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Abstract 

The primary aim of the study detailed in this dissertation was improving the quality of 

simultaneous electroencephalography (EEG) and functional magnetic resonance imaging 

(fMRI) experiments. Two common challenges to use concurrent EEG-fMRI tests are 

addressed herein. The first is the presence of EEG artifacts during simultaneous EEG-

fMRI, which require more consideration than EEG data recorded outside the scanner. To 

mitigate this issue, a fully automated artifact correction pipeline was developed. In the 

proposed pipeline, magnetic resonance (MR) environmental (i.e., gradient and 

ballistocardiogram [BCG]) artifacts were reduced using optimal basis sets (OBS) and 

average artifact subtraction (AAS). Subsequently, independent component analysis (ICA) 

was leveraged for reducing physiological artifacts (e.g., eye blinks, saccade and muscle 

artifacts), in addition to residual BCG artifacts. To validate pipeline performance, both 

resting-state (time/frequency and frequency analysis) and task-based (event related 

potential [ERP]) EEG data from eight healthy participants were tested. This data was 

compared with the time/frequency and frequency results achieved by matching 

meticulously, manually corrected EEG data to the automatically corrected EEG data. No 

significant difference was found between results. A comparison between ERP results 

(e.g., amplitude measures and SNR) also showed no differences between manually 

corrected and fully automated EEG corrected data. The second challenge addressed in 

this work is the low experimental control over the subject's actual behavior during the 

eyes-open resting-state fMRI (rsfMRI). This technique has been widely used for studying 

the (presumably) awake and alert human brain using multimodal EEG-fMRI; however, 
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objective and verified experimental measures to quantify the degree of alertness (e.g., 

vigilance) are not readily available. To this end, the study reported in this dissertation 

investigated whether simultaneous multimodal EEG, rsfMRI and eye-tracker 

experiments could be used to extract objective and robust biomarkers of vigilance in 

healthy human subjects (n = 10) during cross fixation. Frontal and occipital beta power 

(FOBP) were found to correlate (r = 0.306, p<0.001) with pupil size fluctuation, which is 

an indirect index for locus coeruleus activity implicated in vigilance regulation. 

Moreover, FOBP was also correlated with heart rate (r = 0.255, p<0.001) and several 

brain regions in an anti-correlated network, including the bilateral insula and inferior 

parietal lobule. Results support the conclusion that FOBP is an objective and robust 

biomarker of vigilance in healthy human subjects. 
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 Introduction 

The brain is the most critical and complex organ in the human body. Not only 

does the brain control cognitive functions (e.g., emotion, memory, and sense), but more 

importantly, it controls vital body functions (e.g., breathing, movement, and cardiac 

functions). Brain research involves varied professionals from many scientific disciplines, 

spanning from math and physics, engineering, neuroscience, physiology, and more 

clinically oriented fields such as psychiatry and neurology. Several brain imaging 

techniques are designed to study brain activity noninvasively and to further diagnose 

problems and diseases associated with abnormalities in brain functioning and its 

structures. 

This dissertation contributes to the field of multimodal brain neuroimaging in the 

following ways. 

1- The study addressed the quality of EEG data recorded simultaneously with 

fMRI, which is an ongoing challenge for such experiments.  To do so, 

a. the efficiency of removing BCG artifact using two of the most 

common approaches (i.e., AAS, and OBS) was investigated; 

b. a fully automated pipeline was developed to remove artifacts from 

EEG acquired with fMRI; and 

c. the automated algorithm was validated with resting-state and task-

based EEG data for large scale EEG-fMRI studies. 



2 

 

2- An eye-tracking technique was integrated as a reliable measure of subject 

attentiveness to find EEG features associated with vigilance for further use in 

simultaneous EEG-fMRI experiments and to have better control over common 

paradigm simultaneous EEG-fMRI (i.e., eyes-open resting state). Results 

showed that 

a. EEG frontal and occipital beta power (FOBP) is associated with pupil 

size in resting-state fMRI (i.e., eyes-open); 

b. FOBP is positively correlated with heart rate, as well as regions of the 

anti-correlated network; and 

c. FOBP or heart rate could be proposed as a vigilance-level index in 

eyes-open rsfMRI. 

1.1 Thesis Overview 

The remainder of this dissertation is organized in the following way: 

Chapter 2: Details of three techniques used in this work are discussed: EEG, fMRI, and 

pupilometry. Simultaneous EEG-fMRI was the primary modality utilized in this 

dissertation. Three facets are detailed: 1) the technology and operation of EEG and fMRI, 

2) the reason for combining these modalities, and 3) the challenges encountered for such 

a combination. An overview of the third technique (i.e., pupilometry) used in this work 

is discussed at the end of this chapter. 
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Chapter 3: Details the presence of EEG artifacts during simultaneously recording EEG 

and fMRI. To address this issue, a fully automated pipeline was developed using OBS, 

AAS, and ICA to reduce all types of artifacts appearing on the EEG signal during fMRI 

acquisition. The efficiency of the developed pipeline was evaluated using several 

methods. 

Chapter 4: Results from simultaneous eyes-open rsfMRI, EEG, eye-tracking, and heart 

rate signals recorded from healthy participants were reported. The rsfMRI has recently 

become an important tool for studying the human brain due to its simplicity and non-

invasiveness, as well as its requisite of least effort from subjects. However, an 

individual’s degree of change in vigilance during rsfMRI may affect resting-state network 

and functional connectivity results. To address this problem from experimental data 

collected, first, EEG features associated with pupil dimension were determined, and these 

features were validated by correlating them with heart rate changes associated with 

arousal. Next, the relationship between these validated EEG features and BOLD fMRI 

signals was investigated to illustrate the spatial and temporal characteristics of the brain’s 

vigilance response. 

Chapter 5: Summarizes the findings of the work reported herein and forecasts future 

works. 
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 Neuroimaging Modalities 

2.1 Introduction 

A number of accepted techniques for imaging and studying brain function have 

been developed in the last several decades such as functional magnetic resonance imaging 

(fMRI), positron emission tomography (PET), electroencephalography (EEG), 

magnetoencephalography (MEG), and functional near infrared  spectroscopy (fNIRS) 

[1]; each is specified by different spatiotemporal resolutions and divided into two 

categories: direct (e.g., MEG and EEG) and indirect (e.g., PET, NIRS, and fMRI) 

measurements of neural activities. fMRI is an indirect tool for measuring brain activity 

that uses 1H nuclear magnetic resonance phenomena and MRI imaging technology. fMRI 

signal is sensitive to the hemodynamic changes (e.g., blood-oxygenation level dependent 

[BOLD] contrast) resulted from neuronal activity in brain regions associated with resting-

state, response to a task, or cognitive functions such as emotion processing. In order to 

accommodate increased demand for local neuronal activity, both oxygen consumption 

and blood flow increase in local brain regions and could be detected and measured with 

BOLD fMRI. PET utilizes annihilation phenomena of positrons emitted from injected 

radioactive substances to map functional processes in the brain on a cellular level. 

Localized increased consumption of radioactive substance and increased count of gamma 
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rays emitted during positrons and electron annihilations events reflects an increase in 

brain metabolic activity and is capture and imaged by a PET scanner. Brain electrical 

activity (e.g., ionic currents resulting from brain neuronal activity) generates electric and 

magnetic fields both propagate through space and time, and their effects can be measured 

using electrodes placed on the scalp (EEG) or magnetic field intensity sensors (MEG) 

surrounding at close proximity of the scalp. Both MEG and EEG measured activities are 

the summation of synchronous in time and space activity from thousands, sometimes 

millions, of neurons in the brain [2-5]. MEG often comprises an EEG recording system 

in order to record EEG-MEG simultaneously. fNIRS is another powerful imaging tool 

for measuring hemodynamic responses associated with neuron behavior. The changes in 

blood flow and oxygenation in the brain cortical areas are reflected in absorption spectra 

of near-infrared light region. Because of limited capacity of near-infrared light to 

penetrate the whole brain, this technique reflects only brain neuronal activity in cortical 

areas. 

2.2 EEG 

Caton first discovered electrical activity in the brain in 1874 [2]. Hans Berger, 

widely recognized as the father of EEG, published the first EEG results from the human 

scalp, recorded in 1929 [3]. However, it took an extended period of time for EEG to 

become an acceptable neuroimaging technique for measuring brain activity, and that 

didn’t happen until EEG alpha rhythm was demonstrated by Adrian and Mattew [4] in 

human occipital lobes.  
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EEG represents patterns of both normal and abnormal neural (electrical) activity 

while individuals are awake and during sleep. Fourier transformation is commonly used 

to divide EEG signal into certain EEG frequency bands (i.e., delta, theta, alpha, beta, and 

gamma), shown in Table 2.1. Each of these frequency bands is associated with certain 

mental properties [5-8]. Delta and theta are low-frequency EEG patterns that appear 

mostly during sleep. However, low amplitude theta rhythms are also apparent in waking 

EEG measurements. In general, the alpha rhythm is the predominant EEG wave pattern 

in an adult in a state of resting wakefulness. Beta rhythms occur when subjects are alert 

as well as when they are attentive to external stimuli.  

 Table 2-1. EEG frequency bands 

 

 

One of the main advantages of EEG is its high temporal resolution on the order 

of milliseconds. However, a drawback for EEG is its poor source spatial localization 

accuracy, due to individual geometry and conductivity as well as a limited number of 

EEG electrodes [9]. 

Further, EEG is a highly sensitive measure that can easily be obscured by 

unwanted non-cerebral electrical activity (i.e., artifacts)[10]. Eye (ocular), muscle, and 

movement are common types of EEG artifacts, and each of them affects specific EEG 

frequency bands. Ocular artifacts can be generated by the subject’s eye blinks and eye 

Rhythm Frequency 
[Hz] 

Delta 0.1-4 
Theta 4-7 
Alpha 7-13 
Beta 13-30 

Gamma >30 
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movements and primarily appear in the delta range [11]. Myogenic activity due to the 

contraction of head muscles is the source of muscle artifacts, which are primarily evident 

in the beta and gamma bands [12]. Head and body or electrode-wire movement can also 

generate movement artifacts that affect various frequency bands but occur primarily in 

the delta band [13]. In addition to the aforementioned artifacts, magnetic resonance (MR) 

environmental artifacts could obscure EEG data further when EEG measurements are 

recorded inside an MRI scanner. This phenomenon is discussed in greater detail in the 

next section and next chapter. 

2.3 fMRI 

Magnetic Resonance Imaging (MRI) is a safe and non-invasive tool for imaging 

the brain and biological human and animal structures. An MRI machine is composed of 

a magnet, magnetic gradient coils, a radio frequency (RF) receiver and transmitter, an 

MRI signal receiver, and a computer for controlling hardware, signal acquisition, and 

displaying/storing/managing reconstructed MR images [14].  

MRI machines are widely used to investigate brain functionality over time, which 

is known as functional magnetic resonance imaging (fMRI). fMRI relies on the 

association between neural activities inside the brain and vasculature. Blood-oxygen-

level dependent (BOLD) contrast imaging is the most dominant method employed in 

fMRI. The neural activity uses up oxygen, and the vasculature responds by providing 

more highly oxygenated blood to local brain regions [15]. This results in a measurable 

change in the amount of oxygen in the blood, which is taken as the amount of local neural 
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activity, and the measured signal is known as the BOLD signal. Unlike EEG, fMRI 

suffers from limited time resolution resulting from slow hemodynamic response. 

