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ABSTRACT 

CLIMATE CHANGE IMPACTS ON HYDROLOGIC COMPONENTS AND 

OCCURRENCE OF DROUGHT IN AN AGRICULTURAL WATERSHED 

SAGAR GAUTAM 

2018 

The study on potential acceleration of future hydrologic cycle due to change in 

precipitation and increase in temperature are essential for managing natural resources 

and setting policy. The impact of future climate change on hydrologic components of 

Goodwater Creek Experimental Watershed (GCEW) and experimental field (Field1) 

were assessed using climate datasets from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5), Soil and Water Assessment Tool (SWAT) and Agricultural 

Policy Environmental Extender (APEX). SWAT and APEX models were setup and 

calibrated for watershed and field scale using observed hydrology data at their 

respective outlets. The study identified future (2016-2075) occurrence of 

meteorological, hydrological, agricultural droughts, and extreme events based on 

projections of future climate in the GCEW and SWAT simulations. Standardized 

Precipitation Index, Standardized Streamflow Index, and Soil Moisture Index were 

used to represent the three types of drought. CMIP5 data were downscaled to 

watershed and field scale using quantile mapping for precipitation and delta method 

for temperature. Historical and future ensembles of downscaled precipitation and 

temperature, and modeled water yield, surface runoff, and evapotranspiration were 

compared. At the watershed scale, ensemble SWAT simulated results indicated 

increased springtime precipitation, water yield, surface runoff and a shift in 

evapotranspiration peak one month earlier in the future. At field scale, two 

management system business-As-Usual (BAU) and Aspirational (ASP) management 

system were compared to access the environmental benefits of improved management 
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system using APEX model. Simulated results indicated that the change in 

management alone from BAU to ASP during historic period resulted in 25% (162 mm 

to 120 mm) reduction in surface runoff. The simulated average annual runoff loss was 

reduced by 16.5% (192 mm to 160 mm) and 18.8% (203 mm to 165 mm) in ASP 

scenario compared to BAU for ensemble of RCP 8.5 for near and far future 

respectively. The average ensemble annual soluble nitrogen loss was 8 kg/ha for BAU 

compared to 3.9 kg/ha for ASP management for baseline historic period. Result 

indicated the inclusion of no-till and winter cover crop resulted in increased 

subsurface flow. The result indicates the environmental benefit of crop rotation and 

cover crop with reduction in runoff and nutrient losses. The ASP management 

provides surface cover all year round and improves soil quality resulting in lower 

runoff.  

At watershed scale, the outputs from SWAT model and downscaled climate 

data were used for drought projection and extreme analysis. Historical drought events 

were calculated based on observed precipitation and SWAT simulated streamflow and 

soil moisture datasets for the period of 1980-2015. The physical values corresponding 

to the indices used to identify drought in the past were used to characterize drought in 

the future. The analysis of multiple drought types provides multiple perspectives for 

evaluating drought under future climate. All three drought indices indicate increased 

projected drought occurrence for the future in this region for both RCP 4.5 and RCP 

8.5 emission pathways. Seven different indices developed by the Expert team on 

Climate Change Detection Monitoring Indices (ETCCDMI) were calculated on an 

annual scale for extreme analysis. The simulated results based on extreme indices 

indicated increased warm spell duration along with projected decline in summer 

precipitation favoring summer drought for study region. To evaluate the performance 



xi 
 

of model spatial resolution, gridded surface runoff estimated by Lund–Potsdam–Jena 

managed Land (LPJmL) and Jena Diversity-Dynamic Global Vegetation model (JeDi-

DGVM) were compared to SWAT. Long-term comparison shows 6-8% higher 

average annual runoff estimation for LPJmL and 5-30% estimation prediction for 

JeDi-DGVM compared to SWAT simulated average annual runoff. Although annual 

runoff estimation showed little change for LPJmL, monthly runoff projection under 

estimated peak runoff and over-estimated low runoff for LPJmL compared to SWAT 

simulated runoff. The reasons for these differences include difference in spatial 

resolution of model inputs and mathematical representation of physical processes. 

Results indicate benefits of impact assessments at local scales with heterogeneous sets 

of parameters to adequately represent extreme conditions that are muted in global 

gridded model studies by spatial averaging over large study domains. An overall 

result based on simulation study indicated increased extreme precipitation and 

temperature resulting in increased runoff and change in evapotranspiration peak. 

Drought projection results indicated increased frequency of drought months for 

future. Field scale simulation results indicates management change to ASP is 

beneficial for reduction of runoff and nutrient under changing future with more 

extremes.
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CHAPTER 1 

INTRODUCTION 

Increased pressure on natural and environmental systems is a major global 

challenge with world population heading toward 9.7 billion by 2050. There is a 

scientific consensus that climate change is occurring primarily due to increased 

greenhouse gas (GHG) emissions with 97% of peer-reviewed scientific literature 

indicating that humans are the cause (Cook et al., 2013). Climate, defined as long-

term patterns of day-to-day weather, is a major driver of hydrological processes, 

therefore climate change will ultimately affect hydrology, water resources and 

agriculture. Uncertainty still exists with regard to how a warming climate and 

corresponding changes in weather patterns will impact Earth systems that humans 

utilize in order to sustain life. Increased GHG concentrations alter the radiative 

balance of the Earth’s atmosphere, causing an increase in average temperature and 

change in precipitation patterns (Cubasch et al., 2013). Additionally, the impacts of 

this change in climate  has been widely reported in literature, observation and 

simulation results indicate an increased probability of extreme precipitation in 

response to the changing climate (O’Gorman, 2015). The Intergovernmental Panel on 

Climate Change (IPCC) fourth assessment report (IPCC, 2007) and the fifth 

assessment report (IPCC, 2014) document the comprehensive modeling effort for 

simulating future climate. The potential impact of climate change is a major concern, 

as we have witnessed frequent hydrologic extremes in past few decades. 

The uncertainty regarding the future impact of climate change has become an 

important topic for water resource managers around the world as climate change is 

projected to have significant impacts on hydrologic components (Vetter et al., 2017). 
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One way to understand the relationship between climate change and hydrology 

includes the use of process-based models to simulate the various components of the 

hydrologic cycle. Process models calibrated based on historic data can be perturbed 

with future climate projection to understand the impacts of future change. There is a 

plethora of hydrologic models available to simulate hydrology at different scales. The 

Agricultural Policy Environmental eXtender (APEX) and the Soil Water Assessment 

Tool (SWAT) are the two most widely used models applied for climate change impact 

assessment at small and large scales, respectively. Both of these models include 

algorithms for predicting how precipitation, temperature, and CO2 concentration 

affect plant growth and hydrologic components. The expected change in precipitation 

and temperature under elevated CO2 future can impact the hydrologic cycle and can 

ultimately impact crop production. Understanding how these changes impact future 

water availability and, correspondingly, potential influences to agricultural 

productivity are very important for policy decision making. 

The climate projections from General Circulation Models (GCM) can be used 

as an input to hydrologic models to simulate the impact of climate change on water 

resources. The hurdles for climate change impact assessment on hydrology are 

associated with uncertainty from both the hydrologic modeling approaches and the 

climate projections. The climate data are the product of GCMs, which are three-

dimensional numerical models built to represent the physical dynamics of the Earth’s 

atmosphere, land surface, ocean surface and to predict system behavior under 

increasing GHG concentration in the atmosphere (IPCC, 2013). Major sources of 

uncertainty when coupling climate and hydrologic models are climate model 

uncertainty and uncertainty in downscaling of available GCM output to spatial 

resolutions required for hydrologic models (Praskievicz and Bartlein, 2014). GCM 
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temperature and precipitation outputs are provided at a very large spatial resolution 

(87.5 km × 87.5 km) making it difficult to apply to local geospatial scales in order to 

model more localized systems. Even the resolution provided through the Coupled 

Model Intercomparison Project (12 km × 12 km) is often too coarse for assessing 

impacts on hydrologic components at small basin scale. Although a few studies have 

focused on quantifying the impact of future climate on hydrologic processes at a 

regional scale in the Midwestern United States (Jha et al., 2004b; Stone et al., 2003), 

there have been minimal studies at smaller scales. Climate scenarios downscaled from 

GCM using either dynamical or statistical downscaling, provide the best available 

information for assessing future impacts of climate change on water resources (Ayar 

et al., 2016; Gleick, 1989). The greatest challenge for planning for adaptation to 

climate change is lack of certainty, particularly with respect to time, about the impacts 

of climate change. In order to make the best adaption plan, it is very important to 

improve the accuracy and reliability of analysis regarding the possible impacts on key 

systems due to future climate change.  

The potential acceleration of the hydrologic cycle due to changes in 

precipitation and increases in temperature is likely to result in increased occurrence of 

hydrologic extremes such as excessive wet and dry periods. These changes in climate 

alter the dry/wet conditions, which ultimately impact agriculture. The climate extreme 

study based on observed data at global scale suggests that the changes in precipitation 

are amplified for both tails and change in temperature extremes have been observed 

(Meehl et al., 2000). Both lack of and excess precipitation will impact agriculture; 

lack of precipitation during the growing season leads to stress in plants and excess 

precipitation hinders field operations. Future projection of extreme conditions can be 
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helpful for decision making for policy makers as future projection help to design 

better mitigation strategy. 

