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Abstract 

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of 

pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The 

current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone 

marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft 

tissue regeneration. Methods were established to derive the macrophages from MacGreen 

mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with 

ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 

2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through 

histology and immunohistochemistry. Substantial variability was observed, but higher blood 

vessel densities and greater CD31+ cell recruitment was observed in the implants that were 

greatly infiltrated with cells. A diverse, infiltrating macrophage population was identified in 

all implants, with quantitatively higher iNOS expression in the scaffolds that showed greater 

levels of cell infiltration. 
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Summary for Lay Audience 

Adipose or fat tissue has a limited ability to repair and regenerate itself following trauma, 

burns, surgical removal of tumors, or birth defects. The process of fat regeneration is 

dependent on 1) coordinating multiple types of cells in the body to migrate, 2) forming new 

blood vessels, 3) and cells achieving a more pro-regenerative state to support new fat cell 

formation. There is an increasing interest in delivering therapeutic cells, such as adipose-

derived stromal cells (ASCs) and immune cells called macrophages, which have been shown 

to stimulate the biological process of fat tissue regeneration. Also, 3-D porous decellularized 

adipose tissue (DAT) implants have been previously developed as a promising platform to 

deliver therapeutic cells into areas of the body with large defects. The present thesis focused 

on using DAT implants to deliver both ASCs and macrophages into mice. Initially, the DAT 

implants were found to support macrophage and ASC attachment. After DAT implants were 

delivered into mice either alone or with macrophages, ASCs, or macrophages + ASCs, 

different levels of cell migration, as well as blood vessel and fat formation were observed 

within the implants in all groups after 2 and 4 weeks. In general, the implants that had greater 

levels of cells migrating into them also had more blood vessels being formed. Also, different 

types of macrophages were observed within the DAT implants in all groups at both time 

points, all of which may be playing an active role in regeneration. Overall, this study 

showcases the intricate and complex relationships between regeneration, cell recruitment, 

blood vessel formation, and inflammation. 
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Chapter 1  

1 Literature review 

1.1 Introduction 

Adipose tissue (fat) is a loose, soft connective tissue with discrete depots distributed throughout 

the body. Excess adipose tissue is often viewed negatively because its overaccumulation is 

associated with metabolic diseases such as obesity and diabetes1. However, fat is a crucial part of 

the integumentary system and it plays a myriad of important physiological roles in the body 

including the maintenance of metabolic homeostasis, and the contribution to the normal human 

appearance1,2. Disruption of the soft tissue structure through trauma, congenital abnormalities, 

burns, oncologic resection, or other means can lead to scar formation, contracture, and possible 

loss of function3,4,5. Moreover, soft tissue deficits may cause patients to develop emotional 

distress and body image issues. Progress in the fields of plastic and reconstructive surgery have 

enabled the correction of soft tissue irregularities that can improve patients’ emotional and 

mental well-being6,7. However, these procedures often involve autologous tissue grafts, which 

can have variable and/or limited long-term success in restoring the missing volume, or synthetic 

or natural volume fillers, which lack the ability to restore the functionality of the missing 

tissue8,9. The limited capability for adipose tissue to repair and regenerate highlights the growing 

need for novel regenerative medicine-based therapeutic interventions in order to replace lost or 

damaged tissue and promote healthy fat formation.  

1.2 Adipose tissue physiology 

In mammals, there are two main forms of adipose tissue: brown adipose tissue (BAT) and white 

adipose tissue (WAT). BAT is predominantly found in newborns, located in the interscapular, 

axillary, and perirenal regions of the body10, and is responsible for non-shivering heat generation, 

- or thermogenesis during cold exposure10,11. BAT is mainly composed of adipocytes, which are 

terminally differentiated cells that store energy in the form of triglycerides. Notably, the 

adipocytes within BAT are 10-25 µm in diameter and are multilocular, or contain multiple, small 

lipid droplets, as well as numerous mitochondria12. Additionally, the adipocytes within BAT are 

organized into bundles by an extracellular matrix (ECM), and are supported by a large network 
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of blood vessels, as well as innervation from the sympathetic nervous system12. The adipocytes 

in BAT are able to produce heat by oxidizing triglycerides within their mitochondria. This 

process is carried out with the aid of uncoupling protein 1 (UCP1)10,12, a mitochondrial protein 

expressed specifically in the adipocytes within BAT, and is unique in that it produces heat 

without any adenosine triphosphate (ATP) production. The heat then gets circulated to other 

parts of the body through the extensive vascular network13.  

As a person matures, the BAT content in the body gradually decreases, while the WAT content 

increases2. In humans, WAT is found subcutaneously throughout the majority of the body, as 

well as viscerally in the omental, mesenteric, and retroperitoneal areas14. WAT performs 

numerous physiological roles including triglyceride storage, thermal insulation, and the 

protection of other internal tissues. WAT is primarily composed of mature adipocytes that are 

20-150 µm in diameter and are unilocular, or contain a single, large lipid droplet15. The 

adipocytes within WAT are similarly distributed into discrete bundles by the surrounding ECM, 

but they contain fewer mitochondria than the adipocytes within BAT2,12. WAT is supported by 

sympathetic innervation2,16 and every adipocyte is in contact with at least one capillary17, 

although as a whole it is less vascularized as compared to BAT12. WAT also functions as an 

important endocrine organ by synthesizing numerous cytokines, termed adipokines, which are 

involved in metabolic homeostasis, food intake, vascular function, and control of blood pressure, 

and inflammation13,18. For example, WAT can secrete adiponectin, which controls glucose and 

fatty acid breakdown in muscle, as well as leptin, which regulates energy expenditure and 

appetite13. Additional molecules that are produced by WAT include the pro-inflammatory 

cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)13,18,19, and the pro-angiogenic 

protein vascular endothelial growth factor (VEGF)18. 

1.3 Adipose tissue cellular composition 

Although historically thought of as an inactive, simple tissue, in actuality adipose tissue 

incorporates many different cell populations. Adipocytes are the main cell type found in both 

forms of adipose tissue, making up 20-40% of the cellular content and >90% of its volume20. 

Adipocytes have the ability to increase or decrease in size, depending on the body’s energy 

intake and expenditure20–22. New adipocytes are derived from differentiating progenitor cells, 



3 

 

termed adipose-derived stromal cells (ASCs), as well as more committed pre-adipocytes (further 

discussed in Section 1.3.1).  

When adipose tissue is extracted, processed through mechanical and enzymatic techniques, and 

centrifuged, the non-adipocytes form a pellet called the stromal vascular fraction (SVF)23,24. The 

cells in the SVF are a heterogeneous population that includes ASCs, erythrocytes, endothelial 

cells, pericytes, smooth muscle cells, fibroblasts, and immune cells. Macrophages are the most 

abundant immune cells found in fat, but other immune cells include monocytes, lymphocytes, 

neutrophils, and natural killer cells24–27. ASCs can be isolated from the SVF based on their 

adherence to tissue culture plastic using culture medium that supports their growth24. 

Studies have shown that the cellular composition of adipose tissue can vary, depending on 

factors such as depot location and disease state27–30. For example, one study found that 

subcutaneous fat had greater levels of pre-adipocytes than visceral fat28. Increases in the levels of 

myeloid cell populations, such as macrophages, have been associated with altered metabolic 

function and decreased insulin sensitivity, which may contribute to pathological states such as 

obesity and diabetes27,29,31. 

1.3.1 Adipose-derived stromal cells 

ASCs are a mesenchymal cell population that can be isolated from the stromal vascular fraction 

derived from adipose tissue. ASCs have been implicated in adipose tissue repair and homeostasis 

as they have a great capacity for differentiating along the adipogenic lineage32–36 and have the 

demonstrated capability to generate neo-adipocytes in vivo37–39. As a mesenchymal progenitor 

cell population, they also exhibit the capacity for multipotent differentiation, most notably 

towards the osteogenic40–43 and chondrogenic lineages44–46.  

Clonogenic cell assays have estimated ASC frequency within primary isolates to be between 

1:30–1:1000 out of total nucleated cells as compared to bone marrow-derived mesenchymal 

stromal cell populations (bmMSCs), which range between 1:50,000 and 1:1 million.47,48. ASCs 

are thought to be localized in close proximity to the in vivo adipose microvasculature, 

specifically in the perivascular niche, where they closely interact with endothelial cells and 

pericytes49–52. However, their exact distribution in vivo remains unclear due to a lack of unique 
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ASC markers53. Instead, studies have relied on characterizing the immunophenotype of ASCs in 

culture in conjunction with quantitative analysis of multipotency.  

In an effort to standardize ASC characterization criteria, the International Federation for Adipose 

Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) 

have put together guidelines to evaluate the ASC phenotype54. In general, in order to confirm 

that isolated cells from the SVF are an ASC population, they need to 1) adhere to plastic, 2) 

express an immunophenotypic profile using multi-color flow cytometry as described in Table 

1.1, and 3) exhibit multipotent differentiation potential towards the adipogenic, osteogenic, and 

chondrogenic lineages. Moreover, the immunophenotype of these cells should contain at least 

two primary positive (>90 %) and two primary negative markers (<2 %). Additional markers 

should be included in order to strengthen the characterization. 
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Table 1.1.1. The immunophenotypic profile of human ASCs48,54,55. 

Marker type Antigen 

Primary positive 

(>90%) 

CD90 (Thy-1) 

CD105 (endoglin) 

CD73 (ecto-5'-nucleotidase) 

CD44 (hyaluronic acid receptor) 

CD29 (β1-integrin) 

CD13 (aminopeptidase-N) 

CD34 (progenitor associated marker) * 

CD146 (melanoma cell adhesion molecule, MCAM or 

MUC18)* 

Secondary positive 

CD10 (neprilysin or neutral endopeptidase) 

CD26 (dipeptidyl peptidase-4, or DPPIV) 

CD49d (α4-integrin, or VLA4)* 

CD49e (α5-integrin, or VLA5) 

CD36 (fatty acid translocase, or GPIIIb) 

Primary negative 

(<2%) 

CD31 (platelet endothelial cell adhesion molecule, PECAM) 

CD45 (leukocyte-common antigen, LCA) 

CD235a (glycophorin A) 

Secondary negative 

CD3 (T-cell co-receptor) 

CD11b (αM-integrin or Mac-1) 

CD49f (α6-integrin or VLA6) 

CD106 (vascular cell adhesion protein-1, VCAM-1) 

PODXL (podocalyxin-like protein or PODXL) 

*Variable levels of expression 

ASCs can express similar surface markers to bmMSCs as both cell types express CD13, CD73, 

CD90, and CD10554. However, ASCs can be distinguished through their positive expression of 

CD34 and their negative expression of CD10653,54. It is important to note that isolated ASCs are 

a heterogenous population, though not as heterogenous as the cells belonging to the SVF56. The 

isolated ASC population is comprised of cells with different levels of commitment including 

cells with uni-, bi-, or tri-potential57. This inherent variability points to the importance of 

transparency in reporting the methods used for ASC isolation and culture. It has been reported 

that the isolation techniques, passage number, culture conditions, and the donor/fat depot used 

can influence ASC yield, proliferation, and differentiation potential56,58–60. 
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ASCs isolated from mice have been found to share similarities with their human counterparts in 

terms of their surface marker profile61,62 and tri-lineage potential61–66. In keeping with the 

common positive markers used to identify human ASCs, murine ASCs exhibit high expression of 

CD2961–65 and CD9061,62,66,67. In comparison to human ASCs however, they show relatively low 

expression of CD10558,62,65, low expression of CD73 and CD3461–63,67, and variable expression of 

CD4461–64. Stem cell antigen-1 (SCA-1), also known as Ly6A, a shared marker found in murine 

hematopoietic stem cells and bmMSCs, was reported to be highly expressed on murine ASCs62–

65. Similar to human ASCs, the immunophenotype of isolated murine ASCs can vary due to 

differences in isolation and cell culture, passage number and strains of mice used62,63.   

1.4 Components of the adipose tissue extracellular matrix 

The adipose ECM is a complex, fibrous network of cell-secreted proteins and polysaccharides 

that serves to biochemically and biophysically support the cells residing in the tissue. The ECM 

regulates a broad range of cellular processes including cell attachment, survival, proliferation, 

and differentiation68. The macromolecules that make up the ECM can be broadly categorized 

into fibrous proteins (e.g. collagen), glycosaminoglycans (GAGs), proteoglycans, and 

glycoproteins69. The microarchitecture, mechanical properties, and bioactivity of the ECM is 

determined by the relative abundance and spatial arrangement of these macromolecules.  

Collagens are the predominant structural components found in the adipose ECM, with collagen 

type I being the most abundant and contributing the most to the structural integrity of adipose 

tissue15,70. Collagen type I also contributes to the tensile strength of soft tissues, imparting the 

ability to resist mechanical loading71,72. Collagen types IV, V, and VI15,71,73–76 have also been 

identified in adipose tissue, while other types such as collagen types II, IX, and XVIII are 

notably lower in abundance71. Elastin is another fibrous protein found in adipose tissue that 

serves to provide the tissue with elasticity, or the ability to recoil after expanding and contracting 

77,72. Additional components such as GAGs and proteoglycans also contribute to the adipose 

ECM structure and mechanical integrity. GAGs are linear chains of repeating disaccharide units, 

while proteoglycans consist of a core protein covalently linked to one or more sulphated 

GAGs69. GAGs are highly anionic structures, which attract and bind water molecules and have 

the added benefit of sequestering positively-charged growth factors69. In addition to collagen, 

other glycoproteins such as laminin15,78 and fibronectin15,79 further contribute to the bioactivity of 
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the ECM by providing binding sites for cellular attachment, which regulate a range of 

downstream functions including cell survival, proliferation, and differentiation78,80. 

Through immunohistochemical staining, it was discovered that the adipose ECM components are 

distributed into a loose, supportive network surrounding the adipocytes2,79. Immediately 

encircling the adipocytes, endothelial cells, and nerves in adipose tissue, the ECM is comprised 

of a mesh-like structure called the basement membrane. The basement membrane is a thin layer 

of ECM that is enriched in laminin and collagen type IV75,78, which provides structural support, 

binding sites for cell attachment, and has been implicated in adipogenesis78,81. Collagen type IV 

is a heterotrimeric glycoprotein that has six associated α-chain subunits (α1(IV) to α6(IV))75,80, 

while laminin is a heterotrimeric glycoprotein made up of an α, β, and γ subunit78. Both self-

assemble into independent sheet-like networks that link together with the aid of the glycoprotein, 

nidogen, and the heparan sulfate proteoglycan, perlecan75,78. Other proteins connected to the 

basement membrane, including the microfibrillar protein collagen type VI, further aid in 

promoting cell-ECM interactions by anchoring adipocytes to the basement membrane14.  

Interfacing with the basement membrane is a network of collagen fibers, composed mainly of 

collagen type I, which maintain the tissue’s integrity15,70. Collagen type I fibers are 

heterotrimeric triple helices, formed by two α1(I) subunits and one α1(I) subunit, which 

aggregate together to form thicker bundles82. Collagen type V, a heterotrimeric microfibrillar 

protein consisting of two α1(V) subunits and one α2(V) subunit, can crosslink with collagen type 

I and modify its fibrillation pattern and tensile strength83. The abundance of these ECM 

components can differ based on the depot70,71 as well as within diseased adipose tissue74,79,84. 

Pre-adipocytes, ASCs, adipocytes, and fibroblasts synthesize the ECM15,74, while other cells such 

as macrophages and endothelial cells regulate ECM synthesis and remodeling1,85.  While the 

ECM plays an instructive role for cell behavior, cell-ECM interactions are bidirectional; cells 

themselves can regulate ECM synthesis and remodeling. Cell attachment to the ECM occurs 

through surface receptors, called integrins86. Integrins are mechanosensitive, and when activated, 

trigger a cascade of intracellular signaling through the microtubule and actin filaments of the cell 

cytoskeleton69. Cells can then respond to their microenvironment by secreting factors that can 

alter their surroundings. For example, cells can secrete matrix metalloproteinases (MMPs) and 
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disintegrin and metalloprotease (ADAMs) family members, which can enzymatically degrade 

structural components of the ECM to allow for cellular migration, as well as ECM-bound growth 

factors and matricellular proteins which can regulate angiogenesis, adipogenesis and adipose 

tissue homeostasis 74,87,88. The activity of these enzymes is in turn regulated by the secretion of 

tissue inhibitors of metalloproteinases (TIMPs) and other inhibitors89,90. Thus, the balance 

between these molecules can shift depending on the tissue state in terms of the need for 

remodeling and/or expansion. 

1.5 Clinical options to restore soft tissue defects 

Soft connective tissue, like adipose tissue, has a limited capacity for repair and regeneration 

following physical trauma, oncologic resections, congenital defects, and burns91. There have 

been several medical advances and surgical techniques utilized in the plastic and reconstructive 

surgical fields that either mimic or rebuild the afflicted areas3,92,93. These developments can be 

categorized based on the defect volume.  

Cosmetic procedures can be performed to correct small volume defects through the injection of 

1) autologous fat grafts or 2) dermal fillers made of synthetic or naturally-derived materials94. 

Autologous fat grafting through lipofilling is a surgical procedure whereby fat from another 

depot in the patient’s body is removed through liposuction and grafted into the recipient site. By 

transferring a patient’s own fat, this technique fills the defect and promotes a soft and natural 

aesthetic with a low risk of pathogen transmission and immunological rejection92. While fat 

grafting may result in some permanent volume restoration, the persistence of the fat graft is often 

unpredictable, with volume retention varying between 30-90%92. This variability can be due to 

the lack of a suitable supply of blood vessels to support the grafted tissue, leading to cell 

necrosis93, graft resorption, and complications including fibrosis, calcifications, or oil cysts95. 

The outcomes of this technique are also heavily reliant on the surgeon’s skill, frequently 

requiring repeated supplementary injections to maintain the correction96. 

As a non-surgical alternative to fill small volume deficits, dermal fillers are a popular, more 

expedient option that do not require a recovery period. Synthetic materials can be used to fill 

defect sites, such as calcium hydroxylapatite, polymethylmethacrylate (PMMA) beads, or poly-l-

lactic acid (PLLA)94. However, the use of natural materials, such as human or bovine sourced 
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collagen, and more commonly, hyaluronic acid, are preferred as they have mechanical properties 

that are more similar to the native tissues and are associated with fewer complications, such as 

fibrosis94. Fillers can be manufactured to come in an array of options that differ based on their 

crosslinking density and/or particle size97. The range of clinical options allows for the matching 

of material properties of the filler with that of the injection site in order to promote a more 

natural feel and contour98. In comparison to fat grafting, fillers produce a more predictable and 

consistent natural contour when filling small volume voids99–101. A major drawback, however, is 

that most dermal fillers are not permanent and are resorbed by the body after 3-6 months94. As 

such, repeated injections are necessary to maintain the volume. Further, the use of these fillers 

would not be practical for larger deficits (such as during breast reconstruction) as they are 

expensive.  

