist; A.

Taylor; D. A. Rider, Chem. Mater. 2014, 26 (24), 6928-6940.

29. E. Ehret; E. Beyou; G. Mamontov; T. Bugrova; S. Prakash; M.

Aouine; B. Domenichini; F. C. S. Aires, Nanoscale 2015, 7 (31),

13239-13248.

30. J. P. Spatz; S. Mössmer; C. Hartmann; M. Möller; T. Herzog;

M. Krieger; H.-G. Boyen; P. Ziemann; B. Kabius, Langmuir 2000,

16 (2), 407-415.

31. J. Shim; J. Lee; Y. Ye; J. Hwang; S.-K. Kim; T.-H. Lim; U.

Wiesner; J. Lee, ACS nano 2012, 6 (8), 6870-6881.

32. S. C. Warren; M. R. Perkins; A. M. Adams; M. Kamperman; A.

A. Burns; H. Arora; E. Herz; T. Suteewong; H. Sai; Z. Li, Nat.

Mater. 2012, 11 (5), 460-467.

33. J. H. Mun; Y. H. Chang; D. O. Shin; J. M. Yoon; D. S. Choi; K.-

M. Lee; J. Y. Kim; S. K. Cha; J. Y. Lee; J.-R. Jeong, Nano Lett. 2013,

13 (11), 5720-5726.

34. M. Aizawa; J. M. Buriak, J. Am. Chem. Soc. 2006, 128 (17),

5877-5886.

35. J. Chai; J. M. Buriak, ACS nano 2008, 2 (3), 489-501.

36. B. R. Chalamala; Y. Wei; R. H. Reuss; S. Aggarwal; S. R.

Perusse, J. Vac. Sci. & Technol. 2000, 18 (4), 1919-1922.

37. P. Urchaga; S. v. Baranton; C. Coutanceau; G. Jerkiewicz,

Langmuir 2011, 28 (7), 3658-3663.

38. S. Park; J.-Y. Wang; B. Kim; W. Chen; T. P. Russell,

Macromolecules 2007, 40 (25), 9059-9063.

39. B.-H. Sohn; S.-I. Yoo; B.-W. Seo; S.-H. Yun; S.-M. Park, J. Am.

Chem. Soc. 2001, 123 (50), 12734-12735.

40. G. Riess, Prog. Polym. Sci. 2003, 28 (7), 1107-1170.

41. F. Calderara; G. Riess, Macromol. Chem. Phys. 1996, 197 (7),

2115-2132.

42. J. Bansmann; S. Kielbassa; H. Hoster; F. Weigl; H.-G. Boyen;

U. Wiedwald; P. Ziemann; R. Behm, Langmuir 2007, 23 (20),

10150-10155.

43. L. Wang; F. Montagne; P. Hoffmann; R. Pugin, Chem.

Commun. 2009,  (25), 3798-3800.

44. S. Yoo; H. Cho; J. P. Lee; K. T. Kim; S. Park, Chemistry–An

Asian Journal 2012, 7 (4), 692-695.

45. H. Cho; S. Choi; J. Y. Kim; S. Park, Nanoscale 2011, 3 (12),

5007-5012.

46. X. Zu; X. Hu; L. A. Lyon; Y. Deng, Chem. Commun. 2010, 46

(42), 7927-7929.

47. A. Fernandez-Nieves; A. Fernandez-Barbero; B. Vincent; F. De

las Nieves, Macromolecules 2000, 33 (6), 2114-2118.

48. A. Loxley; B. Vincent, Colloid. Polym. Sci. 1997, 275 (12),

1108-1114.

49. N. Tantavichet; M. D. Pritzker; C. M. Burns, J. Appl. Polym.

Sci. 2001, 81 (6), 1493-1497.

50. C. Ripoll; G. Muller; E. Selegny, Eur. Polym. J. 1971, 7 (10),

1393-1409.

51. L. M. Bronstein; S. N. Sidorov; P. M. Valetsky; J. Hartmann; H.

Cölfen; M. Antonietti, Langmuir 1999, 15 (19), 6256-6262.
52. F. Behafarid, B. R. Cuenya, Surf. Sci. 2012, 606 (11), 908-918.
53. F. Behafarid,  B. Roldan Cuenya, Top. Catal. 2013, 56 (15),
1542–1559.

54. J. Matos, L.K. Ono, F. Behafarid, J.R. Croy, S. Mostafa, A. T.

DeLaRiva, A.K. Datye, A.I. Frenkel, B. Roldan Cuenya, Phys. Chem.

Chem. Phys. 2012, 14 (32), 11457-11467.

55. A. Aramata; T. Yamazaki; K. Kunimatsu; M. Enyo, J. Phys.

Chem. 1987, 91 (9), 2309-2314.

56. S. Wang; U. Kürpick; G. Ehrlich, Phys. Rev. Lett. 1998, 81 (22),

4923-4926.

57. C. Alonso; R. Salvarezza; J. Vara; A. Arvia; L. Vazquez; A.

Bartolome; A. Baro, J. Electrochem. Soc. 1990, 137 (7), 2161-

2166.

58. A. A. Gambardella; N. S. Bjorge; V. K. Alspaugh; R. W.

Murray, J. Phys. Chem. C 2011, 115 (44), 21659-21665.

59. J. Xu; T. Zhao; W. Yang; S. Shen, Int. J. Hydrogen Energy 2010,

35 (16), 8699-8706.

60. J. Chen; T. Herricks; M. Geissler; Y. Xia, J. Am. Chem. Soc.

2004, 126 (35), 10854-10855.

61. E. Irissou; F. Laplante; S. Garbarino; M. Chaker; D. Guay, J.

Phys. Chem. C 2010, 114 (5), 2192-2199.