Drought can have significant impacts on crop yield. For an instance, the 2012 

drought event in the United States alone resulted in $17.3 billion damages due to lost 

crop production (O’Connor, 2013). Drought is the condition of prolonged deficiency 

of water below normal (Redmond, 2002). Drought is a natural hazard that occurs due 

to prolonged dry spells resulting in reduction of soil water and ultimately low river 

flow. Drought characterization using real-time data and short-term projection of 

weather can help to provide early drought warning and drought risk analysis, which 

can help for drought preparedness (Zargar et al., 2011). In addition, the drought can 

be anticipated for future using future projection of hydrologic components. Droughts 

definitions differ based on disciplinary perspective; meteorological, agricultural, and 

hydrological droughts are the major types of biophysical drought of interest from 

environmental and agriculture perspectives (Wilhite and Glantz, 1985). Multiple 

drought indices are used within this dissertation to quantify different drought types 

acknowledging uncertainty in climate model and indices itself. The use of multiple 

indices, defined using different critical variables, can help better understand drought 

and its associated impacts. A previous study on drought modeling suggests the use of 

multiple drought indices is necessary to quantitatively evaluate drought conditions 

(Tian et al., 2018). 

Climate change impact assessments using simulation models applied at global, 

regional and local scales are abundant in recent literature (Al-Mukhtar et al., 2014; 

Ficklin et al., 2013; Giuntoli et al., 2015; Jha et al., 2004a; Panagopoulos et al., 2014; 

Stone et al., 2003). However, there have not been many attempts to compare results 

and their implications at different scales to identify how differences in the aggregation 
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of weather and geographically defined elements of the physical environment, e.g., soil 

data, model assumptions, and extent of calibration affects simulated results. This 

study is conducted at Goodwater Creek Experimental Watershed (GCEW) and field 

(Field 1) located within the watershed to simulate the impact of future climate change 

on hydrology and future extreme using hydrologic model and climate model outputs.  

Simulating and projecting future hydrology and extremes using multiple models can 

help evaluate and recommend solutions appropriate for particular risk and adaption 

question.  

 

Objectives 

In this dissertation, analysis is conducted to represent two different scales within 

the same geographic location, the watershed scale (GCEW) and field scale (Field 1 

located within GCEW). GCEW is a headwater watershed in the Salt River Basin and 

the geophysical context of the study area represents the Central Claypan region, 

which includes Northeast Missouri, Southeast Iowa and Southern Illinois (Baffaut et 

al., 2015; Sadler et al., 2015). The information gained from this study on hydrologic 

changes in the face of climate change is instrumental for the region characterized by 

claypan soils and generally contributes to understanding how modeling at different 

scales reflects the impact of climate change on hydrology, and relatedly on 

agriculture. The projection can be useful for policy makers as future projections of 

hydrologic conditions and extremes help to design better mitigation strategies. The 

overall study was divided into three sub-studies (mentioned below), and separate 

objectives were developed for each study. 
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Study 1. This study was entitled “Assessing Long-Term Hydrological Impact of 

Climate Change Using an Ensemble Approach and Comparison with Global Gridded 

Model-A Case Study on Goodwater Creek Experimental Watershed” with the specific 

objectives  to contribute to the body of knowledge developed in conjunction with the 

Long-Term Agroecosystem Research (LTAR) project in the GCEW, to characterize 

the potential hydrological impacts in relation to climate change in the GCEW, and to 

compare hydrological outputs from models of different spatial resolution, as well as 

with and without localized downscaling of weather data. 

 

Study 2. This study was entitled “Multi-index Evaluation of Future Drought and 

Climate Extreme Occurrence in an Agricultural Watershed” with the specific 

objectives to project how drought and climate extremes may change in the future 

relative to historic trends using the hydro-model outputs (soil water, streamflow) from 

a calibrated hydrologic model (Soil and Water Assessment Tools (SWAT)). 

Study 3. This study was entitled “Assessing the Climate Change Impacts on 

Hydrology and Water Quality: A case study on a field located at Central Missouri.” 

with the specific objectives of determining the environmental benefits of application 

of alternative management practices including no-till, cover crops and longer crop 

rotation on a field compared to business as usual. 
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CHAPTER 2 

LITERATURE REVIEW 

Climate Change Impact on Hydrology   

The major reason for climate change is the emission of greenhouse gases (GHG) due 

to extensive use of fossils fuels and other anthropogenic activities, such as 

deforestation. Increased GHG concentrations are altering the radiative balance of the 

Earth’s atmosphere, causing an increase in average surface temperature and change in 

precipitation patterns and intensity (Cubasch et al., 2013). GHGs emissions have 

increased significantly since the pre-industrial era, driven largely by population and 

economic growth (Pachauri et al., 2014). These trends are projected to continue and 

intensify in the future. Climatic shift due to global warming has been linked to water 

supply shortages (De Wit and Stankiewicz, 2006), declining biodiversity (Gregory et 

al., 2009) and other ecosystem damage (Walther et al., 2002). It is very important to 

understand how these changes could affect hydrologic components and, 

correspondingly, potential influences to agricultural productivity. Climate change, 

especially the changes in precipitation and temperature have been found to impact the 

hydrology and ultimately the water availability at local and regional scales (Barnett et 

al., 2005). Outputs from climate models are widely used in hydrologic simulation 

models to assess the climate change impacts on streamflow (Ficklin et al., 2013a; 

Ouyang et al., 2015), nutrient loading (Jha et al., 2015), and crop productivity 

(Panagopoulos et al., 2014), and to ultimately assist farm decision-making processes. 

Climate changes also affect the snowmelt dynamics. Many studies have found a shift 

in the timing of peak streamflow as increased temperatures cause snowmelt in early 

spring and result the drier streams in summer (Ficklin et al., 2013a; Ficklin et al., 

2013b), which may directly impact the agricultural activity and the aquatic life. 
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Results from climate change impact assessment studies on hydrology suggest that 

climate change will have more impact on hydrologic extremes rather than on mean 

conditions. A study conducted by (Huang et al., 2014) in Europe to assess the impact 

of climate change on drought and flood event indicates frequent occurrences of 50-

year floods and droughts. 

Management Impacts on Hydrology 

Management change includes any kind of structural and non-structural change in an 

agricultural management system, including tillage operations and the sequence of 

crop. Agriculture is managed with diverse management systems that include tillage 

(no-till, plow-till and conservation till), diverse cropping system including rotation, 

cover crop, hay pasture and grazing. Crop rotation includes rotation of crop every 

year in a sequence, for example corn-soybean rotation where corn and soybean are 

planted alternatively year after. The major benefits of a crop rotation include: 

improved soil fertility and structure, inclusion of legume in rotation ensure the 

nitrogen supply for preceding crop and control weed, pest and disease infestation to 

crop (FAO, 2006). In addition to crop rotation, incorporation of cover crop and 

conservation tillage such as no-till can provide environmental benefits such as 

improved soil structure and carbon sequestration leading to improved water quality 

(Hoorman, 2009; Reeves, 1997). Management system applied in a field impact the 

physical and biological properties of soil such as soil organic carbon, bulk density, 

and alter the year-to-year surface cover (Bari et al., 1993; Bhattacharyya et al., 2006; 

Dabney, 1998). The surface cover and soil properties affect the movement of water 

through soil by infiltration and evaporation. Therefore, the management system 

directly affects the hydrologic cycle. 
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Hydrologic Simulation Models  

Hydrologic simulation models are useful tools to assess cause and effect 

relation. Simulation models are frequently used for assessing management and 

climate change impacts on hydrologic components. Outputs from climate models are 

widely used in hydrologic simulation models to assess the bounds of a system and to 

assist decision-making processes toward a sustainable future (Moss et al., 2010). The 

impacts of these changes on water quantity and quality are a major question as it 

affects crop productivity, environmental sustainability and economic benefits. Models 

are important tools for evaluating the movement of water and the transport of nutrient 

across complex land surfaces given weather conditions to analyse the potential 

benefits of alternative management systems (Dabney et al., 2001). The model based 

approach of simulating the impact of alternative management and future projection is 

a cost effective method. However, model results need to be compared with observed 

set of data to have trust in the simulation results. The well-calibrated and validated 

hydrologic model can be readily used for scenario analysis for decision-making. 

Hydrologic simulation studies are cost effective tool for impact assessment with 

availability of data required for hydrologic modeling over space and time in 

geographic information system (GIS) including climate, soil, land use land cover and 

hydrology data (Gurtz et al., 2005). In past few decade, many hydrologic models were 

developed and used for modeling the hydrologic component at different spatial scales. 

