
 

 

 

Validating the 

transferability of 

ecological models 

under global change 

scenarios with 

Holocene rock-art 

Luís Filipe Oliveira Silveira 
Master in Biodiversity, Genetics and Evolution 
Department of Biology 

2019 

Supervisor 

José Carlos Alcobia Rogado de Brito, Principal Researcher, CIBIO 

Co-supervisor 
Hugo Rebelo, Assistant Researcher, CIBIO 



 

 

 



 

   

Todas as correções determinadas 

pelo júri, e só essas, foram efetuadas. 

O Presidente do Júri, 

Porto, ______/______/_________ 



 

 

  



FCUP       1 

Validating the transferability of ecological models under global change scenarios with Holocene rock-art  

 

 

Agradecimentos/Acknowledgments 

Em primeiro lugar aos meus orientadores, José Carlos Brito e Hugo Rebelo por me 

darem a oportunidade de poder desenvolver este trabalho sob a sua orientação. Por toda 

a disponibilidade e acompanhamento incansável ao longo deste ano e por todos os 

conhecimentos científicos partilhados imprescindíveis para cumprir esta meta.  

Ao Pedro Tarroso, por estar sempre disponível para me ajudar em muitos dos 

problemas que encontrei durante este trabalho. 

To the BIODESERTS group for all the knowledge conveyed during the Journal Club 

discussions throughout this year. 

To the British Museum, specially to Doctor Helen Anderson, for providing me crucial 

data for this work. 

Aos meus colegas de mestrado por todos os bons momentos partilhados durante 

estes dois anos. 

Por fim, aos meus pais, que sem eles nunca aqui teria chegado sem todo o 

investimento e apoio na minha educação e no meu futuro. 

  



2  FCUP      

 Validating the transferability of ecological models under global change scenarios with Holocene rock-art 
   

 

 

  



FCUP       3 

Validating the transferability of ecological models under global change scenarios with Holocene rock-art  

 

 

Abstract 

The world is facing a global biodiversity crisis, with an increasing rate of species 

extinction due to habitat loss and climate change. Predictions of biodiversity responses to 

global change play a key role to guide conservation efforts. Predictions of climate change 

effects on biodiversity distribution usually rely on ecological niche-based models due to 

their ability to predict species responses in unsampled spatial and/or temporal scenarios. 

Assessing the quality of model transferability across time is critical if they are to be used 

to predict responses beyond the conditions under which they were trained. However, 

validating model transferability requires independent data that is impossible to obtain in 

past or future time scenarios. Rock-art depicting species may provide evidence on paleo-

distributions and a unique opportunity to test the robustness of model projections, which 

may help understating the reliability of future projections. Using rock-art from the Holocene 

of African savannah elephant (Loxodonta africana) and Giraffe (Giraffa camelopardalis), 

this work evaluated the predictive ability of ecological models based in distinct: i) strategies 

to select pseudo-absence data (minimum distance to observations, random data, and 

environmentally restricted data); ii) sources of climatic layers (Worldclim and Paleoview) 

for three time periods (Current, 6,000BP and 7,900BP); and iii) environmental variables 

(land-cover and bioclimatic datasets). Models were constructed with algorithm Random 

Forests for the three time periods (Current, 6,000BP and 7,900BP) and projected to all 

possible combinations of time periods to predict suitable areas for both species. Overall, 

models calibrated with environmentally restricted pseudo-absences performed better, no 

major differences were found between models calibrated with different sources of 

bioclimatic layers, and models coupling land-cover variables with bioclimatic variables 

performed better than pure bioclimatic or land-cover based models. The study here 

developed allows providing a series of recommendations related to model transferability 

in time: 1) When the distributions of studied species are not totally known but the ecological 

niche traits are well known, it is recommend using environmentally restricted pseudo-

absences datasets; 2) When projecting models, it is best to use Worldclim bioclimatic 

variables given the higher availability of spatial resolutions and GCMs; 3) Coupling land-

cover together with bioclimatic variables is recommended, since the association of these 

variables may reflect accurately environmental changes between calibration and 

projection periods. Still, given the limitations in past land-cover availability, trade-offs will 

need to be established between pixel sizes and data sources. 

 

 Keywords: Africa; Bioclimatic variables; Giraffa camelopardalis; Land-cover; Loxodonta 

africana; Paleoview; Pseudo-absences; Random Forests; Range Contraction; Worldclim; 
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Resumo 

Atualmente, o planeta enfrenta uma crise global de biodiversidade onde cada vez 

mais espécies se extinguem devido à destruição de habitat e às alterações climáticas. As 

previsões das respostas da biodiversidade às alterações climáticas são fundamentais 

para guiar os esforços de conservação. As previsões dos efeitos das alterações climáticas 

na distribuição da biodiversidade normalmente dependem de modelos baseados no nicho 

ecológico devido à capacidade em prever respostas das espécies em diferentes cenários 

espaciais e/ou temporais para os quais não há amostragem. Para determinar a qualidade 

da transferibilidade dos modelos são necessários dados independentes, os quais são 

impossíveis de obter para cenários passados ou futuros. Representações de animais na 

arte rupestre podem fornecer evidências sobre paleodistribuições e uma oportunidade 

única para testar a robustez das projeções dos modelos, o que pode ajudar a estimar a 

confiança nas projeções futuras. Utilizando representações de Elefante da savana 

(Loxodonta africana) e de girafa (Giraffa camelopardalis) na arte rupestre do Holocénico, 

este trabalho avaliou a capacidade de previsão destes modelos ecológicos com base em 

distintas: i) estratégias para gerar dados de pseudo-ausência (distância mínima às 

observações, aleatoriamente e ambientalmente restrito); ii) fontes de dados climáticos 

(Worldclim e Paleoview) para três períodos distintos (atual, 6000BP e 7900BP); e iii) 

variáveis ambientais (ocupação do solo e conjuntos de dados bioclimáticos). Os modelos 

foram baseados no algoritmo Random Forests para os três períodos (atual, 6000BP e 

7900BP) e projetados para todas as combinações possíveis de períodos temporais para 

prever áreas adequadas para ambas as espécies. Em geral, os modelos calibrados com 

pseudo-ausências restritas tiveram um melhor desempenho, nenhuma diferença 

importante foi encontrada entre os modelos calibrados com diferentes fontes bioclimáticas 

e os modelos que conjugam variáveis de ocupação do solo com variáveis bioclimáticas 

tiveram um melhor desempenho do que os modelos puramente bioclimáticos ou baseados 

apenas na ocupação do solo. O estudo aqui desenvolvido permite fornecer uma série de 

recomendações relacionadas com a transferibilidade no tempo de modelos ecológicos: 1) 

Quando as distribuições das espécies estudadas não são totalmente conhecidas, mas as 

características do nicho são bem conhecidas, recomenda-se o uso de pseudo-ausências 

ambientalmente restritas; 2) Ao projetar modelos, é preferível usar variáveis bioclimáticas 

do Worldclim, dada a maior disponibilidade de resoluções espaciais e GCMs; 3) É 

recomendado a conjugação de variáveis de ocupação do solo com variáveis bioclimáticas, 

uma vez que a associação destas variáveis pode refletir com precisão as mudanças 

ambientais entre períodos de calibração e projeção. Ainda assim, dadas as limitações da 
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disponibilidade de variáveis de ocupação do solo no passado, será necessário 

estabelecer compromissos entre o tamanho do pixel e as fontes de dados. 

 

Palavras-chave: África; Contrações da distribuição; Giraffa camelopardalis; Loxodonta 

africana; Ocupação do solo; Paleoview; Pseudo-ausências; Random Forests; Variáveis 

bioclimáticas; Worldclim; 
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1. Introduction 

We are currently facing a global biodiversity crisis, with an increasing rate of species 

extinction and habitat loss (Joppa et al., 2016). Although extinction events were always 

part of the natural history processes, current rates of extinction are about 1000 times 

higher than the likely rate in the absence of changes caused by humans, and future rates 

are expected to increase (Pimm et al., 2014). In the last few decades we have witnessed 

catastrophic declines in both the number and size of populations of many species 

(Ceballos & Ehrlich, 2002; Pimm, 2008). The huge ongoing population declines and 

extinctions will likely have negative cascading effects on ecosystem function and services 

that are critical to sustain humanity (Ceballos et al., 2017). Anthropogenic activities appear 

as the major reason for the current crisis, together with climate change  (Tittensor et al., 

2014; Joppa et al., 2016). The steady overall decline of wild species populations size, 

range and connectivity between suitable habitats, are amplified by human-induced climate 

change, poaching, land-use transformation, and exotic species introduction (Butchart et 

al., 2010). While human-induced natural habitat fragmentation is expected to have a more 

immediate impact on biodiversity, the effects of climate change are likely to become a 

long-term issue with unpredictable consequences (Hof et al., 2011). These issues create 

different threats to biodiversity, leading to range contractions and species extinctions 

(Higgins, 2007). Hence, it is of most importance to understand how climate change 

interacts with other anthropogenic impacts on biodiversity patterns to predict the future of 

biodiversity to implement effective conservation plans in advance (Bellard et al., 2012). 

Predictions play a key role in alerting researchers and decision makers to potential 

consequences of climate change: (i) they provide means to aid in the attribution of 

biological changes to climate change and anthropogenic activities; and (ii) they can 

support the development of proactive strategies to reduce climate change impacts on 

biodiversity (Pereira et al., 2010). Attempts to predict climate change effects on biodiversity 

have relied on ecological niche-based models (Pearson & Dawson, 2003). Through 

modelling we can define the environmental space that limits the distribution of species and 

project it against different spatial and temporal scenarios by using associations between 

known occurrences of species and bioclimatic variables across target landscapes to 

predict species distributions (Araújo & Peterson, 2012). Several different ecological niche-

based modelling (ENMs) methods utilizing different algorithms were developed over the 

past decades. The impact that the specific method has on model predictions is an 

important consideration in model applications (Pearson et al., 2006).  
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Currently, ENMs rely on two main approaches: i) correlative niche models focus on 

understanding conditions that allow persistence of species by modelling the observed 

distribution of a species as a function of environmental conditions (Elith & Leathwick, 

2009); and ii) mechanistic niche models aim to understand the environmental 

requirements that make up the fundamental niche of a species by using detailed 

biophysical modelling approaches (Dormann et al., 2012), where data about niche, 

dispersal, and sometimes biotic interactions of the entire set of processes leading to the 

occupation of areas by a species is integrated in models and simulations (Peterson et al., 

2015). Most mechanistic models are data-hungry and rely heavily on parameters derived 

from field observations or empirical relationships. Given the constraints of data availability, 

obtaining the detailed measurements necessary for robust model calibration is time-

consuming and expensive (Peterson et al., 2015), such that mechanistic models have only 

been success fully built for the most charismatic, well-studied, and/or economically 

relevant species (Evans et al., 2016). These characteristics limit their utility to support 

many of the management decisions that model predictions could potentially inform 

(Bouchet et al., 2019). Thus, information gaps often make correlative descriptions of 

patterns the only viable pathway for making predictions. Mechanistic and correlative 

models also share many of the same underlying issues such as: (i) equifinality; (ii) non- 

stationarity; (iii) model misspecification; and (iv) model complexity (Dormann et al., 2012). 