However, it is characterized by high spatial resolution. 

2.4 Simultaneous EEG-fMRI 

Each neuroimaging modality has its own advantages and disadvantages. In 

studying the complexities of the human brain, combining modalities helps integrate 

different advantages from varying modalities and leverages their disadvantages to better 

understand brain structure and functionality. EEG and fMRI are the most widespread, 

noninvasive, and safest techniques for detecting and characterizing relevant changes in 

brain states and further investigating their relationships with neuronal activity. Notably, 

combining neuroimaging techniques is not limited to EEG-fMRI. However, combining 

these two modalities (i.e., EEG and fMRI) is beneficial since they can compensate for 

each other’s weaknesses very well. In other words, simultaneous EEG-fMRI leverages 

the high temporal resolution of the EEG and the high spatial resolution of the fMRI. 

Furthermore, EEG is a direct measure of brain activity, and fMRI is an indirect measure; 

therefore, simultaneous EEG-fMRI measurements can aid in cross-validation. Despite the 

advantages of combining EEG and fMRI, three main challenges must be considered when 

simultaneously acquiring these two modalities: patient safety, EEG quality, and fMRI 

image quality [16]. Two considerations must be taken into account regarding 

simultaneous EEG-fMRI safety. The first is that the ferromagnetic materials should not 

be taken into the scanner. The second is excessive heating in EEG electrodes due to 

current induction from the interaction between EEG electrodes and the attached wire [17]. 
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After several years of developing simultaneous EEG-fMRI techniques, safety issues can 

now be sufficiently addressed [18]. The careful design of EEG equipment can avoid any 

EEG interaction with the static and rotating magnetic fields required for signal excitation 

and reception in fMRI acquisition. As such, no extra pre-processing is required for fMRI 

data after simultaneous recording with EEG [19, 20]. However, recording EEG inside the 

scanner and acquiring EEG signals during fMRI acquisition results in EEG signal 

contamination from ballistocardiogram (BCG) and gradient artifacts, respectively.  

Physiological artifacts, such as blinking and muscle artifacts, contaminate the EEG data 

regardless of whether EEG is being recorded inside or outside the scanner.  

Rapidly varying magnetic field gradients for spatial encoding of MR signal during 

fMRI acquisition induce gradient artifacts in the EEG signal [21]. Further, a 

Radiofrequency (RF) electromagnetic field applied during imaging for spin excitation 

induces noises in EEG data. Nonetheless, the frequency range of the RF pulses is outside 

the frequency range of conventional EEG amplifiers, resulting in significantly attenuated 

artifacts [21]. Gradient artifacts’ amplitudes appear at a much higher rate than normal 

brain EEG signals (see Figure 2-1), and need to be reduced/removed in the first step. 

Average artifact subtraction (AAS) [22] and optimal basis sets (OBS) [23], which are 

based on generating a template for this artifact and then removing it, are the most common 

methods for removing gradient artifacts. Nowadays, an accurate and reproducible 

template of gradient artifacts can be obtained with high-quality MRI scanner gradient 

controllers and with the synchronization of EEG digitization with the MRI clock signal. 
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Such a template subtraction has proven to be extremely successful in reducing gradient 

artifacts [24].  

Figure 2-1: EEG time course with gradient artifact (sampled at 5000 S/s) and after 
reducing that artifact with average artifact subtraction (AAS) sampled at 250 S/s. 

 

A BCG artifact obscures an EEG signal recorded inside the MRI scanner 

independent of MRI acquisition presence and significantly affects EEG quality. Based on 

Faraday’s law, any movement of electrically-conductive material in a static magnetic 

field results in electromagnetic induction, which is the fundamental cause of a BCG 

artifact. In other words, motions related to cardiac activity induce electromotive forces in 

the circuit formed by the EEG recording leads and in the subject and thus contaminate 

the EEG data with the BCG artifact [21]. Reducing the BCG artifact is more challenging 

compared to gradient artifact and demands additional attention. First, the BCG artifact 

frequency range overlaps EEG spectra, especially theta and alpha rhythms. Second, 

determining a template for removing BCG artifacts using AAS or OBS is more 

challenging since BCG artifacts are the result of an interaction between the cardiovascular 

0 1 2 3 4 5 6 7 8 9 10

-1000

0

1000

Time(second)

Am
pl

itu
de

(µ
V)

Raw EEG data with and without imaging arifact

 

 

Raw EEG time series
EEG time series after rmoving imaging artifact

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-1000

0

1000

Time(second)

Am
pl

itu
de

(µ
V)

Zoom-in raw EEG data with and without imaging arifact

 

 

Raw EEG time series
EEG time series after rmoving imaging artifact



11 

system and the main static field inside the MRI, and of the added inter-subject and inter-

recording variability. Using AAS to remove BCG artifacts requires precise Q wave, R 

wave, and S wave (QRS complex) detection. Third, the ECG signal recorded inside the 

MRI scanner contains artifacts, and sometimes detecting a precise QRS, which is required 

for both AAS and OBS, is not easy. Figure 2-2 shows an example of such an artifact on 

EEG data and the result of reducing it using AAS. The challenge associated with 

removing BCG will be discussed in greater detail in the next chapter.  

Figure 2-2: EEG time course with ballistocardiogram (BCG) artifact and its reduced 
artifact using average artifact subtraction (AAS) both sampled at 250 S/s. 
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2.5 Pupilometry  

Pupillometry measures the spontaneous variation of pupil diameter and dilation 

due to light changes or mental effort and cognitive activity. Primarily, it is assumed that 

the pupil dimension is associated with the amount of cognitive control, attention, and 

cognitive processing required by a given task [25]. In the absence of any task (i.e., resting 

state), pupil dilation can be accounted for by the subject’s vigilance and arousal. To find 

the EEG features associated with vigilance, an eye tracker was used for the study 

presented in Chapter 4.   
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 Automated Pipeline for EEG Artifact Reduction 

Recorded during fMRI (APPEAR)  

3.1 Introduction 

As mentioned in the previous chapter (section 2.4), recording EEG inside of an 

MRI scanner and acquiring EEG signals during fMRI acquisition results in EEG signal 

contamination from gradient and ballistocardiogram (BCG) artifacts, due to the switching 

of the magnetic field during fMRI acquisition and the presence of a static magnetic field 

(e.g., 3T) inside the scanner room. Other types of artifacts, such as muscle and ocular 

artifacts, can be present in EEG data regardless of whether the EEG is recorded inside or 

outside the MRI scanner [12, 26].  

After years of developing simultaneous EEG-fMRI techniques, several methods 

have been proposed for reducing artifacts from EEG data based on three main strategies.  

Firstly, making a template from BCG and gradient (i.e., MR-related artifacts) 

artifacts and then subtracting this template from the main signal [22, 23, 27, 28]. To date, 

the average artifact subtraction method (AAS) [22, 28] is one of the most common 

approaches for reducing BCG and gradient artifacts. The AAS method uses the repetitive 

pattern of gradient and BCG artifacts to generate an artifact template, which is then 

subtracted from the EEG signal. Even though the AAS can effectively reduce BCG and 
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gradient artifacts, some residual artifacts remain when this method is applied to raw EEG 

data in both real-time and offline [23, 29]. By leveraging high-quality MRI scanners and 

precise synchronization of MRI and EEG system clocks, we can generate accurate and 

reproducible templates of gradient artifacts, and AAS is shown to be extremely successful 

in reducing this type of artifact [24]. However, using AAS for reducing BCG artifacts 

requires additional consideration due to the artifact’s variability. In other words, AAS 

assumes that BCG artifacts are stable over time; however, this is not always the case. 

BCG artifacts are known to fluctuate over time, resulting in excessive residual BCG 

artifacts when using AAS. Combining AAS with other approaches, such as independent 

component analysis (ICA), is one solution to remove the residual artifacts [30-32]. [23] 

suggested a more comprehensive approach based on AAS, namely the optimal basis set 

(OBS), for reducing MRI- related artifacts. To minimize the effect of residual gradient 

and BCG artifacts, they proposed using principal component analysis (PCA) for capturing 

temporal variations in artifacts and regressing them out from EEG data.  

Secondly, using an extra sensor during recording simultaneous EEG-fMRI for 

capturing such artifacts and further subtracting them from the raw data [33-39]. A 

piezoelectric motion sensor was used by [33] to estimate motion artifact noise. The 

researchers calculated the correlation between the motion sensor and the EEG signal to 

further design a Kalman filter for removing BCG artifacts. [36] introduced a wire-loop-

based technique for correction of motion and BCG artifacts. This method was adopted in 

real-time (van der Meer et al., 2016). [34, 35] suggested adding reference electrodes 

attached to a conductive reference layer to record artifacts and further remove them from 
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EEG data. Although those methods appear beneficial for reducing artifacts, they are not 

yet widely used due to required hardware modifications and additional equipment [40].  

Thirdly, using blind source separation (BSS) for decomposing the EEG data into 

independent components and reconstructing the EEG data after removing artifactual 

independent components [26, 30, 41-46]. While AAS/OBS and using extra sensors have 

proven successful in reducing MR-related artifacts, these methods do not remove ocular, 

motion, and muscle artifacts. In contrast, BSS approaches are not recommended as the 

sole approach for reducing such artifacts but are often combined with OBS or AAS to 

remove residual MR and BCG artifacts. Using BSS as the primary method for reducing 

BCG is not suggested due to the difficulty of distinguishing BCG components from event-

related ones [32, 47].  

In this study, we proposed an automated pipeline for EEG artifact reduction 

recorded during fMRI (APPEAR). The APPEAR algorithm is an OBS/AAS-ICA-based 

algorithm for reducing BCG and gradient artifacts, in addition to motion, ocular, and 

muscle artifacts, in order to improve EEG data quality acquired during fMRI.  

3.2 Methods  

3.2.1 APPEAR 

The APPEAR algorithm combines OBS/AAS, filtering, and ICA to reduce all 

types of artifacts contaminating EEG data due to simultaneous fMRI recording. 
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 AAS/OBS and Filtering   

 Figure 3-1A shows the algorithm’s first step and procedure for reducing noise 

and artifacts from EEG data. APPEAR first preprocessed raw simultaneous EEG-fMRI 

data by removing the gradient artifact using the OBS included in EEGLAB’s FMRIB 

plugin and function fmrib_fastr [22, 23, 48]. The raw EEG data included the slice trigger 

markers (e.g., R128). Prior to running OBS, the volume start was added by setting the 

markers at every nth occurrence of the slice trigger, in which n was equal to the number 

slices per volume. Volume trigger timing was used to generate an artifact template in 

OBS. After the removal of the gradient artifact, the data were down-sampled to a 250 S/s 

sampling rate (4 ms interval), and the EEG data was bandpass filtered between 1 and 70 

Hz (0.1 and 70 Hz for task-based EEG data) using the built-in FIR filter in MATLAB 

named eegfilt. The fMRI slice selection frequency and its harmonics, vibration noise (26 

Hz), and AC power line noise (60 Hz) were removed by band rejection filtering (1 Hz of 

bandwidth).  