Hydrologic models combined with Geographic Information System (GIS) and 

improved computational capability provide options for long term simulation, data 

management and visualization during modeling (Suia and Maggiob, 1999). The 

widely used models for simulating water quantity and quality at different scales 

include; Environmental Policy Integrated Climate (EPIC) model (Williams et al., 
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1984), Soil and Water Integrated Model (SWIM) (Krysanova et al., 2000), Dynamic 

Watershed Simulation Model (DWSM) (Borah et al., 2002), Chemicals, Runoff, and 

Erosion from Agricultural Management Systems (CREAMS) (Knisel, 1980), Soil and 

Water Assessment Tool (SWAT) (Arnold et al., 1998), Agricultural Non-Point source 

pollution model (Young et al., 1987), Agricultural Land Management Alternatives 

with Numerical Assessment Criteria (ALMANAC) (Kiniry et al., 1992) and Variable 

Infiltration Capacity (VIC) (Liang, 1994). Although there are many models available 

for impact assessment, uncertainties are major hurdles for impact assessment studies 

using hydrologic models; uncertainties associated with the hydrologic model 

parameterization, where modelers have to assign a value to unmeasurable model 

parameters based on model evaluation, and uncertainties in model structure. However, 

for application of hydrologic models for climate change impact assessment, climate 

model uncertainty is higher than model parameter uncertainty (Bennett et al., 2012; 

Sellami et al., 2016).   

Agricultural Policy/Environmental eXtender  

Agricultural Policy Environmental eXtender (APEX) is an extended version of the 

crop and soil productivity simulation model (Environmental Policy Integrated Climate 

(EPIC)) , built to simulate the effect of soil erosion on crop productivity (Williams 

and Izaurralde, 2005). APEX model was designed to enhance the capability of EPIC 

to extend its scope as a watershed and land management simulation model. APEX 

model is capable to simulate multiple land management systems; furrowing diking, 

buffer strips, terraces, waterways, lagoons, manure management, crop rotation, 

fertilizer and chemical application and grazing management on hydrology (Williams 

et al., 2000). The major components of the APEX model includes climate, hydrology, 

pesticide fate, crop growth, erosion-sedimentation, carbon cycling, management 
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practices, soil temperatures, nutrient fate, plant control environment, subarea/routing 

and economic (Gassman et al., 2010). Climate inputs to the APEX model include 

daily weather variable: precipitation, temperature (minimum and maximum), solar 

radiation, wind speed and relative humidity. APEX model is capable to simulate both 

water quantity and water quality. It has been used extensively for both fields and 

small watersheds for assessing the impact of different management options; for 

instance, simulating fate of herbicide (Harman et al., 2004), simulating forested 

watersheds (Wang et al., 2007), simulating the impact of buffer width and stocking 

density (Kumar et al., 2011), and impact of grass waterways (Anomaa Senaviratne et 

al., 2013) and climate change (Gautam et al., 2015) on runoff and water quality.  

Soil and Water Assessment Tool 

The Soil and Water Assessment Tool (SWAT) is a process based daily time step 

distributed watershed scale hydrologic simulation model (Santhi et al., 2001). SWAT 

has the capability to simulate stream flow as a function of land management, soil, 

climate and topography. Similar to APEX, the components of SWAT include climate, 

hydrology, pesticide fate, nutrient fate, plant growth, erosion-sedimentation, carbon 

cycling, management practices, and soil temperatures. In SWAT , the watershed is 

subdivided into the sub watersheds, and these sub-watersheds are further divided into 

hydrologic response units (HRU), which consist of homogeneous soil, management 

and topography (Arnold et al., 2012). These subdivisions enable better representation 

of the heterogeneity of the watershed and better prediction of hydrology. SWAT is 

one of the intensively used models to study the management, climate change and 

other alternative on the stream flow (Bekele and Knapp, 2010; Jayakrishnan et al., 

2005; Parajuli, 2010; Wang et al., 2014). The SWAT model has been widely used to 

assess the climate change impacts on nutrient loading (Jha et al., 2015), crop 
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productivity (Panagopoulos et al., 2014), and streamflow (Ficklin et al., 2013a; 

Ouyang et al., 2015). The SWAT model is one of the most widely used decision-

making tools among hydrologists for predicting the impact of agricultural land use, 

climate change and management on sediment, water and chemical yields. Although 

the model is data intensive, SWAT coupled with GIS interface has provided an 

opportunity to integrate readily available GIS datasets to simulate hydrology.  

Scaling Issue in Hydrologic Modeling 

Models can be used to predict and forecast different phenomena at different spatio-

temporal scales in which the experimal measurement are not possible due to 

economical and resource limitation. These changes in scale involve some sort of 

exteraploation and transfer of infromation across the scale. The potential of 

inappropriate representation of processess increases with changes in spatial and 

temproal dimension of hydrologic model (Baffaut et al., 2015). Hydrological 

processes occur at a wide range of scales, from unsaturated flow in soil layer to flood 

in river system of a multiple acerage (Blöschl and Sivapalan, 1995). The transfer of 

information from one scale to another is known as scaling and problems associated 

during this process are refered as scaling issues. In hydrologic prospective, upscaling 

refers to transfering information from a given scale to large scale, conversly 

downscaling refers to transfering information to smaller scale. For example, 

measuring soil moisture content at a point within a field and assuming it applies to the 

surrounding area involves upscaling. The observed hydrologic measurements are 

coarser spaced in space compare to time, therefore most of the extrapolation schemes 

are carried in the space domain (Blöschl and Sivapalan, 1995). In the past few years 

the importance of issue of scaling in hydrology has increased due to increased 

environmental awareness. The challenges on simulating hydrology include the 
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adequacy of mathematical description to represent the multiple processes occurring in 

the system (Freeze and Harlan, 1969). How to best represent the small scale 

heterogeneities on large-scale fluxes, and the movement of water across landscape 

and soil are major research challenges (Clark et al., 2017). Additionally, determining 

the scale for impact modeling is still a big question. Modeling multiple scales and 

comparing the knowledge from one scale to another can be an option to determine the 

impact of scale on hydrologic simulation.  

Global Climate Models 

Climate change research has been well supported since the early 1980s by the 

development of General Circulation Models (GCMs). GCMs are the most advanced 

and readily available tools for simulating the response of the Earth’s climate to 

changing atmospheric composition. GCMs are numerical models coupled with ocean 

models, land-use models, economic and future development models, and provide an 

arena for the study of climate change impacts on different processes involved in the 

atmosphere (Fowler et al., 2007). The work on climate models started in 1960, with 

release of first (1990), second (1995), third (2001), fourth (2007) and fifth (2013) 

assessment reports (IPCC, 2001; Wang, 2005). The spatial resolution has improved 

over this period; the first assessment report data resolution was 500 km2 compared to 

87.5 km2 in the fifth assessment report . In the fifth assessment report the emission 

scenarios are based on radiative forcing known as representative concentratation 

pathways (RCPs). These radiative forcing scenarios are based on the change in 

radiative forcing at the end of 2100 relative to the preindusturial period. The fifth 

assessment reports consist of four different RCPs, which are named based on change 

in radiative forcing by 2100; 2.6, 4.5, 6.0 and 8.5 watts per square meter (W/m2) 

(Hayhoe et al., 2017). Although there is ample data available from GCMs, 
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uncertainity are still there. Major sources of uncertainties of climate model outputs 

include downscaling of available GCM output to spatial resolutions required for 

hydrologic models (Praskievicz and Bartlein, 2014) and uncertainty between Global 

Climate Models (GCMs) and within a GCM (Peel et al., 2014). 

Climate Bias, Downscaling Need and Ensemble Approach 

The climate projection from general circulation models (GCM) are used as an input to 

hydrologic models to simulate the impact of climate change on water quality and 

quantity at multiple scale. Coupled Model Intercomparison projects from fourth and 

fifth assessment reports (CMIP3 and CMIP5) of IPCC have opened a wide space for 

impact assessment research. Climate output from multiple, well-established Global 

Circulation Models (GCMs) are available for both CMIP3 and CMIP5. CMIP3 

simulations of the 21st century were based on emission scenarios from the Special 

Report on Emissions Scenarios (SRES) (IPCC, 2000) and CMIP5 emission scenarios 

are based on representative concentration pathways (RCPs) (van Vuuren et al., 2011). 

GCM bias for the application in hydrologic model is a major challenge due to its 

coarse resolution, which involves the spatial averaging. When these biased data are 

used in hydrologic model, it leads to the uncertainties in impact assessment. There is a 

need to bridge the gap between the coarse resolution of climate models and the 

resolution needed for impact assessment for application of climate change scenarios 

to hydrological models. As defined in earlier section there is still uncertainty in 

climate model output based on scale of operation. Thus, a widely used approach in the 

climate community has focused on developing a technique to bridge the gap known as 

‘bias correction’. Bias corrections include adjusting GCM outputs, basically 

temperature and precipitation results, based on the bias found between observed and 

predicted value during period of observation. Ensemble modeling is widely adopted in 
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impact assessment studies; multimodal ensemble modeling can help to present the 

result as median surrounded band of possible range (Perez et al., 2014). The better 

prediction of multimodal ensemble average to any individual GCM has been already 

found for global study for examining the mean climate as the ensemble model shows 

range of possible case along with median (GCM) (Pierce et al., 2009b). In use of a 

single model, predictions may be highly influenced by predictive error associated with 

selected GCM (Pierce et al., 2009b).  