Both mechanistic and correlative models are equally valuable, however, in the majority of 

cases correlative models prevail as the most employable (Bouchet et al., 2019), due to the 

limitations in obtaining data needed to develop mechanistic approaches. 

Regression-based methods attempt to model the variation in species occurrence or 

abundance within the occupied environmental space, selecting predictors according to 

their importance (Elith & Leathwick, 2009). Generalized linear models (GLM) are based 

on an assumed relationship between the mean of the response variable and the linear 

combination of the explanatory variables (Guisan et al., 2002). Generalised addictive 

models (GAM; Hastie & Robert, 1990) are semi-parametric extensions of GLM. Both GAM 

and GLM use a link function to establish a relationship between the mean of the response 

variable and a function of the explanatory variables. The strength of GAM is their ability to 

deal with highly non-monotonic and non-linear relationships between the response and 

the set of explanatory variables (Guisan et al., 2002). More recently, the artificial neural 

networks (ANNs; Lek & Guégan, 1999) have been applied in ecological studies because 

of its ability to deal with complex datasets, and for the powerful predictive power in the 

analysis of both linear and nonlinear relationships as well (Tarroso et al., 2012). ANNs can 

identify and learn correlated patterns between input data and corresponding target values, 

making it a powerful model algorithm, especially when the underlying relationships in the 
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data are not known (Lek & Guégan, 1999). Machine-Learning (ML) algorithms are usually 

seen as more powerful to deal with complex ecological datasets than other methods 

(Pearson et al., 2002; Olden et al., 2008). Some studies have suggested that ML 

algorithms can perform better than the regression-based ones (Elith et al., 2006). Together 

with MaxEnt (Phillips et al., 2006), Random Forest (RF; Breiman, 2001) is considered to 

be among the most powerful ML algorithms, for common usages and for obtaining robust 

ensemble models (Elith et al., 2006; Araújo & New, 2007; Wisz et al., 2008; Mi et al., 2017). 

In this algorithm, random samples from rows and predictors are utilized to build several 

trees. Each individual tree is constructed from a bootstrap sample and split at each node 

by the best predictor from a small, randomly chosen subset of the predictor variables. 

These trees comprising the forest are each grown to maximal depth, and predictions are 

built by averaged trees through “voting” (Breiman, 2001). RF avoids overfitting by 

controlling the number of predictors randomly used at each split, using means of out-of-

bag samples to calculate an unbiased error rate (Mi et al., 2017). There are several 

advantages of RF in comparison to other algorithms, such as: (i) great classification 

accuracy; (ii) ability to model complex interactions amidst predictor variables; (iii) flexibility 

to execute several types of statistical data analysis, including regression, classification, 

survival analysis, and unsupervised learning; and (iv) an algorithm for imputing missing 

data (Cutler et al., 2007). Despite RF being currently on the rise, its potential is still widely 

underused in conservation, ecological applications and inference (Mi et al., 2017). In 

contrast, MaxEnt is a widely used method for making predictions, especially from 

incomplete datasets. It is based on the Maximum Entropy algorithm that estimates the 

distribution of a species by determining the probability distribution of maximum entropy 

(Phillips et al., 2006). MaxEnt’s predictive performance is consistently one of the highest 

among modelling methods (Elith et al., 2006). Some of the advantages include: (i) it 

requires only presence data and environmental information as input; (ii) it can be applied 

to species presence/absence data; (ii) it has the ability to incorporate interactions between 

different variables; (iii) it is based on efficiently deterministic algorithms that guarantee to 

converge to the optimal (maximum entropy) probability distribution; (iv) it avoids overfitting 

by using regularization parameters; and (v) it produces continuous outputs, allowing fine 

distinctions to be made between the modelled suitability of different areas (Phillips et al., 

2006). While there are several differences between the modelling algorithms, all niche 

modelling methods are frequently clouded by several assumptions and uncertainties that 

hamper their credibility.  
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1.1 Assumptions and uncertainties of ecological niche-based models 

The assumption that climate wields control over the distribution of species is supported 

by evidences from observed trends and fossil records (Soberón & Peterson, 2005). The 

bioclimatic envelop that limit the multidimensional space where the species is potentially 

able to maintain populations is defined as ecological niche (Hutchinson, 1957). These 

ecological requirements are divided into fundamental and realized ecological niches. The 

fundamental niche corresponds to the geographic region with appropriate set of abiotic 

factors that impose physiological limits on species’ ability to persist in an area (Peterson 

et al., 1999). The realized niche incorporates abiotic conditions, the effects of interactions 

with other species (biotic factors), and competitive exclusion (Guisan & Zimmermann, 

2000; Soberón & Peterson, 2005). Thus, species will be geographically present where 

both abiotic and biotic factors are positively combined with area that is within the dispersal 

capabilities of the species (Soberón & Peterson, 2005; Peterson, 2011; Fig. 1). ENMs 

assume the concept of ecological niche conservatism (Peterson et al., 1999). Whereby, a 

relationship between species occurrence and a series of environmental variables is 

established to predict present distributions of species and projected them to future climates 

scenarios (Araújo et al., 2005a). Thus, ENMs often discard adaptability and ability of 

species to endure in refugia, since they are based in the assumption that the ecological 

niche of species does not change throughout time (Wiens & Graham, 2005). It is known 

that species range expanded and contracted due to climatic changes throughout the past, 

adjusting it to the changing environmental conditions, with potential of adaptation to 

suboptimal future environmental conditions. Therefore, to increase the accuracy of 

predictions of range shifts, it is important to first identify past refugia. The importance of 

refugia is recognized (Bennett & Provan, 2008; Ashcroft, 2010) and it is widely used to 

predict suitable areas that should be conserved to limit the impacts of climate change 

(Barnosky, 2008; Williams et al., 2008; Rull, 2009). The concept of ecological niche 

conservatism has been source of discussion for several years. Peterson et al. (1999) 

proposed the concept of ecological niche conservatism, demonstrating that ecological 

niches show considerable conservatism over evolutionary time periods. Even though 

recent and short-term events show considerable evidence towards conservatism, long-

term events show breakdown of conservatism (Peterson, 2011). Although niche 

conservatism is widespread, there are methodological limitations. One of these limitations 

is the environmental data set used to infer niche shifts (Peterson, 2011). Sampling the 

complete climatic niche where a species can thrive is considered one of the main factors 

affecting the reliability of ENMs predictions (Maiorano et al., 2013). It its known that 

longstanding human-induced factors have advocate extinctions in the past, that often 
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result in reductions of historical distribution (Pimm et al., 2006; Bellard et al., 2012). It was 

demonstrated that range contraction has an important influence on the predictions of 

suitable climatic space and species vulnerability trend under climate change scenarios, as 

it reduces the climatic variability associated with the species niche (Martínez-Freiría et al., 

2016). Future estimates are drastically underestimated unless the full historical distribution 

of the species is included in ENMs (Martínez-Freiría et al., 2016; Faurby & Araújo, 2018). 

If the realized niche and fundamental niche do not coincide entirely, we cannot hope for 

any modelling algorithm to characterize the full fundamental niche of a species (Phillips et 

al., 2006). Thus, forecasts of climate change impacts on biodiversity for many species are 

unlikely to be reliable without acknowledging past anthropogenic influences on 

contemporary ranges. 

 

 

Figure 1 - The ‘BAM diagram’, showing a simplified framework for understanding where species will be distributed. The 

combination of biotic factors, abiotic factors and movement factors delimit geographical distributions of species. Adapted 

from Peterson et al. (2011). 

 

Using correlative ENMs to project future distributions assumes that the variables 

included in models do in fact reflect the niche of a species. Determining all the factors that 

influence a species niche is an impossible task, and the possibility that unaccounted niche 

factors may influence the observed distribution has hampered ENMs (Wiens et al., 2009). 

Utilizing environmental correlates of a specie’s distribution to project its future occurrence 

assumes as well that the current distribution is in equilibrium, where suitable habitat is fully 

occupied (Soberón & Peterson, 2005). However, suitable places may not be occupied by 



FCUP       15 

Validating the transferability of ecological models under global change scenarios with Holocene rock-art  

 

 

several reasons : (i) if recent disturbances such as poaching or habitat destruction wipe 

out a species from a landscape, (ii) if a species is expanding into areas that have only 

recently become available, or (ii) if regional population density is not adequate to support 

colonization of suitable zones (Pulliam, 2000). Moreover, most ENMs assume that each 

species responds independently to the environmental factors that determine its niche 

space, and thus its distribution. Therefore species interactions are generally not included 

in ENMs (Wiens et al., 2009). Another assumption is that individuals will be able to 

disperse to suitable locations (Pearson & Dawson, 2003). However, if environmental 

conditions shift more rapidly than species can disperse, they may be forced to persist only 

in isolated habitat refugia that meet their niche requirements (Loarie et al., 2008). The 

ability of individuals to disperse to suitable places is not entirely dependent on their 

inherent dispersal capacity. In many cases the landscape through which species must 

move to reach suitable places has been fragmented by human actions. This fragmentation 

breaks habitat connectivity, creating barriers to dispersal and a landscape mosaic of 

suitable, less suitable, and unsuitable habitat patches (Wiens et al., 2009). 

Since ENMs carry plenty of assumptions, several uncertainties are to be expected, 

mainly derived from: i) input data biases or lack of data; ii) modelling features such as 

types of algorithms, threshold values and number of pseudo absences; iii) the complexity 

of natural systems dynamics such as species dispersal ability; iv) reliance on different 

General Circulation Models (GCM; numerical models representing physical processes in 

the atmosphere, ocean, cryosphere and land surface) parameters and incorporate 

different functions to portray the dynamics of atmospheric circulation and ocean effects, 

they may project different consequences; and v) scale related uncertainties, ranging from 

distributions not matching environmental factors closely because behavioural interactions 

may override habitat selection at a very fine resolution, to only the most general 

environmental relations emerging at coarser resolutions (Barry & Elith, 2006; Elith & 

Leathwick, 2009; Wiens et al., 2009). All models are sensitive to the quantity and quality 

of the input data, and so are ENMs. The reliability of occurrence records of species used 

to create ENMs depends on several factors such as the comprehensiveness of survey 

coverage, potential biases in recording presences/absences, or the skill and knowledge to 

identify the species (Scott, 2002). Incomplete spatial coverage or small sample curtails the 

statistical assurance of correlations and increases the uncertainty of extrapolating 

distributions to broader areas (Hernandez et al., 2006). Moreover, some surveys collect 

only presence data, whereas others also document absences. Incorporating absence data 

may strengthen a ENM because where a species is absent can reveal as much about its 

niche as where it is present, but ‘‘absence’’ can be a true absence or a failure to record a 

species that is actually present (Wiens et al., 2009). Absence data is usually poorly 
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available (specially in poorly sampled areas like remote regions), and it is easily 

misidentified (Ponder et al., 2001; Phillips et al., 2006) adding another layer of uncertainty 

to ENMs. Given the rarity of unbiased absence data, researches sometimes resort to 

modelling techniques that require only presence observations as input data. BIOCLIM 

(Busby, 1991) for example, has been developed for developing models based in presence-

only data. Nonetheless, some pitfalls applied to presence-absence dataset models may 

also affect the accuracy of presence-only modelling. For instance, the number of 

occurrence localities used to estimate the parameters of a model is frequently too low, 

compromising reliability (Phillips et al., 2006). Moreover, comparisons between several 

modelling methods show that presence–absence models usually perform better than 

presence-only models (Elith et al., 2006). Hence, models that utilize both presence and 

absence data are increasingly used when only presence data is available, by creating 

artificial absences (e.g. pseudo-absences or background points ; Barbet-Massin et al., 

2012). Different strategies have been proposed to improve the selection of an appropriate 

pseudo-absence dataset. Some studies have suggested using pseudo-absence data 

selected outside a predefined region based on a preliminary model or based on a minimum 

distance to the presence (Engler et al., 2004; Lobo et al., 2010; Martínez-Freiría et al., 

2016). Additionally, the ratio between the quantity of presence data to the quantity of 

absence data (usually defined as prevalence) used to fit the model has also been shown 

to influence model accuracy (Mc Pherson et al., 2004). Some studies have provided 

recommendations and guidelines on the amount of pseudo absences or background 

points to utilize for better accuracy (Philipps & Dudík, 2008; Barbet-Massin et al., 2012; 

Liu et al., 2019). However, it is complicated to obtain a general strategy that will perform 

better for all different taxa and scenarios. Thus, it is wise to incorporate different strategies 

to generate artificial absences when the implications of the strategy used on the modelling 

process are unknown. 