The AAS algorithm requires identifying the QRS complex in order to form the 

artifact subtraction templates [49]. For this purpose, two methods were attempted: 1- the 

FMRIB plug-in for EEGLAB was implemented in MATLAB for QRS / Heart-Beat 

Detection using simultaneously recorded ECG data via the back electrode [23]; 2- an 

automatic cardiac cycle determination approach using ICA [49]. Specifically, the ECG 

data recorded during fMRI acquisition is likely contaminated with MR environment 

artifacts. Thus, the identification of QRS events could be impractical or difficult to 

determine. Furthermore, any subject’s movement affects the quality of the recorded ECG 

data. Therefore, the proposed automatic approach for detecting the cardiac cycle directly 
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from the EEG data using independent component analysis (ICA) presented by [49] was 

implemented. We used the same parameters reported in [49] to detect the ICs related to 

BCG and the QRS events. In this study, the ICA-based approach was primarily used to 

detect the cardiac cycle and demonstrated superior performance comparing to detection 

from ECG signal. As a quality check, the resultant heart rate from the ICA method and 

FMRIB heart-rate calculations were compared to the heart rate indexed by simultaneous 

physiological pulse oximetry waveforms. For each fMRI run, simultaneous physiological 

pulse oximetry was collected (with 40 Hz sampling frequency, using a 

photoplethysmograph with an infrared emitter placed under the pad of the subject's left 

index finger). The ECG signal from this device is not sensitive to contamination from 

MRI environment artifacts, so the heart rate could be accurately detected. However, due 

to a lower sampling rate, as compared to the ECG signal recorded using the back 

electrode, the physiological pulse oximetry signal is not ideal for detecting the QRS cycle 

and generating a pulse artifact template. We chose the QRS cycle detection method that 

had the closest average heart rate achieved by pulse oximetry for generating the pulse 

artifact template. 

After detecting the heartbeat pulses, BCG artifacts were reduced using AAS, 

which is included in EEGLAB’s FMRIB plugin. Although OBS outperformed AAS in 

several studies in removing BCG artifacts [50, 51] (as shown in Figure 3-2 for data from 

two different participants), OBS could potentially remove some neural activity. 

Therefore, we selected AAS as the template correction approach for BCG correction. 

After reducing the BCG artifact using AAS, the data were then examined for intervals 
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exhibiting significant motion or instrumental artifacts (“bad intervals”) using EEGLAB’s 

function, named pop_rejcont, and bad intervals were marked for removal. 

 Figure 3-1: The APPEAR flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

Figure 3-2: Comparison between power spectral density (PSD) after applying average 
artifact subtraction (AAS, black line) and optimal basis sets (OBS, red line). 

 

 ICA 

The flowchart presented in  Figure 3-1B illustrates the automatic artifact reduction 

using ICA after the preprocessing and removal of the gradient and BCG artifacts. The 
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Infomax ICA algorithm [52], implemented in the EEGLAB toolbox, was applied to the 

EEG data after template artifact correction. The ICA algorithm was used to decompose 

the (N x M) EEG data into (L x M) independent components (ICs), where N, L, and M 

denote, respectively, the number of channels, ICs to be estimated, and time-samples. The 

number of components was set to the number of EEG channels (31 for this study). The 

equation describing the relationship between the EEG data, x, and the independent 

components, S, is given by:  

𝒙𝒙[𝑁𝑁 𝑥𝑥 𝑀𝑀] = 𝑨𝑨[𝑁𝑁 𝑥𝑥 𝑁𝑁] ∙ 𝑺𝑺[𝑁𝑁 𝑥𝑥 𝑀𝑀] 

where A is the mixing matrix that carries the coefficients of the linear combination 

between the EEG data and the ICs [53]. Bad intervals could significantly affect the ICA 

results due to their high amplitude and power and were therefore removed prior to ICA, 

resulting in a new (N x K) matrix, x’. An ICA was applied, resulting in a new relationship 

between the shortened EEG data and the resulting ICs, S’, given by: 

𝒙𝒙′[𝑁𝑁 𝑥𝑥 𝐾𝐾] = 𝑨𝑨[𝑁𝑁 𝑥𝑥 𝑁𝑁] ∙ 𝑺𝑺′[𝑁𝑁 𝑥𝑥 𝐾𝐾] 

 Automatic IC Classification 

Independent components (ICs) were flagged within the APPEAR algorithm if 

they were determined to be one of the following artifacts: BCG, blink, saccade, single 

channel, or muscle. Artifacts are determined with spectrum properties, topographic map 

properties, or an analysis of each IC’s contribution [54].  
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BCG IC Identification 

BCG artifacts obscure EEG signals recorded inside the MRI scanner, independent 

of MRI acquisition presence, and significantly affect the quality of the EEG. These 

artifacts occur fundamentally because of Faraday’s law, which states that any movement 

of electrically-conductive material in a static magnetic field results in electromagnetic 

induction. In other words, motion related to cardiac activity induces electromotive forces 

in the circuit formed by the EEG recording leads and the subject, which contaminate the 

EEG data with BCG artifacts [21]. ICs are flagged as BCG if they meet requirements for 

the mean power spectral density, topographic map, and IC contribution as follows [49, 

54].  The parameters and threshold values were exactly adapted from [49]. The power 

spectrum is divided into two ranges, cardioballistic (2-7 Hz) and neuronal (8-12 Hz). If 

an IC has a cardioballistic artifact, the power spectrum shows peaks in both the 

cardioballistic and neuronal frequency ranges. The method used by [49] determines the 

rise of the peaks in both regions and requires that they meet four conditions to be 

considered a BCG artifact. Condition (i) states that a large peak must be present in the 

cardioballistic range; Condition (ii) states the rise of the neuronal peak (rn) must be small; 

and if (ii) is not satisfied, then Conditions (iii) and (iv) define comparable spectrum 

amplitudes required in the cardioballistic and neuronal ranges for a BCG IC.  For 

Condition (ii), the rn is defined as the maximum power in the neuronal range. To obtain 

the full rise of the neuronal peak, a frequency range is defined with the frequency at the 

local minimum immediately below 8 Hz (v1<). If such a local minimum exists, the 

frequency range is taken as [v1<,vp], where vp is the peak frequency; otherwise, the 
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frequency range becomes [8 Hz, vp]. The rise of the neuronal peak is taken as the 

difference between the S(vp) and the minimum power given within the above range.  

rn = S(vp) - min(S(v), v ∈ [v1<, vp]), if v1< exists 

rn=S(vp) - min(S(v), v ∈[8 Hz, vp]) if v1< does not exist 

For Conditions (iii) and (iv), a baseline (Smin) is defined for each spectrum by the 

minimum power below the neuronal peak frequency. A cardioballistic motion IC is 

recognized when the mean power in the cardioballistic frequency range is comparable to 

the neuronal peak rise. There may be multiple peaks in the cardioballistic range, 

i=1,…,Nbcg. Condition (iii) requires that the cardioballistic peaks have a local minimum 

on the left and a peak rise larger than 0.2S0. Condition (iv) requires that the maximum 

rise of the peaks in the cardioballistic range, or the mean power over the cardioballistic 

range, is sufficiently large compared to the neuronal peak rise. Condition (iv) is met if 

any of the following equations are met: 

1) rn <= 0.33S0 

2) For Nbcg cardioballistic peaks with local left minimum and rbcg,k > 0.2S0, where 

k=1,…,Nbcg, max([rbcg,k], k=1,…,Nbcg) > rn -3 

3) For Nbcg cardioballistic peaks with local left minimum and rbcg,k > 0.2S0, where 

k=1,…,Nbcg, mean(S(v), v ∈ cardioballistic range) - Smin >0.33rn, max([Sbcg,k], 

k=1,…,Nbcg) > Sn -3 
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 The spatial projection of each IC onto the EEG channel space forms a topographic 

map. The spatial projection vector is interpolated using the MATLAB function, griddata. 

Normally, BCG ICs exhibit opposite polarity in the left and right regions [55]. During the 

topographic map analysis, the radius and other values are normalized to the range of 0 to 

1. Then, two sets of polarity regions, primary and secondary, are defined. [49] creates 

polarity arc regions, defined as the overlapping polarity regions using a topographic map 

boundary with a width of 0.2. Any regions not defined by the primary and secondary 

regions are labeled as neutral regions. Using the three conditions developed in [49], the 

BCG ICs are flagged. Condition (i) requires that there be up to one neutral region in the 

topographic map; Condition (ii) requires that only one positive (or negative) polarity 

region and polarity arc region are allowed in the topographic map; Condition (iii) ensures 

that there is a left/right opposite polarity region with one negative (or positive) primary 

polarity region and polarity arc region; and Condition (iv) sets the minimum areas for the 

secondary polarity and polarity arc regions in the topographic map.     

In the time-series of a BCG IC, there are distinct peaks (~1 second) caused by 

cardiac pulsations. Removing the BCG IC from the EEG time-series signal shows a 

steady signal reduction at the pulsation peaks. Looking at the signal contribution of a 

BCG IC, the average positive and negative magnitudes (α+ and α-, respectively) of the 

reduced signal (α’) after removing the IC are compared to the original time-series signal 

(α). In [49], the thresholds for the average positive and negative magnitudes for any 

channel j are: (i) 0.5(αj+’/αj+ + αj-’/αj-) < 0.97 and (ii) min(αj+’/αj+ + αj-’/αj-) < 0.95. If these 

two thresholds are met, the IC is flagged as a BCG artifact.  
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We slightly modified the protocol reported in [49, 54] for selecting the BCG 

components for removal so that no components were removed that showed strong alpha 

activity in the occipital electrodes. To do so, we defined a template that covered the 

occipital electrodes (O1, O2, and Oz). If the topographic map had an area overlap (more 

than 0.4 if unipolar, or 0.91 if bipolar) and if the highest value of the power spectral 

density (PSD) was in the alpha band range (i.e., 7 to 13 Hz), or if there was an average 

PSD in the alpha band that was higher than the delta, theta, and beta bands, we did not 

consider that component to be a BCG artifact. On the other hand, if the topographic map 

exhibited bipolar properties affecting the right and left hemisphere and had neither the 

maximum PSD in the alpha band nor the highest average PSD in the alpha band compared 

to the other EEG frequency bands, we considered that component a BCG artifact. Figure 

3-3 shows an example of a BCG artifact’s IC time series and its features. 
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Figure 3-3: An Example of a ballistocardiogram (BCG) component. 

 

Blink and Saccadic IC Identification 

Ocular artifacts are separated into either blink or saccade (i.e., rapid movement of 

the eye between fixation points) components. The independent components associated 

with blinks, as well as saccade, have unique topographic maps. To detect the ICs with 

topographic maps related to blink and saccade, we used the approach presented in [54]. 

Blink ICs can be identified by their strong spatial projection in the frontal area; however, 

the topographic map related to saccade ICs depicts two strong and opposite polarity 

spatial projections behind the eye. The details of identifying the topographic map 
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associated with these two artifacts are presented in the supplementary material of [54]. 

Figure 3-4 shows an example of a blink artifact’s IC time series and its features. 

 

Figure 3-4: An example of a blink component. Blink ICs can be identified by their strong 
spatial projection in the frontal area and low frequency activity in delta band. 

 

Single Channel IC Identification 

A large artifact can be generated in one or two adjacent channels without affecting 

any other channels if that channel is bumped during a recording or if it has poor contact. 