In the case of larger soft tissue voids, such as in post-mastectomy breast reconstruction surgeries, 

patients can receive synthetic implants filled with silicone or saline. Additional tissue support in 

the form of the patient’s own tissue or an acellular cadaveric or porcine dermal matrix may be 

needed for proper coverage of the implant or positioning against the muscle102. These implants 

provide aesthetic support, but do not hold any functional use and are meant to be temporary 

devices. Further, these devices carry a risk of fibrous encapsulation that can cause further 

problems such as pain, asymmetry in the surrounding tissue, implant migration, and implant 

rupture, resulting in a revisional surgery103. An alternative option for large volume reconstruction 

is to surgically transfer autologous, vascularized flaps of skin, fat, and muscle from either the 

abdomen or back to the recipient site8,104. Reconstruction using the patient’s own tissues can 

provide a more natural looking contour and allow for the permanent restoration of soft tissue 

defects in comparison to reconstruction using implants. However, these procedures are often 

long, costly, risk additional complications, require long recovery periods, and can cause donor 

site morbidity3,102,105.  

In summary, the current strategies for soft tissue repair or augmentation, especially for large 

volumes, focus on using materials to temporarily fill defects, but they ultimately fail to 

regenerate the missing adipose tissue. Alternatively, invasive surgical procedures can be utilized 

to graft autologous fat tissues, but outcomes depend on patients having sufficient tissue and there 

is a notable risk of complications and donor site morbidity. The dearth of suitable clinical 
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substitutes to predictably and permanently fill soft tissue defects has highlighted the need for 

novel tissue-engineering strategies that can promote stable, long-term in situ adipose tissue 

regeneration. 

1.6 Adipose tissue engineering strategies 

In order to address the issues associated with the currently available soft tissue substitutes, the 

field of tissue engineering may offer novel, promising strategies. Creating implants that can 

permanently regenerate fat tissue while maintaining volume over time could reduce the number 

of revisional surgical procedures needed for soft tissue reconstruction. These approaches could 

enable a more predictable outcome, improve the well-being of patients, and be more cost-

effective overall.   

While keeping this goal in mind, it is important to note that the growth and expansion of adipose 

tissue is coupled with angiogenesis, a process where new blood vessels develop from pre-

existing ones within the surrounding tissues106. When examining the growth of epididymal fat 

pads in maturing mice, a dense vascular network at the tip of the fat pad was observed to rapidly 

expand, with new adipocytes developing from within the network in a spatiotemporal 

manner2,107. In the case of existing adipose tissue, expansion occurs through increases in 

adipocyte size, as well as in the number of adipocytes59. However, it has been shown that the 

delivery of anti-angiogenic agents in a dose-dependent manner can decrease endothelial cell 

proliferation, increase apoptosis, and induce a reversible weight reduction in obese mice2,85. 

These examples relate back to the fact that adipocytes within native adipose tissue are found in 

close contact with the surrounding vasculature2. The absence of a functional vascular network 

can impede the survival of adipocytes, which is seen in autologous fat grafts that resorb over 

time92. Eto et al. reported that only peripheral adipocytes located within 300 µm of the graft 

periphery survived within autologous lipoaspirates implanted in immunocompetent C57BL/6J 

mice, and that adipocytes located deeper within the graft died soon after implantation108. Taken 

together, employing strategies that can stimulate or facilitate the production of a stable 

vasculature is a necessary design consideration for adipose tissue regeneration.  

A common strategy in the tissue-engineering field is to fabricate implants in the form of 3-D 

porous foams, sponges, microspheres, fibers, or hydrogels3,4. These biomaterial-based strategies 
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often incorporate the delivery of therapeutic drugs and/or growth factors in order to induce 

angiogenesis and/or adipogenesis in vivo3,4. Common pro-angiogenic and pro-adipogenic growth 

factors that have been investigated include hepatocyte growth factor (HGF), basic fibroblast 

growth factor (bFGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth 

factor-A (VEGF-A)4,109. In general, growth factors are limited by their stability and short 

circulating half-life110. Moreover, the scale-up of these therapeutic molecules is associated with 

poor recombinant yields, issues with protein purification, and high production costs110. The 

implementation of growth factors in a clinical setting may also be hindered by the fact that the 

effects of the growth factor end once the payload is completely delivered, possibly necessitating 

the injection of multiple boluses until the desired volume is achieved. 

As a result, biomaterial-based delivery of therapeutic cell populations is an alternative strategy 

that has gained attention. In particular, the delivery of stromal cell populations has been found to 

be a promising approach to coordinate adipose regeneration by either directly differentiating into 

neo-adipocytes, or by indirectly producing pro-regenerative factors at the site of 

implantation25,109. The cell sources used for adipose tissue engineering will be further discussed 

in Section 1.7. 

To facilitate the successful delivery of these cell populations in vivo, the rational design of a 3-D 

porous biomaterial scaffold must: 

(1) Provide a structural and mechanical framework for new adipose tissue growth, ECM 

deposition, and blood vessel formation3. 

(2) Permit the diffusion of gases, nutrients, and waste exchange3. 

(3) Facilitate cell-biomaterial and cell-cell interactions by supporting cell adhesion, 

proliferation, survival, migration, and differentiation3. 

(4) Allow for biodegradation at a rate that matches the rate of neo-adipose formation3. 

(5) Not elicit a chronic inflammatory response or cytotoxicity in vivo3. 

1.7 Cell sources for soft tissue regeneration 

To date, several options have been used for the sourcing of therapeutic cell populations for soft 

tissue regeneration. In order for the cell population of interest to be a viable option for clinical 
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use, the cells must be readily accessible, abundant, and they should have the capacity to 

contribute to soft tissue repair and regeneration when grafted3,109. Autologous adipocytes are an 

abundant source of cells, however, they are terminally-differentiated and have been shown to 

possess a limited capability to proliferate111. Adipocytes have also been shown to be sensitive to 

ischemic conditions and require a stable blood vessel network in order to survive, limiting their 

application in soft tissue regeneration38,108. Pluripotent stem cells such as induced pluripotent 

stem cells (iPSCs) are another potential autologous source of cells, as they can be derived by 

reprogramming a patient’s own somatic cells112. These cells are promising because they can be 

expanded and remain undifferentiated in culture, and they possess the ability to differentiate into 

cells belonging to all three embryonic germ layers112. However, these cells carry a risk of 

stimulating teratoma formation in vivo, and the methods of reprogramming the cells to gain 

pluripotency are limited by safety, efficiency, and cost concerns112.  

Tissue-specific stromal cell populations harvested from adipose tissue represent an attractive 

alternative, as they are more abundant and accessible as compared to bmMSCs, which are 

harvested from bone marrow using more invasive procedures that pose greater risks for donor-

site morbidity113. When compared to bmMSCs, ASCs have been reported to have a greater 

therapeutic capacity for immunomodulation114,115 and a similar capacity for stimulating 

angiogenesis113. A donor-matched comparison of the tri-lineage differentiation potential of these 

cells found that ASCs showed greater adipogenic capacity, while bmMSCs were more pre-

disposed towards the osteogenic and chondrogenic lineages116.  

An increasing number of studies have either used the freshly isolated, unprocessed, heterogenous 

SVF cell population, or the expanded subpopulation of ASCs found within the SVF for adipose 

tissue-engineering applications. ASCs are a more homogenous population of cells as compared 

to SVF isolates, however both cell populations exhibit pro-adipogenic, pro-angiogenic, and 

immunomodulatory properties4,24,117,118. 

Unfortunately, few studies have compared the therapeutic ability of ASC populations versus 

SVF cells in the context of soft tissue regeneration. Though other studies have compared their 

use in bone119, renal120, myocardial121, and nerve122 tissue engineering and have demonstrated 

that SVF cells have a comparable therapeutic capacity when compared to ASCs119–122. However, 
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the heterogeneity of the cell populations in SVF is not conducive for long-term culture and 

expansion, limiting their clinical use to one-time, same-day intraoperative procedures119. ASCs 

by comparison can be expanded in culture to obtain large yields and be banked for future use123. 

Moreover, ASCs may exhibit immunoprivilege properties, as they have been reported to lack the 

expression of human leukocyte antigen – DR isotype (HLA-DR) and have demonstrated the 

ability to inhibit activated lymphocyte proliferation124. This may broaden ASC sourcing to 

include both autologous and allogeneic sources. Therefore, ASCs are an attractive and robust 

option for use in soft tissue-engineering strategies. 

1.7.1 ASC-based strategies for soft tissue regeneration 

There has been a substantial amount of evidence supporting the use of ASCs in soft tissue 

regeneration applications. ASCs are commonly delivered through injections or through seeding 

onto biomaterial implants or fat grafts and then subcutaneously implanted in various pre-clinical 

models. Common animal models employed include small rodent models such as 

immunocompetent or immunodeficient mice and rats4. After grafting, tracking studies have 

employed immunohistochemical techniques, potentially in combination with imaging modalities, 

to identify labeled ASCs in the surrounding tissues and evaluate their retention over time125–127. 

Additional histological and/or immunohistochemical analyses have been performed to assess 

implant or fat graft volume retention, neo-adipocyte and blood vessels formation, as well as the 

phenotype of infiltrating cell populations, with unseeded constructs serving as controls 128–131.  

In general, ASCs have the ability to promote the survival and retention of fat grafts in vivo, as 

well as the potential to stimulate blood vessel formation and neo-adipocyte formation in 

biomaterial implants3,4,132. However, limited studies have quantitatively assessed the retention of 

delivered ASC populations over time. When luciferase+GFP+ ASCs were directly injected into an 

ischemic adipose tissue mouse model, there was an increase in vascular density and an 

upregulation of the pro-angiogenic factors HGF and VEGF despite bioluminescence imaging 

showing an overall decline in luciferase+ cells over time133. Other studies have reported 

fluorescently or nanoparticle-labeled ASC populations incorporated into lipoaspirates134, 

vascularized tissue-engineering chambers135, and ischemic hindlimbs136 have shown similar 

limitations in the long term retention of donor ASC populations, despite the presence of new 

blood vessel networks. Even though the exact mechanisms behind in vivo ASC-mediated tissue 
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regeneration remain to be fully elucidated, these studies suggest grafted ASCs indirectly 

contribute to regeneration through paracrine secretions.  

Various studies probing the ASC secretome have found that ASCs can establish a pro-

regenerative niche through the secretion of pro-angiogenic growth factors (e.g. VEGF, HGF, 

bFGF)4,137, immunomodulatory cytokines (e.g. IL-6, IL-8, IL-10, IL-13)138 and chemotactic 

factors (e.g. macrophage colony-stimulating factor (MCSF), granulocyte/macrophage colony-

stimulating factor (G-MCSF), monocyte chemotactic protein-1/CCL2)138. Of particular interest is 

the ability for ASCs to stimulate angiogenesis when delivered in vivo. ASCs have been reported 

to survive ischemic environments and upregulate pro-angiogenic and anti-apoptotic factors such 

as VEGF, bFGF, and HGF139,140. ASCs have also been shown to stimulate and stabilize 

endothelial cell network formation in vitro, although this was dependent on the direct contact 

between these two cell types141–143.  

There is also a growing body of evidence that suggests ASCs can further establish a pro-

regenerative microenvironment through the secretion of immunomodulatory factors that regulate 

immune cells including B and T cells144, dendritic cells145, and monocytes/macrophages146,147. 

For example, the addition of ASCs to fat grafts was shown to improve graft volume in athymic 

mice, and it also caused a decrease in mRNA expression of the pro-inflammatory markers IL-1β 

and IL-6, along with an increase in the pro-regenerative markers CD163 and CD206118.  

ASC interactions with macrophages are of particular interest as it is now known that 

macrophages are involved in several wound healing and tissue repair processes148. ASCs 

delivered in vivo into a murine ear-punch dermal regeneration model using C57BL/6-Tg mice 

have shown enhanced macrophage recruitment towards injection sites149,150. Additionally, ASCs 

can promote a shift in macrophage phenotype from a more pro-inflammatory, or “M1-like” 

phenotype, towards a more pro-regenerative or “M2-like” phenotype, described in more detail in 

the next section146,147,151,152. These interactions are bi-directional, as M2 macrophages were 

reported to stimulate the proliferation of MSC populations, while M1 macrophages inhibited 

their proliferation in vitro153. It is important to note, however, that ASC paracrine factor secretion 

is highly context dependent, as it is strongly influenced by the cellular microenvironment. For 

example, after ASCs were serum starved and cultured in media containing TNF-α, there was 



15 

 

greater secretion of pro-inflammatory cytokines and chemokines such as IL-6, IL-8, chemokine 

(C-X-C motif) ligand 6 (CXCL6), and CCL2 than as compared to serum starved ASCs cultured 

without TNF-α154. This conditioned media stimulated the in vitro migration of human 

monocytes154. Taken together, this means that the rational design of the ASC microenvironment 

should be mindful of ASC survival, while also conditioning the secretion of pro-angiogenic and 

immunomodulatory factors when delivered in vivo. 

1.7.2 Macrophage-based strategies for soft tissue regeneration 

Macrophages are phagocytic cells belonging to the innate immune system that contribute to a 

range of functions, including pathogen removal, inflammation, tissue homeostasis, wound repair 

and healing27,155,156. Most tissues in the body contain macrophage populations, and genetic 

lineage tracing studies have revealed that the macrophages in the body exist as either tissue-

specific macrophages, originating from cell populations of the embryonic yolk sac and fetal 

liver, or as macrophages derived from precursor cells called monocytes, which originate from the 

bone marrow157.  

Tissue-resident macrophages such as microglia, Langerhans cells, and Kupffer cells, have the 

capacity for proliferation and function to maintain tissue homeostasis in response to cues 

provided by the local tissue microenvironment158. Macrophages originating from the bone 

marrow instead come from a common myeloid progenitor (CMP), which undergoes 

differentiation along the myeloid lineage after binding to colony-stimulating factors (CSFs) such 

as granulocyte macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating 

factor (M-CSF) and granulocyte colony stimulating factor (G-CSF) 159,160. Eventually, these cells 

differentiate into monocytes via the transcription factor PU.1, and exit the bone marrow niche in 

order to enter into the circulation159,160. In response to inflammatory signals, monocytes 

extravasate into tissues and begin to differentiate into macrophages161. In the context of wound 

healing or biomaterial implantation, it is thought that the tissue‐resident macrophages are the first 

to respond to injuries or implants, and then they facilitate the recruitment of other macrophage 

populations including monocyte-derived macrophages through various chemotactic 

factors148,155,162. 
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Macrophages are highly plastic cells that can respond to various external microenvironmental 

signals163. Under controlled in vitro conditions, macrophages can be stimulated to exhibit a more 

pro-inflammatory “M1-like” phenotype or a more pro-regenerative “M2-like” phenotype as 

described below164. When considering in vivo conditions, there are numerous factors that can 

serve as stimuli to activate or “polarize” macrophages towards various phenotypes, resulting in a 

wide spectrum of unique macrophage surface marker expression and secretory profiles165,166. 

Regardless, the M1/M2 paradigm still remains useful for describing the differing functions of 

macrophages during tissue repair and regeneration167,168. This also highlights how macrophage 

function and phenotype remain highly context-dependent, and emphasizes the importance of 

clearly reporting the in vitro and in vivo conditions in which these cells are isolated, cultured, or 

examined167.  

Pro-inflammatory or “classically-activated” M1 macrophages are activated by pro-inflammatory 

signals such as interferon-γ (IFN-γ), lipopolysaccharide (LPS), and tumor necrosis factor-α 

(TNF-α), and upregulate and secrete pro-inflammatory cytokines (e.g. IL-1, IL-6, IL-23, and 

TNF-), superoxide anions, and oxygen and nitrogen radicals to aid in pathogen and necrotic 

tissue clearance169,155. M1 macrophages also show an upregulation of inducible nitric oxide 

synthase (iNOS), an enzyme which metabolizes arginine into nitric oxide (NO) and citrulline170. 

A study by Novak et al. showed that the addition of allogeneic pro-inflammatory macrophages 

improved skeletal muscle regeneration outcomes following injury in mice171. While M1 

macrophages are a necessary component of wound healing and angiogenesis168, a prolonged M1 

response can lead to chronic inflammation and damage to the surrounding tissues172. 

In contrast, anti-inflammatory or “alternatively-activated” M2 macrophages play an important 

role in healthy adipose tissue homeostasis and the clearance of apoptotic cells173. More broadly, 

M2 macrophages show increased arginase-1 (Arg-1) expression, an enzyme that hydrolyzes 

arginine into ornithine and urea, thereby limiting arginine availability to produce NO170. Further 

classifications into M2 subsets have been developed based on cellular function, surface receptor 

expression, and the exogenous factors that induce polarization174,175. The M2a subset, activated 

by IL-4 and IL-13, is thought to contribute to wound stabilization, extracellular matrix 

deposition, cell migration and proliferation after the influx of M1 macrophages during the early 

stages of wound healing156. The M2b subset has been shown to be activated by immune 
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complexes and toll-like receptor agonists and play a role in the suppression of the pro-

inflammatory response by upregulating immunoregulatory cytokines such as IL-10176. In 

contrast, the M2c subset is activated by IL-10, and is involved in ECM synthesis and tissue 

remodeling177.  

Macrophages are an attractive cell population to employ in a cell-based soft tissue regeneration 

strategy because they are involved in blood vessel sprouting178,179. Lilja et al. found that when 

Matrigel supplemented with Zymosan to induce sterile inflammation was implanted into 

C57Bl/6 mice within a tissue engineering chamber system, there was an upregulation in the gene 

expression of chemotactic proteins including monocyte chemoattractant protein (MCP)-1 at 0.5 

and 2 days, as well as the recruitment of myeloid cells originating from the bone marrow at 7 

days180. This was followed by the development of neovascularization and neo-fat tissue after 14 

days180. Later studies showed that depleting the infiltrating macrophage population using 

Clodronate liposomes showed minimal presence of CD31+ cells within the implant, as well as 

limited expression of adipogenic markers, highlighting the close relationship between 

inflammation, angiogenesis, and adipogenesis181. Additional in vitro studies have postulated that 

different macrophage subsets may play different roles in the context of angiogenesis including 

the promotion of blood vessel sprouting (M1 subset), increasing vascular remodeling (M2c 

subset), the promotion of blood vessel fusion (M2a subset), and the recruitment of pericytes 

(M2a subset)182. 