62. H. Okamoto; T. Massalski, Bulletin of Alloy Phase Diagrams

1985, 6 (1), 46-56.

63. A. Suzuki; M. Harada; Y. Wu; H. Murakami, Mater. Trans.

2005, 46 (8), 1760-1763.

64. R. Bedford; G. Bonnier; H. Maas; F. Pavese, Metrologia 1996,

33 (2), 133-154.

65. J. Shyu; K. Otto, Appl. Surf. Sci. 1988, 32 (1), 246-252.

66. M. Engelhard; D. Baer, Surf. Sci. Spectra 2000, 7 (1), 1-68.

67. R. Nyholm; A. Berndtsson; N. Martensson, J. Phys. C: Solid

State 1980, 13 (36), L1091-L1096.

68. X. Ge; X. Yan; R. Wang; F. Tian; Y. Ding, J. Phys. Chem. C 2009,

113 (17), 7379-7384.

69. Z. Bastl; Š. Pick, Surf. Sci. 2004, 566, 832-836.

70. J. Zhang; D. N. Oko; S. b. Garbarino; R. g. Imbeault; M.

Chaker; A. C. Tavares; D. Guay; D. Ma, J. Phys. Chem. C 2012, 116 

(24), 13413-13420.

71. J. M. Sanchez; V. Salvado; J. Havel, J. Chromotag. A 1999,

834(1), 329-340.

72. S. E. Livingston; J. C. Bailar; H. J. Emeleus; R. Nyholm; A. F.

Trotman, Comprehensive Inorganic Chemistry, Vol. 3, Pergamon:

1975; p 1254-1274.

73. Z. B. Wang; P. J. Zuo; G. P. Yin, Fuel Cells 2009, 9 (2), 106-113.

74. E. I. Santiago; G. A. Camara; E. A. Ticianelli, Electrochim. Acta

2003, 48 (23), 3527-3534.

75. J. Solla-Gullón; F. Vidal-Iglesias; E. Herrero; J. Feliu; A. Aldaz,

Electrochem. Commun. 2006, 8 (1), 189-194.

76. A. Capon; R. Parsons, J Electroanal Chem Interfacial

Electrochem 1973, 44 (2), 239-254.

77. W. Chen; S. Chen, J. Mater. Chem. 2011, 21 (25), 9169-9178.

78. G. A.Nagar; A. M. Mohammad; M. S. El-Deab; B. E. El-

Anadouli, ACS Appl. Mater. Inter. 2012, 606 (11), 908-918.

79. L. Ouattara; S. Fierro; O. Frey; M. Koudelka; C. Comninellis, J.

Appl. Electrochem. 2009, 39 (8), 1361-1367.

80. J.-H. Choi; K.-J. Jeong; Y. Dong; J. Han; T.-H. Lim; J.-S. Lee; Y.-

E. Sung, J. Power Sources 2006, 163 (1), 71-75.
81. N. Danilovic; R. Subbaraman; K. Chang; S. H. Chang; Y. J. Kang ;
J. Snyder ; A. P. Paulikas  D. Strmcnik; Y. Kim; D. Myers; V. R.
Stamenkovic; N. M. Markovic,  J. Phys. Chem. Lett. 2014, 5 (14),
2474-2478.



 ARTICLE 

 14

Please do not adjust margins 

Please do not adjust margins 

82. J. Jiang; A. Kucernak, J. Electroanal. Chem. 2002, 520 (1), 64-

70.

83. C.-H. Jung; T. Zhang; B.-J. Kim; J.-D. Kim; C.-K. Rhee; T.-H. Lim,

Bull. Korean Chem. Soc. 2010, 31 (6), 1543-1550.

84. E. Spinacé; R. R. Dias; M. Brandalise; M. Linardi; A. O. Neto,

Ionics 2010, 16 (1), 91-95.

85. C. Roychowdhury; F. Matsumoto; V. B. Zeldovich; S. C.

Warren; P. F. Mutolo; M. Ballesteros; U. Wiesner; H. D. Abruña;

F. J. DiSalvo, Chem. Mater. 2006, 18 (14), 3365-3372.

86. Y. Lu; W. Chen, Chem. Commun. 2011, 47 (9), 2541-2543.

87. S. Park; D. H. Lee; J. Xu; B. Kim; S. W. Hong; U. Jeong; T. Xu; T.

P. Russell, Science 2009, 323 (5917), 1030-1033.

88. J. D. Cushen; C. M. Bates; E. L. Rausch; L. M. Dean; S. X. Zhou;

C. G. Willson; C. J. Ellison, Macromolecules 2012, 45 (21), 8722-

8728.

89. J. D. Cushen; I. Otsuka; C. M. Bates; S. Halila; S. Fort; C.

Rochas; J. A. Easley; E. L. Rausch; A. Thio; R. Borsali, ACS nano

2012, 6 (4), 3424-3433.

90. J. G. Kennemur; L. Yao; F. S. Bates; M. A. Hillmyer,

Macromolecules 2014, 47 (4), 1411-1418.

91. C. Bock; B. MacDougall, Electrochim. Acta 2002, 47 (20),

3361-3373.

92. C. Donley; D. Dunphy; D. Paine; C. Carter; K. Nebesny; P. Lee;

D. Alloway; N. R. Armstrong, Langmuir 2002, 18 (2), 450-457.

93. T. Ishida; H. Kobayashi; Y. Nakato, J. Appl. Phys. 1993, 73 (9),

4344-4350.

94. A. Nelson; H. Aharoni, J. Vac. Sci. Technol., A 1987, 5 (2), 231-

233.
95. B. Roldan Cuenya,  Acc. Chem. Res. 2012, 46 (8), 1682–1691.
96. R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P.
Strasser, J. Am. Chem. Soc. 2014, 136 (19), 6978–6986.