Inconsistencies or lack of climatic input data is also a significant source of uncertainty 

that influence model predictions (Soria-Auza et al., 2010). In the last decades, there has 

been an increasing production of global bioclimatic databases. WorldClim, one of the most 

popular among researchers, provides interpolated data layers, consisting of long-term 

average monthly temperature and precipitation values, based on observations from 

weather stations across the world (Hijmans et al., 2005). Paleoview is another source of 

climatic layers, which provides a comprehensive way to generate and visualise 

paleoclimatic data (Fordham et al., 2017). Regional to global scale simulations of 

temperature, precipitation, humidity and mean sea level pressure can be generated from 

PaleoView as gridded or time series data for any period during the last 21,000 yr. Modelled 
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climate reconstructions are based on daily simulation output from the Community Climate 

System Model ver. 3 (CCSM3). Nonetheless, the use of climatic layers based on 

interpolated methods is specially problematic in areas with deficient or unevenly distributed 

network of weather stations, such as tropical forests, desert regions, or mountainous areas 

(Hijmans et al., 2005; Yi et al., 2011; Fordham et al., 2017). Given these issues, the 

selection of appropriate bioclimatic data becomes a complex task in distribution modelling. 

It is important to consider the limitations, and not just assume that the use of a single 

database is optimal for all regions and scales (Yi et al., 2011; Ashouri et al., 2016). 

Nonetheless, the criteria utilized for choosing a specific bioclimatic database and its effect 

on the models and projections have been a rather neglected topic, and only few studies 

have addressed it (e.g. Bobrowski et al., 2017; Morales-Barbero & Vega-Álvarez, 2019). 

 

1.2 Ensemble forecasting 

Due to the variability in predictions of ecological niche models according to the method 

utilized, and since none of the widely used techniques performs universally better than the 

others (Elith et al., 2006), simultaneously applying several methods within a consensus 

modelling framework (ensemble model) has been recommended (Buisson et al., 2010). 

The concept of ensemble modelling is that each individual model carries both some true 

“signal” about the relationships the model is trying to capture, and some “noise” created 

by errors and uncertainties. Ensembles combine models with the intention of obtaining 

better separation of the signal from noise (Araújo & New, 2007). The concept of ensemble 

is widely used in machine learning, often with complex classifiers built by combining many 

simple modelling units. The ensemble forecast framework aims to consider the central 

trend of several niche models, using different methodologies (Marmion et al., 2009), and 

is currently widely used by ecological niche modellers, often with the same use of pseudo-

absences across the different models utilized. Nonetheless, it was shown that the optimal 

method of generating and using pseudo-absences information differs widely across 

modelling techniques, thus, the optimal way of utilizing pseudo-absences through an 

ensemble forecast technique could therefore be to use different pseudo-absence selection 

strategies (Barbet-Massin et al., 2012). However, most ensemble forecast techniques 

compare model accuracy either to select the best models or to weight their predictions 

differently, which can only be done in an unbiased way if the same data were used for all 

models. Grouping models that share the same way of optimising the usage of pseudo-

absences, comparing their model accuracy and selecting the best from each group can 

potential overcome this problem (Barbet-Massin et al., 2012). Various strategies exist to 

combine predictions from individual models into an ensemble, the most intuitive of which 
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is simply taking the mathematical mean or median across predictions, independently of 

whether such predictions are binary or continuous. More complex approaches involve 

“weighting”, where predictions of different models are scaled by weights based on some 

measure of predictive performance (Araújo & New, 2007). These weights are often derived 

by validating predictions from individual models on some test data. Weighting is thought 

to improve how well the ensemble predicts (Araújo & New, 2007), although weighted 

ensembles also require more effort to produce as the individual models need to be 

validated before they can be combined. Most studies that have explored several models 

in ensemble framework have mainly attempted (i) to identify the ‘best’ modelling 

performance among extensive model comparisons; or (ii) to use a consensus approach 

that summarizes the variability within the ensemble of predictions; (Buisson et al., 2010). 

Variability in projections of such ensembles, however, has rarely been considered itself, 

although calls have arisen to improve knowledge of the uncertainty factors that may 

decrease the reliability of predictions (Barry & Elith, 2006). In the context of climate 

change, uncertainty in projections becomes even more worrying as additional sources of 

variability arise at two levels with the use of future climate scenarios (Araújo & New, 2007). 

Very little attention has been focused on quantifying the variability between the projections 

obtained from ensembles combining several sources of uncertainty (Buisson et al., 2010). 

Quantifying the effects of the different sources of uncertainty is crucial, so management 

and conservation decisions can be effective and taken with knowledge of predictions 

reliability. 

 

1.3 Transferability of ecological models 

One of the main interests of researchers in ENMs dwells in their capacity to predict 

species responses in unsampled spatial or temporal scenarios. Researchers have 

investigated whether a model developed for a specific region can successfully predict 

species occurrence in a distinct region (Randin et al., 2006; Peterson et al., 2007), as well 

as if models developed for a specific time period can predict species occurrence in a 

distinct temporal scenario with different environmental conditions (Araújo et al., 2005b; 

Tuanmu et al., 2011). This notion of the cross applicability of models in both space and 

time has been coined as transferability and it is now widely used to expand the potential 

of ENMS (Randin et al., 2006). Model transferability is currently an important branch of 

predictive science that has stemmed mainly from the need to produce ecological forecasts 

(Bouchet et al., 2019) in face of rapid environmental changes. The transferability of the 

model to other periods of time allows: (i) the evaluation of the effects that climatic changes 

have had or will have on species ranges; (ii) to anticipate the effects of the global 
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environmental changes and its effects on species distributions; and (iii) to pre-emptively 

design conservation plans (Werkowska et al., 2016). The transference of models to future 

climate change scenarios was the area that stimulated advances in both conceptual and 

analytical strategies of ENMs. However, it is impossible to adequately assess model 

predictions for future scenarios due to the lack of data (Araújo et al., 2005b). Thus, 

predictions should be considered with relative caution since several sources of uncertainty 

emerge at each step (Wiens et al., 2009) and proliferate throughout the modelling 

operation. The transference of a model is not a forthright exercise and requires modellers 

to handle a conceptual background as well as methods to avoid bias in the results 

(Werkowska et al., 2016). Transferability should be greater in ENMs fitted to observations 

that document all dimensions and constraints placed upon the fundamental niche. 

However, most datasets do not meet this requirement, because species do not always 

occupy all suitable habitats. While fundamental niches can be expected to stay constant 

over timescales relevant to management, realized niches will typically vary both spatially 

and temporally (Yates et al., 2018). This complicates model transfers, particularly when 

the realized niche becomes a direct function of habitat selection behaviour as it relates to 

resource availability or tolerance limits (Matthiopoulos et al., 2011). Failures in model 

transfer can occur if these are calibrated with data do not extrapolate well to novel data 

(Moreno-Amat et al., 2015). Moreover, unintentional stochastic events in the evaluation 

data can also result in poor transferability. Overfitting a model often results in loss of model 

transferability as well. Overfitting may occur for two rather different reasons: (i) weak 

correlations among variables arise as a result of random noise, and these may be 

incorrectly interpreted as legitimate relationships; and (ii) when there are statistical 

associations between predictor and response variables that are real in a given data set 

but do not occur under a wide range of conditions (Wenger & Olden, 2012). Moreover, 

there are several fundamental challenges to be surpassed in model transferability in order 

to achieve more accurate and reliable predictions, such as: (i) which variables make 

models more or less transferable; (ii) knowing whether models are trait or taxon-specific; 

(iii) understanding to what extent data quality influences model transferability; (iv) how to 

sample for an more optimized model transferability; and (v) understanding how the 

different model algorithms influence model transferability (Yates et al., 2018). 

 

1.4 Validation of model’s transferability 

For evaluating model transferability it its imperial to have appropriate metrics of 

prediction accuracy and precision (Fourcade et al., 2018). However, there is still little to no 

consensus on which metrics are the most appropriate (Randin et al., 2006; Sequeira et al., 
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2018). Moreover, validation is only possible with independent data, which is often 

unavailable or insufficient (Yates et al., 2018). In the absence of validation data for a target 

area, transferability can only be estimated by contrasting predictions with existing expert 

knowledge or simulations, or benchmarking performance by projecting models into 

multiple alternative scenarios for which enough data is available (Sequeira et al., 2018). 

Cross-validation can provide a reasonable approximation of independence, so long as it 

can be structured to mimic prediction conditions and minimize correlations (Wenger & 

Olden, 2012). Ultimately, consistent assessments of transferability will require unified and 

widely applicable standard metrics hat enable direct comparisons among studies, 

systems, and taxa (Sequeira et al., 2018). Nonetheless, approaches for evaluating 

ecological models do not provide inference into transferability often. As a result, the 

transferability of a model is often unknown, and the model selected as “best” for a data set 

may have worse transferability than a rejected one (Wenger & Olden, 2012). Novel 

approaches for model transferability validation that are independent of model choice and 

response variable type are of most importance if we want future conservation decision 

making to be effective in face of an increasingly rapid changing world, especially when 

resources available for ecological research are usually thin. 

Model transferability testing can be a powerful method for model evaluation (Randin 

et al., 2006). Independent observations from a training data set has been recommended 

as a more proper method for validating models predictions (Guisan & Zimmermann, 2000). 

Thus, the use of a temporarily independent testing data set is recommended to assess the 

temporal transferability of niche model techniques (Boyce et al., 2002; Araújo et al., 

2005b). Moreover, how the distribution map relates to reality data, especially in under 

sampled areas can be used as a metric to assess model performance and generalization. 

Arguably, if model predictions perform very well there, great progress is provided and 

usually cost-effectively (Mi et al., 2017). Even though model validations on independent 

datasets have suggested that in terms of both sensitivity (the proportion of observed 

positives that were predicted to be positive) and specificity (the proportion of observed 

negatives that were predicted to be negatives), some of the newer machine-learning and 

tree-based algorithms have the best overall performance (Thuiller et al., 2003; Elith et al., 

2006), the risk of hampering transferability if model complexity is not constrained is a reality 

in these models (Tuanmu et al., 2011). Assessment of transferability of models is critical 

if they are to be used in a predictive manner beyond the conditions under which they were 

trained (Wenger & Olden, 2012). Moreover, variability in projections resulting from the 

multiplicity of approaches available difficult a clear picture of the future of biodiversity under 

different scenarios of climatic change (Pereira et al., 2010). Determining how to provide 
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less unbiased, more accurate and robust predictions is of most importance. However, such 

predictions are complicated to validate as consequence of lack of reliable presence data 

for the periods of model projection. Data from museum specimen and published literature 

are common sources to assess model transferability performance (Graham et al., 2004). 