Another reason these artifacts appear is that some EEG channels (e.g., T7, T8, TP9, and 

TP10) are more sensitive to jaw and head movement, which produce large artifacts for 
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those channels [41]. We call this type of artifact a single channel artifact. To determine if 

a component represents a single channel artifact, all ICs are removed except for the one 

being analyzed. The EEG signal is reconstructed with only the singular IC present, and 

then the power spectral density is computed for all 31 channels. The IC is flagged as a 

single channel artifact if it meets the following three requirements: (1) the power spectral 

density is large in only one channel, 

𝑚𝑚𝑚𝑚𝑚𝑚1(𝑃𝑃𝑃𝑃𝑃𝑃) > 5 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚2 (𝑃𝑃𝑃𝑃𝑃𝑃) &  𝑚𝑚𝑚𝑚𝑚𝑚1(𝑃𝑃𝑃𝑃𝑃𝑃) > 10 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚3 (𝑃𝑃𝑃𝑃𝑃𝑃) 

where the three maximum powers across all 31 channels are identified and sorted with 

max1(PSD) being the largest power value, (2) the kurtosis is larger than 4, and (3) the 

average power is lowest in the narrow alpha band (8-12 Hz). An example of a single 

channel artifact’s IC features is shown in Figure 3-5. 
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Figure 3-5: An example of a single channel component. This type of artifact affects 
mostly one or two electrodes due to either strong muscle activity around that electrode or 
to poor contact. 

 

Muscle IC Identification 

Muscle electrical activity or “electromyogenic” (EMG) artifacts exhibit 

widespread high-frequency activity due to asynchronous motor action units [12, 56]. 

These components are flagged if the power of the signal is spread out in frequencies 

higher than 30 Hz, known as the gamma band. Specifically, the average power of the 

gamma band is computed for each IC, and if the average power is largest in the 30-60 Hz 

range, the IC is labeled as a muscle artifact (see Figure 3-6 for an example of a muscle 
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artifact’s IC features). Such classification considers possible components with a large 

peak in the gamma band, which typically represent some type of noise (e.g., vibration 

noise and line noise). 

Figure 3-6: An Example of a muscle component. Muscle electrical activity or 
“electromyogenic” (EMG) artifacts exhibit widespread high-frequency activity due to 
asynchronous motor action units. These components are flagged if the power of the signal 
is spread out in frequencies higher than 30 Hz, known as the gamma band. 
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 Reconstructing EEG Data after ICA Decomposition 

Using the mixing matrix after the bad interval removal (i.e., “A”) and the EEG 

data before the bad interval removal (i.e., “x”), the IC matrix related to the whole dataset 

(before removing bad intervals) was computed using the following matrix multiplication: 

𝑺𝑺[𝑁𝑁 𝑥𝑥 𝑀𝑀] = 𝑨𝑨−1[𝑁𝑁 𝑥𝑥 𝑁𝑁] ∙ 𝒙𝒙[𝑁𝑁 𝑥𝑥 𝑀𝑀] 

The columns related to artifactual ICs were removed from the mixing matrix, A, 

and replaced with zero vectors to form a new mixing matrix, A’. Then, a final, 

reconstructed EEG data matrix, xfinal, with the same size as the original raw EEG, was 

computed using the original ICA relationship for EEG data and ICs, shown below:  

𝒙𝒙𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇  [𝑁𝑁 𝑥𝑥 𝑀𝑀] = 𝑨𝑨′[𝑁𝑁 𝑥𝑥 𝑁𝑁] ∙ 𝑺𝑺[𝑁𝑁 𝑥𝑥 𝑀𝑀] 

 

3.2.2 Data Acquisition  

The data used for validation of the method was selected from the Tulsa 1000 (T-

1000) study, which assessed and longitudinally tracked 1000 adults, including healthy 

comparisons and treatment-seeking individuals with mood and anxiety disorders [57]. 

We selected the first eight healthy control participants (8 females, age M = 26 years, range 

from 22 to 32 years) of that study. The study was conducted at the Laureate Institute for 

Brain Research with a research protocol approved by the Western Institutional Review 

Board (IRB). All volunteers provided written informed consent and received financial 

compensation for their time to participate in this study.  

A General Electric (GE) Discovery MR750 whole-body 3T MRI scanner (GE 

Healthcare, Waukesha, Wisconsin, USA) and a standard 8-channel, receive-only head 
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coil array were used for fMRI imaging. A single-shot gradient-recalled echoplanar 

imaging (EPI) sequence with Sensitivity Encoding (SENSE) (Pruessmann et al., 1999) 

was used for fMRI acquisition (parameters: FOV/slice thickness/slice gap = 240/2.9/0.5 

mm, 39 axial slices per volume, 128 × 128 acquisition matrix, repetition time (TR), echo 

time (TE) TR/TE= 2000/27 ms, acceleration factor R = 2, flip angle = 90°, sampling 

bandwidth = 250 kHz. EEG signals were recorded simultaneously with fMRI using a 32-

channel MR-compatible EEG system from Brain Products GmbH. The EEG cap 

consisted of 32 channels, including references, arranged according to the international 

10-20 system. One electrode was placed on the subject’s back for recording the 

electrocardiogram (ECG) signal. A Brain Products SyncBox device was used to 

synchronize the EEG system clock with the 10 MHz MRI scanner clock. The EEG 

acquisition’s temporal resolution was 0.2 ms (i.e., 16-bit 5 kS/s sampling), and 

measurement resolution was 0.1 µV. EEG signals were hardware-filtered throughout the 

acquisition in the frequency band between 0.016 Hz and 250 Hz. 

3.2.3 Evaluation  

APPEAR was validated using both an event-related-potential (ERP) and a resting-

state EEG-fMRI dataset. We used manually-corrected EEG data as a comparison for 

evaluating the accuracy of the proposed automated pipeline for removing artifacts. We 

followed the method using template subtraction, followed by ICA, which was suggested 

for removing EEG artifacts in previous studies [26, 30, 32, 41, 47]. BrainVision Analyzer 

2 software (Brain Products GmbH, Germany) was used to remove the artifacts manually 

and used the results of manual correction as a reference to evaluate the performance of 

APPEAR. The procedure for offline EEG artifact reduction was as follows [30]: 1- 
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Imaging artifacts were reduced using the AAS method [22] and the signals were down-

sampled to 250 S/s. 2- Band-rejection filters (1 Hz bandwidth) were used to remove the 

fMRI slice selection fundamental frequency (i.e., 19.5 Hz) and its harmonics, vibration 

noise (26 Hz), and AC power line noise (60 Hz), and the EEG and ECG data were 

bandpass filtered from 0.1 to 80 Hz and 0.1 to 12 Hz (48 dB/octave), respectively. 3- In 

order to remove the BCG artifact using AAS [28], the QRS cycle was automatically 

detected by the Analyzer 2 software with a subsequent visual inspection that corrected 

inaccurately positioned R-peak markers. A template of BCG artifacts from 21 preceding 

cardiac periods for each channel was used to remove BCG artifact using AAS. 4- Prior 

to running ICA, the data were carefully examined to exclude the intervals exhibiting 

significant motion or instrumental artifacts. 5- The Infomax algorithm [52] was used for 

ICA decomposition. ICs associated with artifacts were selected using the topographic 

map, power spectrum density, time course signal, and energy value. After selecting the 

artifactual ICs and removing them, the EEG signal was reconstructed using inverse ICA. 

 Stop Signal ERP 

The first dataset was used to examine the quality of the corrected data was EEG-

fMRI data during a stop signal task; lasting 8 minutes and 32 seconds. To determine the 

success of the pipeline in the separation and removal of BCG artifacts from EEG data, it 

is recommended that the quality of the signal of interest is examined [58]. Thus, 

examinations of event-related potentials extracted from the EEG data were used to 

evaluate the efficacy of the automated processing pipeline. Specifically, data resulting 

from the automated pipeline were compared to the same data processed manually as 

described above. For the ERP analysis, a commonly used paradigm (i.e., stop-signal; e.g., 
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[59]) was employed. During this task participants were asked to respond to an “X” and 

“O” with either a right or left button press, but on 25% of the trials, an auditory tone (i.e., 

“stop-signal”) indicated they should not respond. In this paradigm the stop-signal 

stimulus has been shown to elicit the N2 and P3 waveforms [60-62]. The N2 component 

is a negative deflection in the ERP waveform, maximal over the fronto-central portion of 

the scalp peaking between 200 and 250 ms (e.g. [63]), and is an indicator of attentional 

control. The P3 is a centro-parietally maximal positive deflection in the ERP waveform 

peaking between 300 and 500 ms and indexes attention allocation (see:[64]). In the 

current study, the eight participants completed the stop signal paradigm during 

simultaneous EEG/fMRI data collection, and the analysis was focused on the ERP 

response to a stop signal (72 trials).   

In addition to the automated processing pipeline, the data were segmented from 

200 ms prior to the 800 ms post onset of the stop signal. Then the data were baseline 

corrected to the average of the 200 ms interval preceding the stimulus onset. A low-pass 

filter was applied to the data with a half-amplitude cutoff of 30μv and 48dB/octave roll-

off. Finally, automated routines were used to detect the bad intervals in the data. Bad 

intervals were defined as any change in amplitude between data points that exceeded 

50μv; absolute fluctuations exceeded 200μv in any 200 ms interval of the segments (i.e., 

-200 to 800 ms); and flat-lining was defined as any change of less than 0.5μv in a 200 ms. 

Trials were excluded if they included any of these artifacts. The number of trials rejected 

due to above features ranged from 0 to 10 (M = 3.75, sd = 3.24).  

According to recommendations from [58], we examined the scalp topographies, 

waveforms, and peak amplitude measures of the resulting ERP waveforms as well as the 
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estimated signal-to-noise ratio (SNR) of the N2 and P3 waveforms. The SNR of the ERP 

components was estimated in accordance with recommendations for processing 

EEG/ERP data [65, 66]. Specifically, SNR was calculated for two methods of quantifying 

ERP amplitude; peak amplitude (a measurement of the largest amplitude a waveform 

achieves in a specified measurement window) and grand average amplitude (average of 

the ERP waveform in a specified measurement window). This was done to account for 

common amplitude measures used in the field to compare groups and our conditions in 

ERP experiments. For peak amplitude, the SNR was calculated as the ratio of the ERP 

component peak and the difference between the largest negative peak and largest positive 

peak in the pre-stimulus baseline (estimate of noise). The grand average amplitude SNR 

was calculated as the ratio of mean amplitude measured across the following time 

windows, with respect to stimulus on-set: N2, 175-225ms; P3, 300-500ms over the 

baseline (i.e., -200-0ms) mean amplitude. All statistical analyses were conducted in R 

version 3.6.1 using the WRS2 package.   

 Resting-State 

A resting-state EEG-fMRI run, lasting 8 minutes, was conducted for each subject. 

Prior to the rest run, participants were instructed to clear their minds, not think about 

anything in particular, and try to keep their eyes open and fixated onto a cross. In order 

to evaluate the resting-state EEG data quality using our proposed pipeline, we compared 

the time-frequency (Wavelet Transform), and frequency (FFT) results between the 

manually- and automatically-corrected EEG data.  

The Continuous Wavelet Transform (CWT) was applied to the data after 

removing the average EEG signal among all channels (i.e., 31 channels). CWT deployed 
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the analytic Morse wavelet implemented in MATLAB’s function cwt, with symmetry 

parameters of 3 and a time-bandwidth product of 60. To compare the results between the 

manually- and APPEAR-corrected EEG sets, we plotted the time-frequency analysis for 

only a 30-second segment of the EEG recording (for more visibility) taken from the 60 

to 90 seconds.   