There is an emerging interest in further implementing macrophage-based therapies for soft tissue 

regeneration, extending from the current understanding of their roles in wound healing and 

angiogenesis. There have been a growing number of studies that have observed that in vivo 

adipose regeneration coincides with a shift in macrophage phenotype from an M1-like phenotype 

to an M2-like phenotype151,165,183,184. To date, there have been few animal studies in which 

exogenously-prepared macrophages were directly delivered in vivo to assess their therapeutic 

efficacy in the context of soft tissue regeneration. One study performed by Phipps et al., utilized 

in vitro prepared macrophages that were harvested through intraperitoneal injection of Brewer’s 

thioglycolate, followed by subsequent stimulation with MCSF and IL-6185. The generated cells 

showed an M2-like phenotype as indicated by an upregulation in arg1 and il10 mRNA and 

downregulation of inos and il12 mRNA. Fat grafts supplemented with these M2-like 
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macrophages were delivered in vivo into immunocompetent C57Bl/6 mice and showed greater 

graft retention and blood vessel density, as well as increased levels of infiltrating F4/80+CD11b+ 

macrophages as compared to phosphate-buffered saline supplemented controls185. Thus, there is 

a need for more studies to assess the delivery of exogenously-prepared macrophage therapies in 

order support strategic use of these cells. 

1.8 Biomaterials for soft tissue regeneration 

1.8.1 Synthetic biomaterials 

A range of synthetic polymer biomaterial implants have been designed to promote adipose tissue 

regeneration. Synthetic biomaterials have the advantage of having more readily tailorable 

mechanical and chemical properties, which is important as numerous studies have shown that 

matching the scaffold stiffness with that of native adipose tissue (2-4 kPa)186 can stimulate 

adipogenesis187–190.  

Polyesters such as such as poly(lactic-co-glycolic acid) (PLGA)191,192, polyglycolic acid 

(PGA)193, and polylactic acid (PLA)194, have been widely utilized as cell and/or growth factor 

delivery platforms for adipose regeneration. A common strategy that was employed was to seed 

pre-adipocytes or ASCs directly onto PLGA scaffolds and then pre-differentiating them towards 

the adipogenic lineage in vitro before delivering them in vivo into immunodeficient 

mice192,195,196. This strategy allowed for significantly more adipose tissue formation after 2 

months as compared to when the cell populations were injected on their own197. Interestingly, 

Patrick et al. delivered male rat pre-adipocytes into the dorsa of immunocompetent Lewis rats by 

using PLGA foams and histologically evaluated adipose formation within the constructs between 

1-12 months198. They found that pre-adipocyte-seeded PLGA foams formed significantly more 

adipose tissue than acellular foams, with peak neo-adipose tissue formation occurring at 2 

months198. However, the volume of adipose tissue formed decreased dramatically after this time 

frame due to scaffold resorption198. Polyester biomaterial degradation can be modified in a 

number of ways by changing their method of fabrication, molecular weight, crystallinity, or ratio 

of copolymers199–201. These polymers degrade through hydrolysis and they generate byproducts, 

such as lactic acid and glycolic acid, which are non-toxic and can be cleared by the body. 
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However, a build-up of these byproducts can alter the pH of the local tissue microenvironment 

and cause adverse tissue and inflammatory reactions202,203. 

In addition to solid polymer networks, hydrogel constructs have also been widely explored for 

adipose tissue engineering. Hydrogels are highly hydrophilic polymer networks that can be 

physically or chemically cross-linked and can be made into an injectable format. The material 

properties of hydrogels can be modified with the addition of chemical crosslinkers204, as adding 

more crosslinks will create stiffer, denser scaffolds that degrade more slowly. In addition, the 

properties can be tuned by forming interpenetrating polymer networks or double networks183,205. 

Polyethylene glycol (PEG)-based hydrogels are a common biomaterial employed due to their 

tunable properties206. PEG biomaterials are known to be biologically inert, and like many other 

synthetic polymer systems, lack innate bioactivity, limiting their capacity to promote tissue 

regeneration25. To address this, strategies have been developed to incorporate ECM proteins, 

such as collagen, fibronectin, vitronectin and laminin, to make hybrid constructs207. 

Alternatively, polymers can be modified with small bioactive peptide ligands, such as the RGD, 

IKVAV or YIGSR peptide sequences, to promote cell adhesion208,209. Brandl et al modified PEG 

hydrogels by adding YIGSR peptide sequences, as well as collagenase-sensitive peptides, 

allowing the scaffolds to be enzymatically degraded210. The group demonstrated that 3T3-L1 

preadipocytes cultured in the hydrogels showed higher levels of intracellular triglyceride 

accumulation and the promotion of a unilocular adipocyte morphology in comparison to non-

degradable hydrogel controls210. 

1.8.2 Naturally-derived biomaterials 

Unlike synthetic materials, naturally-derived biomaterials are made from components extracted 

from living organisms. This class of biomaterials offers the advantage of being inherently 

bioactive and in general do not elicit chronic immune responses in vivo168. This group of 

biomaterials includes biopolymers not found in the human body, such as silk211–213, 

chitosan128,214–216, and alginate217–219, which can be fabricated into 3-D constructs such as 

sponges, fibers, hydrogels and microspheres. For example, chitosan is a linear, polysaccharide 

obtained from crustaceans, which is biodegradable, anti-microbial, and supportive of ASC 

viability and proliferation195,214–216. Wang et al. fabricated hybrid porous poly(L-glutamic acid)-

chitosan scaffolds that supported the proliferation of ASCs in vitro195. They found that delivering 
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pre-differentiated ASC-seeded constructs into severe combined immunodeficient (SCID) mice 

enhanced macroscopic vascularization, retention of scaffold volume, and quantitatively greater 

levels of lipid accumulation after 6 weeks in vivo, in comparison to unseeded controls195. When 

pre-adipocytes were seeded onto glutaraldehyde cross-linked collagen/chitosan hydrogels and 

subsequently implanted into immunocompetent Lewis rats, there was a similar increase in cell 

infiltration, blood vessel density, and lipid accumulation as compared to acellular scaffolds after 

7 days in vivo128. However, this was followed by a slight decrease in blood vessel density and 

adiposity after 14 days128. The reason for this was unclear, but the authors suggested it was due 

to a high degree of secreted ECM or due to the slow degradative properties of the scaffold128. 

Naturally-derived biomaterials can also be sourced from extracted ECM components, including 

collagen220–222 and hyaluronic acid223–225. In particular, collagen and its derivatives have been 

demonstrated to be supportive of in vitro ASC attachment221,226,227 and in vivo blood vessel and 

fat formation220,221,228. Mauney et al. compared the ability of collagen, PLA, and silk fibroin 

scaffolds to support in vitro and in vivo adipogenesis of bmMSCs and ASCs229. While both cell 

types showed comparable levels of metabolic activity and lipid accumulation when seeded onto 

collagen scaffolds in vitro, the unseeded, bmMSC, and ASC-seeded collagen and PLA scaffolds 

completely resorbed after 4 weeks in vivo in athymic nude rats229. The silk fibroin scaffolds in 

comparison, showed retention of both the scaffold structure and of the ASC and bmMSC 

populations, and supported in vivo adipogenesis, emphasizing the importance of controlling the 

scaffold degradation rate229. Numerous studies have shown that collagen and other naturally-

derived materials lack suitable mechanical and degradative properties to sustain implant 

structural integrity over time220,230,231. In order to improve the stability of collagen-based 

constructs, other studies have employed methods to physically or chemically crosslink 

collagen220. Non-crosslinked collagen has shown extensive contraction and resorption in vivo, 

while crosslinked collagen is notably stiffer, has a slower in vivo degradation profile, and has 

been associated with increased levels of in vivo cellular infiltration and angiogenesis220,232. Taken 

together, this highlights the importance of the physical degradative properties of biomaterials, 

which can affect the retention of delivered cell populations as well as the development of an 

adequate vascular supply.  
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1.8.3 Decellularized biomaterials 

While the previously mentioned “bottom-up” fabrication strategies have largely focused on 

developing hybrid biomaterial constructs composed of one or two structural ECM components in 

combination with a synthetic polymer, these strategies fail to fully recapitulate the unique, tissue-

specific composition and material properties found in the native ECM127. Tissue decellularization 

is an alternative option that utilizes a “top-down” fabrication strategy in which tissue or organ 

samples are processed in order remove the antigenic cellular and nuclear material, while 

preserving the ECM components as much as possible233. Tissue processing often includes a 

series of chemical, physical, and/or enzymatic treatments in order to disrupt the native tissue 

structure enough to facilitate the removal of cellular material233. Decellularized biomaterials are 

often used in either their intact form234–236 or are manipulated in such a way that they can be 

fabricated into hydrogels131, foams237,238, microcarriers239, or sheets240,241 depending on the 

application of interest. Broadly speaking, decellularized biomaterials have biochemical, 

biophysical, and biomechanical properties that can mimic their native tissue source, and they 

have the added advantage of being innately bioactive and biodegradable242. The method of tissue 

processing can affect how much of the native tissue composition and ultrastructure is preserved, 

which in turn can promote or hinder downstream remodeling and regeneration outcomes242.  

Owing to their innate bioactivity and tissue-specific biochemical and biomechanical properties, 

various types of decellularized biomaterials have been employed as ASC delivery platforms for 

soft tissue regeneration applications. ASC-seeded decellularized dermis243–245, small intestinal 

submucosa (SIS)191, skin/adipose flaps246, and placenta235 have demonstrated in vivo ASC 

retention191,243–245, neo-vascularization191,235,243–245, and in a few cases, neo-adipocyte 

formation235,246. Wang, J.Q. et al. found that ASCs seeded onto human decellularized adipose 

tissue microparticles and porcine small intestine submucosa (SIS) microparticles had greater in 

vitro metabolic activity when compared to ASCs cultured on tissue culture polystyrene247. 

However, when implanted into nude mice, the ASC-seeded human adipose tissue extract 

microparticles showed greater levels of vascularization and neo-adipocyte formation than 

porcine SIS microparticles247. This highlights how strategies utilizing decellularized biomaterials 

should consider matching the source of ECM used to fabricate the scaffolds with the application 

in question. 
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1.8.4 Decellularized adipose tissue 

In previous work, the Flynn lab has pioneered the design of the decellularized adipose tissue 

(DAT) technology234. Though human fat is rich in ECM, it is routinely discarded as surgical 

waste, making it an attractive option to fabricate an off-the-shelf bioscaffold for soft tissue 

regeneration applications127,234. The Flynn lab method of adipose decellularization utilizes a 

detergent-free protocol that includes mechanical disruption to increase the tissue surface area, 

freeze-thaw cycles in a hypotonic buffer to initiate cell lysis, multiple rinses in isopropanol to 

remove lipid content from the tissue, and enzymatic digestion with trypsin-EDTA, DNase, 

RNase and lipase to enhance the extraction of cells and intracellular components234. The ECM 

that is extracted is then frozen in deionized water and lyophilized, resulting in a 3-D porous 

bioscaffold that preserves the complex microarchitecture and composition of native adipose 

tissue234. Biochemically, DAT bioscaffolds retain structural ECM proteins such as collagen I and 

IV, laminin, fibronectin, elastin, GAGs, and proteoglycans234,248. High throughput mass 

spectrometry-based techniques were employed to compare the tissue-specific protein content and 

abundance between DAT and decellularized cancellous bone (DCB) bioscaffolds241. Our study 

found that in comparison to DCB, DAT contained a diverse array of bioactive ECM components 

such as soluble growth factors, matrikines, pro-adipogenic proteins, and residual intracellular 

proteins241. This has complemented other studies that have demonstrated that DAT-based 

bioscaffolds provide a tissue-specific platform to support in vitro ASC proliferation and 

differentiation along the adipogenic lineage234,237,239,249. 

To further recapitulate the native adipose tissue micro-niche, the Flynn lab has investigated the 

cellular mechanisms underlying the use of DAT bioscaffolds as a cellular delivery system for 

allogeneic ASCs. We have found that seeding the scaffolds with ASCs augmented remodeling of 

the DAT bioscaffolds into host-derived fat relative to unseeded controls in an immunocompetent 

Wistar rat model165,237. There was further evidence that the ASC-seeded DAT bioscaffolds had 

established a pro-regenerative milieu, which included an increase in angiogenesis over time, 

upregulation of IL-10 expression at early time points, and a shift towards a greater fraction of 

macrophages with an M2-like, pro-regenerative phenotype165. Interestingly, Wang et al. seeded 

ASCs onto DAT microparticles that were processed using a different decellularization protocol, 

and delivered them along with human fat grafts, subcutaneously into nude Fischer 344 rats250. 
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Over time, both the ASC-seeded DAT microparticles and the fat graft showed a decrease in the 

total number of nucleated cells, with a greater fraction of host cells present within the implants 

over time250. Further immunohistochemical analysis of the infiltrating cell population at 4 weeks 

found that the cells were negative for macrophage phenotype markers CD68, CD80, and CD163, 

but a small fraction of cells were positive for T cell markers, CD4 and CD8. After 4 weeks, neo-

adipocyte formation was observed in both groups, with some adipocytes having been derived 

from donor ASC populations250. However, the vascularization in the ASC-seeded DAT 

microparticles was higher in comparison to the fat graft after 2 weeks in vivo, but then 

significantly decreased after 4 weeks, while vascularization of the fat grafts was maintained 

beyond 4 weeks250. While this study demonstrated that ASC-seeded DAT constructs were able to 

stimulate in vivo neovascularization and implant remodeling into neo-fat tissue similar to our 

previous study165, the phenotype of the infiltrating cell population lacked any macrophage 

marker expression250. This points to the differences in the mechanisms of ASC-mediated 

regeneration between immunocompetent and immunodeficient rat models. 

In more recent studies performed in the Flynn lab, syngeneic murine ASCs derived from mice 

from a genetically similar genetic background,  were seeded onto DAT bioscaffolds and 

subcutaneously implanted in the dorsa of immunocompetent MacGreen mice, in which all of the 

myeloid cells express EGFP251. ASC-seeded DAT implants showed significantly higher levels of 

cell infiltration at 8 weeks post-implantation as compared to unseeded controls251. The ASC-

seeded implants also showed higher levels of implant remodeling into fat, and 

immunohistochemical staining confirmed that even though the donor ASCs had been retained 

after 8 weeks in vivo, the new adipocytes were entirely host-derived251. Furthermore, Iba-1+ 

macrophage recruitment was observed to be greater in the ASC-seeded implants, with peak 

levels observed at 3 weeks251. However, the overall levels of Iba-1+ macrophages declined over 

time251. Qualitatively, the infiltrating myeloid cell population also appeared to express high 

levels of the pro-inflammatory marker, iNOS, relative to the expression of the pro-regenerative 

marker, Arg-1251. However, there were no notable qualitative differences in the levels of iNOS 

and Arg-1 expression found between ASC-seeded and unseeded implants251.  
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1.9 Project overview, hypothesis, and specific aims 

1.9.1 Project overview 

Adipose is a loose, soft connective tissue distributed throughout the body in different depots that 

helps to define the natural contours of the body3,4. Unfortunately, fat, like many other tissues in 

the body, has a limited capability for repair and regeneration3. The absence of soft tissue can lead 

to further complications such as scar formation, contracture, and possible loss of function3,4. In 

the case of large soft tissue deficits, the surgical options for repair or reconstruction are limited to 

grafting autologous soft tissue flaps. However, these procedures are often expensive, require a 

large amount of soft tissue to create the graft, and they risk additional complications and donor 

site morbidity3,102,105. 

In order to address these clinical issues, there has been interest in designing tissue-specific 

constructs to permanently regenerate soft tissue and maintain volume over time. The 

development of decellularized adipose tissue (DAT) derived from human fat is a promising off-

the-shelf bioscaffold that can be used to deliver therapeutic ASC populations234,237,239,249. In an in 

vivo immunocompetent Wistar rat model, subcutaneous implantation of allogeneic ASC-seeded 

DAT was demonstrated to augment the constructive remodeling of the implant into host-derived 

fat165. ASC-seeding is postulated to contribute to the establishment of a pro-regenerative 

microenvironment, including 1) the development of a supportive vasculature, and 2) a shift 

towards a pro-regenerative macrophage phenotype165. In later studies using an 

immunocompetent MacGreen murine model, subcutaneous implantation of syngeneic ASC-

seeded DAT in the dorsa showed augmented host-derived neo-fat formation, as well as an 

increase in infiltrating macrophage populations251.  

Other animal studies have revealed a close relationship between adipogenesis, angiogenesis, and 

inflammation. In a tissue-engineering chamber system implanted in immunocompetent C57Bl/6 

mice, Lilja et al. found that Matrigel supplemented with Zymosan showed an upregulation in 

chemotactic factors and the recruitment of bone marrow-derived macrophages at early time 

points180. This was subsequently followed by the development of new blood vessels and fat 

tissue180. Depleting these infiltrating macrophage population using Clodronate liposomes 

decreased the levels of angiogenesis and adipogenesis in the chamber181. These findings are in 
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support of other reports that demonstrate how vascularization2,107, as well as a shift in recruited 

macrophages towards a pro-regenerative phenotype151,165,183,184 are crucial components in order 

for downstream soft tissue regeneration to occur.  

There is evidence that ASC-based therapies indirectly support regenerative processes through the 

secretion of pro-angiogeneic, pro-chemotactic, and immunomodulatory factors138. The injection 

of ASCs into C57BL/6-Tg mice was observed to stimulate macrophage recruitment towards 

injection sites149,150, which complements our studies on ASC-seeded DAT implants promoting 

the migration of macrophage populations251. Further, ASCs in hypoxic culture can express pro-

angiogenic and antiapoptotic factors such as VEGF, bFGF, and HGF139,140, and they have been 

shown to directly stimulate and stabilize endothelial cell networks141–143. Additionally, ASCs 

have the ability to cause a shift in macrophage phenotype from a pro-inflammatory to a pro-

regenerative phenotype146,147,151,152. ASC-seeded DAT scaffolds may have provided a similar role 

in our Wistar rat model, as we found greater levels of blood vessel formation, and the expression 

of the anti-inflammatory cytokine, IL-10 at early time points165. At later time points, we 

observed a greater fraction of CD163+ pro-regenerative macrophages165.  

Notably, the role of macrophages in the constructive remodeling of ASC-seeded DAT implants 

into host-derived fat remains to be elucidated. Different macrophage subtypes have been 

implicated in various roles during wound healing148 and angiogenesis178,179. It is possible that 

both the ASCs and infiltrating macrophages contributed to the enhanced blood vessel 

development by producing paracrine factors to support neo-fat formation. Thus, there is strong 

evidence to support the implementation of an ASC-based therapy alone or in combination with 

macrophages to augment angiogenesis and promote a shift in macrophage phenotype, which 

could be particularly advantageous for the reconstruction of larger soft tissue defects.  