Nonetheless, rock art can be found in most regions of the world and has an untapped 

potential to provide evidence on paleo-distributions and biogeography, particularly on 

areas or periods where faunal records are scarce (Guagnin et al., 2018). Prehistoric 

human populations throughout Africa have documented many of the species presence in 

the environment during the Holocene through paintings and engravings (e.g.  Messerli & 

Winiger, 1992; Masseti, 2010; Guagnin, 2014; Fig. 2). Rock art shows a clear preference 

for large size vertebrates, which are highly visible in the landscape, particularly large size 

herbivores, and typically only essential lines (body outline, head, legs, horns and 

occasionally tails) are depicted (Guagnin, 2014). Therefore, animals such as elephants 

and giraffes that have a very distinctive body shape are very often depicted and easily 

identified. Moreover, patterns on the coat of the animals and heard compositions are often 

depicted and can be used to aid species identification (Guagnin et al., 2018). Many of the 

engravings also show behavioural traits or movement of the animals. Giraffes, for example 

are often depicted with their tail curled up, which is typical for running giraffes, and several 

elephant depictions show elephants in musth (condition in male elephants, characterized 

by highly aggressive behaviour, and often secrete a thick-tar secretion called temporin 

from the temporal ducks on the sides of the head; Guagnin, 2014). This suggests that 

engravers were, at least to some extent, familiar with the depicted species (Guagnin et al., 

2018). Some studies have been successful in identifying species depicted in the 

engravings (Gautier & Muzzolini, 1991; Guagnin et al., 2015, 2018). The availability 

of such presence records provides a unique opportunity to test the robustness of model 

projections at Holocene, based in current models. 

https://en.wikipedia.org/wiki/Elephants
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Figure 2 – The distribution of the Savannah elephant in North Africa during the Holocene. Adapted from Messerli & 

Winiger (1992). 

 

1.5 Species Niche Contraction 

Africa is a vast continent with an overwhelming amount of biodiversity, but its declining 

at a fast pace as human populations grow and invade natural habitats. Forecasts of 

changes in climate projected to Africa are above the global average and the combination 

with illegal wildlife poaching and habitat fragmentation will likely result in significant range 

contractions of species and eventually extinctions (Pimm, 2008; Garcia et al., 2012). 

Moreover, the uncertainties around the predictions of future changes in rainfall make the 

African continent highly vulnerable to the climatic changes we currently face (Garcia et al., 

2012). With the beginning of the 20th century and the increasing human pressure (e.g. 

land-cover change, poaching), large-sized species range contracted drastically, and many 

peripheral populations were extirpated (Lindsey et al., 2013). The African savannah 

elephant (Loxodonta africana; hereafter elephant) and the giraffe (Giraffa camelopardalis) 

are emblematic examples of species that have suffered significant habitat loss due to 

anthropogenic pressures, particularly since the 1970s, resulting in significant contractions 

of their distributional ranges (Blanc, 2008; Fennessy & Brown, 2010; Fig. 3). 

The Elephant is a "keystone" species that plays a crucial role in structuring both plant 

and animal communities (Blanc et al., 2007). The distribution ranges from the sub-Saharan 

regions to the south of the African continent, excluding the African tropical forest region 

(Comstock et al., 2002). Nonetheless, in the past century, it has become increasingly 

fragmented and it is known to have become extinct in multiple countries (Blanc et al., 
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2007). West Africa elephant populations have been particularly extirpated, and the 

distribution has been reduced to tiny scattered fragments (Blanc et al., 2007). Elephants 

have been the focus of intense conservation studies and debate for a long time, particularly 

as their numbers have decreased by nearly 50% in the 1980s (Comstock et al., 2002). 

This species has a vast history of human disturbance. Europe had imported around c. 

100–200 tons of ivory per year and by the late 19th century, European ivory imports may 

have reached 700 tons, representing a potential 60,000 elephants killed per year (Naylor, 

2004; Lee & Graham, 2006). During the last century, the availability of modern weapons 

and road development has made it far easier for people to kill large mammals and by the 

middle of the 1970s a pick of ivory demand threw elephant populations to instability (Lee 

& Graham, 2006). Furthermore, armed conflicts coupled with political instability add an 

extra layer of pressure to populations already repressed by poaching and other 

anthropogenic activities (Lindsey et al., 2013; Brito et al., 2018). 

Giraffes formerly occurred in a wide region across the sub-Saharan Africa but currently 

the range has drastically contracted and fragmented, especially in West Africa, to small 

and scattered populations (Fennessy & Brown, 2010). Since the beginning of the 20th 

century, the distribution and density of giraffe populations has drastically decreased across 

the entire African continent to a total of 140,000 by the late 1990s and nowadays to a mere 

80,000 (Suraud et al., 2012). The distribution of the giraffe until the beginning of the 20th 

century has essentially depended on the suitable vegetation, permanent water sources, 

as well as climate. The range extended throughout most northern Africa (Ciofolo, 1995; 

Suraud et al., 2012). By the end of the 19th century, the giraffe was present across the 

Sudano-Sahelian zone from Chad to Senegal and only natural geographical barriers kept 

the species from colonize new areas (Ciofolo, 1995). The turn of the century was the 

starting point of the species decline. New advancements in firearms allowed extensive and 

more effective hunting coupled with the developments of agriculture, the deforestation, 

and the construction of railroads led to population declined and range contraction, being 

now extinct in most places that otherwise would not be (Fennessy & Brown, 2010). 
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Figure 3 – Distribution at about 1900s (points) and in current time (polygons) of the African savannah elephant (Loxodonta 

africana) and the Giraffe (Giraffa camelopardalis) in Africa. Historical distributions adapted from Martínez-Freiría et al., 

(2016) and current distributions adapted from (Blanc, 2008) and (Muller et al., 2018). The range of Savannah elephant 

excludes observations of the African forest elephant (Loxodonta cyclotis) based on (Roca et al., 2001). The range of Giraffe 

lumps the observations of the four giraffe species recently described (Fennessy et al., 2016; Winter et al., 2018; O’connor 

et al., 2019). 
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2. Objectives 

This work aims to successfully map the Holocene distribution for the two target species 

of this study in order to understand how different input data influence ENMs predictive 

performance and affect their ability to predict suitable areas in different temporal scenarios. 

Specifically it is aimed to test for differences in distinct: i) strategies to select pseudo-

absence data (minimum distance to the presence data, random data, and restricted data); 

ii) sources of climatic layers for three different time periods (Current, 6000BP, 7900BP) 

from different sources (Worldclim, Paleoview); and iii) land-cover and climate-based 

models for the same three time periods. Models will be developed using historical and past 

(Holocene) presence records from two case-study species, the African savannah elephant 

(Loxodonta africana) and the Giraffe (Giraffa camelopardalis). To evaluate each modelling 

strategy and validate their transferability it will be used a novel approach resorting to rock-

art depictions. The results produced by this study are expected to aid researchers selecting 

appropriate data and modelling methods that can produce more accurate and robust 

predictions. Hopefully this study may offer new insights and guidelines for the model’s 

methodological approach.  
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3. Material and Methods 

3.1 Study species 

The African savannah elephant (Loxodonta africana) and the Giraffe (Giraffa 

camelopardalis) were used as study species. The range of the elephant considered in this 

study (Loxodonta africana) excludes the one of the African forest elephant (L. cyclotis) 

given that they exhibit very different ecological niches; the latter is exclusively present in 

tropical forest regions while the former is absent from those areas (Roca et al., 2001). 

The giraffe considered in this study lumps the four giraffe species, Giraffa 

camelopardalis, G. tippelskirchi; G. giraffa; G. reticulata, recently described (Fennessy et 

al., 2016; Winter et al., 2018). It was assumed that the ecological niches of these four 

species are very similar, thus lumping their ranges (O’connor et al., 2019) into a single 

taxonomic unit will probably not affect ecological models. Furthermore, allocating the rock-

art depictions to any of the current four described giraffe species is an impossible task 

since phenotypically they are very similar and impossible to distinguish in rock-art 

depictions. 

 

3.2 Study area 

To include the global distribution of both model species, the study area encompasses 

the full African continent, excluding islands. 

 

3.3 Species observations 

Two datasets were created for each target species, named “Current” and Holocene 

datasets. The “Current” dataset included both contemporary and historical (early 1900’s) 

observations and was retrieved from Martínez-Freiría et al., (2016). Combining 

contemporary and historical observations was done in order to account for the complete 

ecological niche of both species, since the ranges of elephant and giraffe artificially 

contracted drastically over the last century (due to poaching). Discarding this range 

contraction would lead to significant underestimation of the current ecological niche, as 

demonstrated by Martínez-Freiría et al., (2016). The Holocene dataset included 

observations from ~6,000 yr ago and was generated based in rock-art (Fig. 4) collected 

from numerous publications with sufficient details to allow species identification with 

confidence (Breuil, 1923; Gautier, 1935a,b; Bagnold et al., 1939; Murray, 1951; McHugh, 

1974; Hall, 1976; Simoneau, 1976; Sayer, 1977; van Lavieren & Esser, 1979; Petit-Maire 

et al., 1983; Tillet, 1985; Fuchs, 1989; Redford & Redford, 1989; Messerli & Winiger, 1992; 



FCUP       27 

Validating the transferability of ecological models under global change scenarios with Holocene rock-art  

 

 

Allard-Huard, 1994; van Albada, 1994a,b,c; Drews, 1995; Ciofolo, 1995; Cremaschi, 1996; 

Le Pendu et al., 2000; Van der Jeugd & Prins, 2000; De Leeuw et al., 2001; Bond & Loffel, 

2001; Masferrer et al., 2001; Ciofolo & Le Pendu, 2002; Parker & Bernard, 2005; Cameron 

& Du Toit, 2005; Crawford-Cabral & Veríssimo, 2005; Hassanin et al., 2007; Fennessy, 

2009; Leroy et al., 2009; Shorrocks & Croft, 2009; Brenneman et al., 2009; Fennessy & 

Brown, 2010; Bouché et al., 2010; Poilecot et al., 2010; Drake et al., 2011; Nasseri et al., 

2011), the British Museum (https://africanrockart.britishmuseum.org/), and from the Global 

Biodiversity Facility (www.gbif.org). When available, the coordinates of point localities 

were extracted and inserted in a database. When coordinates were unavailable, they were 

estimated in Google Earth using locality descriptions. All observations were georeferenced 

in the WGS84 projection system. To reduce biases due to spatial autocorrelation in the full 

set of observations, independent observations for the training dataset were selected from 

clusters of species occurrence in a grid of 2.5 degrees. 

 

A B 

C D 

 

Figure 4 – Rock-art depicting Elephant in Libya (A), and Giraffe in Algeria (B), Libya (C), and Mauritania (D). Photos by J.C. 