Climate Change and Future Extreme Weather Events  

Anthropogenic GHG emission to atmosphere is a factor for rapid warming of Earth 

(IPCC, 2007). Major concerns of climate change include extreme weather events as 

majority of effects are due to these events. The major impacts of climate change 

include increased temperature and change in precipitation extremes, which result in 

intensification of hydrological cycle leading to more floods and drought (Rosenzweig 

et al., 2001). In some areas, more winter precipitation is projected to fall as rain 

instead of snow, decreasing snowpack and spring runoff and potentially exacerbating 

spring and summer droughts. The Intergovernmental Panel on Climate Change 

(IPCC) points out increased risk of drought and extreme events during the 21st century 

across the globe (IPCC, 2007, 2014). Majority of study for projecting drought are 

conducted using drought indices where variable like precipitation, streamflow and soil 

water are used as proxy for drought quantification. Studies on drought projection have 

been conducted using climate scenarios and process based hydrologic models and 

studies have been conducted at different scale; global scale (Hirabayashi et al., 2008; 

Sheffield and Wood, 2008; Touma et al., 2015; Wang, 2005), regional scale (Huang et 

al., 2015; Romanowicz and Wong, 2016), and watershed scale (Liu et al., 2012; Vu et 

al., 2015; Wang et al., 2011). The majority of these studies indicate projected 
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increases in spatial and temporal distribution of drought for future. There is a strong 

need of projecting drought and climate-induced risk at small scale as global and 

regional scale projection misrepresent local scale details. 

Uncertainty in Climate Change Impact Assessment  

Major sources of uncertainty in predicting climate change on hydrologic response in 

future includes uncertainty associated with climate model emission scenarios. These 

scenarios are very hypothetical and reality totally depends on global, political, and 

economic conditions that will define how future of emission will look like. Other 

sources include; uncertainty associated with general circulation models (GCMs) (as 

we know model will not be able to represent the system completely and it will be even 

harder to model dynamic system like atmosphere); uncertainty caused by the bias 

correction/downscaling technique used for converting the coarse scale GCM output to 

regional scale by matching with the observed trends; and finally uncertainty 

associated with hydrological model where user have to define the unknown 

parameters, uncertainty in observed data used for model validation and uncertainty in 

model representation of different processes (Beven and Binley, 1992; Maurer, 2007).  

One of the ways to deal with these uncertainties is ensemble modeling, which 

involves running two or more related models and synthesizing the results. The study 

reports better prediction of multimodel ensemble average to any individual GCM for 

examining the mean climate as the ensemble model cancels errors associated with 

individual models (GCM) (Pierce et al., 2009a). Although some studies have explored 

the use of multiple models, for example Ahmadi et al. (2014) used 112 different 

climate scenarios from 16 GCM (CMIP3) to simulate hydrologic and water quality 

processes. However, the majority of the impact assessment studies focus on use of the 
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single/few GCM due to time and resources constrain. Different sets of climate model 

outputs are introduced in hydrologic model to see the impact of different climate 

models on simulated results. This will give the range of possibilities for future instead 

of a single one. Although increasing use of climate model ensembles for impact 

assessment research presents opportunities for understanding uncertainties, again it 

does have challenges for interpreting the results and to make a right decision (Falloon 

et al., 2014).  
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CHAPTER 3 

ASSESSING LONG-TERM HYDROLOGIC IMPACT OF CLIMATE 

CHANGE USING ENSEMBLE APPROACH AND COMPARISON WITH 

GLOBAL GRIDDED MODEL-A CASE STUDY ON GOODWATER CREEK 

EXPERIMENTAL WATERSHED 

ABSTRACT 

Potential impacts of climate change on hydrologic components of Goodwater Creek 

Experimental Watershed were assessed using climate datasets from the Coupled 

Model Intercomparison Project Phase 5 and Soil and Water Assessment Tool 

(SWAT). Historical and future ensembles of downscaled precipitation and 

temperature, and modeled water yield, surface runoff, and evapotranspiration were 

compared. Ensemble SWAT results indicate increased springtime precipitation, water 

yield, surface runoff and a shift in evapotranspiration peak one month earlier in the 

future. To evaluate the performance of model spatial resolution, gridded surface 

runoff estimated by Lund–Potsdam–Jena managed Land (LPJmL) and Jena Diversity-

Dynamic Global Vegetation model (JeDi-DGVM) were compared to SWAT. Long-

term comparison shows 6-8% higher average annual runoff estimation for LPJmL and 

5-30% lower estimation for JeDi-DGVM compared to SWAT simulated average 

annual runoff. Although simulated annual runoff showed little change for LPJmL, 

monthly runoff projection under estimated peak runoff and overestimated low runoff 

for LPJmL compared to simulated SWAT runoff. The reasons for these differences 

include difference in spatial resolution of model inputs and mathematical 

representation of physical processes. Results indicate benefits of impact assessments 

at small scales with heterogeneous sets of parameters to adequately represent extreme 

conditions that are muted in global gridded model studies by spatial averaging over 

large study domains. 
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Introduction 

Climatic shift due to anthropogenic activities has been linked to water supply 

shortages (De Wit and Stankiewicz, 2006; Schewe et al., 2014), declining biodiversity 

(Bellard et al., 2012; Gregory et al., 2009; Moritz and Agudo, 2013), ecosystem 

damage (Walther et al., 2002), and economic impact (Schlenker et al., 2006).  

Increased greenhouse gas (GHG) concentrations alter the radiative balance of the 

Earth’s atmosphere, causing an increase in average temperature (T) and changes in 

precipitation (P) patterns (Cubasch et al., 2013; Pachauri et al., 2014). The 

Intergovernmental Panel on Climate Change (IPCC) reports increases in mean surface 

temperature between 0.3 and 4.8°C by 2081-2100 relative to 1986-2005, and variable 

change in precipitation across the globe for the same period of comparison (IPCC, 

2014) dependent upon GHG concentrations in the atmosphere. The atmospheric 

carbon dioxide (CO2) concentration is estimated to increase from the present day 

concentration of approximately 400 ppm to approximately 850 ppm by year 2075 for 

the highest emission scenario (RCP 8.5) (IPCC, 2014). The projected changes in 

meteorological variables have been reported to impact hydrologic components and 

ultimately agroecosystem functioning (Kucharik and Serbin, 2008; Le et al., 2011; 

Piao et al., 2010). The majority of modeling exercises have been conducted at larger 

scales than this study, despite that in reality management decisions are taken at a local 

scale by individual farmers. . Therefore, it is important to develop approaches to 

increase the ability to predict how future climate changes could impact hydrologic 

components, and correspondingly, agricultural productivity through representation of 

localized systems.  
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Multiple Global Circulation Models (GCMs) have been developed to project 

future Earth climate given multiple plausible futures (IPCC, 2014). GCMs are three-

dimensional numerical models that represent the physical dynamics of the 

atmosphere, ocean, cryosphere, and land surface, and are the best available methods 

for predicting how these systems behave given increasing GHG concentrations in the 

atmosphere (IPCC, 2013). In the Fifth Assessment Report, the climate projections are 

organized into four Representative Concentration Pathways (RCPs) (RCP 2.6, RCP 

4.5, RCP 6.0, and RCP 8.5) based on radiative forcing levels associated with 

socioeconomic and technical assumptions by the end of the century (Taylor et al., 

2012). Radiative forcing is defined as the difference between incoming solar radiation 

and outgoing infrared radiation caused by increased concentration of GHGs expressed 

in Watts per square meter (W/m2) (Schneider, 1992).  

Hydrologic models have been used to simulate the long-term impact of 

projected changes in climate to assist with the quantification of future risk and, if 

necessary, to assist with developing adaptive management strategies (Fowler et al., 

2007; Haasnoot et al., 2014). Hydrologic simulation models have been applied to 

assess the impacts of climate change on nutrient loading (Jha et al., 2015), crop 

productivity (Panagopoulos et al., 2014), and streamflow (Ficklin et al., 2013a; 

Ouyang et al., 2015). The majority of climate impact assessment studies have been 

conducted at larger scales using gridded model structures matching with the 

resolution of Coupled Model Intercomparison Project (CMIP3 and CMIP5) (Ficklin et 

al., 2013a; Ficklin et al., 2013b; Mohammed et al., 2015; Panagopoulos et al., 2014). 