The present work aims to elucidate the cell-scaffold and cell-cell interactions mediating the 

remodeling process, with the goal of improving the translation of cell-based therapies for stable 

and long-term soft tissue replacements. In an effort to gain insight into the role of inflammation 

in ASC-mediated adipose tissue regeneration, this thesis focuses on investigating the impact of 

seeding DAT bioscaffolds with syngeneic macrophages and/or syngeneic ASCs, on cellular 

infiltration, angiogenesis, and macrophage phenotype following implantation in C57Bl/6J mice. 
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1.9.2 Hypothesis 

Hypothesis: Seeding DAT bioscaffolds with syngeneic macrophages and syngeneic ASCs will 

promote a more pro-regenerative environment that enhances cellular infiltration and 

angiogenesis in the DAT in an immunocompetent subcutaneous mouse model. 

1.9.3 Objectives 

Objective 1. Establish methods for isolating and culturing murine monocyte-derived 

macrophages (M0) sourced from the bone marrow of MacGreen transgenic mice and characterize 

their immunophenotype 

Objective 2. Develop an in vitro culture and seeding protocol for macrophages ± ASCs on the 

DAT bioscaffolds 

Objective 3. Explore the effects of ASC delivery, macrophage delivery, and ASC/macrophage 

co-delivery in the DAT bioscaffolds relative to unseeded controls in a subcutaneous implant 

model in C57Bl/6J mice on in vivo cellular infiltration, angiogenesis, and macrophage 

phenotype.  
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Chapter 2  

2 Materials & Methods 

2.1 Materials 

All chemicals and reagents were purchased from Sigma-Aldrich Ltd. (Oakville, ON) unless 

otherwise specified. 

2.2 Animal work 

All animal studies were performed in accordance with the Canadian Council on Animal Care 

(CCAC) guidelines and were approved by the Animal Care Committee at Western University 

(Protocol # 2015-049). All mice were housed in clean barrier facilities under humidity and light 

controlled conditions and had free access to food and water. Murine adipose-derived stromal 

cells (ASCs) were isolated from 9-12 week old female Discosoma red fluorescent protein 

(dsRed) mice (B6.Cg-Tg(CAG-DsRed*MST)1Nagy/J; C57BL/6J background; Jackson 

Laboratory, Bar Harbor, ME). Murine bone marrow-derived macrophages were obtained from 

the hindlimbs of hemizygous 9-12 week old male MacGreen transgenic mice (B6N.Cg-

Tg(Csf1r-EGFP)1Hume/J; C57BL/6J background; Jackson Laboratory, Bar Harbor, ME). 

Implantation studies were performed using a total of twenty-five, 9-12 week old male wild-type 

C57BL/6J mice (Jackson Laboratory; Bar Harbor, ME, USA).  

2.3 ASC isolation and culture 

ASCs were isolated using a previously published protocol252 from the inguinal fat pads of dsRed 

mice, a transgenic mouse strain in which all cells express the fluorescent protein dsRed. All work 

was performed within a biological safety cabinet using aseptic technique and sterile reagents. 

Briefly, fat pads from 3-4 mice were finely minced with surgical scissors and added to 15 mL of 

a collagenase digest solution consisting of: 0.1% Type I Collagenase (Worthington Biochemical 

Corp., Lakewood, NJ), 1% bovine serum albumin (BSA; Bioshop, Burlington, ON), and 2 mM 

calcium chloride in phosphate-buffered saline (PBS). The minced tissue was agitated for 1 hour 

at 37°C and 75 RPM, and then centrifuged (300 x g, 5 min). The cells were then resuspended in 

PBS with 1% BSA, and passed through a 100 μm filter (Corning Inc., Corning, NY, USA). Next, 

the cell suspension was centrifuged (300 x g, 5 min) and then resuspended in  5 mL of complete 
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ASC media comprised of Dulbecco’s Modified Eagle’s Medium:Ham’s F12 (DMEM:Ham’s 

F12) with 10% fetal bovine serum (FBS; Gibco®, Invitrogen, Burlington, ON) and 1% 

penicillin-streptomycin (pen-strep; Gibco®, Invitrogen, Burlington, ON), and then plated onto 

PrimariaTM flasks (Corning Inc., Corning, NY) and cultured at 37°C and 5% CO2. 

After 24 hours, the flask was gently rinsed multiple times with sterile PBS until the debris and 

unattached cells were removed and fresh ASC media was added. The cells were passaged after 

reaching 80% confluence using 0.25% trypsin/0.1% ethylenediaminetetraacetic acid 

(trypsin/EDTA; Gibco®, Invitrogen, Burlington, ON) and re-plated at 4000 cells/cm2 on 

standard tissue culture polystyrene T-75 flasks (Corning Inc., Corning, NY, USA). Media 

changes were performed every 2-3 days and fresh P3-P4 cells were used for all experiments. 

2.4 Macrophage isolation and culture 

Since macrophages had not been previously used in experiments performed in the Flynn lab, new 

protocols were created in order to harvest, culture, and differentiate macrophages derived from 

the bone marrow of the hindlimbs of MacGreen mice. MacGreen mice are a strain of transgenic 

mice in which all myeloid cells express enhanced green fluorescence protein (EGFP) under the 

control of the csf1r promoter253. All work was performed within a biological safety cabinet using 

aseptic technique and sterile reagents. The femurs and tibia of the mice were surgically removed, 

disinfected using 70% ethanol, and then rinsed in Hank’s Balanced Salt Solution (HBSS; 

Gibco® Invitrogen, Burlington, ON) with 0.1% BSA. The bone marrow was flushed out using 

HBSS with 0.1% BSA delivered via a 26-gauge needle, and put through a 70 µm filter (Corning 

Inc., Corning, NY, USA). The bone marrow cells were centrifuged (500 x g, 5 min, 6°C), and 

then incubated with ammonium chloride solution (STEMCELL Technologies, Vancouver, BC) 

for 3 minutes in order to remove erythrocytes. Next, the cell suspension was rinsed using HBSS 

with 0.1% BSA, centrifuged (500 x g, 5 min, 6°C) and incubated with purified mouse I-Ab 

(Biolegend Inc; San Diego, CA, USA, 114402) and purified rat anti-mouse CD45R/B220 

(Becton Dickson (BD); Franklin Lakes, NJ, USA, 553084) antibodies for 30 minutes on ice in 

order to bind to lymphocytes including B and T cells. Next, the cells were rinsed again using 

HBSS with 0.1% BSA, centrifuged (500 x g, 5 min, 6°C), and incubated with low tox-m rabbit 

complement (Cedarlane; Burlington, ON), which is cytotoxic to mouse lymphocytes, especially 

T cells, for 30 minutes at 37°C. Finally, the cells were washed two more times using HBSS with 
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0.1% BSA, centrifuged (500 x g, 5 min, 6°C ) to remove any dead cells, and resuspended in fresh 

complete macrophage media consisting of RPMI 1640 (Gibco®, Invitrogen, Burlington, ON) 

supplemented with 10% FBS, 1% pen-strep, 4 mM l-glutamine (Gibco®, Invitrogen, Burlington, 

ON), and 20 ng/mL recombinant murine macrophage colony stimulating factor (MCSF; 

Peprotech, Rocky Hill, NJ, USA). The cells were then seeded onto T75 flasks at 5 million 

cells/flask and incubated at 37°C and 5% CO2. 

Fresh bone marrow cells were counted using a hemocytometer and centrifuged (500 x g, 5 min, 

6°C) and then gently resuspended to obtain a solution containing 5x106 cells/mL in freezing 

media containing 90% fetal bovine serum (FBS) and 10% dimethyl sulfoxide (DMSO) 254. The 

cells and freezing media were placed into cryovials, at 1 mL each254. Then the cryovials were 

placed in a Mr. FrostyTM freezing container and maintained at -80°C freezer for 24 hours, and 

then transferred to a liquid nitrogen tank254. To thaw the cells, a cryovial was quickly transferred 

to a 37°C water bath until the suspension was completely thawed. The contents were then 

transferred to a cell culture treated T75 flask filled with 20 mL of complete macrophage 

media254. 

Fresh complete media was added after 2 days, and a half-media change was performed after 4 

and 6 days. At 7 days, the bone marrow-derived macrophage populations were used in 

subsequent studies. 
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Figure 2.1. Summary of the isolation protocol for bone marrow-derived macrophage 

progenitor cell population. 

2.5 Immunophenotyping of cultured macrophages 

With technical support provided by Christy Barreira from the Dekaban lab, flow cytometry was 

performed to establish a reproducible protocol to assess the immunophenotype of the cultured 

macrophage populations. Cells were detached from tissue culture flasks through incubation with 

0.48 mM Versene Solution (Gibco®, Invitrogen, Burlington, ON) for 15 min at 37°C to preserve 

cell surface receptors that may be cleaved when enzymatic dissociation methods are applied.  

The suspended cells were then collected, and the flasks were rinsed using HBSS with 0.1% BSA. 

If necessary, the flasks were gently scraped using a cell scraper, and the remaining cells were 

collected.  Cells were centrifuged (500 x g, 5 min) and resuspended in 1 mL of sorting buffer, 

consisting of PBS supplemented with 5 mM EDTA, 25 mM HEPES (pH 7.0), 1% heat 

inactivated FBS dialyzed against Ca/Mg (Gibco®, Invitrogen, Burlington, ON), and 10 U/ml 

DNAse II from bovine spleen (Sigma, Oakville, ON). Next, 10 µL of anti-CD16/anti-CD32 

(10 µL/mL, Becton Dickenson (BD), Franklin Lakes, NJ) was added, and the cell suspensions 

were incubated on ice for 10 min to block non-specific Fc-receptor binding. Finally, the cells 

were washed with PBS, centrifuged (500 x g, 5 min, 6°C), and resuspended in 1 mL of PBS.   
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To assess cell viability, 2 L of LIVE/DEAD™ Fixable Aqua Dead Cell Stain (Fisher Scientific, 

Ottawa, ON) was added and cells were incubated for 20 min at room temperature in the dark.  

Cells were washed with 6 mL of sorting buffer, centrifuged (500 x g, 5 min, 6°C), resuspended 

in 0.75 mL of sorting buffer, and then aliquoted into FACS tubes (100 µL of cell 

suspension/tube). Next, the cells were incubated with a panel of antibodies to assess CD45 

(hematopoietic marker), CD11b (macrophage marker), F4/80 (macrophage marker), Ly6G 

(neutrophil marker), Ly6C (monocyte/macrophage marker) expression. The following 

monoclonal antibodies were used: Alexa Fluor 700 rat anti-mouse anti-CD45 (1:500; BioLegend 

Inc., San Diego, CA, cat. 103128), Alexa Fluor 647 rat anti-mouse/human anti-CD11b (1:400; 

BioLegend, cat. 101218), PE rat anti-mouse anti-F4/80 (1:20; BIO-RAD, Hercules, CA, cat. 

MCA497PE), Brilliant Violet 421 rat anti-mouse anti-Ly6G (1:40; BioLegend, cat. 127628), and 

Brilliant Violet 711 rat anti-mouse anti-Ly6C (1:800; BioLegend, cat. 128037). The studies were 

performed with 5 separate macrophage isolates from wild-type and MacGreen mice to confirm 

the findings (n=3, N=5). 

The cells were incubated with the respective antibodies in the dark (20 min, 4°C), then washed 

with an additional 2 mL of sorting buffer and centrifuged (500 x g, 5 min, 6°C). Finally, the cells 

were resuspended in 200 μL of sorting buffer and an additional 100 μL of 4% paraformaldehyde 

was added to fix the cells, which were then stored at 4°C in the dark. Flow cytometry was 

performed within 1-2 days after staining using an LSRII digital flow cytometer (BD Biosciences) 

at the London Regional Flow Cytometry Facility to acquire data for polychromatic analyses. 

Electronic compensation was performed with UltraComp eBeads antibody capture beads 

(Invitrogen, Burlington, ON). A minimum of 10,000 events/samples were collected, and forward 

scatter (FSC), which defines cell size, and side scatter (SSC), which defines cell granularity, 

gates were set to include only non-debris. Macrophages from wild-type C57BL/6J mice served 

as a negative control for GFP expression. Data analysis was performed using FlowJo software 

(Version 10.0.8; Tree Star, Ashland, OR). 
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2.6 Decellularized adipose tissue bioscaffold fabrication and 
seeding 

2.6.1 Adipose tissue procurement and decellularization 

Subcutaneous adipose tissue was collected with informed consent from patients undergoing 

elective breast reduction or abdominoplasty surgeries at the University Hospital, Cumberland 

Laser Clinic, and/or St. Joseph’s Hospital in London, ON (HREB# 105426). Tissues were 

transported in sterile PBS supplemented with 20 mg/mL BSA and then subjected to a five-day, 

detergent-free, decellularization protocol234. Briefly, the tissue was treated with three freeze-thaw 

cycles to promote cell lysis using a hypotonic buffer, multiple lipid extractions using 

isopropanol, and enzymatic digestion using trypsin-EDTA, RNAse, DNAse, and lipase. The 

decellularized adipose tissue (DAT) was then frozen in deionized water at -80°C, and then 

lyophilized to create a porous 3-D bioscaffold. 

2.6.2 Decellularized adipose tissue bioscaffold preparation and seeding 

The lyophilized DAT bioscaffolds were cut into 6.0 ± 0.5 mg pieces and then rehydrated 

overnight in deionized water. The bioscaffolds were decontaminated through rinsing in 70% 

ethanol (3 x 30 min each, 120 RPM), followed by an overnight incubation in 70% ethanol at 

120 RPM. Next, the bioscaffolds were transferred under sterile conditions into a new container, 

and rehydrated with sterile PBS (3 hours, 120 RPM), followed by three rinses in fresh sterile 

PBS (30 min each, 120 RPM). The PBS was replaced with complete macrophage media and the 

scaffolds were incubated overnight (37°C and 5% CO2) prior to seeding.  

In order to seed the bioscaffolds, P2 or P3 ASCs were trypsinized, and Day 7 macrophages were 

detached using Versene and cell scraping and counted using a hemocytometer. Each DAT 

scaffold was transferred into a 15 mL vented cap conical tube containing 3 mL of complete 

macrophage media and either i) 1 x 106 macrophages, ii)1 x 106 ASCs, or iii) a 1:1 co-culture of 

macrophages and ASCs (1 x 106 cells total). The scaffolds were dynamically seeded for 24 hours 

using a BenchWaverTM 3-D rocker (Mandel, Guelph, ON) (95 rpm, 37°C, 5% CO2) prior to use 

in in vitro culture studies or in vivo implantation surgeries. 
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2.7 In vitro characterization of seeded implants  

2.7.1 DAPI staining and double stranded DNA quantification 

After 24 hours of seeding, the bioscaffolds were rinsed twice in PBS (5 min each, 37°C, 

40 RPM) and then fixed in 10% neutral buffered formalin for 2 hours at 100 RPM. Next, the 

bioscaffolds were rinsed three times in PBS (20 min each, 100 RPM) and then  incubated for one 

hour in a sucrose gradient consisting of 10%, 20%, and then 30% sucrose in PBS. Then the 

samples were transferred into 70 % ethanol and sent for processing at the Robarts Molecular 

Pathology Laboratory in London, ON, and then embedded in paraffin. The paraffin-embedded 

bioscaffolds were sectioned (5 μm) using a Leica RM2235 microtome (Leica Biosystems, 

Concord, ON, Canada). The sections were deparaffinized by two incubations in xylene (10 min 

each), followed by rehydration in an ethanol series. To qualitatively assess the cell distribution 

within the DAT scaffolds, the sections were stained with DAPI mounting medium (Abcam, 

Toronto, ON) to identify cell nuclei. Non-overlapping images were taken using the EVOS®FL 

Imaging System (Invitrogen, Ottawa, ON) within 600 µm of the apical and basal borders of the 

implant periphery as well as within the implant interior.  

In addition to the qualitative staining, the amount of double-stranded DNA (dsDNA) content was 

quantified in a separate set of bioscaffolds using the PicoGreen® dsDNA quantification assay 

(Invitrogen, Burlington, ON). After seeding for 24 hours, the bioscaffolds were rinsed three 

times in PBS (5 min each, 37°C, 40 RPM) and then placed in 200 µL of digest solution 

consisting of 1 x TE buffer with a 1:50 ratio of Proteinase K (Promega, Madison, WI, USA) to 

the initial dry mass of the scaffolds. The samples were agitated at 60°C and 800 RPM overnight, 

as well as an additional 15 minutes at 92°C to inactivate the enzyme. Next, the samples were 

lysed using sonication (6 pulses, 1 second each) and then frozen at -20°C until the assay was 

performed. The samples were analyzed according to the manufacturer's instructions. Finally, the 

measured DNA mass was normalized to the initial dry weight of the scaffolds and the average 

dsDNA content of unseeded scaffold controls was subtracted to account for any background (n = 

3 scaffolds per group/trial, N = 3 trials with separate cell isolations). 



34 

 

2.7.2 Metabolic activity quantification 

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Life Technologies 

Inc., Burlington, ON) assay was used to measure the metabolic activity of a separate set of 

macrophage-, ASC-, and co-culture-seeded DAT bioscaffolds after 24 hours of seeding. A 

working MTT solution (0.5 mg/mL) was prepared in complete macrophage media. After 

seeding, the implants were rinsed three times in PBS (5 min each, 37°C, 40 RPM), and then 

incubated in 3 mL of the working MTT solution (4 hours, 37°C).  

Each seeded bioscaffold was transferred into an Eppendorf tube containing 800 μL of dimethyl 

sulfoxide (DMSO), and then manually minced using surgical scissors. Next, the samples were 

incubated to extract the water-insoluble formazan product (1 hour, 37°C, 100 RPM) and then 

centrifuged (15000 x g, 5 min) to collect the supernatant. Finally, the supernatant was further 

diluted 1:8 in DMSO, and 200 μL of the diluted supernatant was pipetted into a 96-well plate in 

triplicate. Sample absorbance was measured at 540 nm and corrected for background absorbance 

at 690 nm using a CLARIOstar® High Performance Monochromator Multimode Microplate 

Reader (BMG Labtech, Guelph, ON). The measured absorbance was normalized to the dry 

weight of the scaffolds and the average absorbance of the unseeded scaffold controls was 

subtracted to account for any background (n = 3 scaffolds per group/trial, N = 3 trials with 

separate cell isolations).  

2.8 In vivo assessment of the bioscaffolds 

All in vivo implantation studies were performed using 9-12 week old male C57BL/6 mice. 