Brito 

 

https://africanrockart.britishmuseum.org/
http://www.gbif.org/
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3.4 Environmental variables 

3.4.1 Bioclimatic variables 

To account for probable climate changes occurred in Africa during the species 

observational records periods, bioclimatic datasets were created for three different time 

periods (Table 1): Current, 6,000BP and 7,900BP. The current time period considered 

month-by-month variations in the climate over the period 1960-1990 and data were 

obtained from Worldclim v1.4 (Hijmans et al., 2005) and Paleoview (Fordham et al., 2017) 

databases. Spatial upscaling at a resolution of 2.5 degrees was performed for the 

Worldclim month-by-month data using the Geographical Information System software 

ArcGIS 10.5v (ESRI, 2010). Upscaling the spatial resolution of Worldclim data was done 

to match it with the resolution provided by Paleoview, using the bilinear technique (more 

suitable for continuous data) provided by the Resample tool of ArcGIS. The 6,000BP and 

7,900BP time periods corresponded to different phases of the Holocene and considered 

month-by-month predictions for precipitation and temperature (minimum and maximum) at 

100-year intervals taken in 100-year steps, and data were obtained from Paleoview for the 

single GCM (CCSM3) available. Two bioclimatic variable datasets for different Holocene 

time periods were used since the dating of the rock-art depictions was uncertain and 

ranged from the early to mid-Holocene.  

The only GCM (CCSM3) provided by Paleoview is not provided by Worldclim. As such, 

to be able to compare results obtained by models constructed with Paleoview and 

Worldclim data, it was reconstructed the Holocene bioclimatic variables based in CCSM3 

data. Anomalies for both Holocene periods were calculated using ArcGIS 10.5v by 

subtracting to each pixel the month-by-month climatic predictions obtained from Paleoview 

to its baseline, following the equations (Ramirez-Villegas & Jarvis, 2010): 

 

  

These anomalies calculated for 7,900 and 6,000BP were then added independently 

to Worldclim baseline to obtain month-by-month data for both Holocene periods. For the 

temperatures (minimum and maximum), the anomalies in degree Celsius were simply 

added to the value (in degree Celsius) reported in Worldclim baseline. For the precipitation, 

one millimetre was added to the denominator to account for areas where current 

precipitation is equal to zero. The absolute value of change relative to the Worldclim 
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baseline was used in order to avoid negative monthly precipitation values and to maintain 

homogeneities (Ramirez-Villegas & Jarvis, 2010). 

A total of 19 bioclimatic variables for both climatic data sources and for the tree time 

periods (Figs. 5 to 10) were constructed using the “dismo” package (Hijmans et al., 2015) 

on R software (Team, 2019). Correlations between bioclimatic variables were tested for 

both baselines, and nine bioclimatic variables for each dataset were retained (Pearson’s 

R < 0.7; Table S1). 

Multivariate Environmental Similarity Surfaces (MESS) were constructed using 

MaxEnt software v3.4.1 (Phillips et al., 2019) to access similarities between bioclimatic 

variables from the current time period and both Holocene periods, and to identify the most 

dissimilar variables among time periods. In general, climatic variables used for projections 

between time periods are within the range of the ones used for model training (Fig. S1, 

S2). The Sahara-Sahel is the region where bioclimatic variables were the most dissimilar 

between time periods. This is expected since the climatic conditions in these regions 

during the Holocene are reported to be significantly different from current climate, 

especially for the Sahara Desert, which during the Holocene appeared to be covered by 

xerophytic woods/scrubs and grass, while the eastern part remained desert (Claussen & 

Gayler, 1997). 
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Table 1 – Range values (minimum - maximum) of each bioclimatic variable in each climate dataset (Paleoview and Worldclim) in each time period (current, 6,000BP, and 7,900BP). Legend: ºC – 

degree Celsius; mm/d – millimetres per day; dim - dimensionless 

   Paleoview   Worldclim  

Bioclimatic variable (code) Units Current 6,000BP 7,900BP Current 6,000BP 7,900BP 

Annual Mean Temperature (BIO1) ºC 14.35 - 32.87 13.50 - 30.54 13.57 - 30.50 13.29 - 29.59 10.50 - 28.65 9.93 - 27.72 

Mean Diurnal Range (BIO2) ºC 1.66 – 41.68 1.67 – 40.69 1.68 – 40.92 5.80 – 19.46 5.56 – 18.54 5.51 – 18.49 

Isothermality (BIO3) ºC 31.12 – 85.06 26.78 – 90.09 25.51 – 88.89 29.98 – 88.36 25.78 – 87.45 25.61 – 86.12 

Temperature Seasonality (BIO4)  dim 47.48 – 831.55 46.09 – 930.54 50.60 – 993.33 31.70 – 906.41 36.44 – 1018.35 37.79 – 1074.93 

Max Temperature of Warmest Month (BIO5) ºC 27.82 – 61.19 26.60 – 61.66 26.21 – 62.59 21.70 – 48.50 19.67 – 49.72 19.36 – 50.98 

Min Temperature of Coldest Month (BIO6) ºC -8.44 – 23.91 -9.20 – 22.82 -9.06 – 22.81 -1.70 – 22.20 -2.63 – 20.89 -3.03 – 20.50 

Temperature Annual Range (BIO7) ºC 5.35- 60.19 6.08 – 63.54 5.71 – 65.61 9.70 – 42.70 9.96 – 45.98 9.90 – 47.43 

Mean Temperature of Wettest Quarter (BIO8) ºC 13.83 - 36.85 10.36 - 34.52 9.82 - 34.05 9.37 - 36.88 6.57 - 37.74 5.60 -38.20 

Mean Temperature of Driest Quarter (BIO9) ºC 12.06 - 32.77 11.4643 - 32.27 10.52 - 32.33 8.05 - 33.97 7.25 - 33.61 7.53 - 34.12 

Mean Temperature of Warmest Quarter (BIO10) ºC 18.67 - 36.85 18.26 - 34.91 17.86 - 34.57 15.92 - 37.50 12.10 - 37.81 11.74 - 38.47 

Mean Temperature of Coldest Quarter (BIO11) ºC 11.17 - 29.71 9.77 - 29.00 9.27 - 29.23 6.72 - 27.20 5.01 - 27.08 4.50 - 27.24 

Annual Precipitation (BIO12) mm/d 3.06 – 3065.19 7.47 – 2970.40 8.95 – 2905.54 0.00 – 3075.00 0.00 – 2889.57 0.00 – 2823.73 

Precipitation of Wettest Month (BIO13) mm/d 0.88 – 402.54 1.83 – 436.56 1.55 – 429.23 0.00 – 108.00 0.00 – 536.31 0.00 – 514.78 

Precipitation of Driest Month (BIO14) mm/d 0.00 - 191.21 0.00 - 172.71 0.00 - 174.02 0.00 – 108.00 0.00 - 96.71 0.00 - 92.43 

Precipitation Seasonality (BIO15)   dim 18.75 - 163.58 19.79 - 195.05 19.00 - 214.63 0.00 - 207.17 0.00 - 264.25 0.00 - 254.42 

Precipitation of Wettest Quarter (BIO16) mm/d 1.38 – 1102.81 3.85 – 1025.61 3.21 – 1009.25 0.00 – 1504.00 0.00 – 1519.46 0.00 – 1459.72 

Precipitation of Driest Quarter (BIO17) mm/d 0.00 - 617.98 0.00 - 529.23 0.00 - 537.81 0.00 – 437.00 0.00 - 350.26 0.00 - 345.03 

Precipitation of Warmest Quarter (BIO18) mm/d 0.24 – 1102.81 1.00 – 955.50 0.27 – 947.13 0.00 – 801.00 0.00 – 981.49 0.00 – 907.21 

Precipitation of Coldest Quarter (BIO19) mm/d 0.00 - 617.98 0.00 - 549.23 0.00 - 562.76 0.00 – 1504.00 0.00 - 1377.71 0.00 - 1301.49 
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Figure 5 – Worldclim 

bioclimatic variables 

constructed for Current time 

period. See Tab. 1 for units 

and bioclimatic codes 

correspondence. 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

Figure 6 – Worldclim 

bioclimatic variables 

constructed for 6,000BP 

time period. See Tab. 1 for 

units and bioclimatic codes 

correspondence. 
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Figure 7 – Worldclim 

bioclimatic variables 

constructed for 7,900BP time 

period. See Tab. 1 for units 

and bioclimatic codes 

correspondence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Paleoview 

bioclimatic variables 

constructed for current time 

period. See Tab. 1 for units 

and bioclimatic codes 

correspondence. 
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Figure 9 – Paleoview 

bioclimatic variables 

constructed for 6,000BP 

time period. See Tab. 1 for 

units and bioclimatic codes 

correspondence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 – Paleoview 

bioclimatic variables 

constructed for 7,900BP 

time period. See Tab. 1 for 

units and bioclimatic codes 

correspondence. 
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3.4.2 Land-cover variables 

Land-cover maps for the African continent were derived for the three time periods 

(Current, 6,000BP and 7,900BP) from the Global Atlas of Paleovegetation (Fig. S3; Adams 

& Faure, 1990). The original maps were digitised and georeferenced, and a layer with a 

resolution of 0.3 degrees was created for each land-cover type. For each land-cover type, 

Euclidean distances to the pixels with a certain land-cover type were calculated. Finally, 

layers containing distances to each land-cover type were upscaled to a resolution of 2.5 

degrees, using the nearest technique provided by the Resample tool (Table 2; Figs. 11 to 

13). All procedures were done using ArcGis 10.5v software. 

 

Table 2 – Euclidean distances to land-cover types in each time period. Units are in degrees. 

Land-cover type (Code) Current 6,000BP 7,900BP 

Extreme Desert (LC1) 0.00 - 27.15 0.00 - 27.15 0.00 - 55.52 

Grasslands (LC2) 0.00 - 21.03 0.00 - 21.03 0.00 - 18.83 

Mediterranean Forest (LC3) 0.00 - 70.85 0.00 - 70.85 0.00 - 70.88 

Mediterranean Scrub (LC4) 0.00 - 36.30 0.00 - 36.30 0.00 - 34.47 

Montane Forest (LC5) 0.00 - 48.91 0.00 - 48.91 0.00 - 49.31 

Savannah (LC6) 0.00 - 23.81 0.00 - 23.81 0.00 - 18.83 

Scrub (LC7) 0.00 - 55.37 0.00 - 55.37 0.00 - 57.32 

Semi-Desert (LC8) 0.00 - 20.65 0.00 - 20.65 0.00 - 23.92 

Tropical Forest (LC9) 0.00 - 28.00 0.00 - 28.00 0.00 - 28.07 

Recolonizing Forest Mosaic (LC10) 0.00 - 50.49 0.00 - 50.49 0.00 - 28.15 

Woodland (LC11) 0.00 - 48.85 0.00 - 48.85 0.00 - 49.06 

 

 

Figure 11 – Euclidean 

distances calculated 

for each biome for 

current time period. 

Distances are in 

degrees. See Tab. 2 

for land-cover codes 

correspondence. 
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Figure 12 – Euclidean 

distances calculated 

for each biome for 

6,000BP time period. 

Distances are in 

degrees. See Tab. 2 

for land-cover codes 

correspondence 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 – Euclidean 

distances calculated 

for each biome for 

7,900BP time period. 