Studies in the Midwestern United States have focused on quantifying the impact of 

future climate on hydrologic processes at a regional scale using gridded climate data 

(50 × 50 km) (Jha et al., 2004; Qiao et al., 2014; Stone et al., 2003) and with some 
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studies conducted in mid-sized watersheds (Choi et al., 2017; Jha and Gassman, 2014; 

Tavakoli and De Smedt, 2011). There have been relatively few studies at smaller 

scales (Ahmadi et al., 2014; Al-Mukhtar et al., 2014; Ye and Grimm, 2013), in part 

due to lack of fine resolution climate model output and corresponding, data-intensive 

requirements to further downscale these data to a specific location to use in 

hydrological models for small scale applications (Fowler et al., 2007). Watershed 

sizes were defined using United States Geological Survey (USGS) classification 

scheme based on hydrologic unit code (HUC) which consists of six levels of 

classification (Seaber et al., 1987). Specifically, subwatershed to watershed (~100 

km2 to 585), subbasin to basin (>585 to 27,445 km2), and sub region to region 

(>27,445 km2 and above) were considered as small scale, mid-size and regional scale, 

respectively. 

 Hydrologic components can be simulated at various scales. The spatial and 

temporal scale of a hydrological model also defines the resolution of key output 

variables. For regional reservoir managers, a more coarse resolution of both space and 

time may be sufficient for anticipating and planning for predicting water levels. For 

example, the VIC model (Liang, 1994) operates at a 10-kmgrid cell size and a daily 

time-step, and is useful for large-scale water management planning and identification 

of general trends. In contrast, the APEX model (Williams and Izaurralde, 2006) 

operates at field scale (few to few hundreds hectare) and is useful for field-scale 

management planning. Thus, hydrologic models can produce distinct results, because 

of the model structure, parametrization and resolution of inputs (Clark et al., 2017; 

Freeze and Harlan, 1969). Comparison of model results at multiple scales can help to 

evaluate what resolution is necessary and appropriate for particular risk and 

adaptation questions. For example, early work on hydrologic impacts associated with 
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future climate change have focused on determining what regions of countries and 

even the globe may be at risk for changes in water availability, a question for which a 

coarse resolution may be adequate. However, in order to develop strategic responses 

in a specific location, and particularly the need to link hydrology to agricultural 

productivity, a finer resolution may be required in order to evaluate low probability, 

high-risk events (e.g., flooding, drought, etc.). Similarly, finer resolution for key 

parameters representing physical processes is likely to result in increased ability to 

predict responses to future climate conditions.  

The geographic focus of this study is the Goodwater Creek Experimental 

Watershed (GCEW), which is part of a Long Term Agroecosystem Research (LTAR) 

site, has been a part of a broader USDA-ARS watershed network since 1971, and thus 

has ample high quality data (Sadler et al., 2015a). The Soil Water Assessment Tool 

(SWAT) (Arnold et al., 1998) has been used to model this watershed for many years 

in conjunction with this LTAR research program. The SWAT model (Arnold et al., 

1998) is a widely used watershed-scale process-based distributed parameter 

hydrologic simulation model designed to simulate hydrologic components, and 

enables detailed representation of agricultural land cover and management practices 

(Neitsch et al., 2011; Santhi et al., 2001). SWAT includes algorithms for predicting 

how P, T, and CO2 concentration affect plant growth and hydrologic components.  

The GCEW is a headwater watershed in the Salt River Basin and the geophysical 

context of the study area represents the Central Claypan region, which includes 

Northeast Missouri, Southeast Iowa and Southern Illinois (Baffaut et al., 2015a; 

Sadler et al., 2015a). GCEW includes a restrictive clay layer in the subsurface soil (B-

Horizon), which results in lower hydraulic conductivity, and, ultimately considerable 

surface water runoff despite shallow slopes (Jung et al., 2006; Udawatta et al., 2004). 



 

30 
 

The presence of this restrictive clay layer may result in more significant responses in 

hydrologic components as a result of future changes in T and P. For example, intense 

precipitation events could result in higher runoff and short-term dry periods may 

result in short-term drought, both of which can affect agricultural productivity. 

Hydrologic models with a coarse spatial resolution may not be able to capture 

hydrologic responses to climate adequately in areas with unique physical features 

such as the claypan in the GCEW. 

The objectives of this study are to contribute to the body of knowledge developed 

in conjunction with the LTAR project in the GCEW, to characterize the potential 

hydrologic impacts in relation to climate change in the GCEW, and to compare 

hydrologic output from models of different spatial resolution as well as with and 

without localized downscaling of weather data. This is an important inquiry for 

developing modeling techniques to assess risks to hydrologic components and 

agricultural activity. To support these objectives, 12 climate model datasets obtained 

from CMIP5 were statistically downscaled using historic T and P data from GCEW 

(Sadler et al., 2015b) and modeled hydrologic responses were analyzed using an 

ensemble approach. To support the last objective, SWAT simulated runoff was 

compared with simulated runoff from the Lund–Potsdam–Jena managed Land 

(LPJmL) and Jena Diversity-Dynamic Global Vegetation (JeDi-DGVM)models 

forced with precipitation data bias corrected using a nonlinear regression with a 

spatial resolution of 0.5 degree (Hempel et al., 2013). These data were made available 

via the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) (Warszawski 

et al., 2013). Runoff results were compared to evaluate the performance of these 

varying spatial resolutions to generate more insight on why there is a need for detailed 

simulation with higher spatial resolution in an agricultural setup.  



 

31 
 

Materials and Methods 

Watershed Description and Data Sources 

The study was conducted in the GCEW, located in Boone and Audrain counties, 

Missouri (Figure 3.1)with a drainage area of approximately 73 km2 (Sadler et al., 

2015a). The land uses in the watershed include row crops (72.8 % of total land area), 

pasture (14.3%), forest (6.0%), and urban land (6.9%) (Table 3.1). The study area 

received an average annual precipitation of 1027 mm between 1993 and 2010, with 

maximum and minimum annual precipitation of 1614 and 776 mm, respectively, for 

years 2008 and 2007 (Sadler et al., 2015b). The historical average annual snowfall for 

the study watershed is around 380 mm, given difficulty in snow measurement snow 

water equivalent is measured in the study area (Sadler et al., 2015b). The daily 

average maximum and minimum temperatures during this same period were 17.5°C 

and 6.5°C, respectively. The average annual discharge of the watershed (expressed as 

a depth over the drainage area) is 310 mm, proportioned of surface (80%) and base 

flow (20%) (Baffaut et al., 2015b).The watershed has flat topography, with  69% of 

the area having a slope of 0-2%, 15.2% having a slope of 2-3%, and the remaining 

15.8% has a slope greater than 3%. The average elevation of the watershed is 256 m 

above sea level, ranging from 223 to 281 m.  

Data required for the SWAT model included a Digital Elevation Model (DEM), 

soil database, Land Use/Land Cover (LULC), and weather datasets. The DEM (10-m 

resolution), soil (30-m resolution), and land use/land cover (30-m resolution) datasets 

were downloaded from Missouri Spatial Data Information Service (MSDIS) 

(http://msdis.missouri.edu/data/dem/), Soil Survey Geographic Data (SSURGO) 

(http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx) data set, and 

http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) 

(http://nassgeodata.gmu.edu/CropScape/) of the United States Department of 

Agriculture (USDA), respectively. The historical weather datasets required for the 

model, including daily P, daily maximum and minimum air T, wind speed, and solar 

radiation were obtained from the weather station and rain gauge located in the 

watershed (Figure 3.1). The precipitation datasets from 5 different rain gauges (Figure 

3.1) were used to better represent the spatial variability of precipitation across the 

watershed. 

Description of SWAT model and model setup for GCEW 

The SWAT 2012 version 635 was used by incorporating the changes included in an 

earlier modeling effort to simulate the percolation through and saturation above the 

claypan (Baffaut et al., 2015a) which controls the hydrologic components of Central 

Claypan region. The watershed was delineated using Arc Hydro tools built in the Arc 

SWAT interface using DEM data for the area (MSDIS). The watershed was 

delineated using the threshold drainage area of 200 ha with delineation resulting in 7 

sub-basins. The delineation scheme was consistent to previous modeling efforts for 

GCEW (Baffaut et al., 2015a). LULC data were assumed to be constant throughout 

the simulation. A two-year rotation of corn and soybean (conventional tillage corn 

and no-till soybean rotation) was used to represent the dominant year-to-year 

cropping patterns in the watershed. Pasture land was further divided into pasture1, 

pasture2, hay and switchgrass to include more detail for SWAT simulation and to 

represent proper stocking density by applying grazing in alternate pasture (Baffaut et 

al., 2015a). The watershed was divided using five slope classes (<0.5 %, 0.5-1 %, 1-2 

%, 2-3 %, and >3 %). The overlay of soil, land use layer, and slope resulted in 93 

hydrologic response units (HRUs). Subbasin area thresholds were used to define 

http://nassgeodata.gmu.edu/CropScape/
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minor land uses, minor soils for each land use, and minor slope ranges for each land 

use/soil combination using values of 5% for land use, 20% for soils, and 25% for 

slopes. Minor land uses, soils, or slope ranges were not simulated and the 

corresponding area was redistributed among the simulated ones. The historic observed 

data values for all five weather variables (T, P, wind, relative humidity, and solar 

radiation) were input for historic model calibration and validation. The wind, relative 

humidity and solar radiation were generated using the SWAT weather generator for 

future simulations and T and P were based on statistically downscaled projections 

from CMIP5. The Natural Resources Conservation Service (NRCS) curve number 

(CN) method was used to calculate the surface runoff, and potential 

evapotranspiration (PET) was estimated using the Penman-Monteith (PM) method. 