Surgeries were performed under sterile conditions and using sterile surgical tools. Mice were 

anesthetized with 1.5% isoflurane in oxygen at 1 L/min throughout the entire surgical procedure, 

and given pre-operative analgesic doses of meloxicam (2 mg/kg loading dose; 1 mg/kg follow up 

dose 24 hours post-surgery) and bupivacaine (2 mg/kg) via subcutaneous injection. Each mouse 

received two small incisions near the upper thigh in the inguinal region to allow for two 

subcutaneous pockets to be created using blunt-ended forceps. Mice received a total of 2 

subcutaneous DAT implants (one on each side in the inguinal region) from the following groups:  

(i) unseeded controls   

(ii) macrophage-seeded  
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(iii) ASC-seeded 

(iv) 1:1 co-culture 

After implantation, the incisions were closed using Monocryl 6-0 absorbable sutures and the 

mice were closely monitored. At 2 and 4 weeks post-surgery, mice (N = 4-6 mice/treatment 

group) were euthanized using CO2 overdose and the scaffolds were excised within their 

surrounding tissues. The excised scaffolds were processed for paraffin embedding for 

histological and immunohistochemical analyses. 

2.9 Masson’s trichrome staining and quantification 

Paraffin-embedded samples were sectioned (5 μm) and subjected to deparaffinization in xylene, 

and then rehydration in an ethanol series. After Masson’s trichrome staining, the samples were 

dehydrated in an ethanol series followed by xylene, and then mounted with Permount® 

mounting medium (Fisher Scientific, Ottawa, ON). The entire cross-section of each sample was 

imaged using an EVOS XL CORE light microscope (Life Technologies) under the 10x objective 

using tissue sections from 3 different depths/implant, spaced 200 µm apart. For analysis, the 

images were subsequently stitched together using Image Composite Editor (Microsoft) software. 

In order to generate Masson’s trichrome figures for a selected subset of samples, slides were 

scanned at 20X magnification using an Aperio ImageScope system and software (Vista, CA). 

For all implant groups, the ratio of the area infiltrated by cells to the total implant area, the ratio 

of the number erythrocyte-containing blood vessels to total implant area, and the ratio of 

remodeled fat within the implant to total implant area, was measured using ImageJ software in 

order to analyze the percentage of cellular infiltration, blood vessel density, and implant 

remodeling into fat, respectively. In order to assess angiogenesis, the number, diameter, and 

distance from the implant periphery of all blood vessels were counted across the entire implant 

region.  All semi-quantitative analyses were conducted in a blinded fashion (n = 3 different 

depths 200 µm apart/implant (1 section/depth), N = 4 - 6 mice per group). 
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2.10  Immunofluorescence assessment of angiogenic and 
macrophage markers 

All immunohistochemical staining was performed on 5 μm sections derived from 3 different 

depths within each implant (200 µm apart). The tissue sections were deparaffinized using xylene 

and rehydrated in an ethanol series as described above. Unless otherwise stated, all incubation 

steps were performed at room temperature. 

2.10.1 Detection of CD31+ cells 

In order to visualize CD31+ endothelial cell recruitment, tissue sections were subjected to heat-

mediated antigen retrieval in DAKO target antigen retrieval citrate solution (pH 6.0) (Agilent, 

Mississauga, ON) at 95°C for 20 min, followed by a 15 min cooling period. Next, the tissue 

sections were blocked using 10% goat serum + 0.1% Tween-20 in Tris-buffered saline (TBS) for 

1 hour at room temperature. Finally, the sections were incubated overnight at 4°C with a rabbit 

polyclonal anti-CD31 primary antibody (1:100 in TBS + 5% goat serum + 0.1% Tween-20; 

Abcam, ab28364).  

On the following day, the tissue sections were rinsed in TBS and then incubated with a Hoechst 

counterstain and Dylight®650 conjugated goat anti-rabbit IgG secondary antibody (1:200 in 

TBS + 5% goat serum + 0.1% Tween-20; Abcam, ab96902) for 1 hour. Sections were rinsed 

again in TBS and mounted using FluoroshieldTM mounting medium (Abcam, Toronto, ON). 

Using the 20X objective of an EVOS® FL fluorescence imaging system (Life Technologies), 8-9 

non-overlapping images were taken within 600 µm of the implant periphery and automated 

quantitative analysis of positively stained pixels was performed using ImageJ software. The 

average counts from images taken along the implant periphery were recorded for each section (n 

= 3 different depths/implant, 200 µm apart (1 section/depth), N = 4 - 6 mice per group). 

2.10.2 Immunofluorescence assessment of infiltrating macrophages  

In order to assess the distribution and phenotype of the macrophage populations infiltrating the 

implants, immunohistochemical staining was performed to triple stain for CD68 as a marker of 

phagocytic macrophages, arginase-1 (Arg-1) as a marker of a more pro-regenerative M2-like 

phenotype, and inducible nitric oxide synthase (iNOS) as a marker of a more pro-inflammatory 
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M1-like phenotype. Sections were subjected to heat-mediated antigen retrieval in 10 mM Tris 

base, 1 mM EDTA solution, 0.05% Tween 20 (Tris-EDTA solution; pH 9.0) for 25 min at 95°C, 

followed by a 15 min cooling period. Tissue sections were blocked for one hour using 5% BSA+ 

0.1% Tween-20 in PBS, and then incubated overnight at 4°C with the following primary 

antibodies: rat monoclonal anti-CD68 (1:75; BIO-RAD, MCA1957T), rabbit polyclonal anti-

iNOS (1:75; Abcam, ab15323), and chicken polyclonal anti-Arg-1 (1:100; Millipore Sigma, 

ABS535) diluted in PBS + 1% BSA + 0.1% Tween-20.  

On the following day, the tissue sections were rinsed in PBS, and blocked for one hour with 10% 

goat serum + 0.1% Tween-20 in PBS. Next the sections were incubated with a Hoechst 

counterstain and the following secondary antibodies for one hour: Alexa Fluor®488 conjugated 

goat anti-rat IgG (1:100; Invitrogen, A-11006), Alexa Fluor®594 conjugated goat anti-rabbit IgG 

(1:200; Abcam, ab150080), and Alexa Fluor®680 conjugated goat anti-chicken IgG (1:200; 

Abcam, ab175779), diluted in PBS + 1% goat serum + 0.1% Tween-20. Sections were rinsed in 

PBS and mounted using FluoroshieldTM mounting medium (Abcam, Toronto, ON). Using the 

20X objective of an EVOS® FL fluorescence imaging system (Life Technologies), 8-9 non-

overlapping images were taken within 600 µm of the implant periphery (n = 3 different 

depths/implant, 200 µm apart (1 section/depth), N = 4 - 6 mice per group). 

2.11 Statistical analyses 

All numerical data presented were expressed as the mean ± standard deviation (SD) and analyzed 

using GraphPadPrism 6.0 software (GraphPad Software, San Diego, CA) by one-way or two-

way ANOVA with a Tukey’s post-hoc comparison. Differences were considered statistically 

significant when p<0.05.   
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Chapter 3  

3 Results 

3.1 Murine cell isolation and culture 

As previously mentioned, the methods for the harvesting of murine adipose-derived stromal cells 

(ASCs) from the inguinal fat pads of dsRed+ mice had been previously developed251. After 

harvesting, the P0 cells were plated onto PrimariaTM flasks to aid in attachment. ASCs were fed 

every 2-3 days, and after 4-5 days in culture, cells were passaged onto tissue culture treated 

polystyrene T75 flasks. Each T75 flask yielded between 1 million-1.5 million cells. When 

growing, the cells showed an elongated, fibroblastic morphology, with multiple spindly-like 

protrusions (Figure 3.1). After P3 or 4, the ASCs would proliferate slower, and would adopt a 

rounded, flattened shape lacking any extensions. When ASCs adopted this morphology, they 

were unable to be used in experiments as they would lift off the surface of the flask.  

While the ASCs could be passaged, the macrophages had to be differentiated from progenitor 

cell populations. Frozen bone marrow-derived cells were banked due to the abundance of cells 

harvested and used in future studies. During the differentiation process, the macrophages were 

less hardy than the ASCs and required new media every other day to maximize overall yield. By 

day 7, the differentiated cell population would form clusters of cells that had few protrusions as 

compared to the ASCs and were observed to be either elongated or more rounded (Figure 3.1). In 

general, the differentiated bone marrow-derived cells were limited by the number of times they 

could be used. Once they lifted off the T75, they could no longer be passaged.  

It is important to note that both ASC and macrophage yield was cell donor dependent, with some 

batches growing faster or yielding more cells than others. On average, the macrophage yields 

would be around 3 million – 4 million cells/flask.  
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Figure 3.1. Morphology of differentiated murine bone marrow-derived macrophages from 

MacGreen mice and murine ASCs derived from the inguinal fat pad of dsRed mice. Bright 

field microscopic images revealed that the differentiated macrophage population (left) were 

either elongated or rounded with few protrusions, while the cultured ASCs (right) had a 

fibroblast-like, elongated morphology with multiple protrusions when seeded onto a T75 flask. 

Scale bar: 500 µm.  

3.2 Macrophage characterization 

3.2.1 Cell surface marker expression 

The immunophenotype of the bone marrow-derived macrophages cultured on tissue culture 

polystyrene (TCPS) for seven days was assessed by flow cytometry, with the results summarized 

in Table 3.1 (N=3 biological replicates). Representative flow plots are shown in Figure 3.2. 

Analysis of the viable cell population demonstrated that the majority of the cells expressed the 

hematopoietic marker CD45 (94.3% ± 5.3). Moreover, the majority of the CD45+ cell population 

co-expressed CD11b (99.7% ± 0.3), commonly used as a macrophage marker162. Further, the 

majority of the CD45+CD11b+ cells co-expressed the pan-macrophage marker, F4/80 (95.9% ± 

2.6), while the co-expression of the neutrophil marker Ly6G was negligible (2% ± 2.6). It was 

also found that only a small fraction of the CD45+CD11b+F4/80+ Ly6G- subset expressed the 

monocyte/macrophage marker, Ly6C (5.1% ± 2.4). Additional analyses of the Ly6C- and Ly6C+ 

cell populations showed subpopulations with varying levels of GFP expression, indicating there 

was variability in csf1r expression within the population.  
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Table 3.1. Immunophenotype of the cultured murine bone marrow-derived macrophages 

isolated from the MacGreen mice. Flow cytometric analysis of cell surface marker expression 

confirmed that the majority of the cultured bone marrow-derived cells were 

CD45+ CD11b +F4/80+ Ly6G- macrophages. Data represented as mean percentage ± standard 

deviation displayed from N = 3 separate experiments. 

Viability Viable cells 89.1 ± 3.1% 

Myeloid/Macrophage Markers 

CD45+ (out of total viable cells) 94.3 ± 5.3% 

CD45+ CD11b+ 99.7 ± 0.3% 

CD45+ CD11b+ F4/80+ Ly6G- 95.9 ± 2.6% 

Monocytic/Macrophage Marker CD45+ CD11b+ F4/80+ Ly6G- Ly6C+ 5.1 ± 2.4% 

GFP 
CD45+ CD11b+ F4/80+ Ly6G- Ly6C- GFP+ 69.1 ± 9.5% 

CD45+ CD11b+ F4/80+ Ly6G- Ly6C+ GFP+ 60.5 ± 10.2% 
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Figure 3.2. Cultured bone marrow-derived macrophages express characteristic 

macrophage markers. Representative dot plots from one biological replicate demonstrating the 

gating strategy used to analyze the cultured cells. (A) Cells were gated based on their forward 

scatter (FSC) and side scatter (SSC) distribution, followed by FSC singlets, and the live cell 

population (87.2% viable). (B) A large fraction of the CD45+ CD11b+ live cell population was 

demonstrated to be CD45+ CD11b+ F4/80+ Ly6G-
 macrophages (98.3%). There were further 

subpopulations of CD45+CD11b+ F4/80+ Ly6G- cells that showed heterogeneous expression of 

(C) Ly6C (3.09% positive) and (D) GFP (64.5% positive). 
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3.3 In vitro analysis of cell-seeded decellularized adipose tissue 
bioscaffolds 

3.3.1 Assessment of cell distribution 

The distribution of macrophages and/or ASCs within the decellularized adipose tissue (DAT) 

bioscaffolds was qualitatively assessed following dynamic seeding for 24 hours on a 3-D rocker 

through DAPI nuclear staining of sectioned samples. Non-overlapping images were taken within 

the implant periphery (<600 µm within the apical and basal borders) and interior (> 600 µm 

away from the apical and basal borders). The analysis supported that the DAT could be used as a 

delivery platform for both cell types and showed that there was a heterogeneous distribution of 

cells throughout the scaffolds (Figure 3.3). In general, a qualitatively higher density of cells was 

observed within the peripheral regions of the scaffolds in all groups. Although cellular 

infiltration was observed in the interior of some samples, this was typically limited to regions 

where the extracellular matrix (ECM) was qualitatively less dense.  
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Figure 3.3. Seeded macrophages and ASCs were heterogeneously distributed within the 

DAT bioscaffolds after 24 hours in dynamic culture. Representative images show the 

distribution of seeded macrophages and/or ASCs in the peripheral and interior regions of the 

DAT bioscaffolds. Qualitatively higher cell densities were observed in the scaffold periphery for 

all seeding conditions (left panels), with limited infiltration observed in the interior regions (right 

panels). Dotted line: scaffold boundary. Blue: nuclei, green: scaffold autofluorescence. Scale bar: 

500 µm. n = 3 technical replicates/group, N = 2 separate cell isolations. 
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To complement the qualitative assessment of the cellular distribution within the DAT scaffolds, 

the total double stranded (dsDNA) content was measured in separate sets of samples at 24 h post-

seeding using the PicoGreen® assay (Figure 3.4A). Further, in order to probe cellular viability, 

the metabolic activity was also examined in the various conditions using the MTT assay (Figure 

3.4B). In general, there was variability between the biological replicates, particularly in terms of 

metabolic activity, which resulted in no significant differences between any of the groups. Taken 

together, the data suggests that while there was variability attributed to different batches of 

starting cell populations, the total cell density within the DAT scaffolds was similar in the 

macrophage-seeded, ASC-seeded, and co-culture seeded groups within each trial.   
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Figure 3.4. Assessment of dsDNA content and metabolic activity in the macrophage-seeded, 

ASC-seeded and co-culture-seeded DAT scaffolds after 24 hours in dynamic culture. The 

(A) dsDNA content measured with the PicoGreen Assay and (B) absorption intensity measured 

with the MTT assay, normalized to the bioscaffold dry weight (mg) to account for minor 

differences in the size of each individual bioscaffold. No significant differences were observed 

between the groups for either assay. Data represents mean ± SD. n = 3 technical replicates/group, 

N = 3 separate cell isolations. 

3.4 In vivo analysis of the DAT bioscaffolds 

3.4.1 Macroscopic evaluation of implants 

Macrophage-seeded, ASC-seeded, co-culture-seeded, and unseeded DAT bioscaffolds were 

subcutaneously implanted within the inguinal region of wild-type C57BL/6J mice. At 1 week 

post-surgery, the surgical incision sites were fully healed. Cohorts of mice were euthanized at 2 

and 4 weeks post-surgery, and the implants were excised within their surrounding tissues. Based 

on macroscopic evaluation, all implants were found to be well integrated within the inguinal fat 

pad and/or skin (Figure 3.5). In some mice, visible blood vessels were observed near (Figure 

3.5A) or surrounding the implant (Figure 3.5B).  
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Figure 3.5. Macroscopic evaluation of the DAT implants. Each mouse received two implants, 

each one from a different seeding condition, inserted in subcutaneous pockets made in the 

inguinal region of the mouse. Depicted are representative images of (A) unseeded and (B) co-

culture seeded implants after 4 weeks in vivo. The basal surface of the excised implant (black 

circle) was situated adjacent to the inguinal fat pad (black arrow). In some mice, blood vessels 

(white arrow) were observed in close proximity to the fat pad or the implant. Scale bars: 1 cm. 

3.4.2 Qualitative assessment of cellular infiltration, angiogenesis, and 
remodeling of the DAT implants  

The Masson’s trichrome staining revealed the presence of a fibrous capsule surrounding the 

implants in all groups at both time points, located adjacent to the mouse skin and/or inguinal fat 

pad (Figures 3.6 and 3.7). The fibrous capsule contained cells, and in some instances, 

erythrocyte-containing blood vessels and adipocytes. Notably, the thickness of the fibrous 
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capsule was more variable in the implants that had direct contact with the inguinal fat pad. More 

specifically, the fibrous capsule appeared thinner in areas adjacent to the fat pad and integrated 

well with the fat pad septa, which are the collagen bundles that separate adipocytes into lobules. 

The regions of the fibrous capsule not in contact with a fat pad, such as the areas in contact with 

the skin, typically appeared thicker.  

At both time points, adipocytes and erythrocyte-containing blood vessels were found to be 

localized within the boundary of the fibrous capsule, as well as along the peripheral regions of 

the implants (Figures 3.6 and 3.7).  
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Figure 3.6. Adipocytes and blood vessels were localized to the peripheral regions of DAT 

implant groups at 2 weeks post-implantation in C57BL/6J mice. Representative images from 

all seeding conditions containing a partial infiltration response after 2 weeks in vivo are shown in 

the left panel. Areas from each group in direct contact with fat pads are boxed in black and 

magnified in the middle panel, while areas closest to the skin are boxed in red and magnified on 

the right panel. Dotted line: scaffold periphery; red arrows: erythrocyte-filled blood vessels; red 

arrow heads: adipocytes; black arrows: fibrous capsule. Left panel scale: 1 mm, middle and right 

panel scale: 100 µm. 
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Figure 3.7. Adipocytes and blood vessels were localized to the peripheral regions of DAT 

implant groups at 4 weeks post-implantation in C57BL/6J mice. Representative images from 

all seeding conditions containing a mid-to-high infiltration response after 4 weeks in vivo are 

shown in the left panel. Areas from each group in direct contact with fat pads are boxed in black 

and magnified in the middle panel, while areas closest to the skin are boxed in red and magnified 

on the right panel. Dotted line: scaffold periphery; red arrows: erythrocyte-filled blood vessels; 

red arrow heads: adipocytes; black arrows: fibrous capsule. Left panel scale: 1 mm, middle and 

right panel scale: 100 µm. 
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Further qualitative analyses of the Masson’s trichrome stained cross-sections revealed that the 

cellular infiltration varied substantially between the implants at both time points, even when 

comparing samples from the same scaffold group. The seeding conditions included samples that 

showed (i) low, (ii) low-to-mid, (iii) mid-to-high, or (iv) complete cellular infiltration across the 

implant cross-sections (Figure 3.8). In general, implants with low levels of infiltration (<10% 

infiltrated) contained areas with low cell density, which were predominantly localized to the 

implant periphery. Implants with a low-to-mid profile (10-50% infiltrated) remained largely un-

infiltrated but contained areas of higher cell density that were localized to one or more sides of 

the implant. Mid-to-high infiltrated implants (50-95% infiltrated) showed a dense, infiltrating 

cell population usually distributed along one or more sides of the implant, while completely 

infiltrated implants showed a dense infiltrating cell population across the entire implant cross-

section (95-100% infiltrated).  
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Figure 3.8. Implants within each seeding condition exhibited varying levels of cell 

infiltration at 2 and 4 weeks post-implantation in C57BL/6J mice. The selected images 

showing Masson’s trichrome stained cross-sections from the macrophage-seeded implant group 

at 2 weeks post-surgery illustrate the variability in the in vivo cellular infiltration response 

between implants belonging to the same group. The levels of cellular infiltration ranged from 

low, low-to-mid, mid-to-high, or complete levels of cellular infiltration. Scale bars = 1 mm. 