Distances are in 

degrees. See Tab. 2 

for land-cover codes 

correspondence 

 

 

 

 

 

 

A MESS analysis of land-cover variables shows that they are generally very similar for 

regions outside the current Sahara-Sahel but not within the Sahara-Sahel (Fig. S4). 

Biomes in the Sahara-Sahel during early to mid-Holocene were extremely different from 

current ones especially for the Sahara. At 6,000BP the current Sahara Desert 

encompassed a semi-desert as well as grasslands and at 7,900BP the Sahara was 

occupied in its vast majority by grasslands and savannah biomes (Fig. S3). 
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3.5 Model building strategy 

Model strategy was planned in order to access the influence of different data inputs 

on different modelling technique’s ability to predict suitable areas for each species in each 

time period. To access the influence of absence data on the modelling methods, three 

datasets of pseudo-absences were created with ArcGIS 10.5 software (Table 3; Fig. S5): 

1) Disk PA: randomly generated pseudo-absences outside buffers encompassing 

observations of each species in each time period. Buffer size was set according to home 

range size estimations, 300 km, for both species (Fennessy, 2009; Fennessy & Brown, 

2010); 2) Random PA: randomly generated pseudo-absences in the full study area; and 

3) Restricted PA: pseudo-absences created on the tropical forest regions only, since both 

species are absent from that biome (Roca et al., 2001; O’Conner et al., 2019). A polygon 

covering the African tropical forest region (Adams & Faure, 1990) was created and then 

pseudo-absences were selected from each pixel inside the polygon. The number of 

pseudo-absences in the Disk PA and Random PA datasets was identical to the number of 

observations in the training datasets, while pseudo-absences in the Ecologically Restricted 

PA dataset were retrieved from all possible pixels inside the polygon. Important to note 

while both the disk and random pseudo-absences generated were the same for both 

Holocene periods, the restricted dataset had to be generated differently for both Holocene 

periods since Tropical forest regions changed between 6,000BP and 7,900BP. These 

three pseudo-absence datasets were used on all different modelling procedures 

performed during this work. 

 

Table 3 – Number of pseudo-absences generated for each method and for each period. 

Species Time period Disk PA Random PA Restricted PA 

Elephant 
Historical 70 70 52 

Holocene 57 57 82 (6,000BP) and 92 (7,900BP) 

Giraffe 
Historical 67 67 50 

Holocene 57 57 82 (6,000BP) and 92 (7,900BP) 

 

One modelling algorithm, Random Forests (Breiman, 2001), was used with different 

datasets and variables to predict suitable areas for both species in the three time periods 

(Fig. 14). All modelling procedures were done with BIOMOD2 (Thuiller et al., 2009). In 

each algorithm, one model replicate was developed using all observations selected for 

model training. All observations where used for training in order to maximize the 

representation of the niches and because in this work it was not intended to account for 

the influence of occurrence records on the model. Models were generated using 
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bioclimatic (Worldclim, Paleoview) or land-cover variables (Landcover) alone, 

combinations of bioclimatic and land-cover variables (Worldclim and Landcover; 

Paleoview and Landcover), and all possible combinations of pseudo-absence data (Disk, 

Random, Restricted). This procedure resulted in 30 different combinations of different data 

input, for each model algorithm and for each species constructed for three different time 

periods and then projected to specific temporal scenarios (Fig. 14): i) Models constructed 

for Current conditions were projected to 6,000BP and 7,900BP; ii) Models constructed for 

6,000BP and for 7,900BP were projected to Current conditions; Current replicates were 

projected to the Holocene time periods (6,000BP and 7,900BP) and vice versa, to check 

the transferability of species observational datasets. 

 

 

Figure 14 – Modelling strategy diagram. BC-WC: Bioclimatic variables from Worldclim dataset; BC-PV: Bioclimatic variables 

from Paleoview dataset; LC: Land-cover variables; RF: Random Forest; 

 

3.6 Evaluation and comparison of models 

The Receiver Operating Characteristic (ROC) was calculated to assess each model 

discriminatory power constructed in this work. ROC curves are constructed by using all 

possible thresholds to classify the scores into confusion matrices, obtaining sensitivity and 

specificity for each matrix, and then plotting sensitivity against the corresponding 

proportion of false positives. From the ROC, the Area Under Curve (AUC) was calculated. 

The True Skill Statistic was not calculated since models were calibrated with no test data, 

and thus values for specificity and sensitivity cannot be obtained. By using all possible 

thresholds, the need for a selection of a single threshold (which is often arbitrary) is 
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avoided, and allows evaluation of the trade‐off between sensitivity and specificity (Pearce 

& Ferrier, 2000). 

Model Projections where compared with the distributions of the “Current” and 

Holocene datasets. The observations and pseudo-absence datasets were intersected with 

the model projection and the respective probabilities of occurrence extracted. Models with 

projections that better matched the distributions obtained previously were considered as 

the best ones. 
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4. Results 

4.1 Distribution of study species 

From the Holocene time period, a total of 292 rock-art depictions for the elephant and 273 

for the giraffe were collected and mapped (Tab. 4; Fig. 15). Most of these observations 

were concentrated in the current Sahara desert, with scattered observations recorded in 

Eastern and Southern Africa. In comparison with the distribution at the Holocene, the 

“Current” distribution was similar in the Eastern and Southern Africa, but in North Africa 

both distributions were restricted to Sahel regions (almost absent from the Sahara Desert 

and absent from the Mediterranean Basin). 

 

Table 4 – Number of observations collected for each species and time period. 

Species Time period Full set Model training 

Elephant 
“Current” 753 70 

Holocene 292 57 

Giraffe 
“Current” 303 67 

Holocene 273 57 

Figure 15 – Distribution of “Current” (top) and Holocene (bottom) datasets obtained for the Elephant and Giraffe, 

distinguishing observations used for model training from the full set of available observations (Table 4). Gradient represents 

altitude. 
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4.2 Model projections 

Models predictions for current and Holocene time periods scored high AUC values 

(between 0.9 and 1.0; Tab. S3, S4). Overall, for both study species, the spatial predictions 

of models calibrated in current conditions and projected for 6,000BP (Fig. 16) and of 

models calibrated in 6,000BP and projected to current conditions (Fig. 17) where 

consistent between the different datasets of environmental variables and pseudo-

absences. In contrast, predictions of models calibrated in current conditions and projected 

for 7,900BP (Fig. 18) and of models calibrated for 7,900BP and projected to current 

conditions (Fig. 19) displayed more variability between the different datasets. The 

distribution of the percentage of observations (Figs. 20 and 21) and of pseudo-absences 

(Figs. 22 and 23) in each probability of occurrence class according to model predictions 

tended to follow the same pattern of spatial predictions: more homogeneous across 

datasets of environmental variables and of pseudo-absences in models calibrated in 

current conditions and projected for 6,000BP and vice-versa in comparison to models 

calibrated in current conditions and projected for 7,900BP and vice-versa. 

In both study species, models calibrated with restricted pseudo-absences performed 

significantly better than the other two pseudo-absence datasets for all model projections 

performed in this work, and in general the disk pseudo-absences also performed better 

than the random pseudo-absences. Overall, the projections of models calibrated with disk 

and random pseudo-absences considerably underperformed in comparison to models 

based in restricted pseudo-absences. The areas projected with high occurrence probability 

for both study species based in models calibrated with restricted pseudo-absences were 

significantly larger across Africa in comparison to projections based in disk or random 

pseudo-absences, and they were also more consistent between the different 

environmental variables used to calibrate models in comparison to the other two pseudo-

absence datasets. Overall, there were no major differences between the projections from 

models calibrated with the different sources of environmental variables (Worldclim and 

Paleoview) in both study species, but minor differences where noticed when projecting 

models calibrated for the Holocene time periods to current conditions. 

In general, when using the restricted pseudo-absences dataset, the models calibrated 

with land-cover only variables performed similarly to models constructed with climate-only 

variables when projected to 6,000BP or when calibrated for 6,000BP and projected to 

current conditions. However, differences were found in models projected to 7,900BP or 

when calibrated for 7,900BP and projected to current conditions. With the disk and random 

pseudo-absences datasets, models calibrated with land-cover only variables consistently 

performed better than models based in climate-only variables. 
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In general, the best performing projections for both study species and for the three 

time periods were the projections resulting from models calibrated with land-cover together 

with climatic variables, which yield consistent predictions and the highest probabilities of 

occurrence for the occurrences datasets and the lowest probabilities for the pseudo-

absences datasets. 
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Figure 16 – Models calibrated in current time period and projected to 6,000BP time-period. Black points correspond to 

occurrences collected for the Holocene inferred from rock-art depictions and white points correspond to the different pseudo-

absences generated for the projection time period. Results according to distinct datasets of environmental variables 

(Worldclim-only, Paleoview-only, Land-cover-only, Worldclim and Land-cover, and Paleoview and Land-cover) and pseudo-

absences (Disk, Random and Restricted).  
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Figure 17 – Models calibrated in 6,000BP time period and projected to current time-period. Black points correspond to 

occurrences collected for the “current” dataset and white points correspond to the different pseudo-absences created for the 

projection time period. Results according to distinct datasets of environmental variables (Worldclim-only, Paleoview-only, 

Land-cover-only, Worldclim and Land-cover, and Paleoview and Land-cover) and pseudo-absences (Disk, Random and 

Restricted).  
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Figure 18 – Models calibrated in current time period and projected to 7,900BP time-period. Black points correspond to 

occurrences collected for the Holocene inferred from rock-art depictions collected and white points correspond to the 

different pseudo-absences generated for the projection time period. Results according to distinct datasets of environmental 

variables (Worldclim-only, Paleoview-only, Land-cover-only, Worldclim and Land-cover, and Paleoview and Land-cover) 

and pseudo-absences (Disk, Random and Restricted).  
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Figure 19 – Models calibrated in 7,900BP time period and projected to current time-period. Black points correspond to 

occurrences collected for the “current” dataset and white points correspond to the different pseudo-absences created for 

the projection time period. Results according to distinct datasets of environmental variables (Worldclim-only, Paleoview-

only, Land-cover-only, Worldclim and Land-cover, and Paleoview and Land-cover) and pseudo-absences (Disk, Random 

and Restricted).  
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Figure 20 – Percentage of observations of each study species in the Holocene (y axis) in each probability of occurrence 

class (x axis) according to models calibrated in current conditions and projected to both Holocene time periods according to 

distinct datasets of environmental variables (WC: Worldclim-only; PV: Paleoview-only; LC: Land-cover-only; LCWC: 

Worldclim and Land-cover; LCPV: Paleoview and Land-cover) and pseudo-absences (D: Disk; RA: Random; RE: 

Restricted). Results are individualised only for the cases where the profile is dissimilar to the main profile pattern. 
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Figure 21 – Percentage of observations of each study species in the “Current” dataset (y axis) in each probability of 

occurrence class (x axis) according to models calibrated in both Holocene time periods and projected to current conditions 

according to distinct datasets of environmental variables (WC: Worldclim-only; PV: Paleoview-only; LC: Land-cover-only; 

LCWC: Worldclim and Land-cover; LCPV: Paleoview and Land-cover) and pseudo-absences (D: Disk; RA: Random; RE: 