In addition, we computed the power spectral density (PSD) for all EEG channels 

after AAS, for both the manual and APPEAR corrected data. To calculate the PSD in 

each analysis and channel, a moving window FFT, with 4.096 s data interval length 

(0.244 Hz spectral resolution) and 50% interval overlap with a Hanning window, was 

applied after the exclusion of the motion-affected intervals marked manually during the 

manual correction. After that, the PSD was averaged among all channels for each subject. 

3.3 Results 

Comparisons of the resulting ERP components between the APPEAR- and 

manually processed data are presented in Table 3-1 and Figure 3-7. Table 3-1 includes 

the means (M), standard deviation (SD), and statistical comparison (i.e., dependent 

samples t-test) of the means of the peak amplitude ERP components (i.e., N2, P3) between 

automated and manually corrected ERP data. Results indicate that there are no significant 

differences between peak amplitude ERPs calculated from data resulting from the 

automated pre-processing (i.e., APPEAR) and those calculated following manual pre-

processing (uncorrected p-values range from 0.10 to 0.76).. It should be noted that, the 

N2 was quantified as the largest negative peak in midline channels (i.e., FZ, FCZ, CZ) 

between 175 and 225 ms post-stimulus onset based on a combination of visual inspections 
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of the current data and previous research indicating the N2 peaks between 200-250ms 

[63]. Notably, the N2 peak was not evident at PZ. The P3 was calculated as the largest 

positive peak between 300 and 500 ms post-stimulus onset at midline channels (i.e., FZ, 

FCZ, CZ, PZ). Figure 3-7 represents the ERP components waveforms and scalp 

topographies for both manually and automated corrected data. 

Table 3-1. T-tests comparing mean amplitude N2, P3 across automated and manual 
processing. 

 
 
 

N2 Auto M(SD) Man M(SD) Mean comparison 
Fz -5.21(4.44) -5.33(4.27) t(7) = 0.32, p = 0.76 

FCz -6.21(3.59) -6.48(4.20) t(7) = 0.70, p = 0.50 
Cz -5.41(3.36) -5.99(3.66) t(7) = 1.91, p = 0.10 

P3    
Fz 8.45(4.79) 8.71(3.83) t(7) = -0.37, p = 0.72 

FCz 11.51(5.81) 11.73(5.14) t(7) = -0.39, p = 0.71 
Cz 11.69(5.34) 12.34(4.75) t(7) = -1.44, p = 0.19 
Pz 9.03(3.86) 9.20(3.83) t(7) = -1.02, p = 0.34 
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Figure 3-7: Comparison of waveforms (A) and topographical maps for ERP waveforms 
after applying APPEAR and manual correction (B1: N2 scalp topography from the 
automated correction; C1: N2 scalp topography from the manual correction; B2: P3 scalp 
topography from the automated correction; C2: P3 scalp topography from the manual 
correction). 
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Table 3-2 includes the mean, standard deviation, and statistical comparison (i.e., 

dependent samples t-test) of the SNRs of the peak amplitude ERP components (i.e., N2, 

P3). A series of dependent sample t-tests presented in Table 3-2 indicates that there were 

no significant differences between ERP components (i.e., N2, P3) resulting from the 

automatic processing compared to the manual processing (uncorrected p-values range 

from 0.20 to 0.97). 

Table 3-2. T-tests comparing signal-to-noise ratios N2 and P3 across automated and 
manual processing. 

 

 
 

Table 3-3 and Table 3-4 show the SNR values for individual subjects for N2 and 

P3 (as the difference between the ERP peak amplitude measurement and the noise 

calculated in the baseline). 

 

 

 

 

N2 Auto M(SD) Man M(SD) Mean comparison 
Fz 2.15(1.39) 1.91(1.88) t(7) = -0.46, p = 0.66 

FCz 2.38(1.34) 2.36(2.37) t(7) = -0.04, p = 0.97 
Cz 2.03(1.41) 2.23(2.11) t(7) = 0.39, p = 0.71 

P3    
Fz 3.80(2.25) 3.02(2.20) t(7) = 1.40, p = 0.20 

FCz 4.67(1.43) 4.08(3.26) t(7) = 0.79, p = 0.45 
Cz 4.58(2.61) 4.44(3.19) t(7) = 0.21, p = 0.84 
Pz 3.53(2.74) 3.79(2.33) t(7) = -0.68, p = 0.51 
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Table 3-3. Signal-to-noise ratios by individual subjects for the N2 Automated 

 

 

Table 3-4. Signal-to-noise ratios by individual subjects for the P3 Automated 

 Fz Cz Pz FCz 

Subject 1 4.345 3.661 3.311 4.934 

Subject 2 0.381 1.399 1.76 0.967 

Subject 3 5.25 8.884 4.318 8.065 

Subject 4 6.062 4.411 2.95 5.852 

Subject 5 2.565 3.828 3.18 3.55 

Subject 6 3.73 3.919 1.903 3.99 

Subject 7 6.757 8.102 5.717 8.43 

Subject 8 1.337 2.423 5.158 1.531 

Mean 3.803 4.578 3.537 4.665 

SD 2.253 2.607 1.431 2.736 

 

 

 Fz Cz Pz FCz 

Subject 1 1.418 0.544 0.423 1.584 

Subject 2 0.285 1.088 1.621 0.639 

Subject 3 3.324 4.457 0.489 4.413 

Subject 4 2.871 0.391 0.18 2.196 

Subject 5 1.428 2.054 1.728 1.694 

Subject 6 4.39 2.809 0.102 3.586 

Subject 7 2.697 3.227 1.442 3.663 

Subject 8 0.827 1.667 1.226 1.274 

Mean 2.155 2.03 0.751 2.381 

SD 1.389 1.406 0.858 1.343 
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Table 3-5 represents the estimated SNRs of the mean amplitude measurements 

from the grand average across subjects of the N2 and P3 waveforms (i.e., N2, 175-225ms; 

P3, 300-500ms, post stimulus onset).  

Table 3-5. Signal to noise ratios in the grand average waveforms. 

 
 

Table 3-6 and Table 3-7 show the individual grand average waveform SNRs for 

N2 and P3, respectively.  

 

 

 

 

 

 

 

 

Automated Fz Cz Pz FCz 
GA Peak N2 4.279 3.194 0.767 3.822 
GA Peak P3 7.029 8.306 7.565 8.081 
GA Mean N2 3.266 2.053 0.16 2.904 
GA Mean P3 4.342 5.735 4.838 5.232 

Manual     
GA Peak N2 5.128 3.556 1.028 4.046 
GA Peak P3 7.741 7.787 5.794 7.442 
GA Mean N2 3.597 2.308 0.378 2.853 
GA Mean P3 4.577 5.296 3.595 4.628 
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Table 3-6. Signal-to-noise ratios by individual subjects for the N2 Manual in the grand 
average waveforms 

 

Table 3-7. Signal-to-noise ratios by individual subjects for the P3 Manual in the grand 
average waveforms. 

 Fz Cz Pz FCz 

Subject 1 3.764 3.821 2.988 4.521 

Subject 2 0.924 1.413 1.506 1.288 

Subject 3 3.398 5.739 4.526 4.601 

Subject 4 2.006 3.294 3.122 2.634 

Subject 5 1.802 3.221 2.118 2.773 

Subject 6 3.44 3.519 1.842 3.81 

Subject 7 7.747 11.748 8.204 11.531 

Subject 8 1.096 2.731 6.028 1.501 

Mean 3.022 4.436 3.792 4.082 

SD 2.198 3.19 2.328 3.258 

 

 Fz Cz Pz FCz 

Subject 1 1.631 0.711 0.105 1.645 

Subject 2 0.351 0.841 1.374 0.62 

Subject 3 1.691 2.987 0.926 2.664 

Subject 4 0.305 0.079 0.015 0.072 

Subject 5 0.88 1.771 1.343 1.263 

Subject 6 4.438 2.778 0.211 3.764 

Subject 7 5.211 6.811 2.467 7.47 

Subject 8 0.803 1.879 1.961 1.361 

Mean 1.914 2.232 1.02 2.357 

SD 1.879 2.106 0.942 2.365 
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Figure 3-8 shows the comparison between CWT results from APPEAR and 

manually corrected data.  
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Figure 3-8: The time/frequency comparison (Wavelet) between APPEAR (upper rows) 
and manually-corrected EEG data (lower rows) for all individual subjects.  
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We also compared the PSD (averaged among all channels) in different frequency 

bands between the APPEAR and manually corrected EEG using a t-test. The results are 

as follows (Figure 3-9): Delta band: t(7)= 0.1308, p= 0.8978; Theta Band: t(7)= 0.3124, 

p= 0.7594; Alpha band: t(7)= 0.1794, p= 0.8602; Beta Band: t(7)= -0.1375, p= 0.8926. 

Figure 3-9: Powers spectral density (PSD) comparison between AAS, APPEAR, and 
manually corrected EEG data in (A) Delta; (B) Theta; (C) Alpha; and (D) Beta band. 

3.4 Conclusion 

Reducing MRI environment artifacts 

Reducing gradient and BCG artifacts is the first step of artifact correction for any 

EEG data recorded during fMRI acquisition. To do this, we first reduced gradient and 

BCG artifacts using a template artifact correction. In the current study, we noticed a 

drawback in using OBS instead of AAS. Figure 3-2 illustrates important caveats in using 

OBS as an average template subtraction method, as it removed some neural activity (e.g., 

alpha wave in posterior and occipital channels). Therefore, we employed AAS for 
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reducing BCG artifacts instead of OBS. Furthermore, detecting the QRS cycle is still a 

challenge in using template artifact subtraction methods and could influence the efficacy 

of removing artifacts significantly with either aforementioned method. To have the best 

possible estimate of the QRS cycles, we used a newly-developed technique for detecting 

the QRS cycle using ICA on EEG data. This approach generally outperforms the FMRIB 

plug-in implemented in MATLAB for QRS cycle detection. However, we confirmed the 

estimation of the QRS cycle using the pulse oximeter waveform (which is unaffected by 

MRI environment artifacts). If the ICA method could not detect the QRS cycle accurately, 

we used the fMRIB approach using the ECG signal recorded via a back electrode.  

  

Automatic Classification of Artifactual ICs after ICA Decomposition  

Classifying the independent components may be the most difficult step in 

removing EEG artifacts, regardless of being recorded inside or outside the scanner. 

Although several methods have been proposed for automatic/semi-automatic IC 

classification for EEG data recorded outside the MRI [56, 67-72], there are very few for 

EEG data recorded inside the scanner [30, 73]. Here, in this study, we classified the 

components either as artifacts or neural activities. IC classification was determined with 

spectrum properties, topographic map properties, or an analysis of each IC’s contribution. 

Using those features, we removed the ICs associated with residual BCG, ocular, muscle, 

and single-channel artifacts.  
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Evaluation  

In this study, we validated our pipeline performance for two common applications 

of simultaneous EEG-fMRI (i.e., resting-state and ERP).  For resting-state, we compared 

the wavelet transform, and FFT results between the manually corrected and APPEAR 

corrected EEG data. Our results showed no differences between the two approaches. The 

observed time course and scalp topographies (see: Figure 3-7) are similar to prior research 

examining the N2 and P3 in the stop signal paradigm (e.g., [60-62]) as well as the 

manually-corrected results. 