The levels of cellular infiltration in the scaffold cross-sections were scored in a blinded fashion, 

and each sample was assigned to one of the four previously defined categories. The results are 

shown in Table 3.2 and are reported as a percentage of the total number of cross-sections 

analyzed for each group. At 2 weeks, the unseeded group showed a smaller range and overall 

lower in vivo cell infiltration response as compared to the seeded groups, with no samples 

showing a mid-to-high or complete infiltration response. In contrast, a greater fraction of the 

macrophage, ASC, and co-culture seeded implants showed higher levels of cell infiltration across 

the cross-section, with a few of the macrophage and ASC implant cross-sections achieving 

complete infiltration. At 4 weeks, most of the unseeded implants continued to show relatively 

low levels of cell infiltration, although a mid-to-high level of infiltration was observed in one 

implant cross-section. In the seeded groups, substantial sample-to-sample variability in the 

infiltration levels remained at 4 weeks. Further, a higher fraction of the ASC-seeded and co-

culture seeded scaffolds showed a mid-high infiltration response as compared to the unseeded 

and macrophage-seeded implants at both 2 and 4 weeks. The overall trends suggest that there 

was not a difference in the overall level of infiltration observed between the two time points 

investigated in this study for any of the implant groups.  
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Table 3.2. Histological scoring of the levels of cellular infiltration in the unseeded, 

macrophage, ASC, and co-culture seeded DAT implant cross-sections. The implant cross-

sections from each seeding condition and time point were histologically evaluated and 

categorized based on their range of in vivo infiltration responses. This was displayed as the 

percentage of implant cross-sections from each seeding condition out of total stained cross-

section belonging to each seeding condition. Low cell infiltration = < 10% cell infiltration, low-

to-mid infiltration = 10-50%, mid-to-high infiltration = 50-95%, complete infiltration = 95-

100%. n = 3 sections/implant, N = 4 – 6 implants/group. 

 2 weeks 4 weeks 

 Low 
Low-

Mid 

Mid-

High 
Complete Low 

Low-

Mid 

Mid-

High 
Complete 

Unseeded 50% 50% 0% 0% 56% 28% 17% 0% 

Macrophage 33% 17% 39% 11% 33% 53% 13% 0% 

ASC 33% 0% 61% 6% 17% 33% 50% 0% 

Co-culture 20% 13% 67% 0% 0% 56% 44% 0% 

When comparing the samples at either time point that showed a low-to-mid cellular infiltration 

response, there were no obvious trends in terms of the patterns of infiltration, with infiltration 

observed on the ventral regions adjacent to the inguinal fat pad either alone, or in addition to 

infiltration observed on the dorsal side adjacent to the skin (Figure 3.9). Samples at both time 

points with a mid-to-high cellular infiltration response tended to have infiltration coming from 

areas adjacent to the inguinal fat pad as well as the skin. 
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Figure 3.9. Infiltrating cell populations were distributed along areas adjacent to the 

inguinal fat pad either alone, or in addition to areas adjacent to the skin. The selected 

images showing Masson’s trichrome stained cross-sections from unseeded implants excised after 

2 weeks in vivo with a low-to-mid infiltration response illustrate the localization of infiltrating 

cell populations in regions adjacent to the fat pad only (left panel) or both the fat pad and skin 

(right panel). Scale bars = 1 mm. 

Finally, it was found that the implants that contained higher levels of cellular infiltration were 

observed to have qualitatively higher levels of erythrocyte-containing blood vessels and 

adipocytes (Figure 3.10). 
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Figure 3.10. Higher levels of cellular infiltration within the implants showed higher levels 

of angiogenesis and adipogenesis. Representative images from ASC-seeded implants excised 2 

weeks post-surgery are shown. Insets from the left panels are magnified in the right panels. 

Dotted line: scaffold periphery; red arrows: erythrocyte-filled blood vessels; red arrow heads: 

adipocytes; black arrows: fibrous capsule. Left panel scale: 1 mm, right panel scale: 100 µm. 

3.4.3 Semi-quantitative analysis of cellular recruitment, blood vessel 
density, and adipose tissue remodeling 

After two and four weeks, blinded semi-quantitative analyses of the degree of cell infiltration, 

blood vessel density, and adipose tissue remodeling in unseeded, macrophage-seeded, ASC-

seeded, and co-culture-seeded implants was performed on the Masson’s trichrome stained 

sections. Consistent with the qualitative findings, there was substantial variability observed 
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which led to no differences between the groups in terms of cell infiltration (Figure 3.11A), blood 

vessel density (Figure 3.11B), and adipose tissue remodeling (Figure 3.11C) responses at either 

time point. More specifically, at 2 weeks the macrophage-seeded, ASC-seeded, and co-culture-

seeded implants exhibited a larger range of in vivo cell infiltration responses in comparison to the 

unseeded implants. Notably, a greater fraction of the cell-seeded implants exhibited higher levels 

of cell infiltration. In contrast to the response at 2 weeks, the unseeded implants at 4 weeks 

showed more variability in terms of the range of infiltration responses, with a greater fraction of 

the samples showing higher levels of overall infiltration. The other implant groups, however, 

showed less variability in the infiltration response at the later time point.  

The average blood vessel density of all seeding conditions after 2 and 4 weeks post-implantation 

were listed in Table 3.3. In general, while there were low levels of angiogenesis and 

adipogenesis observed in all implant groups at both time points, the macrophage-, ASC-, and co-

culture-seeded implants showed a greater range of blood vessel density responses at 2 weeks in 

comparison to the unseeded implants. Further, there was a trend towards a decrease in the 

variability of the blood vessel density responses in all implant groups at 4 weeks in contrast to 

the variability found in the neo-fat formation response, which increased. 

Further analysis of the erythrocyte-containing blood vessels showed that the majority of blood 

vessels in all groups at both time points were small in diameter (<25 µm) and were localized 

within 200 µm of the implant periphery (Figure 3.12).  
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Figure 3.11. Quantification of in vivo cellular infiltration, blood vessel density, and adipose 

tissue remodeling within the DAT implants at 2 and 4 weeks. Within each group, variability 

was noted in the A) percentage of the DAT implants infiltrated by cells after 2 and 4 weeks in 

vivo. In general, all groups at both time points had B) a low density of erythrocyte-containing 

blood vessels and C) a low percentage of implant remodeling into fat. Values shown are mean ± 

SD. N = 4-6 mice per group. 

Table 3.3. The average blood vessel density of all seeding conditions after 2 and 4 weeks 

was found to be relatively low. Since the range of blood vessel density responses varied, this 

led there to be no detectable differences between any of the groups at either time point. 

Average blood vessel density (blood vessels/mm2) 

 2 weeks 4 weeks 

Unseeded 1.1 ± 0.9 0.7  ± 0.2 

Macrophage-seeded 2.7 ± 1.8 1.3  ± 0.6 

ASC-seeded 2.8 ± 2.4 2.1  ± 0.9 

Co-culture seeded 2.1 ± 1.8 1.8  ± 0.7 
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Figure 3.12. Cell seeding did not influence the erythrocyte-containing blood vessel diameter 

or infiltration profiles within the DAT implants at 2 and 4 weeks. Top frequency distribution 

plots show that the majority of the vessels within the implants were of small diameter (<25 µm) 

at both time points. Bottom frequency distribution plots showing that the majority of the 

erythrocyte-containing vessels were localized within 200 µm of the implant periphery in all of 

the groups at both time points. N = 4-6 mice/group. 

3.5 Immunohistochemical analysis of CD31+ cell recruitment 

After 2 and 4 weeks, murine endothelial cell recruitment into the peripheral regions of the 

unseeded, macrophage-seeded, ASC-seeded, and co-culture-seeded implants was assessed 

through immunostaining for the endothelial marker, CD31. CD31, or platelet-endothelial cell 

adhesion molecule 1 (PECAM-1), is a transmembrane adhesion protein commonly found on 

endothelial cells, but can also be found on platelets, monocytes, macrophages, and 

granulocytes255. An assessment of the abundance of CD31 within 600 µm of the apical and basal 

borders of the implant was performed in all groups at both time points (N = 4-6 
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implants/group/time point). CD31+ Hoechst+ cells were observed in all conditions, and there 

were no notable differences in CD31+ Hoechst+ expression when comparing implants from 

different seeding conditions containing similar levels of cellular infiltration at both time points 

(Figure 3.13). However, implants with qualitatively higher levels of cellular infiltration tended to 

have qualitatively more CD31+ Hoechst+ cells visualized within the scaffold periphery (Figure 

3.14).  

Quantitative analysis of the CD31 staining was performed by automated positive pixel counting 

(Figure 3.15; n = 8-9 20X frames within 600 µm of the apical and basal borders from 3 depths 

per implant, 200 µm apart, N = 4-6 implants/treatment group/ time point). Similar to the 

histological analyses, there was substantial variability observed in the relative levels of CD31+ 

expression at both time points, with no obvious differences between the groups. 
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Figure 3.13. Representative images of CD31+ cells within the implant periphery from all 

scaffold groups after 2 and 4 weeks in vivo. When the overall levels of cellular infiltration 

were similar, CD31+ Hoechst+ expression was found to be qualitatively comparable across all 

implant conditions at both 2 (left panel) and 4 weeks (right panel). Dotted line: scaffold 

periphery. White arrows: CD31+ Hoechst+ cells. Blue: cell nuclei, red: CD31. Scale bar: 200 µm. 
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Figure 3.14. Representative images of the different CD31 expression patterns found in 

implant groups containing different levels of cell infiltration after 2 weeks in vivo. Implants 

with higher levels of total cellular infiltration (right panel) showed qualitatively more CD31+ 

Hoechst+ cells than implants with low total cell infiltration (left panel). Dotted line: scaffold 

periphery. White arrows: CD31+ Hoechst+ cells. Blue: cell nuclei, red: CD31. Scale bar: 200 µm. 
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Figure 3.15. Quantification of relative CD31+ expression within the DAT implants at 2 and 

4 weeks. No significant differences were observed in the relative CD31+ expression levels 

between the groups at either time point. Values shown are mean ± SD. 8-9 20X frames were 

imaged along the apical and basal borders from 3 different depths per implant, 200 µm apart, N = 

4-6 implants/group. 

3.6 Immunofluorescence analysis of infiltrating macrophage 
phenotypes 

In order to probe the effects of delivering syngeneic macrophages and/or ASCs on host 

macrophage recruitment and the modulation of macrophage phenotype within the DAT implants, 

qualitative immunohistochemical analysis of the macrophage phenotype markers, inducible nitric 

oxide synthase (iNOS) and arginase-1 (Arg-1), were examined in combination with CD68, 

commonly used as a pan-macrophage marker associated with phagocytosis256,257. In general, a 

high density of cells expressing CD68 and Arg-1 was observed within 600 µm of the apical and 

basal borders of all implant groups at both time points (Figures 3.16 and 3.17, n = 8-9 20X 

frames from 3 depths/implant, 200 µm apart, N = 4-6 implants/group/time point). When 

comparing groups with similar overall levels of cellular infiltration, there were no obvious 

differences between implant groups at either time point (Figure 3.16 and 3.17). All groups 

showed a greater proportion of cells that expressed CD68 and Arg-1, with a lower proportion 

expressing iNOS. Merged images visualizing the co-localization of the three markers revealed an 
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abundant CD68+ Arg-1+ iNOS- Hoechst+ cell population and a smaller subpopulation of 

CD68+ Arg-1+ iNOS+ Hoechst+ (Figure 3.18). Some implants also contained subpopulations 

identified as CD68+ Arg-1- iNOS- Hoechst+ cells and CD68- Arg-1+ iNOS- Hoechst+ cells (Figure 

3.19). Further analysis revealed that samples with higher levels of cellular infiltration 

qualitatively showed more iNOS+ expression and a larger number of CD68+ Arg-

1+ iNOS+ Hoechst+ cells as compared to implants with low cell infiltration (Figure 3.20).  
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Figure 3.16. Representative images of CD68, Arg-1, and iNOS, co-staining along the apical 

and basal borders from all seeding conditions after 2 weeks in vivo. When comparing 

implants with a mid-to-high cell infiltration response, the relative abundance of CD68+ (second 

from the left panel), Arg-1+ (middle), iNOS+ (second from the right panel) cells was qualitatively 

similar across all implant conditions at 2 weeks. Dotted line: scaffold periphery. Blue: cell 

nuclei, purple: CD68, green: Arg-1, red: iNOS. Scale bar: 200 µm. 
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Figure 3.17. Representative images of CD68, Arg-1, and iNOS co-staining along the apical 

and basal borders from all seeding conditions after 4 weeks in vivo. When comparing 

implants with a mid-to-high cell infiltration response, the relative abundance of CD68+ (second 

from the left panel), Arg-1+ (middle panel), iNOS+ (second from the right panel) cells was 

qualitatively similar across all implant conditions at 4 weeks. Dotted line: scaffold periphery. 

Blue: cell nuclei, purple: CD68, green: Arg-1, red: iNOS. Scale bar: 200 µm. 
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Figure 3.18. Implants from all seeding conditions contain and abundant subpopulation of 

CD68+ Arg-1+ iNOS- Hoechst+ cells and a smaller population of CD68+ Arg-1+ iNOS+ 

Hoechst+ cells after 4 weeks in vivo. The representative merged images of the unseeded (top left 

panel), macrophage-seeded (top right panel), ASC-seeded (bottom left panel), and co-culture-

seeded (bottom right panel) implants contained a high density of CD68+ Arg-1+ iNOS- Hoechst+ 

cells and a smaller subpopulation of CD68+ Arg-1+ iNOS+ Hoechst+ cells, with no obvious 

differences found between the implant groups. Dotted line: scaffold periphery. White arrows: 

CD68+ Arg-1+ iNOS+ Hoechst+ cells. Blue: cell nuclei, purple: CD68, green: Arg-1, red: iNOS. 

Scale bar: 200 µm. 
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Figure 3.19. Subpopulations of CD68+Arg-1- iNOS- Hoechst+ cells and CD68- Arg-1+ iNOS- 

Hoechst+ cells were further identified in the DAT implants in vivo. Depicted is a 

representative merged image of co-culture DAT implants at 2 weeks (left panel) and 4 weeks 

(right panel). There have been no obvious differences found between the implant groups in the 

abundancy of either subpopulation of CD68+ Arg-1- iNOS- Hoechst+ cells or CD68+ Arg-1- 

iNOS- Hoechst+ cells. Dotted line: scaffold periphery. White arrows in the left panel: CD68- Arg-

1+ iNOS- Hoechst+ cells. White arrows in the right panel: CD68+ Arg-1- iNOS- Hoechst+ cells. 

Blue: cell nuclei, purple: CD68, green: Arg-1, red: iNOS. Scale bar: 200 µm. 
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Figure 3.20. Representative images of the CD68, Arg-1, and iNOS co-staining from 

implants containing different levels of cell infiltration after 2 weeks in vivo. Sample images 

from ASC-seeded implants show how samples with a low (top panels) or mid-to-high (bottom 

panels) overall cellular infiltration response had a greater fraction of CD68+Arg-1+ iNOS+ 

Hoechst+ cells. However, iNOS expression was qualitatively enhanced in the implants containing 

higher levels of overall cellular infiltration, with a slightly higher qualitative abundance of 

CD68+ Arg-1+ iNOS+ Hoechst+ cells observed as compared to samples with low infiltration. 

Dotted line: scaffold periphery. White arrows: CD68+ Arg-1+ iNOS+ Hoechst+ cells. Blue: cell 

nuclei, purple: CD68, green: Arg-1, red: iNOS. Scale bar: 200 µm. 
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Chapter 4  

4 Discussion 

In the fields of plastic and reconstructive surgery, there has been growing interest in delivering 

pro-regenerative cell populations as a strategy to promote long-term, stable soft tissue 

regeneration3,4. As a result, there has been a large focus on designing cell-instructive 

biomaterials in order to improve the retention and therapeutic function of these populations in 

vivo. Adipose-derived stromal cells (ASCs) are a robust, abundant, and clinically-translatable 

population of cells that has the capacity to modulate in vivo adipose tissue regeneration through 

their paracrine secretions124,138. Macrophage-based therapies are also of emerging interest, 

building from the knowledge that various macrophage subtypes have been implicated in 

angiogenesis, as well as adipose tissue expansion and regeneration167,258. However, the potential 

of a macrophage-based strategy in the context of soft tissue regeneration has yet to be explored.  

In order to provide a tissue-specific cell-delivery platform for adipose tissue-engineering 

applications, the Flynn lab has pioneered the design of decellularized adipose tissue (DAT) 

bioscaffolds234. When seeded in combination with ASCs, these constructs enhanced in vivo 

adipogenesis in both immunocompetent Wistar rat and MacGreen mouse models, and showed 

greater levels of cellular recruitment, neo-blood vessel formation, and a shift towards an M2-like, 

pro-regenerative macrophage phenotype as compared to unseeded controls165,237,251. The 

mechanisms behind ASC-mediated tissue regeneration have yet to be fully elucidated, including 

the interactions between ASCs, macrophages and the ECM.  

In the present work, syngeneic donor macrophages and ASCs isolated from transgenic reporter 

mice were seeded onto DAT bioscaffolds and delivered subcutaneously into the inguinal region 

of immunocompetent C57Bl/6 mice. Over the course of 2 and 4 weeks, histological analysis of 

the scaffold explants was performed to evaluate cellular recruitment, angiogenesis and 

constructive implant remodeling into fat. Additional immunohistochemical analysis probing 

endothelial cell recruitment and macrophage phenotype was also performed. The results 

demonstrated that the DAT bioscaffolds and seeding regimen supported donor macrophage and 

ASC attachment in vitro. When unseeded, macrophage-seeded, ASC-seeded, and co-culture-

seeded implants were delivered into the inguinal region, there was variation noted between 
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implants belonging to the same group in terms of in vivo cellular infiltration, blood vessel 

density, and neo-fat formation at both time points. In general, higher levels of cellular infiltration 

in each seeding group correlated to enhanced blood vessel densities, CD31 expression, neo-fat 

formation, and inducible nitric oxide synthase (iNOS) expression, including the qualitatively 

enhanced presence of a CD68+ Arg-1+ iNOS+ Hoechst+ subpopulation within the implants. 

Overall, the variability in the findings suggests that variations in the scaffold positioning and 

local microenvironment may have affected cell infiltration into the implants, which subsequently 

influenced both neovascularization and macrophage phenotype.   