Restricted). Results are individualised only for the cases where the profile is dissimilar to the main profile pattern. 
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Figure 22 – Percentage of pseudo-absences generated for each study species at the Holocene (y axis) in each probability 

of occurrence class (x axis) according to models calibrated in current conditions and projected to both Holocene time periods 

according to distinct datasets of environmental variables (WC: Worldclim-only; PV: Paleoview-only; LC: Land-cover-only; 

LCWC: Worldclim and Land-cover; LCPV: Paleoview and Land-cover) and pseudo-absences (D: Disk; RA: Random; RE: 

Restricted). Results are individualised only for the cases where the profile is dissimilar to the main profile pattern. 
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Figure 23 – Percentage of pseudo-absences generated for each study species in current conditions (y axis) in each 

probability of occurrence class (x axis) according to models calibrated in both Holocene time periods and projected to current 

conditions according to distinct datasets of environmental variables (WC: Worldclim-only; PV: Paleoview-only; LC: Land-

cover-only; LCWC: Worldclim and Land-cover; LCPV: Paleoview and Land-cover) and pseudo-absences (D: Disk; RA: 

Random; RE: Restricted). Results are individualised only for the cases where the profile is dissimilar to the main profile 

pattern. 
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5. Discussion 

5.1 Distribution of elephant and giraffe at the Holocene 

Overall, the occurrence data collected in this work from rock-art depictions resulted in 

a reasonable estimation of the distribution areas and of the environmental conditions 

associated with the ecological niches of the two studies species. Moreover, the final 

distributions obtained made sense when considering the drastic differences in both climate 

and land-cover between current and Holocene time periods: rock-art depictions were 

collected from localities where the surrounding biomes during the Holocene matched the 

biomes where both species today occur. Moreover, most of the rock-art depictions were 

collected in the Sahara, a region where both species were known to occur during the 

Holocene (Drake et al., 2011). 

Clusters of rock-art depictions were stacked on mountain and desert regions. Such 

clustering is most likely due to the availability of rock surfaces to paint and/or engrave on. 

Complementarily, mountain areas display higher water availability (in comparison to 

lowland areas), since river sources are found in mountain tops, which would allow 

resources for both human, elephant and giraffe populations. No rock-art records were 

retrieved from regions with dense vegetation cover (i.e. tropical forests). The apparent 

absence of rock-art from lowland forest areas is probably linked to the difficulty in locating 

rock-art between dense vegetation and/or to the fewer rock availability of tropical forests 

in comparison to the open and bare Sahara Desert, 

The representation of key morphological aspects (e.g. fur patterns) and behavioural 

traits (e.g. herds, elephants in musth) in rock-art provided cheap and relatively easy to 

collect information to identify the presence of elephants and giraffes in past environments. 

In fact, the present work shows the untapped potential that rock-art depictions can bring 

into ecological modelling. To date, few studies have tried to identify animal species from 

rock-art to make inferences on their past distributions. For instance, Guagnin et al. (2018), 

similarly to this work, used rock-art depictions to successfully map the palaeodistribution 

of Kudu at local scale, and Guagnin et al. (2016) used rock-art depictions as a proxy for 

Holocene environmental change. Still, the potential of rock-art as source of distribution 

data is mostly limited to the species chosen to be depicted, generally large-sized species 

and/or species displaying very distinguishable morphological traits. In fact, identifying 

certain animals can be a challenge due to lack of key characteristics that define them in 

the depictions. This aspect remains the major drawback when aiming to use rock-art to 

reconstruct paleodistributions. 
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5.2 Effects of ecogeographical variables in model transferability 

The spatial predictions of models based in land-cover or climatic variables were very 

similar. Such similarity was most likely since, ultimately, climatic processes affect the type 

of land-cover. However, models suggested that land-cover variables were more 

representative of the changes occurred between time periods, whereas climatic 

differences between time periods were not so significant. For instance, in the Sahara 

Desert, the climatic variables do not mimic the extreme differences occurred in land-cover: 

while climate variation from the current to the Holocene was overall similar across the 

region (Figs. 8 to 13), the land-cover was extremely different between time periods (Figs. 

14 to 16). Such differences are probably related to the fact that slight increases in 

precipitation can lead to drastic changes in vegetation cover, and consequently extreme 

sandy deserts can be replaced with grasslands in relatively short time periods (Navone et 

al., 2006).  

The best performing projections were obtained from models constructed with both 

climatic and land-cover variables. Previous studies testing whether the integration of land-

cover data improves the performance of pure bioclimatic models (using GAM algorithm) 

for bird species on multiple spatial scales reported that land-cover had a notable 

contribution to the accuracy of bioclimatic models at finer scales, ranging from 10km to 

20km (Luoto et al., 2007). Another study showed that incorporating land-cover data in 

Artificial Neural Networks models for Rhynchospora alba and Erica tetralix significantly 

improved purely climate‐driven predictions (Pearson et al., 2004). A study assessing the 

influence of land-cover and climate on mammal distributions across Europe suggested 

that land-cover variables, even if not directly related or weakly associated with 

distributions, are interesting to describe mammal distributions despite not improving the 

predictive performance when added to bioclimatic models (Thuiller et al., 2004). A possible 

explanation for the weak contribution of land-cover in the study of (Thuiller et al., 2004) is 

that land-cover variables used to calibrate the models were very similar to the ones of the 

projecting period. In the current study, there were extreme differences in land-cover 

between projection periods, which may explain why models built with bioclimatic and land-

cover performed better in comparison to models built with bioclimatic-only or land-cover-

only variables. 

Overall, models based in Worldclim or Paleoview bioclimatic variables performed very 

similarly. Very few studies have addressed the effects of different sources of bioclimatic 

variables in model’s performance, which hampers the comparison of the results obtained 

to the current literature. Morales-Barbero & Vega-Alvaréz (2019) accessed model 

performance according different sources of bioclimatic layers (Worldclim; CHELSEA; 



52  FCUP      

 Validating the transferability of ecological models under global change scenarios with Holocene rock-art 
   

 

 

MERRAclim) and found significant differences between data sources, for instance in 

probability of occurrence according to environmental variation. In the current study, the 

lack of difference in model performance according to the two bioclimatic datasets may be 

related with the larger pixel size used to build models (2.5 degrees).  Spatial resolution is 

known to impact model performance (Thuiller et al., 2003; Seo et al., 2009) and probably, 

differences between models calibrated with the two data sources would have been 

detected if finer spatial resolutions were used. Most likely, the large pixel size here used 

contributed to the dilution of environmental differences between the distinct data sources. 

 

5.3 Methods to select pseudo-absences for model transfer 

There were major differences in model performance according to the method of 

selection of pseudo-absences, with models calibrated with environmentally restricted 

pseudo-absences performing overall better. The methods to generate pseudo-absences 

in model calibration are known to affect model performance. For instance, in GAMs based 

in virtual data, model accuracy (based in AUC estimates) increases with larger numbers 

of pseudo-absences and a ratio of 100:1 of pseudo-absences to presences should be used 

when presence data availability is limited (Lobo et al., 2010). In MaxEnt models built for 

226 species (with number of presences ranging from 2 to around 5,800) for six regions of 

the world, model accuracy (AUC-based) increased substantially with increasing number of 

pseudo-absences used (Phillips et al., 2008). Based in different model algorithms (GLM; 

GAM; MARS; MDA; CTA; BRT and RF) built with virtual data, it was shown that when 

limited numbers of observations are available (between 30 to 100), model performance 

increases if pseudo-absences are randomly generated at least two degrees away from 

any presence point (Barbet-Massin et al., 2012). This method to generate pseudo-

absences is similar, to some extent, to the disk pseudo-absence dataset used in the 

current study (where the threshold distance represented the species home range size). 

However, in the current study, models calibrated with disk pseudo-absences 

underperformed and using environmentally restricted pseudo-absences yielded models 

with larger performance. A possible explanation for this result is that the “Current” 

observation dataset used in the current study does not represent the full ecological range 

of conditions where both studies species may occur, due to an artificial reduction of 

species distributions caused by extensive poaching. Even though the “Current” distribution 

here used, tried to account for this factor, by incorporating historical (early 20th century) 

and current observations (Martínez-Freiría et al., 2016), there are large areas where both 

species have likely been extirpated and for which no distribution data are available. For 

example, although no distribution data are available for elephants in the Mediterranean 



FCUP       53 

Validating the transferability of ecological models under global change scenarios with Holocene rock-art  

 

 

region and Sahara desert, both historically or currently, the species was known to be 

present in these areas in the Roman Period, at about 2,000 yr BP (Pliny the Elder, 23–79 

CE; Shaw, 1976). Despite the extreme aridity of the Sahara, if poaching had been absent, 

most likely elephants would still roam in the region. This is further supported by elephants 

still residing in the Namib desert, which hosts similar arid conditions to the current Sahara. 

Both studied species are relatively generalists, occurring in a wide range of environmental 

conditions (Roever et al., 2012; Muller et al., 2018), being absent from tropical forests 

mainly due to their large body sizes, resulting in difficulties to move in between very dense 

and tight vegetation. As such, if the “current” dataset included the complete distribution of 

the studied species, then the performance of models calibrated with disk pseudo-absences 

would most likely be very similar to the one of models using restricted pseudo-absences. 

Even though the current study did not address the effects of different numbers of 

pseudo-absences, it is known that they affect model performance. For instance, a study 

based in virtual species and using ten modelling techniques to build both single and 

ensemble models with varying levels of prevalence and disparate numbers of training 

presences, showed relationships between model accuracy and the number of presences 

and of pseudo-absences or background sites (Liu et al., 2019). In fact, it has been 

suggested that using identical numbers of pseudo-absences and presences to calibrate 

random forest models yields the best model performances (Barbet-Massin et al., 2012; Liu 

et al., 2019). In the current study, although the restricted pseudo-absences dataset (N= 

from 52 to 92) was not exactly identical to the number of observations (N=from 57 to 70) 

used to calibrate models, still models calibrated with restricted pseudo-absences 

outperformed models calibrated with disk or random datasets, which used exactly identical 

numbers of pseudo-absences and observations. 

There were minor differences in model performance when calibrated with disk and 

random pseudo-absences, most likely related with the large pixel size used. The large 

pixel size was a consequence of two factors: Paleoview data are available at 2.5 degrees 

spatial resolution (Fordham et al., 2017) and the home-range size of studied species is 

above 250 km (Fennessy, 2009; Fennessy & Brown, 2010; Wall et al., 2013). 

Consequently, the number of pixels available in the study area to select random or disk 

pseudo-absences was limited, which resulted in spatially similar datasets of pseudo-

absences (Fig. S5). Despite the uncertainties associated to the selection of pseudo-

absences that represent true absence, models based in presence-absence data 

consistently outperform presence-only modelling methods (Elith et al., 2006). 
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5.4 Sources of uncertainty and limitations 

Using rock-art as source of observational has several associated uncertainties. First, 

it is unknown if the location of rock-art translates accurately the presence of the depicted 

animal, as rock-art may represent animals observed in distinct localities from where it was 

engraved. Still, the large pixel size used in the current work will probably minimise 

uncertainties relative to the location of the animals against depiction site. Second, the 

dating of rock-art is rather subjective (Bednarik, 2002), which may affect their use in model 

transfer between time periods. For this reason, in the current work it was used two time 

periods of the Holocene which are expected to gather most (if not all) of the rock-art 

engraving time. This approach minimised the potential effects of dating uncertainties in 

rock-art depictions. 