Removing EEG artifacts remains one of the main challenges for simultaneous 

EEG-fMRI acquisition, due to its time-consuming nature and required special expertise. 

We developed a fully automated pipeline for reducing EEG artifacts and validated our 

results with two common applications of this multimodal acquisition. Our work 

represents an important step towards expanding EEG-fMRI applications by providing a 

faster and non-human biased method of removing EEG artifacts. 
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 Integration of Simultaneous Resting-State EEG, 

fMRI, and Eye Tracker Methods to Determine and Verify 

Vigilance Metrics 

4.1 Introduction 

Resting-state functional magnetic resonance imaging (rsfMRI) has become an 

important tool for studying the human brain due to its simplicity and non-invasiveness, 

as well as its requisite of least effort from the subjects [74-76]. rsfMRI scans are 

conducted while subjects have eyes-closed, eyes-open, or eyes fixated on a cross. Cross 

fixation is most often used and produces the most reliable results [77, 78]. However, it is 

unclear how well individuals manage to keep their eyes open and their gaze on the fixated 

cross over time using this paradigm. In addition, an individual’s degree of changes in 

vigilance during rsfMRI may affect functional connectivity results in both the cortical 

and subcortical brain regions [79]. Therefore, to obtain a measure of vigilance during 

rsfMRI scans, employing another modality, such as eye-tracking or 

electroencephalography (EEG), is necessary. Independent and concurrent modality 

signals could then be used to continuously characterize one’s fluctuations in vigilance, 

allowing researchers to use this vigilance index to better assess fMRI data quality. 

Notably, vigilance is a term that has been used in varying definitions by different groups 
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of scientists [80, 81]. For example, some groups consider it the ability to sustain attention 

to a task for a period of time [82, 83] and attention to potential threats or dangers [84]. 

One of the most common definitions for vigilance is tonic alertness [85-87], which is the 

definition adopted in this study. 

EEG is the modality most extensively used for monitoring vigilance, specifically 

during eyes-closed resting states [5, 88-92]. Slow-wave EEG is mostly studied during 

sleep [7, 93], since delta (<4 Hz) and theta (4–7 Hz) waves dominate the EEG signal 

during drowsiness and sleep [93]. In contrast, alpha (7-13 Hz) and beta (13-30 Hz) 

rhythms and the ratio of high- to low-frequency band power have been employed to 

measure vigilance levels during resting states as well as during active tasks [89, 94, 95]. 

For instance, according to [88] three defined vigilance states based on EEG frequency 

characteristics during an eyes-closed rsfMRI recording exist: (1) alertness and relaxed 

wakefulness, characterized by dominant alpha activity; (2) drowsiness, classified by 

dissolving alpha activity and theta rhythm dominance; and (3) sleep, marked by slow-

wave activity and sleep spindles. Further, this work [44], validated the results of the EEG 

vigilance classification by analyzing the heart rates during the different brain states [5]. 

When these EEG vigilance states were correlated with simultaneously recorded rsfMRI 

data, findings demonstrated that decreased vigilance was linked to a higher blood-

oxygen-level-dependent (BOLD) signal in the parietal/occipital cortices as well as in 

regions of the prefrontal and anterior cingulate cortices (PFC and ACC). In addition, 

decreased vigilance was associated with reduced BOLD signal within the thalamus as 

well as in other specific regions of the PFC [5]. An additional eyes-closed rsfMRI study 

recording simultaneous EEG [89] introduced global field power (GFP) of the upper alpha 
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band (10 –12 Hz) oscillations as the most consistent EEG index of tonic alertness. 

Moreover, the GFP time course of the upper alpha band positively correlated with BOLD 

signal fluctuations within the dorsal ACC, anterior insula, anterior PFC, and thalamus. 

Given that eyes-closed and eyes-open conditions provide divergent EEG measures of 

vigilance with respect to brain topography and power [96] as well as differing BOLD 

signal patterns [77, 97-99], EEG vigilance measures used for eyes-closed resting states 

may not easily be applied to eyes-open paradigms.  

One potential solution for monitoring vigilance during eyes-open rsfMRI is the 

use of an eye-tracker device to evaluate pupillometry [86, 100, 101]. The mean pupil 

diameter decreases during drowsiness [80, 102, 103], due to low tonic firing rates of the 

locus coeruleus neurons and dominant parasympathetic nerve system of the pupil [104, 

105]. Although eye-tracker systems may have a relatively less complicated setup (and 

data post-processing), simultaneous EEG and fMRI recordings are more widely used to 

study brain functions than simultaneous eye-tracking and fMRI recordings. Therefore, 

we aimed to robustly derive and independently verify vigilance measures obtained from 

EEG data acquired during rsfMRI and to validate them with simultaneously collected 

eye-tracker and heart rate data. 

To replicate and extend prior rsfMRI vigilance findings, the present study 

recorded simultaneous eyes-open rsfMRI, EEG, eye-tracking, and heart rate signals from 

healthy participants. First, we determined EEG features associated with pupil dimension 

and validated these features by correlating them with heart rate changes associated with 

arousal. Then, we investigated the relationship between these validated EEG features and 
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BOLD fMRI signals to illustrate the spatial and temporal characteristics of the brain’s 

vigilance response. 

4.2 Data Collection 

This study was conducted at the Laureate Institute for Brain Research with a 

research protocol approved by the Western Institutional Review Board (IRB). Although 

14 healthy subjects participated in this study, data from four volunteers were excluded 

due to excessive head motion, falling asleep, or closing their eyes during rsfMRI 

recording. Therefore, data from 10 participants (4 female, age M = 23.0 years, range 19-

30 years) were analyzed. All participants provided written informed consent and received 

financial compensation for participation. Three 12-minute eyes-open rsfMRI runs were 

collected from each participant. Prior to each run, participants were instructed to clear 

their minds, not think about anything in particular, and try to keep their eyes open and 

fixated on the cross.  

A General Electric (GE) Discovery MR750 whole-body 3T MRI scanner (GE 

Healthcare, Waukesha, Wisconsin, USA) and a standard 8-channel, receive-only head 

coil array were used for imaging. A single-shot gradient-recalled echoplanar imaging 

(EPI) sequence with Sensitivity Encoding (SENSE; [106] was used for fMRI acquisition 

with the following parameters: FOV/slice thickness/slice gap = 240/2.9/0.5 mm, 41 axial 

slices per volume, 96 × 96 acquisition matrix, repetition time (TR), echo time (TE) 

TR/TE= 2000/30 ms, acceleration factor R = 2, flip angle = 90°, sampling bandwidth = 

250 kHz. To allow the fMRI signal to reach a steady-state, three EPI volumes (6 s) were 

excluded from data analysis. For each of three rsfMRI runs, simultaneous physiological 
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pulse oximetry and respiration waveforms were collected (with 50 Hz sampling, using a 

photoplethysmograph with an infra-red emitter placed under the pad of the subject's left 

index finger and a pneumatic respiration belt, respectively). To provide an anatomical 

reference for the fMRI analysis, a T1-weighted magnetization-prepared rapid gradient-

echo (MPRAGE) sequence with SENSE was collected with the following parameters: 

scan time = 4 min 58 sec, FOV = 240 mm, axial slices per slab = 128, slice thickness = 1.2 

mm, image matrix = 256×256, TR/TE = 5/1.9 ms, acceleration factor R = 2, flip angle = 10°, 

delay time TD = 1400 ms, inversion time TI = 725 ms, sampling bandwidth = 31.2 kHz. 

EEG signals were recorded simultaneously with fMRI via a 32-channel MR-compatible 

EEG system from Brain Products GmbH. The EEG cap consisted of 32 channels, 

including references, arranged according to the international 10-20 system. One electrode 

was placed on the subject’s back for recording the electrocardiogram (ECG) signal. A 

Brain Products’ SyncBox device was used to synchronize the EEG system clock with the 

10 MHz MRI scanner clock. EEG acquisition temporal resolution was 0.2 ms (i.e., 16-bit 

5 kS/s sampling), and measurement resolution was 0.1 µV. EEG signals were hardware-

filtered throughout acquisition in the frequency band between 0.016 Hz and 250 Hz.  

Pupil size was recorded in arbitrary units at a sampling rate of 250 samp/sec using an 

MRC eye tracker system (MRC Systems GmbH, Heidelberg, Germany).  

4.3 Data Analysis  

Each of the EEG, fMRI, and eye-tracker modalities require specific preprocessing 

to reduce noise and artifacts, as well as to recover missing data. After applying 

preprocessing steps separately for the data within each modality, we combined the clean 
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data from those three modalities. Figure 4-1 shows a summary of data analysis steps as a 

function of modality. 

 

 

Figure 4-1: The data analysis flowchart. 

4.3.1 Preprocessing 

As it has discussed in previous chapters EEG is highly sensitive to noise and 

artifacts. In order to reduce artifacts and preprocess EEG data, we followed the pipeline 

described in previous chapter and  [30]. 

Pupil size vector includes both missing data due to eye-blinks and noise. In 

preprocessing the pupil size signal, the “fillmissing” command in MATLAB (MathWorks 

Inc, Natick, Massachusetts, USA) was used first to interpolate missing numeric data. 

More specifically, a moving median window with a length of twice the largest gap was 
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used. Then, a zero Phase Butterworth band-pass filter (0.01–0.1 Hz) was applied to 

correct for very slow drifts and high-frequency oscillations, as suggested in previously 

published works [86, 101]. Data from subjects with more than one-third of data missing 

were excluded, resulting in 21 runs from 10 subjects (the percentage of missing data from 

each run and participant is shown in Table 4-1). 

 

Table 4-1. Percentages of missing pupil size data 

  Percentage of missing data 
Subject 
Number  Rest1 Rest2 Rest3 

Subject 1 0.173 0.188 0.099 
Subject 2 0.127 0.23 Not Recorded 
Subject 3 0.269 0.133 0.148 
Subject 4 0.511 0.168 0.149 
Subject 5 0.572 0.551 0.303 
Subject 6 Not Recorded 0.177 0.162 
Subject 7 0.037 0.081 Not Recorded 
Subject 8 0.338 0.271 0.005 
Subject 9 0.097 0.831 Fell asleep 
Subject 10 0.194 0.137 0.135 

 

 

Imaging analyses were carried out using the Analysis of Functional NeuroImages 

software (AFNI, http://afni.nimh.nih.gov/afni/) [107]. The afni_proc.py command was 

used to preprocess the data using the default parameters. The first three volumes were 

omitted from the analysis to allow the fMRI signal to reach a steady state. The despike 

option was adopted to replace outlier time points with interpolation. RETROICOR [108] 

and respiration volume per time (RVT) correction [109] were applied to remove cardiac- 

http://afni.nimh.nih.gov/afni/
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and respiration-induced noise in the BOLD signal. Slice-timing differences were adjusted 

by aligning to the first slice, and motion correction was applied by aligning all functional 

volumes to the first volume. Data were spatially smoothed (6 mm FWHM) and scaled to 

percent change. Advanced Normalization Tools (ANTs) software [110] was used to apply 

linear warping to the Talairach template, and the brain resampled to 2 mm3 voxels 

(http://stnava.github.io/ANTs/). In order to investigate the effects of physiological noise 

correction (i.e., RETROICOR and RVT), we repeated the analysis without including 

these corrections in the preprocessing step.  