The initial phase of this thesis focused on the development of an isolation, culture, and 

characterization protocol for murine bone marrow-derived macrophages, a cell type not 

previously studied in the Flynn laboratory. Due to their abundance, it is common practice to 

isolate primary macrophage precursor cells (i.e. monocytes) from murine bone marrow or human 

peripheral blood and subsequently differentiate these cells in vitro into macrophage 

populations259,260. Differentiation into macrophages requires the use of hematopoietic growth 

factors called colony stimulating factors (CSF), including granulocyte macrophage colony 

stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF) and granulocyte 

colony stimulating factor (G-CSF)159,160,261. Other commonly-used macrophage sources include 

tissue-resident macrophages, such as murine peritoneal macrophages or splenic macrophages, or 

immortalized leukemic macrophage-like cells, including the RAW 264.7 (derived from mice) or 

THP-1 (derived from humans) cell lines175. When assessing macrophage-specific markers as well 

as polarization markers, there have been noted differences in the surface marker expression and 

gene expression profiles of macrophage populations due to cell sourcing, strain, gender, culture 

media formulation, CSF source (recombinant CSF or L929 conditioned media), tissue culture 

plastic, detachment methods, etc259,262–266. Incomplete reporting of the culture conditions and 

experimental design can impact the reproducibility of assays to assess differentiation and 

polarization175, thus clear and transparent reporting is needed when using these cells for 

experiments. 

There have been various protocols developed for isolating bone marrow-derived macrophage 

precursors from mice. While some protocols do not purify the bone marrow-derived cell 

population12, the protocol utilized for these studies included additional steps to remove 
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erythrocytes, T cells, and B cells in order to provide a more purified population. Cells harvested 

post-isolation were stored in liquid nitrogen and thawed for experiments as needed. In order to 

obtain sufficient numbers of cells for experiments, several variables were explored including 

different media formulations, types of culture flasks, and seeding densities. It was observed that 

seeding isolated cells at a density of 5 million cells/flask, using tissue culture-treated T75 flasks, 

and supplementing the RPMI 1640 with 4 mM l-glutamine and 20 ng/mL MCSF produced 

differentiated macrophage populations with a robust yield between 2-4 million cells/flask. 

However, the raw numbers of differentiated macrophages did vary from isolation-to-isolation, 

though it is also possible the cell banking and thawing process may need further refinement. 

After refining the in vitro culture conditions, the differentiated cell population was observed to 

spread out and to have cellular protrusions similar to what other groups have reported267,268.  

Murine ASCs were harvested from the inguinal depot of dsRed+ mice following established 

methods in the Flynn lab251. Previous immunophenotype characterization of the isolated ASC 

population showed that these cells expressed stromal cell markers CD29, CD44, and CD90 and 

lacked the expression of for endothelial cell marker, CD31, and hematopoietic cell marker, 

CD45251. These cells also exhibited tri-lineage differentiation potential towards the adipogenic, 

osteogenic, and chondrogenic lineages251. In culture, it was observed that the ASCs had a 

spindle-shaped, fibroblast-like morphology in 2-D culture, which was distinct from the 

macrophage morphology. The growth of ASCs differed between isolations and passage number, 

as some ASC populations would be confluent after seeding within a few days, while other times, 

it would take 5 or more days.  

When using flow cytometry to identify macrophage populations from other myeloid/lymphocyte 

subsets based on surface marker expression, the consensus has been to use multiple antibodies as 

many subsets share common expression patterns for myeloid specific markers259,269. The gating 

strategy utilized in the current studies examined several hematopoietic and 

macrophage/monocyte markers. As expected, the macrophages co-expressed CD45, CD11b, and 

F4/80 and showed negative expression for the neutrophil marker, Ly6G269–274. Taken together, 

this panel of myeloid/macrophage markers supports that most of the cells had differentiated into 

macrophages. 
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Since bone marrow-derived macrophages are believed to originate from circulating 

monocytes275, the monocyte/macrophage marker, Ly6C, was also included in the analyses. It was 

found that on average, 94.9% of the CD45+ CD11b+ F4/80+ Ly6G- subset did not express Ly6C. 

Some studies have suggested that Ly6C+ or “classical” monocytes or monocyte-derived 

macrophage populations are recruited to tissues upon injury and develop pro-inflammatory 

macrophage characteristics in vivo276. In contrast, Ly6C- “non-classical” populations may play a 

role in patrolling the vasculature and have been associated with fibrosis and the resolution of 

inflammation277. However, other studies have shown that these cell populations do not 

necessarily follow this paradigm and their roles in wound repair differ based on the location they 

are isolated from and the pathophysiology of the animal model275,278,161. Therefore, the 

evaluation of an additional panel of surface markers in combination with flow cytometry is 

needed in order to confirm the expression of pro-inflammatory/“M1-like” markers, alternatively 

activated/“M2-like”markers, or a mixture thereof, as previous reports have demonstrated that 

media supplementation with MCSF may “pre-differentiate” monocyte-derived macrophages, 

enhancing the expression of M2-like markers279,280.  

Interestingly, Ly6C- and Ly6C+ cells contained subpopulations with varying levels of GFP 

expression. GFP expression in the cells isolated from the MacGreen mice is under the control of 

the promoter for colony stimulating factor 1 receptor, CSF-1R (encoded by the csf1r or c -fms 

proto-oncogene), and FACS analysis has previously confirmed its expression in peritoneal, bone 

marrow-derived, and broncho/alveolar lavage macrophages, as well as Langerhans cells derived 

from MacGreen mice281. MCSF is a hemopoietic growth factor that regulates macrophage 

differentiation, proliferation and survival and exerts its effect by binding to CSF-1R282. Since the 

isolated cell population was cultured with MCSF, and they expressed other macrophage-specific 

markers such as F4/80 and Cd11b, greater GFP expression was expected. It could be that the 

method of cell culture, including the MCSF concentration, may have affected the csf1r and gfp 

expression in the cultured macrophages, and as a result, requires further refinement.  

To confirm that these GFP subsets are not unique to bone marrow-derived macrophages, 

macrophages from other tissues could be similarly evaluated. Additionally, it could be that CSF-

1R expression is naturally present in cultured macrophages at differing levels within subsets of 

macrophages. Though the csf1r-EGFP transgene has been detected in macrophages283 and other 
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myeloid cell populations like dendritic cells and neutrophils281, the variation in the GFP 

expression between subsets of MacGreen mononuclear cells has been previously reported. One 

study examining peritoneal foreign body reactions observed different Ly6C subsets including 

EGFPlow Ly6Cmed-high, EGFPhigh Ly6Cmed, and EGFPhigh Ly6Chigh cells, as well as different Gr1 

subsets including EGFPhigh Gr1high and EGFPlow Gr1low cells272. Further, Kampfrath et al. 

reported a similar trend in a different mouse model, c-fmsYFP+, which expresses yellow 

fluorescent protein (YFP) under the control of the csf1r promoter284. They found that Ly6Chigh 

F4/80+ cells tended to be YFPhigh, while Ly6Clow F4/80+ tended to be YFPlow 284. In future 

experiments, donor macrophage populations could alternatively be derived from EGFP+ mice in 

which EGFP is under control of the human ubiqutin C promoter in all tissues to enable tracking 

of all subsets of donor macrophage populations in vivo. 

In the second part of this thesis, protocols were established for seeding the macrophages both 

alone and in combination with the dsRed+ ASCs on DAT bioscaffolds. Porous scaffolds serve to 

support, instruct, and deliver pro-regenerative donor cell populations, but obtaining a 

homogenous spatial distribution and high cell density in vitro can be challenging with large 

scaffolds285. Current seeding procedures rely on static or dynamic seeding strategies. Static 

seeding involves adding a concentrated cell suspension over scaffolds and allowing the cells to 

passively adhere over time286. In pilot studies, static seeding was employed to seed ASCs and/or 

macrophages onto the DAT bioscaffolds, and histologically the cells were localized to the 

periphery of the scaffold, with limited infiltration within the inner portions. Other studies have 

shown that a dense layer of cells at the scaffold periphery can consume or prevent the diffusion 

of oxygen and nutrients into the inner portions of the scaffold, causing necrosis287.  

Consequently, a dynamic culture approach was applied to seed the macrophages both alone and 

in combination with the ASCs by gently rocking the cells with the scaffolds in 3 mL of media in 

a vented 15 mL conical tube for 24 hours. After seeding, the macrophages and ASCs were 

observed to be distributed along the periphery and the inner portions, except for areas with dense 

portions of the ECM. These findings highlight how physical properties such as the scaffold 

microarchitecture and porosity can further affect cell infiltration, as an open, permeable porous 

network can facilitate oxygen, nutrients, and waste transport in addition to providing migration 

tracks for the cells285,287,288.  
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When assessing the cellularity of the scaffolds after the dynamic seeding period, there was 

variability observed in the quantitative assessment of dsDNA content and metabolic activity, 

which led to no significant differences between the implant groups. The variability may be 

attributed to donor differences in the cell populations and/or ECM-derived materials. In previous 

studies, DAT bioscaffolds have been demonstrated to promote the viability and proliferation of 

human, murine, and rat ASCs131,234,237,239,249. Moreover, native adipose tissue contains tissue-

resident macrophage populations24, and the accumulation of macrophages during inflammatory 

conditions such as in the case of obesity, is thought to be due to the migration of bone marrow-

derived monocyte populations289. The aim of decellularization is to remove antigenic cellular 

components from the adipose tissue, while maintaining the biological activity and mechanical 

integrity of the ECM. The Flynn lab decellularization protocol utilizes detergent-free methods to 

process adipose tissue, as residual amounts of detergents are known to cause cytotoxicity, and 

their use can disrupt the ECM integrity in such a way that it can negatively impact bioscaffold 

repopulation233,290. Immunohistochemical and mass spectrometry analyses have identified ECM 

components that are conserved in DAT bioscaffolds including collagen types I and IV, laminin, 

and fibronectin234,248, which promote cell adhesion, survival, and proliferation15,68,78,81. Thus, it 

was expected that both cell types would be able to attach to the DAT bioscaffold.  

The current study did not, however, directly evaluate cell viability or proliferation, and instead 

focused on quantifying cell retention after seeding and evaluating cellular metabolism. Cellular 

metabolic activity is often tied to cellular proliferation, but it can be affected by several different 

factors. For example, cells at different densities can have different levels of metabolic activity, 

though this does not necessarily correlate linearly291. In the case of the direct co-culture of ASCs 

and macrophages, the cell-cell and cell-ECM interactions could stimulate a change in cellular 

metabolism such as proliferation or phagocytosis292. Future studies could include staining for 

Ki67, a nuclear marker of proliferation293, or cell viability assays with additional time points. It 

may also be worth probing the secreted factors in the culture media for pro-angiogenic and anti-

apoptotic factors. Overall, the combined qualitative and quantitative measures of cellular 

retention and metabolic activity suggest that while there may have been donor-to-donor viability, 

the total cell density within the DAT scaffolds was similar between the macrophage-seeded, 

ASC-seeded, and co-culture seeded groups within each trial. 
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Following the in vitro studies, unseeded, macrophage-seeded, ASC-seeded, and co-culture 

seeded DAT bioscaffolds were implanted subcutaneously into the inguinal region of 

immunocompetent C57Bl/6 mice. Previous animal studies in the Flynn lab utilizing Wistar rats 

and MacGreen mice involved subcutaneous implantation of ASC-seeded and unseeded DAT 

implants on the dorsa rather than in the inguinal region In the MacGreen mouse model, the 

previous studies showed that there was limited cell infiltration into the unseeded DAT implants 

on the back of the mice251. In contrast, more recent pilot studies in the Flynn lab indicated that 

implantation within the inguinal region may greatly enhance cell recruitment, possibly due to the 

localization of the DAT in proximity to the femoral artery and/or inguinal fat pad. Other animal 

studies in the context of fat grafting have either derived fat grafts from the inguinal pad or have 

used the inguinal region as the recipient site294.  For these reasons, implantation in the inguinal 

region was selected for the current study.  

Qualitative histological assessment of all implant groups at both 2 and 4 weeks through 

Masson’s trichrome staining revealed a thin layer of fibrous connective tissue surrounding the 

seeded and unseeded implant groups, which has been observed in our previous animal 

studies131,165,251. Acellular fibrous capsule formation has long been associated with a negative 

foreign body response to in vivo biomaterial implantation, including silicone breast implants295. 

Moreover, its formation is thought to be mediated by macrophage-fibroblast interactions296,297. In 

the current study, the fibrous capsule formation may have been stimulated due to the human 

sourcing of DAT or its dense microarchitecture298. However, its presence is not alarming because 

the observed capsule is highly cellular, and in some cases, contains adipocytes and erythrocyte-

filled blood vessels along the implant periphery. Additionally, the capsule integrated well with 

adjacent fat pads and previous studies have observed the fibrous capsule surrounding DAT 

implants to decrease in thickness and remodel over time44. 

Qualitative and quantitative assessment of cellular recruitment into the scaffolds in the present 

study revealed variation between implants belonging to the same seeding condition, which led to 

no detectable differences between groups at either time point. As expected, at 2 weeks a larger 

fraction of the cell-seeded implants showed higher levels of infiltration as compared to unseeded 

implants. At 4 weeks, the unseeded implants showed a greater range of cell infiltration responses 

and a greater fraction showed slightly higher levels of infiltration as compared to their 2-week 
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counterparts, which was also expected. In contrast, at 4 weeks, infiltration into the cell-seeded 

scaffolds appeared to be less variable, although the levels of cell recruitment did not significantly 

change over time. In the previous study, subcutaneous dorsal implantation of both ASC-seeded 

and unseeded DAT implants into MacGreen mice also showed some degree of variability within 

implants from the same group, although not as much as the current study251. Within the dorsal 

implant model, the ASC-seeded implants showed greater levels of cell recruitment at 8 weeks as 

compared to unseeded implants, although the unseeded implants also showed greater recruitment 

over time251. The previous study was in agreement with other studies that have demonstrated that 

ASCs can augment cellular recruitment into biomaterial scaffolds in comparison to unseeded 

controls128–131.  

The variation found within each group, as well as the infiltration response in the cell-seeded 

groups at 4 weeks, could be explained by a few different factors. First, when comparing scaffolds 

with ASCs and/or macrophages sourced from the same donors that were implanted into different 

recipient mice, there were differences observed in the levels of cellular infiltration between 

individual mice. For example, some mice would show higher levels of cellular recruitment into 

both implanted scaffolds, no matter their seeding condition, while other mice would 

comparatively show less migration into implants derived some the same donor.  

Secondly, there were differences noted when comparing the ASC-seeded or macrophage-seeded 

implants and co-culture implants derived seeded with cells sourced from the same donors and 

placed into the same recipient mice, pointing to possible differences due to implant positioning 

and the implantation method. The inguinal implant recipient site is closer to the leg, which could 

cause cyclical mechanical loading in the implant and thus increase variability. During the 

surgical procedure, the implants were placed into subcutaneous pockets made as close to the 

femoral artery as possible. As previously mentioned, adipose tissue growth is largely dependent 

on vascularization and the infiltration of immune cell populations59. The vasculature within the 

inguinal region includes the femoral artery and the capillary network feeding the local soft 

tissues including muscle and fat. In some cases, the lack of noticeable differences could be due to 

implants being situated closer or farther from the tissues that have greater access to the 

vasculature, thereby accelerating or delaying the influx of host cell populations and masking 

differences between conditions. Luttikhuizen et al. highlighted the fact that different 
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implantation sites of collagen disks in C56Bl/6 mice led to differences in inflammatory cytokine 

signaling and downstream outcomes such as foreign body reaction propagation, implant 

degradation, immune cell recruitment, and angiogenesis299. In a different study, fat grafts derived 

from rabbit inguinal fat pads were grafted subcutaneously, supramuscularly, or submuscularly 

into the cheeks of New Zealand white rabbits300. Through magnetic resonance imaging (MRI) 

and histological analyses, the fat grafts placed in the supramuscular region was found to have 

retained a larger volume in comparison to the other areas300. Taken together, this highlights how 

the local microenvironment of the recipient area may affect the cell recruitment and remodeling 

response in vivo. Further refinement of the surgical procedure could aid in promoting a more 

consistent infiltration response. Alternatively, implantation on the dorsa could be performed 

since differences between ASC-seeded and unseeded implants were previously detected in this 

model. Notably, there were implants from the cell-seeded groups, especially in the ASC-seeded 

and co-culture-seeded groups, that showed relatively low levels of cell infiltration, which would 

be due to other factors such as issues with the seeding procedure or poor cell attachment. Further 

probing using immunohistochemical staining could be performed to see if ASC and/or 

macrophage populations were retained within implants and if their absence could explain these 

low responsive implants.  

The variation observed in the levels of cellular infiltration was also reflected in the assessment of 

the blood vessel densities and neo-adipocyte formation within the scaffolds in the current study. 

The overall neo-adipocyte formation was low for both groups at both time points, which was 

expected at these early time points. While the blood vessel density was also found to be fairly 

low between all groups at both time points, when comparing implants within a seeding condition 

the implants that had higher levels of cell infiltration tended to have slightly higher blood vessel 

densities, which was expected. The quantitative assessment of CD31+ cell recruitment within the 

implant boundary showed similar patterns. Further analysis of CD31 co-staining with the cell 

proliferation marker, EdU, or the pro-angiogenic cytokine, vascular endothelial growth factor 

(VEGF)-A, could provide a stronger indication of the pro-angiogenic response. The inclusion of 

additional later time points could also result in differences being detected in the blood vessel 

and/or endothelial cell recruitment. For example, in the previous study using immunocompetent 

Wistar rats, it was observed that ASC-seeded implants showed a significant increase in 
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CD31+VEGF-A+ cells at 4 weeks, which was followed by a significantly greater number of 

erythrocyte-filled blood vessels at 8 and 12 weeks165.  

Angiogenesis is a tightly-coupled spatiotemporal process that requires the degradation and 

remodeling of the surrounding ECM in order to propagate130,301,302. Initially, the basement 

membrane must be degraded to allow for capillary sprouting from an existing blood vessel to 

occur301. This is followed by further degradation of the ECM near the sprouting site to allow for 

endothelial invasion, and this continues in order to create a space for the sprouting blood vessel 

lumen301. It is possible that DAT, in its intact form, may be too dense for blood vessel sprouting 

to occur at early time points. Further refinement of the porosity of the DAT bioscaffold may be 

carried out during the fabrication process by freezing the scaffolds at lower temperatures, thus 

increasing freezing rate and promoting greater ice crystal formation303. Alternatively, other 

methods of delivery could be explored including injectable hydrogel systems131. The Flynn lab 

has previously developed composite methacrylated chondroitin sulphate-DAT hydrogels to 

deliver rat ASCs into Wistar rats131. It was demonstrated that these composite constructs 

contained tunable mechanical properties, promoted the homogenous distribution of ASCs within 

the hydrogel, and promoted in vivo cellular infiltration, blood vessel development and neo-fat 

formation131. 