The large pixel size used implied that established relationships between species 

presence and environmental variation were only general and superficial in comparison to 

models based in small spatial resolutions. Models calibrated with large pixel sizes are 

known to substantially overestimate potentially suitable areas in relation to those using 

finer scales (Seo et al., 2009). This effect is particularly relevant for species with range 

sizes under 90,000 km2, where there is a chance of identifying inappropriate regions if 

predictor data used are at or greater than 50x50 km (Seo et al., 2009). Given that the 

range size of both studied species is well over 90,000 km2, it is expected that biases are 

mitigated. In addition, a trade-off was needed in the current study to account for the 

uncertainties in the Holocene in the distribution of both species (see previous paragraph) 

and the availability of bioclimatic and land-cover data (see previous section). In fact, using 

large pixel sizes in ecological modelling is known to average out uncertainties inherent in 

the datasets used in model calibration (Wiens et al., 2009). 

In the current study, a single modelling algorithm was used, Random Forests. Distinct 

modelling algorithms have different performances (Elith et al., 2006; Araújo & New, 2007; 

Wisz et al., 2008) and further analyses could be developed to understand how results will 

vary between the different methodologies. The current study was based in a single GCM 

(CCSM3), but different GCMs are known to be a major source of variation in model 

transferability (Wiens et al., 2009; Goberville et al., 2015; Thuiller et al., 2019). Although 

the Worldclim dataset provides data from multiple GCMs, the Paleoview dataset only 

provides data according to the CCSM3 circulation model, which limited substantially the 

modelling exercises. 
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5.5 Guidelines for model transferability and future research 

The study here developed allows providing a series of recommendations related to 

model transferability in time: 

1) When the distributions of studied species are not totally known but the ecological 

niche traits are well known, it is recommend using environmentally restricted pseudo-

absences datasets. Still, this approach requires an intimate knowledge about the studied 

species, which is often lacking in the literature, but may be possible to use in species with 

high detectability (such as those used in the current study). Theoretically, when 

distributions are completely known, disk pseudo-absences datasets would perform very 

similarly and could be the best solution; 

2) When projecting models, it is best to use Worldclim bioclimatic variables given the 

higher availability of spatial resolutions and GCMs. When models need to be developed 

based in large pixel sizes (50km or above), apparently, both Worldclim and Paleoview 

datasets give similar results. Still, using fine spatial resolutions, especially for species with 

relatively small home-range sizes should be preferable; 

3) Coupling land-cover together with bioclimatic variables is recommended, since the 

association of these variables may reflect accurately environmental changes between 

calibration and projection periods. Nevertheless, the current availability of coarse land-

cover predictions for past time periods greatly constrains its usage in models developed 

for species with small home-range sizes. Given these limitations, trade-offs will need to be 

established between pixel sizes and data sources. 

 

In relation to the current study conducted, future additional research efforts should be 

allocated to assess the effects in model projection of using: (i) different modelling 

algorithms; (ii) different pixel sizes and their influence on model projection and on pseudo-

absences performance; (iii) model replicates based in distinct pseudo-absences datasets; 

(iv) multiple GCMs to average out uncertainties related to climate models; (v) land-cover 

layers with better spatial resolution. 
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7. Annex 
 

 

 

Figure S1 - Comparison of climates between current and 6,000BP (top) and 7,900BP (bottom) conditions, using nine 

Paleoview bioclimatic variables. Areas in red have one or more environmental variables outside the climatic range present 

in the model calibration  
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Figure S2 - Comparison of climates between current and 6,000BP (top) and 7,900BP (bottom) conditions, using nine 

Worldclim bioclimatic variables. Areas in red have one or more environmental variables outside the climatic range present 

in the model calibration. 
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Figure S3 – Distribution of land-cover types in the current and Holocene time periods. Data from Adams and Faure (1990). 
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Figure S4 - Comparison of land-covers between current and 6,000BP (top) and 7,900BP (bottom) conditions, using 11 land-

cover categories. Areas in red have one or more land-cover variables outside the range present in the model calibration. 
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Figure S5 - Distribution of pseudo-absences “Current” (top) and Holocene (bottom) datasets obtained for the Elephant and 

Giraffe, distinguishing observations used for model training from the full set of available observations (Table 4). 
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Table S1 – Correlation coefficients between Worldclim bioclimatic variables in current conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

BIO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1                                       

2 0.040                                     

3 0.130 -0.502                                   

4 -0.150 0.596 -0.919                                 

5 0.648 0.592 -0.565 0.609                               

6 0.681 -0.593 0.706 -0.750 -0.057                             

7 -0.074 0.815 -0.879 0.939 0.690 -0.762                           

8 0.786 0.116 0.134 -0.153 0.449 0.501 -0.071                         

9 0.600 -0.116 -0.050 0.070 0.545 0.434 0.038 0.146                       

10 0.760 0.394 -0.486 0.518 0.963 0.116 0.541 0.532 0.622                     

11 0.868 -0.276 0.558 -0.613 0.223 0.921 -0.523 0.669 0.487 0.356                   

12 -0.011 -0.639 0.752 -0.777 -0.579 0.563 -0.784 -0.055 -0.021 -0.495 0.380                 

13 0.086 -0.539 0.678 -0.792 -0.486 0.576 -0.733 0.023 -0.013 -0.420 0.462 0.926               

14 -0.056 -0.465 0.550 -0.387 -0.377 0.343 -0.493 -0.058 0.012 -0.289 0.156 0.572 0.342             

15 0.434 0.229 0.005 -0.178 0.243 0.223 -0.004 0.527 0.069 0.231 0.414 -0.156 0.099 -0.384           

16 0.061 -0.531 0.662 -0.777 -0.490 0.550 -0.717 -0.004 -0.015 -0.430 0.438 0.936 0.989 0.335 0.058         

17 -0.014 -0.523 0.611 -0.454 -0.388 0.426 -0.560 -0.048 0.068 -0.292 0.224 0.666 0.434 0.952 -0.397 0.425       

18 -0.150 -0.607 0.690 -0.695 -0.677 0.404 -0.732 -0.047 -0.240 -0.591 0.206 0.859 0.761 0.527 -0.163 0.756 0.559     

19 0.146 -0.397 0.453 -0.464 -0.187 0.482 -0.471 -0.038 0.244 -0.132 0.371 0.668 0.645 0.397 -0.140 0.666 0.526 0.274   

TOTAL 3 1 4 6 1 4 8 1 0 2 2 5 5 1 0 4 1 4 0 
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Table S2 – Correlation coefficients between Paleoview bioclimatic variables in current conditions. 

 

BIO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1                                       

2 0.348                                     

3 0.227 0.347                                   

4 0.122 0.760 -0.138                                 

5 0.644 0.904 0.197 0.728                               

6 0.314 -0.764 -0.122 -0.690 -0.470                             

7 0.293 0.982 0.193 0.826 0.908 -0.796                           

8 0.829 0.377 0.224 0.139 0.576 0.144 0.326                         

9 0.554 0.001 0.059 -0.021 0.255 0.402 -0.016 0.261                       

10 0.905 0.614 0.131 0.498 0.859 -0.021 0.598 0.801 0.444                     

11 0.685 -0.283 0.253 -0.622 -0.020 0.746 -0.368 0.566 0.445 0.364                   

12 -0.289 -0.572 0.232 -0.853 -0.668 0.362 -0.629 -0.219 -0.165 -0.578 0.384                 

13 -0.247 -0.503 0.132 -0.815 -0.570 0.309 -0.537 -0.130 -0.181 -0.493 0.420 0.921               

14 -0.162 -0.448 0.326 -0.481 -0.497 0.380 -0.521 -0.160 -0.030 -0.344 0.212 0.625 0.403             

15 0.440 0.257 -0.075 0.104 0.391 -0.016 0.276 0.542 0.010 0.482 0.306 -0.240 0.045 -0.466           

16 -0.351 -0.526 0.173 -0.815 -0.648 0.261 -0.568 -0.225 -0.238 -0.603 0.323 0.948 0.971 0.451 -0.082         

17 -0.292 -0.499 0.379 -0.596 -0.617 0.340 -0.584 -0.254 -0.121 -0.501 0.194 0.759 0.551 0.900 -0.452 0.613       

18 -0.413 -0.509 0.176 -0.752 -0.674 0.197 -0.555 -0.259 -0.283 -0.641 0.224 0.918 0.900 0.468 -0.166 0.954 0.637     

19 -0.360 -0.506 0.315 -0.597 -0.626 0.312 -0.577 -0.285 -0.116 -0.537 0.177 0.715 0.596 0.757 -0.340 0.651 0.876 0.668   

TOTAL 2 4 0 7 4 3 4 2 0 3 1 6 3 2 0 4 3 4 3 
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Table S3 - AUC values calculated for model predictions for the elephant 

Current 6000BP 7900BP 

Worldclim 

DISK PA 1.000 DISK PA 0.997 DISK PA 0.998 

RANDOM PA 0.999 RANDOM PA 0.995 RANDOM PA 0.997 

RESTRICTED PA 1.000 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

Paleoview 

DISK PA 0.999 DISK PA 0.998 DISK PA 0.998 

RANDOM PA 0.999 RANDOM PA 0.995 RANDOM PA 0.994 

RESTRICTED PA 1.000 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

Landcover 

DISK PA 0.998 DISK PA 0.998 DISK PA 9.997 

RANDOM PA 0.998 RANDOM PA 0.997 RANDOM PA 0.996 

RESTRICTED PA 0.999 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

Worldclim+Landcover 

DISK PA 0.999 DISK PA 0.947 DISK PA 0.999 

RANDOM PA 1.000 RANDOM PA 0.998 RANDOM PA 0.998 

RESTRICTED PA 1.000 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

Paleoview+Landcover 

DISK PA 1.000 DISK PA 0.999 DISK PA 0.999 

RANDOM PA 0.999 RANDOM PA 0.997 RANDOM PA 0.997 

RESTRICTED PA 1.000 RESTRICTED PA 1.000 RESTRICTED PA 1.000 
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Table S4 – AUC values calculated for model predictions for the giraffe 

Current 6000BP 7900BP 

Worldclim 

DISK PA 0.993 DISK PA 0.998 DISK PA 0.998 

RANDOM PA 0.998 RANDOM PA 0.996 RANDOM PA 0.997 

RESTRICTED PA 0.999 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

Paleoview 

DISK PA 0.991 DISK PA 0.996 DISK PA 0.998 

RANDOM PA 0.996 RANDOM PA 0.994 RANDOM PA 0.994 

RESTRICTED PA 1.000 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

Landcover 

DISK PA 0.996 DISK PA 0.995 DISK PA 0.996 

RANDOM PA 0.996 RANDOM PA 0.998 RANDOM PA 0.997 

RESTRICTED PA 1.000 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

Worldclim+Landcover 

DISK PA 0.997 DISK PA 0.997 DISK PA 0.998 

RANDOM PA 0.998 RANDOM PA 0.998 RANDOM PA 0.998 

RESTRICTED PA 1.000 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

Paleoview+Landcover 

DISK PA 0.997 DISK PA 0.998 DISK PA 0.998 

RANDOM PA 0.996 RANDOM PA 0.998 RANDOM PA 0.997 

RESTRICTED PA 1.000 RESTRICTED PA 1.000 RESTRICTED PA 1.000 

 