The heart rate for each individual run and subject was computed using a custom 

MATLAB script by dividing 60 by the average interval (in seconds) between two R-peaks 

of the ECG. The values were averaged every 4 seconds. 

4.3.2 Postprocessing 

After removing the EEG artifact, the following features were extracted using a 

recent open-source EEG feature extraction software [111] in MATLAB from the EEG 

data (channels F3, F4, Fz, O1, O2, and Oz) from each subject and each run: (1) power 

spectral density  in the alpha band (alpha power); (2) power spectral density in the beta 

band (beta power); and (3) the ratio between alpha power and the power in the combined 

delta and theta bands (alpha ratio; as suggested in literature for the vigilance index during 

an eyes-closed resting state). We selected these six EEG channels because previous 

research has shown an association between these channels’ features and vigilance, and 

also because these channels are less vulnerable to artifacts, especially muscle artifacts, 

than others across the scalp.  

 PSD was estimated via the periodogram method as follows: 
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where 𝑥𝑥𝑛𝑛 is the EEG time course, and ∆𝑡𝑡 is the sampling interval. After calculating the 

PSD in each channel, the power in each frequency band was averaged among the six 

channels of interest. 

The value for each of the three EEG features was averaged every 4 seconds among 

the selected channels. The average pupil size was calculated every 4 seconds as well, after 

the aforementioned preprocessing, to generate a pupil size vector for all further analyses. 

The pupil size vector was used as the vigilance stage index (i.e., larger pupil size indicates 

a higher vigilance level). The distribution of the pupil size vector and selected EEG 

features showed a statistically significant deviation from normality (p < 0.05) using the 

Shapiro-Wilk test. Hence, the nonparametric Spearman’s rank correlation coefficient ρ 

was used to measure the correlations between EEG features and pupil size across time 

within each run and each subject. Furthermore, we used a one-sample t-test on the Fisher 

z-transformed correlation coefficients to investigate the overall positive EEG feature-

pupil size correlation among subjects and to calculate the effect size. In addition, after 

finding the EEG feature mostly associated with pupil size, we investigated the correlation 

between that EEG feature and heart rate for each run. Again, we used a one-sample t-test 

on the Fisher z-transformed correlation coefficients to investigate the overall positive 

correlation between those features among subjects and computed the effect size. We 

carried out the same analysis with the features extracted from all channels (instead of only 

six channels) to confirm the reliability of the EEG feature we selected as the vigilance 

index. Next, pupil size and EEG features were applied to fMRI data analysis as separate 



58 

regressors. Each of these regressors was convolved with a hemodynamic response 

function (HRF) and downsampled to 0.5 Hz (to match the TR of 2 s) if needed. 

4.4  Results 

Correlations between EEG features from channels F3, F4, Fz, O1, O2, and Oz 

(i.e., alpha power, beta power, and the alpha ratio) and pupil size are summarized in 

Figure 4-2. We repeated these analyses by extracting EEG features from all channels, and 

the results are shown in Figure 4-3. The statistical details of correlations between pupil 

size and EEG features, as well as one sample t-test and effect size on the Fisher z-

transformed correlation coefficient results, are shown in Table 4-2.  

Table 4-2. The details of correlations between pupil size and EEG features. 

    Average of 
Correlation 
Coefficient  

STD of 
Correlation 
Coefficient  

One-Pair T-Test on 
r to z transformed 

Cohen's Effect 
Size  

    
df p-value t-

stat 
 

6 
Selected 
Channels 

Alpha 
Power 0.231 0.115 9 0.001 4.739 1.499 
Beta Power 0.306 0.107 9 2.90E-06 10.254 3.241 
Alpha ratio -0.036 0.109 9 0.338 -1.01 -0.319 

All 31 
Channels 

Alpha 
Power 0.233 0.155 9 0.001 4.627 1.463 
Beta Power 0.306 0.091 9 3.80E-06 9.922 3.136 
Alpha ratio -0.043 0.117 9 0.283 -1.143 -0.361 
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Figure 4-2: Association between following EEG features from frontal (i.e., (F3, F4, and 
Fz) and occipital (O1, O2, and Oz)) electrodes: (A) Alpha power; (B) Beta power; (C) 
Alpha ration and the pupil size. 
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Figure 4-3: Association between the following average EEG features among all 

channels: (A) Alpha power; (B) Beta power; (C) Alpha ration, and pupil size.  
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The correlation coefficients in Table 4-2 show an overall positive correlation 

between pupil size vector and both alpha and beta power, which indicates that higher 

alpha/beta powers represent larger pupil size (and vigilance level). We further compared 

the Fisher z-transformed correlation coefficients between alpha power and pupil size and 

between beta power and pupil size from the selected six EEG channels. The results are as 

follow: t(18)= -2.162, p= 0.058. The difference between these correlations shows a trend 

to a significant difference. Also, the results presented in Figure 4-2 show the correlation 

between pupil size and beta power was insignificant for 3 of 21 runs; however, 9 out of 

21 runs were not significant for alpha power association with pupil size. Therefore, we 

used frontal and occipital beta power (FOBP; as the vigilance level index) as a regressor 

for the fMRI analysis. Figure 4-4 depicts the correlation map between BOLD signal with 

correction for physiological noise and FOBP. The analysis was performed for each voxel, 

and the statistical map was thresholded with voxel-wise p < 0.005 and cluster-size 

corrected at p < 0.05. The cluster-size threshold was evaluated with AFNI’s 3dClustSim 

using an improved spatial autocorrelation function (ACF; [112]); a minimum cluster size 

of 146 voxels was required to have a corrected p ≤ 0.05 while using 2-sided third nearest 

neighbor clustering (NN3).  Table 4-3 illustrates that higher values of beta power were 

associated with a greater BOLD signal in the precentral gyrus, postcentral gyrus, and 

insular cortex, as well as in the temporal gyrus and inferior parietal lobule. The results 

related to the correlation map of the BOLD signal without correction for physiological 

noise and FOBP are shown in Figure 4-5 and Table 4-4. 
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Figure 4-4: Power spectral density in the frontal and occipital beta power (FOBP) 
correlation Map. 

 

Table 4-3. Brain regions correlated to power spectral density in frontal and occipital 
beta power (FOBP). 

 

Cluster 
Peak coordinate 

(Talairach)  

  x y z 
t-
score 

Cluster size 
(# voxels) 

Insula (R), Claustrum (R), Superior temporal gyrus 
(R), pretcentral gyrus (R) ,  transverse temporal 
gyrus (R), , postcentral gyrus (R) 

33 -
13 

12 9.416 1052 

Insula (L), superior temporal gyrus (L), Claustrum 
(L), precentral gyrus (L), postcentral gyrus (L), 
inferior parietal lobule (L) 

-
51 

-9 18 9.719 792 

Medial frontal gyrus (R),  paracentral lobule (R), 
paracentral lobule (L) 

3 -
23 

64 8.004 191 

Paracentral gyrus (L), postcentral gyrus (L), 
inferior parietal lobule (L) 

-
23 

-
39 

54 6.924 155 



63 

 

Figure 4-5: Power spectral density in the frontal and occipital beta power (FOBP) 
correlation Map without physiological noise correction. 

  

Table 4-4. Brain regions correlated to power spectral density in the beta band (channels 
F3, F4, Fz, O1, O2, and Oz) without physiological noise correction. 

 

 

Cluster 
Peak coordinate 

(Talairach)  

  x y z t-score 

Cluster 
size (# 
voxels) 

Insula (R), Claustrum (R), Superior temporal gyrus 
(R), pretcentral gyrus (R) ,  transverse temporal 
gyrus (R), postcentral gyrus (R), inferior parietal 
lobule (R) 

57 -11 14 11.799 1582 

Insula (L), superior temporal gyrus (L), Claustrum 
(L), precentral gyrus (L), postcentral gyrus (L), 
inferior parietal lobule (L) 

-49 -13 16 11.149 1172 

Medial frontal gyrus (R),  paracentral lobule (R), 
paracentral lobule (L), Cingulate Gyrus (R),  
Cingulate Gyrus (L), 

3 -7 56 8.221 764 

Paracentral gyrus (L), postcentral gyrus (L) -21 -39 56 7.261 229 

Precentral gyrus (L), postcentral gyrus (L) -39 -17 40 7.888 227 

Postcentral gyrus (R) 23 -35 62 8.990 211 

Culmen (R), Declive (R), Culmen (L) 7 -57 -8 8.984 168 
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Figure 4-6 illustrates correlations between heart rate and FOBP (results of one-

sample t-test on the Fisher z-transformed correlation coefficients: t(9)= 4.625, p=0.001, 

d=1.462). Figure 4-7 illustrates the correlation between heart rate and beta power 

including all EEG channels (t(9)= 4.797, p= 9.8e-04, d= 1.517).  

Finally, Figure 4-8 shows the correlation maps between the BOLD signal with 

correction for physiological noise and pupil size. Table 4-5  shows the details of the brain 

regions associated with that regressor, with larger pupil size, linked to lower fronto-

occipital BOLD signal. The results for the same analysis without correction for 

physiological noise are presented in Figure 4-9 and Table 4-6. 

 



65 

Figure 4-6: Association between frontal and occipital beta power (FOBP) and heart rate. 

Figure 4-7: Association Between EEG Power in Beta Band and heart rate. 
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Figure 4-8: Pupil size 
correlation map achieved by using pupil size as a regressor in fMRI GLM analysis. 
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Table 4-5. Brain regions correlated to pupil size. 

 

Cluster 
Peak coordinate 

(Talairach)  

  x y z t-score 

Cluster 
size (# 
voxels) 

Middle frontal gyrus (R), precentral gyrus 
(R) , postcentral gyrus (R), middle cingulate 
gyrus, paracentral gyrus, medial frontal 
gyrus  

25 -
27 

56 -12.903 3494 

Declive (R), fusiform gyrus (R), inferior 
occipital gyrus (R), middle occipital gyrus 
(R), precuneus (R), lingual gyrus (R)    

35 -
85 

-2 -10.625 684 

Superior temporal gyrus (L), postcentral 
gyrus (L)  

-53 -
35 

10 -13.792 299 

Precentral gyrus (L) -43 -
13 

52 -9.921 262 

Parahippocampal gyrus (L), fusiform gyrus 
(L), inferior occipital gyrus (L), middle 
occipital gyrus (L), Declive (L) 

-33 -
55 

-4 -7.54 205 

Cuneus (L), precuneus (L), lingual gyrus (l) -9 -
79 

34 -7.082 185 
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Figure 4-9: Pupil size correlation map without physiological noise correction, achieved 
by using pupil size as a regressor in fMRI GLM analysis. 
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Table 4-6. Brain regions correlated to pupil size without physiological noise correction. 

 

4.5 Discussion 

This study aimed to determine whether EEG features could be used as objective 

markers of vigilance in healthy human subjects during eyes-open rsfMRI experiments.  

The investigation revealed three main findings: First, frontal (F3, F4, and Fz) and 

occipital (O1, O2, and Oz) beta power (i.e., FOBP) showed the highest correlation with 

pupil size; Second, FOBP correlated with several brain regions that have been implicated 

in modulating vigilance; Third, FOBP was also positively correlated with heart rate.  