Note that the PM method must be used for the climate change scenarios that account 

for CO2 changes. This method accounts for the impact of CO2 change on plant 

growth. 

LPJmL and JeDi model overview 

LPJmL and JeDi-DGVMare dynamic global vegetation models represent vegetation 

dynamics in addition to land surface processes with a spatial resolution of 0.5 degree 

(Bondeau et al., 2007; Pavlick et al., 2013).  Runoff simulation for both models was 

conducted at a daily time step using daily meteorological variables including P, daily 

mean T, long wave net radiation and long wave downwelling radiation gridded at 0.5 

degree. The change in leaf area index and stomatal conductance due to changes in 

CO2 concentration was applied in the simulation to represent dynamic vegetation 

growth in both LPJmL and JeDi-DGVM. The saturation excess runoff scheme was 

used for simulation of runoff, i.e., excess water above field capacity was considered 

runoff and infiltration processes were not simulated. Evapotranspiration was 
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calculated using the Priestley-Taylor (PT) method. Soil data for the LPJmL model 

setup was taken from the Harmonized World Soil Database (HWSD). Soil data of 

HWSD is a 1-km-resolution raster database. HWSD soil data are available for two 

layers, top- and subsoil (Nachtergaele et al., 2008). The land use land cover database 

from gridded land use (HYDE 3.2) (Klein Goldewijk, 2016) with a horizontal 

resolution of 0.5-km was used for LPJmL, which means land use can’t be subdivided 

at a resolution less than 0.25 km2. The JeDi-DGVM model uses a parameter-based 

land surface model to simulate soil and land use. The parameters used in the JeDi-

DGVM model include maximum plant available water storage in the root zone, 

transpiration rate, leaf area index, fractional vegetative cover, fractional forest cover, 

snow-free surface albedo, and canopy storage. Details about the parameter-based land 

surface model used in JeDi-DGVM can be found in Diimenil et al. (1996). The major 

differences between LPJmL and JeDi-DGVM include the definition of land use land 

cover, soil, and dynamic vegetation representation. Both models represent vegetation 

dynamics using semi-empirical plant functional types (PFTs). Vegetation in LPJmL is 

represented using only 12 PFTs compared to the large number of PFTs generated 

based on 15 trait parameters in JeDi-DGVM (Pavlick et al., 2013). LPJmL and JeDi-

DGVM surface runoff output, generated based on weather data from the CMIP5 

climate data, were retrieved via the ISI-MIP data repository [https://esg.pik-

potsdam.de/search/isimip-ft/] for the grid cell overlapping the GCEW for comparison 

to SWAT output. The monthly average runoff projections for near and far future for 

LPJmL, JeDi-DGVM, and SWAT were compared using the paired-t test. Two 

Climate models, MIROC-ESM-CHEM and IPSL-CM5A-LR, were used for this study 

to represent both kinds of plausible futures (higher temperature and precipitation 

change and smaller temperature and precipitation change). Note that the runoff 
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simulation data are available using two impact models (LPJmL and JeDi-DGVM) in 

the ISI-MIP project. 

SWAT Model Calibration, Validation and Evaluation Criteria 

The model was calibrated for daily streamflow during the period 1993-2001 using 

data collected at the watershed outlet (Weir 1), and the model was validated using 

2002-2010 streamflow data at Weir 1 and 1993-2001 streamflow data at Weir 11 

(Baffaut et al., 2015b) (Figure 3.1). An initial three–year (1990–1992) warm-up 

period was used to initialize the SWAT model. The model sensitive parameters for 

streamflow were determined using the SWAT-CUP (SUFI-2) (Abbaspour et al., 

2007), and calibration was conducted manually by adjusting a single parameter at a 

time to fit the observed and simulated streamflow. Manual calibration was preferred 

over auto-calibration as SWAT parameter ranges were well understood based on 

previous studies (Baffaut et al., 2015a). The model was calibrated to get the best fit 

value of the streamflow-sensitive parameters, and their values were changed within 

the range defined by Neitsch et al. (2002). Calibration was conducted through visual 

assessment of superposition of observed and simulated flow duration curves for whole 

range of flow, and further model performance statistics were calculated to confirm. 

The model performance was tested using coefficient of determination (r2) and Nash 

Sutcliffe Efficiency (NSE). The r2 value above 0.60 and NSE values above 0.50 and 

p-bias of ± 10% during the calibration and validation periods were set as a criterion 

for satisfactory model performance during the model simulation of daily streamflow 

as defined by Moriasi et al. (2015). The calibrated SWAT model was used for the 

future projection of hydrologic condition using the statistically downscaled 

temperature and precipitation data for the near (2016-2045) and far future (2046-

2075) periods. Note that the parameter uncertainty can affect the simulated results as 
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there can be multiple set of hydrologic parameters that result in adequate model 

performance matrices (Ficklin and Barnhart, 2014). Studies indicate the uncertainty 

associated with GCMs and emission scenarios is higher compared to hydrologic 

parameter uncertainty (Bennett et al., 2012; Sellami et al., 2016), therefore one set of 

hydrologic parameters are used in this study and the uncertainty ranges of climate 

models are presented. The simplified flow chart shown in Figure 3.2 describes the 

steps followed in this study. 

Climate data and bias correction methods 

Climate projection data were obtained from the CMIP5 project (Maurer et al., 2007), 

which provides Bias Corrected Constructed Analog (BCCA) downscaled to one-

eighth degree (12 km2) from many GCM models (available at: http://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/). Data from twelve GCM models for 

four emission scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) for a total of 48 

unique datasets were selected for this study (Table 3.2 (Maurer et al., 2007) and Table 

S1). Daily P and air T (min and max) were extracted for the four grid cells spanning 

the GCEW. These data were further downscaled using observed P and T data over the 

years 1971-2010 from the weather station located in the watershed. The bias in 

temperature was corrected using the delta method and the bias in precipitation 

datasets was corrected using modified quantile mapping.  

Statistical Downscaling: Temperature –Delta Method 

The delta method aims to match the monthly mean of the corrected temperature 

values with observed temperature (Lenderink et al., 2007). The correction of the 

temperature involves linear shifting of future temperatures using a correction factor 

calculated based on the difference between the historic GCM simulated and historic 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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observed temperature data for each month (Choi et al., 2017). Temperature data 

extracted from CMIP5 were corrected to correspond to the study area using the delta 

method. The monthly correction factor was calculated by subtracting average monthly 

baseline CMIP5 simulated T data and baseline observed T data (1971-2010). Daily T 

over the analysis period was corrected with an additive term (bj) computed for each 

month as Eq. (1): 
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Where, Ci= is the total number of days for month j over the entire baseline historic 

period, ijT is the daily observed T in °C (maximum or minimum), and 
^

ijT is the daily 

model temperature (maximum or minimum) on day i in month j. Finally, the additive 

factor for each respective month was added to raw data for bias correction (Eq. (2)). 

jijij bTT 
^

                                                                 (2) 

Statistical Downscaling: Precipitation-Quantile mapping 

Quantile mapping adjusts the daily CMIP5 precipitation values to match the statistical 

distribution of the observed precipitation. This method is known by many other 

names, for example as ‘distribution mapping’ (Boé et al., 2007; Johnson and Sharma, 

2011) and ‘probability mapping’ (Block et al., 2009; Ines and Hansen, 2006). One 

major assumption of quantile mapping is that the precipitation distribution doesn’t 

change over time, and variance and skewness of the distribution remain the same with 

only a change in mean (Li et al., 2010). Cumulative Distribution Functions (CDFs) 

were constructed for both CMIP5 and observed daily P (1970-2010) on a monthly 
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basis. A transfer function was constructed to transform CMIP5 data values to 

probabilities based on the CDF of the model distribution, and these values were 

transformed back to data values using the inverse CDF or quantile function of the 

observed distribution. This procedure is expressed mathematically as (Eq. (3)): 

𝑃𝑖,𝑗
𝑐𝑜𝑟𝑟 𝑔𝑐𝑚  

= 𝐶𝐷𝐹𝑜𝑏𝑠,𝑗
−1  [𝐶𝐷𝐹𝑔𝑐𝑚,𝑗

ℎ𝑖𝑠 (𝑃𝑖,𝑗
𝑟𝑎𝑤)]    (𝑃𝑖,𝑗

𝑟𝑎𝑤 ≤ 𝑃𝑚𝑎𝑥,𝑗
ℎ𝑖𝑠 𝑔𝑐𝑚

)                (3)                                               

Where, 𝑃𝑖,𝑗
𝑟𝑎𝑤 , 𝑃𝑖,𝑗

𝑐𝑜𝑟𝑟 𝑔𝑐𝑚  
and 𝑃𝑚𝑎𝑥,𝑗

ℎ𝑖𝑠 𝑔𝑐𝑚  
are the projection’s raw CMIP5, corrected 

CMIP5, and maximum historical CMIP5 precipitation for ith day of jth month , 

respectively.  The  𝐶𝐷𝐹𝑜𝑏𝑠,𝑗
−1  is the quantile function of the observed precipitation and 

𝐶𝐷𝐹𝑔𝑐𝑚,𝑗
ℎ𝑖𝑠  is the CDF of an individual GCM.  