Finally co-staining for the pan-macrophage marker, CD68, with the “M2-like” marker, Arginase 

(Arg)-1, and the M1-like marker, iNOS, revealed that when comparing groups with similar levels 

of infiltration there was a qualitatively greater proportion of cells that expressed CD68 and Arg-

1, with a lower fraction expressing iNOS at both time points. The merged images portraying co-

localization revealed an abundant CD68+ Arg-1+ iNOS- cell population, pointing to an abundant 

recruited macrophage population with a shift towards a more “M2-like”, pro-regenerative 

phenotype. The fact that there was a large influx of cells with CD68 expression among all groups 

at both time points is consistent with the previous study using Wistar rats, which observed that 

CD68+ expression was similar between ASC and unseeded implants, but the ASC-seeded 

implants contained a greater fraction of CD68+macrophages that expressed the pro-regenerative 

macrophage marker, CD163165. In contrast, the studies using MacGreen mice observed 

augmented levels of macrophages expressing the pan-macrophage marker Iba1 in ASC-seeded 

implants, which peaked after 3 weeks251.  
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The present study also identified several different subpopulations of cells. For example, there 

was a subpopulation of CD68+ Arg-1- iNOS- Hoechst+ cells identified, which was also found in a 

different study by Agrawal et al., which assessed the in vivo remodeling response of different 

commercially available acellular dermis matrices subcutaneously implanted into Sprague 

Dawley rats304. CD68 is a scavenger receptor associated with lysosomes that has been found in 

monocytes and macrophages, but it can also be expressed by subsets of CD34-positive 

hematopoietic stem cells, dendritic cells, neutrophils, basophils, and mast cells257. While some of 

these cells could be contributing to the subpopulation of CD68+ Arg-1- iNOS- Hoechst+ cells, 

Agrawal et al. posited that that these cells were newly recruited and might not have been 

stimulated to express pro-inflammatory or pro-regenerative markers304. A separate subpopulation 

of CD68- Arg-1+ iNOS- Hoechst+ cells was found, which may be attributed to other cells 

commonly recruited to biomaterial implants that can express Arg-1 including fibroblasts, 

dendritic cells, and neutrophils305.  

Due to the limitations in the available host antibodies, it is common in studies evaluating 

macrophage phenotype to co-stain for a pan-macrophage marker in combination with either Arg-

1 or iNOS. However, the current study utilized a triple stain and identified a small population of 

CD68+ Arg-1+ iNOS+ Hoechst+ cells, although their role in vivo is still unknown. This 

macrophage subpopulation may represent cells that are in transition from a pro-inflammatory to 

a pro-regenerative phenotype, as other studies have immunohistochemically evaluated other 

combinations of pro-inflammatory and pro-regenerative macrophage markers and have found a 

similar mixed macrophage phenotype182,304. Interestingly, the current study also found that 

higher levels of infiltration correlated with greater levels of iNOS expression and a greater 

number of CD68+ Arg-1+ iNOS+ Hoechst+ cells. Future studies could examine other combinations 

of pan-macrophage markers (e.g. F4/80, Iba-1, CD11b), pro-inflammatory markers (e.g. CD80, 

C-C chemokine receptor type (CCR)7, tumor necrosis factor (TNF)-α), and pro-regenerative 

markers (e.g. CD163, CD206, Il-10) with additional time points in order to gain a deeper 

understanding of the spatiotemporal localization and phenotype of recruited macrophage 

populations. Taken together, the findings of this study support that in order for angiogenesis and 

constructive remodeling of implants into neo-adipose tissue to occur in this mouse model, there 

is a need to mobilize a diverse range of macrophage responses. 
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Chapter 5 

5 Conclusions and future directions 

5.1 Summary of findings and conclusions 

In the first aim, methods were established to harvest, culture, and differentiate syngeneic, murine 

bone marrow-derived macrophages from MacGreen mice. Characterization of the 

immunophenotype of the differentiated cell population using flow cytometry revealed that the 

cells co-expressed the hematopoietic marker CD45, as well as the macrophage markers, CD11b 

and F4/80. Importantly, the cells did not express the neutrophil marker, Ly6G. Taken together, 

the results support that the majority of the cells had differentiated into macrophages. Further 

analysis revealed that the majority of the CD45+ CD11b+ F4/80+ Ly6G- subset did not express the 

monocyte/macrophage marker, Ly6C, which may suggest that the cells had a more pro-

regenerative phenotype. However, further assessment of additional pro-inflammatory and pro-

regenerative markers would be needed to draw firm conclusions. Interestingly, both Ly6C- and 

Ly6C+ cells contained subpopulations with varying levels of GFP expression, emphasizing the 

diversity of the differentiated cell population.  

In the second aim, a dynamic culture seeding strategy was employed to seed the macrophages 

both alone and in combination with syngeneic dsRed+ adipose-derived stromal cells (ASCs) onto 

decellularized adipose tissue (DAT) bioscaffolds over 24 hours. After seeding, qualitative 

visualization verified the attachment of both cell types along the periphery and the inner portions 

of the DAT bioscaffolds, with the exception of areas with dense regions of extracellular matrix 

(ECM). Additional quantitative measures of cellularity including double stranded DNA (dsDNA) 

content and metabolic activity showed no significant differences between the implant groups. 

While the data reflects donor-to-donor variability in the cell populations and/or ECM-derived 

materials, the total cell density within the DAT scaffolds was similar between the macrophage-

seeded, ASC-seeded, and co-culture seeded groups within each trial, suggesting similar levels of 

attachment. 

In the third aim, the unseeded, macrophage-seeded, ASC-seeded, and co-culture-seeded DAT 

bioscaffolds were implanted subcutaneously into the inguinal region of immunocompetent 
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C57Bl/6 mice. Qualitative histological assessment of all implant groups at both 2 and 4 weeks 

through Masson’s trichrome staining revealed a thin layer of fibrous connective tissue 

surrounding the seeded and unseeded implant groups, which had integrated well with the 

surrounding fat pads and contained cells. Notably, newly formed adipocytes and erythrocyte-

filled blood vessels were observed along the periphery of the DAT implants, within or near the 

fibrous capsule.  

Further qualitative and quantitative analysis of cellular recruitment into the scaffolds revealed 

variation between implants belonging to the same seeding condition, which led to no detectable 

differences between groups at either time point. As expected, at 2 weeks a greater fraction of the 

cell-seeded implants showed higher levels of infiltration in comparison to unseeded implants. At 

4 weeks, the unseeded implants showed a greater range of cell infiltration responses, with a 

greater fraction showing slightly higher levels of infiltration as compared to the 2-week unseeded 

samples. In contrast, at 4 weeks, the cell-seeded scaffolds showed less variability in terms of the 

infiltration response, although the overall levels of cell recruitment did not significantly change 

over time. The variation found within implants belonging to the same seeding condition could be 

explained in part by physiological differences between mice, implantation in a mechanically 

dynamic area of the mouse’s body, or issues with the seeding procedure. 

Quantitative assessment of blood vessel density and neo-adipocyte formation within the 

scaffolds in all groups at both time points showed variability similar to the cellular infiltration 

analyses. In general, neo-adipocyte formation was low for all groups, which was expected at 

these early time points. The blood vessel density was also found to be low between all groups at 

both time points. However, it was noted that the implants that had higher levels of total cell 

infiltration tended to have slightly higher blood vessel densities. This trend was further reflected 

in the qualitative and quantitative assessment of CD31+ endothelial cell recruitment within the 

implant periphery. 

Finally, co-staining was performed for the pan-macrophage marker, CD68, the M2-like marker, 

Arginase-1 (Arg-1), and the M1-like marker, inducible nitric oxide synthase (iNOS). Qualitative 

assessment at both time points revealed that when comparing groups with similar levels of 

infiltration, there were no observed differences between any of the groups. DAT implants 
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contained a greater proportion of cells that expressed CD68 and Arg-1, with a lower fraction 

expressing iNOS. Merged images visualizing co-localization revealed an abundant CD68+ Arg-

1+ iNOS- Hoechst+ cell population, which pointed towards a recruited macrophage population 

with a shift towards a more pro-regenerative phenotype. The phenotypes of the recruited cell 

populations were diverse and included smaller subpopulations of CD68+ Arg-1- iNOS- Hoechst+ 

cells and CD68- Arg-1+ iNOS- Hoechst+ cells, as well as recruited macrophages with a 

CD68+ Arg-1+ iNOS+ Hoechst+ phenotype, suggesting the cells may be in transition. However, 

differences were noted between DAT implants with different infiltration levels. In general, 

higher levels of cell infiltration corresponded to qualitatively greater levels of iNOS expression, 

as well as qualitatively higher levels of macrophages containing a mixed phenotype.  

Taken together, higher levels of cell infiltration correlated with higher levels of blood vessel 

formation, CD31+ endothelial cell recruitment, and a greater diversity in macrophage phenotype. 

Though a diverse range of macrophage phenotypes was recruited into the DAT implants, a 

greater fraction expressed Arg-1, suggestive of a more pro-regenerative phenotype. Overall, the 

findings highlight the complexity of macrophage phenotypes required for blood vessel 

development and downstream neo-adipocyte formation to occur. 

5.2 Future recommendations 

The present thesis served as a basis for the proof-of-concept of delivering macrophages and 

ASCs using ECM-derived bioscaffolds for soft tissue regeneration or repair. Initial flow 

cytometry characterization of the surface marker profile of differentiated bone marrow-derived 

cells examined a combination of macrophage-associated markers including CD45, CD11b, 

F4/80, Ly6C, GFP as well as the neutrophil marker, Ly6G to confirm that the cells were 

macrophages, while also revealing subpopulations. Further assessment of additional lymphocyte 

markers (e.g. CD4 and CD8) could further confirm the purity and the differentiated cell 

population’s commitment down the myeloid lineage. Additionally, the inclusion of a dendritic 

cell marker (e.g. CD11c) could further confirm the differentiation of these cells into 

macrophages.  

In order to probe whether the in vitro culture conditions may have influenced macrophage 

polarization into an M1-like or M2-like phenotype, the macrophages could be differentiated and 
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then polarized with lipopolysaccharide and interferon (IFN)-γ to induce M1-like macrophage 

polarization, interleukin (IL)-4 and interleukin (IL)-13 to induce M2a-like polarization, and 

interleukin (IL)-10 to induce an M2c-like polarization182,306–308. The surface marker expression of 

these stimulated macrophages could then be compared with the immunophenotype of 

unstimulated macrophages using a panel of pro-inflammatory markers (e.g. CCR7 and CD80) 

and pro-regenerative markers (e.g. CD206 and CD163). This characterization could then be 

further supported by additional analyses using reverse-transcription quantitative PCR to measure 

“M1-like” markers (tnfα and ccl5) and “M2-like” markers (arg1, fizz1). 

In MacGreen mice, all myeloid cells were thought to express EGFP under the control of the csf1r 

promoter, which encodes colony stimulating factor receptor 1 (CSF1R or CD115) found on 

macrophages281,309. Further examination of CD115 could be performed in combination with GFP 

and/or Ly6C to further support the notion of specific MacGreen macrophage subpopulations that 

exist that lack GFP expression. These findings could also be probed by isolating, culturing and 

characterizing primary splenic or peritoneal macrophages from MacGreen mice. 

Future in vitro studies could also focus on improving the characterization, viability, and retention 

of seeded cells after dynamic seeding. Macrophage and ASC cell attachment to DAT 

bioscaffolds were found to be localized to the more peripheral regions of the DAT bioscaffolds. 

Denser regions of ECM prevented the cells from fully infiltrating the scaffold, which could point 

to how the physical properties of the DAT bioscaffold, such as porosity, could be further refined. 

Alternatively, a composite methacrylated chondroitin sulphate-DAT hydrogel could be employed 

to encapsulate and retain the cells131. 

Further assessment of cell proliferation through immunohistochemical staining for the 

proliferation marker, Ki-67, could be performed. Alternatively, the scaffolds could be 

enzymatically digested to release the cells, and staining of apoptotic markers, such as annexin V 

in combination with propidium iodide, could be performed using flow cytometry. In these 

assessments, additional time points such as 48 hours, 3 days, 7 days, and 14 days could be used 

to assess cell retention over a greater period of time. It would also be interesting to further assess 

the effects of the seeding conditions on macrophage phenotype alone or in co-culture with the 

ASCs. Immunohistochemical analyses could be performed to assess a range of pro-inflammatory 
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markers (e.g. iNOS, CD80, tumor necrosis factor (TNF)-α) and pro-regenerative markers (e.g. 

Arg-1, CD206, CD163, interleukin (IL)-10) in combination with further probing of pro- and anti-

inflammatory cytokines by using western blotting. In addition, analysis of the conditioned 

medium, including the macrophages in co-culture with the ASCs, could be performed using 

MultiPlex ELISA to assess whether detectable levels of pro-angiogenic and immunomodulatory 

factors are being secreted from the cells over time, with conditioned media from macrophages 

and ASCs cultured separately as a comparison. The abundance of these factors in normoxia 

could be compared to seeded DAT bioscaffolds cultured under in vitro hypoxic conditions (5% 

CO2/2% O2 in N2). In a previous study performed in the Flynn lab, human ASCs were 

encapsulated in a composite poly(trimethylene carbonate)-b-poly(ethylene glycol)-b-

poly(trimethylene carbonate) diacrylate and methacrylated glycol chitosan functionalized with an 

RGD-containing peptide (PEG-(PTMC-A)2 + MGC-RGD) hydrogel and subsequently cultured 

in hypoxia (5% CO2/2% O2 in N2) 
310. After 14 days, the ASCs in hypoxia released significantly 

higher levels of pro-angiogenic, anti-apoptotic, and chemoattractant factors as compared to 

ASCs cultured in normoxic conditions including hepatocyte growth factor (HGF), platelet-

derived growth factor (PDGF)-AA, stromal-derived growth factor (SDF)-1α, and monocyte 

chemoattractant protein (MCP)-1, leptin, Angiogenin, vascular endothelial growth factor 

(VEGF)-A, Angiopoietin-1, and placental growth factor (PlGF)-1310. 

In terms of future in vivo work, the variability found when comparing implants belonging to the 

same seeding condition may have masked differences in the cell recruitment, blood vessel 

formation, or neo-adipose formation between the groups. As an alternative approach, the cell-

seeded and unseeded DAT implants could be implanted subcutaneously in the dorsa of C57Bl/6 

mice, where differences have been reported between ASC-seeded and unseeded implants in 

terms of cell recruitment and implant remodeling in host-derived fat251. The further inclusion of 

additional time points (e.g. 1, 4, 8 weeks) may also reveal differences in the levels of cellular 

infiltration, blood vessel densities, and adipocyte formation.  

Masson’s trichrome staining revealed that a few of the implants in the seeded conditions at both 

time points had relatively low levels of infiltration, which was not expected. Although, there may 

be inherent physiological differences between recipient mice, the histological analyses were 

performed along a single plane of the implant. By cutting and staining the DAT implants along a 



84 

 

different plane, there may be additional clues as to the migration patterns of recruited cells within 

the implants. While this subset of samples may not be viewed as being highly infiltrated along 

one plane of the implant, assessing a different plane may reveal higher levels of infiltration. 

Moreover, immunohistochemical staining of dsRed+ and/or GFP+ cells could be performed to 

confirm the retention of donor ASCs and macrophages in the scaffolds over time and whether the 

low cell infiltration could be due to issues with the seeding method. Previously it was confirmed 

that the syngeneic donor ASCs were retained in the majority of seeded implants over the course 

of 8 weeks in the dorsal implantation site251.  

Deeper assessment of the phenotype of the infiltrating macrophages should be performed by 

staining for additional pan-macrophage markers (e.g. F4/80, Iba-1, CD11b), pro-inflammatory 

markers (e.g. CD80, CCR7, TNF-α), and pro-regenerative markers (e.g. CD163, CD206, Il-10) 

with the inclusion of additional time points. Further co-localization of the pro-

inflammatory/regenerative markers with EGFP could reveal the phenotype of subpopulations of 

the donor macrophages over time in vivo.  

Finally, as a step towards clinically translating these findings, future studies could explore 

human ASCs and human macrophages derived from peripheral blood monocytes in 

immunocompromised mouse models, as there have been differences noted in human and mouse 

macrophage function175. Also, our studies included the delivery of macrophages that had not 

been exogenously stimulated in vitro by cytokines. Since macrophage subtypes, such as M1, 

M2a, and M2c macrophages, have previously been implicated as playing different roles in 

wound healing148 and angiogenesis182, it is possible that delivering polarized macrophages may 

have an alternative in vivo effect with respect to unpolarized controls in terms of stimulating 

blood vessel formation and implant remodeling.  
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Appendix 1 

 

Supplementary Figure 1: Implants within each seeding condition showed a range of in vivo 

cell recruitment responses at 2 weeks post-implantation in C57Bl/6 mice. Representative 

images of Masson’s trichrome stained cross-sections from unseeded, macrophage, ASC, and co-

culture seeded implants revealed variability in the in vivo response between implants belonging 

the same group. The unseeded implants showed a smaller range of infiltration responses, with a 

tendency towards low levels of infiltration. The macrophage, ASC, and co-culture seeded 

implants exhibited a greater range of in vivo responses including low, partial (low), partial 

(high), or complete levels of cellular infiltration. Scale bars = 1 mm. 
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Supplementary Figure 2. Implants within each seeding condition showed a range of in vivo 

cell recruitment responses at 4 weeks post-implantation in C57Bl/6 mice. Representative 

images of Masson’s trichrome stained cross-sections from unseeded, macrophage, ASC, and co-

culture seeded implants revealed variability in the in vivo response between implants belonging 

the same group. At 4 weeks, the unseeded implants showed a greater range of cellular infiltration 

as compared to 2 weeks post-implantation. The macrophage, ASC, and co-culture seeded 

implants exhibited a similar range of in vivo responses as compared to implants at 2 weeks post-

implantation, though none of the implants exhibited complete cellular infiltration. Scale bars = 1 

mm. 
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Supplementary Figure 3: Immunohistochemistry of no primary controls for CD31 staining. 

Representative images of no primary control are shown for unseeded (top left), macrophage-

seeded (top right), ASC-seeded (bottom left) and co-culture-seeded (bottom right) implants. 

Blue: cell nuclei. Scale: 200 μm. 
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Supplementary Figure 4. Immunohistochemistry of no primary controls for CD68, Arg-1, 

and iNOS staining. Representative images of no primary control are shown for unseeded (top 

left), macrophage-seeded (top right), ASC-seeded (bottom left) and co-culture-seeded (bottom 

right) implants. Blue: cell nuclei. Scale: 200 μm. 
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