 
Cluster Peak coordinate (Talairach)  

  x y z t-score 

Cluster 
size (# 
voxels) 

Middle temporal gyrus (R), Superior 
temporal gyrus (R), paracentral gyrus (R) ,   
paracentral gyrus (L), postcentral gyrus 
(R), middle cingulate gyrus (R) 

65 -31 0 -9.969 3789 

Precentral gyrus (L), postcentral gyrus (L)   -43 -15 50 -9.940 672 

Declive (R), fusiform gyrus (R), inferior 
occipital gyrus (R), middle occipital gyrus 
(R), lingual gyrus (R 

35 -81 2 -10.214 520 

Cuneus (R), precuneus (R), middle 
occipital gyrus (R), 

25 -71 28 -7.868 441 

Superior temporal gyrus (L), transverse 
temporal gyrus (L) 

-57 -35 10 -7.025 290 

Superior temporal gyrus (L), inferior 
frontal gyrus (L), precentral gyrus (L) 

-49 5 2 -5.942 247 

Cuneus (L), precuneus (L) -15 -73 18 -7.082 183 
Parahippocampal gyrus (R), culmen (R) 19 -35 2 -5.867 162 
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Taken together, these findings support the conclusion that FOBP is an objective and 

robust biomarker of vigilance in healthy human subjects. 

As shown in Figure 4-2, there is not a significant correlation between pupil size 

and FOBP in 3 out of 21 runs. An earlier simultaneous EEG- fMRI study [113], suggested 

that the alpha rhythm signal was associated with “inattention” during rest, while beta 

rhythms were posited to index spontaneous cognitive operations during conscious rest. 

For the rest of our analysis, we considered FOBP as the vigilance index during our eyes-

open resting state.  

Although we tested the correlation between the ratio of the PSD in the alpha band, 

the power in the combined delta and theta band (the most common measure of vigilance 

during eyes-closed resting state), and pupil size, show an insignificant association. This 

conclusion could indicate the difference between EEG vigilance measures in eyes-open 

and eyes-closed conditions. [96] found a significant correlation between the mean alpha 

level across all channels and skin conductance levels as an index for vigilance across the 

eyes-closed condition. However, no correlations between skin conductance levels and 

alpha power were reported in the study during their eyes-open condition, so it is possible 

that the alpha ratio-arousal association only holds for eyes-closed data. A very recent 

simultaneous EEG-fMRI study [79] used the ratio of power in the alpha band over the 

power in the delta and theta bands as the vigilance index for both eyes-open and eyes-

closed conditions. Their results suggested a significant difference between the vigilance 

index BOLD correlation map in the thalamus and DMN among eyes-open and eyes-

closed conditions [79].  
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After capturing EEG feature with the highest correlation with pupil size, this 

feature (e.g., EEG power in beta band) served as a regressor for fMRI analysis, as 

illustrated in Figure 4-3. The correlation map for FOBP shows positive correlations with 

several brain regions, including the bilateral insula, inferior parietal lobule, and 

supplementary motor area. Interestingly, these brain regions have been reported in all 

previous studies investigating the correlation maps of EEG vigilance indices during eyes-

closed rsfMRI [5, 79, 89]. Further, these brain regions are all parts of the anti-correlated 

network (ACN)  [114, 115], which has shown anti-correlated activation with the DMN 

both during the rsfMRI and task-based analysis. 

A previous study [78] showed that using respiration volume per time (RVT) and 

retrospective correction of physiological motion effects (RETROICOR) for physiological 

correction has fewer effects on the EEG (alpha power) correlation map during eyes-open 

compared to eyes-closed rsfMRI. To investigate the effects of physiological noise 

correction, we showed the FOBP and pupil correlation maps without including 

physiological noise correction. The results presented in Table 4-3 and Table 4-4 show 

that the same brain regions were found correlated with FOBP regardless of physiological 

noise correction. It is worth noting, however, that without using physiological noise 

correction, the BOLD signal in cerebellum (e.g., declive and culmen) is correlated with 

FOBP. This is in line with the results presented in [78], which found RETRICOR and 

RVT correction has a minimum effect on an EEG correlation map with a BOLD signal 

during eyes-open rsfMRI. BOLD activity (after physiological noise correction) from 

several brain regions that correlated with pupil size repeats when no noise correction is 
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used. This indicates the low effects of physiological noise correction for eyes-open 

rsfMRI.  

Furthermore, to validate our findings with fMRI, we examined the correlation 

between the selected EEG vigilance features and heart rate. As previous studies (for 

example [5]) have shown higher vigilance was associated with a higher heart rate. Figure 

4 represents such a positive correlation. In an earlier study, we found a positive correlation 

between pupil size and beta power, and that feature had a positive correlation with heart 

rate. Therefore, heart rates increase with a higher vigilance level.  

Additionally, to compute the EEG features from the aforementioned six channels, 

we repeated the analysis with the extraction of EEG features from all 31 channels. As 

Figure 4-3 and Figure 4-7 show, the association between pupil size and both alpha and 

beta powers, as well as the correlation between beta power and heart rate, are still 

significantly higher than zero when using all 31 EEG channels. However, the results from 

six and all 31 channels are slightly varied for EEG features related to the beta band as 

compared to the alpha band (e.g., five runs out of  21 total do not show significant 

correlation between pupil size and beta power using 31 channels;  compared to three runs 

for six channels), and that could be due to residual muscle and imaging artifacts in the 

beta band, especially at the edge electrodes (e.g., TP9 and TP10). We specifically selected 

those six channels because they have been used in previous studies for investigating the 

vigilance level [5, 88] and because they are less vulnerable to noise and artifacts.  

Finally, pupil size served as a regressor for fMRI. In contrast with previous studies 

that found a positive correlation between pupil size and DMN [101] and the thalamus, 

caudate nucleus and cerebellum [86], our results revealed widespread negative 
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correlations between pupil size and the BOLD signal within visual and sensorimotor 

cortices as well as within the middle cingulate gyrus, precuneus, and cuneus. It should be 

noted that in Schneider et al. (2016) study benefitted from a larger sample size than the 

one used in this study. This could be a contributing factor that our results didn’t identify 

similar correlated brain regions.  

Our discovered brain regions have appeared in previous studies [5, 89]. 

Physiological noise correction was not conducted in [86], and when we did not use such 

correction in our analysis, we found exactly the same brain regions anti-correlated with 

pupil size as in [89]. 

4.6  Conclusion 

Simultaneous EEG-fMRI-eye-tracker experiments have been suggested in an 

effort to determine, verify, and measure participant arousal/vigilance level during 

rsfMRI, especially with the use of eye tracker system as most widely accepted technique 

to assess subject’s vigilance level. However, such an experimental setup requires specific, 

and often costly, hardware, and software. More specifically, the eye-tracker system makes 

the experimental setup difficult and less widely utilized. Furthermore, the analysis of data 

within each of these modalities requires a skilled workforce. In this study, we designed 

and conducted the first multimodal EEG-rsfMRI-eye-tracker experiment in human 

participants (to the best of our knowledge). Our results revealed an association between 

frontal and occipital beta power and degree of vigilance during an eyes-open resting state. 

This association could be more easily determined during simultaneous EEG-fMRI and 

even provide a real-time test of subject vigilance in resting-state fMRI. We validated the 
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results using simultaneously-recorded heart rate and fMRI. Notably, independently-

verified heart rate changes can also provide an easy-to-determine measure of vigilance 

during rsfMRI.  
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 Conclusion and Future Work 

5.1 Conclusion  

New tools to improve data quality are necessary to accommodate the increase in 

simultaneous EEG-fMRI studies for investigating human brain functionality. The work 

presented in this dissertation focused on two critical aspects of simultaneous EEG-fMRI 

studies.  

The first was the presentation of MRI-environment artifacts in EEG data acquired 

during fMRI acquisition. When compared with data recorded outside the MRI, the EEG 

data are contaminated with additional extraneous artifacts. Reducing these artifacts is 

time-consuming and requires specific skills and expertise. This issue becomes more 

problematic for large studies (e.g., Tulsa-1000 study). Reducing such contamination from 

EEG data requires a fully automated artifact correction approach, as proposed herein. The 

algorithm combines the template correction approaches (i.e., OBS, AAS), along with 

ICA, to remove both MRI-environment artifacts and physiological artifacts (e.g., ocular 

and muscle artifacts). The automated pipeline for EEG artifact reduction recorded during 

fMRI (APPEAR) was validated using resting-state and task-based EEG-fMRI data, and 

then compared with manually-corrected EEG data. Results confirm slight to no difference 

between automated- and manually-corrected EEG data. Hence, APPEAR is proposed as 



76 

a standard pipeline for reducing EEG artifacts recorded simultaneously with fMRI, 

especially for large simultaneously EEG-fMRI studies. An automated method will 

improve data preparation efficiency and remove bias from human/operator factors. 

An additional technique was introduced to better control resting-state EEG-fMRI 

study experimentations.  The technique utilizes an eye tracker to monitor eye state (e.g., 

open/closed) and pupil size when eyes are open. During eyes-open rsfMRI, subjects are 

assumed awake and vigilant, although this assumption must be confirmed during scans. 

Lack of such information may cause variability in the BOLD signal for different brain 

regions and functional connectivity. The proposed use of an eye tracker indicates 

subject’s vigilance by measuring the subject’s pupil size. Although simultaneous EEG-

fMRI techniques are widely used for studying the human brain, simultaneous eye tracker-

fMRI techniques are not. This study examined an EEG feature with pupil dimension (i.e., 

FOBP) and found that the association among feature, heart-rate, and BOLD fMRI data is 

a good measure of subject vigilance during rsfMRI. This information alone can be used 

for future EEG-fMRI studies, removing the need to use an eye tracker device. 

5.2 Future Works 

Several aspects of the proposed methods could be considered for ensuring 

improvement, including the following advancements.  

1- QRS cycle detection for generating an accurate BCG artifact could be 

enhanced, as it has important effects on the proposed pipeline. Furthermore, 

the computation speed of the algorithm must be improved when intended to 

use in real-time applications.  
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2- Although an eye-tracker was used as an indirect measure of vigilance during 

eyes-open resting state, there is no guarantee that participants will keep their 

eyes open during the entire scan time. Therefore, it will be necessary to test if 

FOBP could serve as an appropriate EEG vigilance measure during eyes-

closed resting state. It is important to note that an eye-tracker device is not a 

helpful tool for eyes-closed scans. Instead, skin conductivity and heart-rate 

parameters are suggested as possible indicators. 
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Appendix A. Abbreviations 

Term  Description 

AAS Average Artifact Subtraction 

ACF  Autocorrelation Function 

BCG  Ballistocardiogram 

BOLD Blood-oxygen-level-dependent 

DMN Default Mode Network 

EEG  Electroencephalography 

ERP Event Related Potential  

APPEAR Automated Pipeline for EEG Artifact Reduction Recorded during 

fMRI 

fMRI  functional Magnetic Resonance Imaging 

fNIRS Functional Near-Infrared Spectroscopy 

FOBP Frontal and Occipital Beta Power  

GLM  General Linear Model 

HC Healthy Control subjects 

ICA  Independent Component Analysis 

MEG Magnetoencephalography  

MR Magnetic Resonance   

MRI Magnetic Resonance Imaging 

OBS Optimal Basis Sets 

PET Positron Emission Tomography  
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rsfMRI Resting state functional Magnetic Resonance Imaging 

SNR Signal to Noise Ratio 

TR  Repetition Time 
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