Quantile mapping was modified to correct two major limitations in CMIP5 P 

data: 1) the P frequency or dry bias, i.e., the data contain a large number of very low P 

days, i.e., “drizzle days,” (Hidalgo et al., 2008) and 2) an underestimation of extreme 

P compared to historical observation. The number of P days was more than 300 

days/year for projected gridded data compared to 94 days/year in the observed dataset 

(1971-2010). To correct for these excess “drizzle days,” a P threshold was determined 

and the P values below the threshold were removed (Equation 4). A P threshold for 

each month was determined for each GCM model to ensure the same number of P 

days for GCM baseline and observed as was done by Grillakis et al. (2013). Monthly 

thresholds ranged from 0.60 to 4.5 mm/day; similar to ranges of P thresholds reported 

by Themeßl et al. (2011). Quantile mapping was performed after removing “drizzle 

day” corrections.  

𝑃𝑖,𝑗
𝑟𝑎𝑤(𝑑) = {

0, 𝑖𝑓 𝑃𝑖,𝑗
𝑟𝑎𝑤 <   𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑗

𝑃𝑖,𝑗
𝑟𝑎𝑤, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                         (4)                                                                               
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The second limitation of quantile mapping is that the method limits the upper value of 

future daily precipitation to the highest value observed in the past. Given that climate 

projections indicate that precipitation events are likely to increase in magnitude and 

this sort of extreme event poses potential risks a second adjustment was made to the 

CMIP5 P data to allow a daily P to exceed the historic maximum using Eqns. (5) and 

(6). P was scaled on a monthly basis to represent the monthly extreme. A separate 

scaling factor was calculated for each month. Where Sj is the scaling factor for a 

given month and 𝑃𝑖,𝑗
ℎ𝑖𝑠 𝑔𝑐𝑚

 is the CMIP5 daily P data for month j during the historic 

period. This approach retained the relationship between the historic period and future 

periods within a CMIP5 P dataset for a given model without constraining future P 

data to the maximum historical observation. 

 

 𝑃𝑖,𝑗
𝑐𝑜𝑟𝑟 𝑔𝑐𝑚  

= 𝑆𝑗 ∗ 𝑃𝑖,𝑗
𝑟𝑎𝑤     (𝑃𝑖,𝑗

𝑟𝑎𝑤 > 𝑃𝑖,𝑗
ℎ𝑖𝑠 𝑔𝑐𝑚

)                            (5)                                                                       

𝑺𝒋 =
𝑴𝒂𝒙(𝑷𝒊,𝒋

𝒐𝒃𝒔)

𝑴𝒂𝒙(𝑷𝒊,𝒋
𝒉𝒊𝒔  𝒈𝒄𝒎

)
                                                                         (6)                                                                                                                 

Simulation Scenarios. Impacts of climate change on water yield, evapotranspiration, 

and surface runoff 

The validated SWAT model was run at a daily time step starting in 1981 and 

continuing until 2075. For analysis, the baseline represents 1981-2010, the near future 

is defined as 2016-2045, and the far future is defined as 2046-2075. Different 

atmospheric CO2 concentrations were applied within SWAT for each RCP for 

different time periods; these values were calculated by averaging the projected CO2 

concentrations over each 30-year period. The details of CO2 concentration used for 

each model for each time frame and RCP are presented in Table 3.3. The CO2 
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concentration of 330 ppm was used for all the historic simulations. The ensemble 

median and quartile values (Q1 and Q3) of monthly water yield, evapotranspiration, 

and surface runoff were calculated for the three analyses periods. Reporting results as 

ensembles allows for greater confidence in simulated hydrologic outputs (Perez et al., 

2014). Pierce et al. (2009) found that the average of a multi-model ensemble is a 

better predictor than any individual GCM for global studies examining the mean 

climate, as the ensemble of results cancels out the bias and errors. 

The modified PM method was used to calculate ET. This equation allows for the 

incorporation of variability in radiation-use efficiency, plant growth, and transpiration 

induced by change in atmospheric CO2 concentration (Neitsch et al., 2011). Note that 

the future projections of solar radiation are based on weather generator, which uses 

monthly statistics of historic daily solar radiation data to project the future weather. 

Sensitivity analysis was conducted by elevating daily solar radiation. Increase in daily 

solar radiation by 1 MJ/m2 resulted in ~2% (650 to 663 mm) increase in ET. Results 

indicate less sensitivity of SWAT model to change in solar radiation. Therefore, 

majority of climate change impact assessment studies using SWAT use weather 

generator for future projection for solar radiation. SWAT simulates the impact of 

change in CO2 concentration on stomatal conductance by linear interpolation between 

current conditions and a 40% decrease of stomatal conductance for doubling of CO2 

up to 660 ppm (Neitsch et al., 2011). However, SWAT does not simulate effects of 

CO2 on leaf area index; thus, this study does not incorporate the impact of increased 

CO2 concentration on leaf area and other feedbacks associated with it.  
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Results and Discussion 

Model calibration and validation 

The default and adjusted model parameter values are presented in Table 3.4. The 

model parameters controlling surface runoff, groundwater, and snowmelt were 

important parameters considered during calibration. The calibrated model parameters 

are similar to those reported by previous researchers for GCEW (Baffaut et al., 

2015a). Daily streamflow simulation at weir1 (watershed outlet) resulted in r2 of 0.66, 

NSE of 0.66, and p-bias of 5.6% during calibration (1993-2001), and r2 of 0.60, NSE 

of 0.59, and p-bias of -6.9% during the validation. The model was further validated 

using the streamflow data at weir11 resulting in r2 of 0.73, NSE of 0.68, and p-bias of 

18%. SWAT simulated dry (2007) and wet (2008) years accurately, indicating that the 

model was suitable for evaluating climate change impacts. The flow duration curve is 

a description of the frequency at which a given discharge is reached or exceeded over 

the simulation period. The flow duration curves for observed and simulated flow for 

calibration and validation periods are presented in Figure 3.3. The calibration 

objective was to superimpose observed and simulated flow duration curves to match 

low, intermediate and high flow.  

Downscaled GCM projection 

Temperature 

Minimum temperatures were under-predicted and maximum temperatures, 

particularly in the summer months, were over-predicted in CMIP5 output compared to 

historical observations. The scaling factors used for correction of the maximum and 

minimum daily T are presented in supplement Tables 3.S2 and 3.S3. The maximum 

bias was for the month of March for both the maximum and minimum T. Average 
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monthly T (observed, CMIP5, bias-corrected) for the period 1981-2010 for one of the 

GCM models included in the study is presented in Figure 3.4 as an example. These 

results are consistent with previous reports of over-prediction of annual mean T for 

CMIP5 GCMs for Northern Eurasia (Chiyuan et al., 2014; Terink et al., 2010), 

Northern hemisphere (Zhao et al., 2013), and globally (Kim et al., 2012).  

Figure 3.5 shows GCM projected changes in average annual T, between the 

baseline (1981–2010) and near (2016–2045) (Figure 3.5a) and far future (2046-2075) 

(Figure 3.5b) for the 12 sets of downscaled T data from CMIP5 for four RCP 

scenarios. Ensemble average T change in the near future period shows minimum T 

change for RCP 6.0 (1.13 °C) and maximum T change for RCP 8.5 (1.63 °C). The far 

future period shows minimum T change for RCP 2.6 (0.33 °C) and maximum T 

change for RCP 8.5 (1.92 °C). The most significant increase in T occurred for models 

under RCP 8.5 scenarios for both near and far future (Figure 3.5a and Figure 3.5b). 

This is consistent with the assumptions associated with technological and 

socioeconomic conditions leading to the concentrations of GHGs associated with each 

RCP. That is, RCP 2.6 includes a decrease in the concentration of GHGs in the 

atmosphere to below currently observed levels, while RCP 8.5 represents the largest 

increases of GHG concentrations in the atmosphere. For RCP 4.5, atmospheric CO2 

peaks around 2040, then declines compared to RCP 6.0, where CO2 peaks in 2080 and 

declines (Meinshausen et al., 2011) . Therefore, in the near future, RCP 6.0 has the 

lowest CO2 concentration compared to RCP 4.5 scenarios resulting in the least T 

change (Figure 3.5a). The spread of predicted changes in T for models in RCP 4.5 

(0.7 °C - 2.2 °C) and RCP 8.5 (0.9 °C - 2.5 °C) demonstrates the value of a multiple 

model ensemble approach for future climate change impact assessment studies.  
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Precipitation 

Figure 3.5 also shows GCM projected percentage changes in average annual P, for 

baseline (1981–2010), near future (2016–2045), and far future (2046-2075) 

respectively, for the 12 different GCMs used in this study. An ensemble P change for 

the far future scenario was the least for the RCP 6.0 scenario (1.0% increase) and 

most for RCP 8.5 (6.9% increase). The highest simulated increase in average annual 

precipitation was for RCP 8.5 with a change in P ranging from -7 to 16% across 12 

GCMs in the near future and -10 to 28% in the far future, followed by the RCP 4.5. 

Note that in near future (2016-2045), RCP 4.5 had a higher CO2 concentration than 

RCP 6.0 (van Vuuren et al., 2011), which may explain the elevated T and P for RCP 

4.5 compared to RCP 6.0 over this period. Use of variable monthly thresholds for 

daily precipitation enabled exact matching of wet days between historic modeled P to 

observed P, which is critical for quantile mapping. The monthly P thresholds and 

scaling factors used to correct these biases are presented in supplement Table 3.S4 

and Table 3.S5. Quantile mapping of the CMIP5 data to the historical data for one 

model under the RCP 8.5 scenario (micro-esm.1) is presented in Figure 3.7. 

Monthly ensemble median P results indicate increased spring P compared to the 

baseline for both near and far future for all the emission scenarios (Figure 3.6). A 

previous study also reported an increase in precipitation during the spring months 

based on historic data for Central US (Feng et al., 2016). Decrease in ensemble 

monthly P compared to the baseline was simulated for near-future for the months 

from July-November for RCP 2.6 (Figure 3.6). For RCP 4.5, the decrease in P for July 

was 7 and 14%, and August was 6 and 14%, respectively, for near and far future. The 

decrease in precipitation for July and August was 12% and 14%, and 9% and 21%, 

respectively, for far future of RCP 6.0 and RCP 8.5. There was minimal change in the 
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monthly precipitation during the winter months. Occurrence of more P during spring 

may delay agricultural operations, and dry summers with very low P may result in 

short-term drought and possible crop losses. Previous regional modeling efforts using 

the Regional Climate Models (RCM) to assess the climate change impact on 

hydrology of the Mississippi River Basin indicated increased future P, as high as 21% 

on a mean annual basis (Jha et al., 2004). Downscaling of P based on point scale 

(weather station) data is more relevant at the small watershed scale and may help to 

better understand how changes in P and T impact the hydrologic components in the 

watershed. 

Climate change impact on hydrologic output 

Water yield 

The ensemble median annual water yield was predicted to increase in both the near 

and far future compared to the baseline for RCP 2.6, RCP 4.5, and RCP 8.5 climate 

scenarios. Climate scenario RCP 6.0 showed 1% reduction in median water yield for 

far future scenario, due to minimum P change projected for far future for models 

under these climate scenarios. The highest change of 29% was observed for the far 

future scenario of RCP 8.5, which also resulted in the greatest increase for the near 

future (19%). The changes in water yield for RCP 2.6 and 4.5 were similar for near 

future, with the water yield increasing by around 10%. The water yield for RCP 2.6 

and RCP 4.5 increased by 12% and 6%, respectively for the far future (Table 3.5). 

The models in RCP 6.0 showed very small changes in P (2% for near and 1% for far 

future). The increase in water yield was due to increased P; the model with the highest 

increase in P resulted in the highest increase in water yield. For example, the greatest 
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increase in water yield occurred for the month of May where the P was maximum for 

RCP 8.5 (Figures 3.6 and 3.8). 

The first and third quartiles for water yield in Figure 3.8 show the variation in 

predicted water yield, which reflects the differences in GCM projections for each 

RCP. Despite this variation across GCM outputs, in all cases the ensemble median for 

near and far future was above the baseline median (Figure 3.8, Table 3.5).  

For all the RCPs, the GCM ensemble range indicated a projected increase in 

the 3rd quartile of water yield. Monthly peak water yield occurs in June except for the 

far future of RCP 6.0 and RCP 8.5 scenario where it occurs in May (Figure 3.8). 

Elevated water yield during the spring months (March, April, and May) is due to an 

increase in spring P projected by all four emission pathways. Such change in 

distribution of water yield compared to baseline may cause increase risk of extreme 

(flood and drought) events in the watershed. Similar trends were simulated for the 

region, as shown by elevated future spring and mean annual water yield for the 

Missouri River Basin simulated using the GCM output and the SWAT model (Stone 

et al., 2003). These results, as well as previous studies (Risbey and Entekhabi, 1996), 

document that the runoff processes can be amplified due to fluctuations in P, resulting 

in significant impacts on streamflow. Our study shows similar results; the highest 

increase of water yield (83%) (270.5 to 494.9 mm) was simulated using the microc-

esm.1 model under RCP 8.5 with 28% (from 969.2 to 1239 mm) increase in 

precipitation compared to baseline.  

Surface Runoff 

Ensemble mean annual surface runoff is predicted to increase compared to the historic 

period in all scenarios with the exception of RCP 6.0 in the far future (Figure 3.9). 
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RCP 8.5 resulted in the greatest increase compared to the historic period in surface 

runoff for both near future (20.9%) and far future (29.9%) (Table 3.5). The first and 

the third quartile ranges for surface runoff in Figure 3.9 show the range in predicted 

runoff associated with individual climate models. These variations reflect the 

difference in GCM projections among RCPs (Figure 3.9 and Table 3.5). The largest 

increases are shown in the spring months as a direct result of increased precipitation. 

The monthly peak runoff occurred in June except for in the far future of RCP 8.5 

where it occurred in May (Figure 3.9). The magnitude of the peaks is larger than those 

observed in the historical dataset for all the RCPs except RCP 6.0 which shows small 

change in ensemble water yield (Table 3.5). Decreased surface runoff in August was 

simulated for RCP 4.5, RCP 6.0, and RCP 8.5 compared to historic baseline (Figure 

3.9). 

 The relationship between increased P and surface runoff is a function of physical 

characteristics of the location, e.g., soil type, land cover, and in a mathematical model 

is also a function of the spatial and temporal resolution of the model inputs and 

response. Hydrologic models use geomorphologic and topographic parameters to 

characterize land forms to represent hydrologic process (Yang et al., 2001). The 

parameters used to represent the scale lead to differences in the simulated results. For 

example, SWAT uses detailed parameters to represent small sub-areas within a 

watershed, in this case 93 HRUs to represent the heterogeneity in GCEW, compared 

to single, spatially-averaged parameters applied in JeDi and LPJml to represent the 

grid that encompasses GCEW.  

 In this analysis, the GCM model microc-esm.1 under RCP 8.5 results in the 

largest increase in P with an average annual increase of 28% (969.2 to 1239 mm) 

which resulted in an increase in runoff of 88% (230.6 to 434.9 mm). Jha et al. (2004) 
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found that an increased runoff up to 51% in the Upper Mississippi River Basin 

(UMRB) for a 21% increase in P, using regional climate model output and SWAT. 

The SWAT model version used by Jha et al. (2004) was not modified to represent 

percolation through claypan soil. In contrast, a modified version of SWAT was used 

in our study to represent claypan hydrology (Baffaut et al., 2015a). The GCEW’s 

relatively larger modeled surface runoff response is likely due to increased heavy 

precipitation events, differences in the model spatial resolution, and accounting for 

the claypan condition in the watershed (Baffaut et al., 2015a). Lower saturated 

hydraulic conductivity of the claypan layer results in lower infiltration and higher 

runoff response. The representation of small-scale details (e.g. claypan) conditions is 

often overlooked in large-scale simulations as these models are constructed to 

simulate average conditions. Model correction to represent each unique local situation 

is not feasible in a model with a large spatial resolution. The small watershed-scale 

studies are important as they help to better represent heterogeneity within the 

watershed, which ultimately can help local-scale decision making.   

 Monthly surface runoff estimated using SWAT in GCEW was compared to the 

surface runoff output from the LPJmL and JeDi-DGVM models forced using two sets 

of CMIP5 data (miroc-esm-chem and ipsl-cm5a-lr) and obtained from ISI-MIP, 

Figure 3.10 (Warszawski et al., 2014). For peak runoff, the flow duration curve 

comparison showed good agreement between SWAT and observed data (Figure 3.10). 

A lower peak value by the gridded models indicates an under-estimation of peak flow. 

The comparison indicates that the gridded models were unable to simulate the 

monthly peaks predicted by the SWAT simulations (Figure 3.10). Average annual 

surface runoff during 2016-2075 was over-estimated by 6-8% using LPJmL and 

under-estimated by 5-30% using JeDi-DGVM compared to the SWAT simulated 
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results. Paired t-test results indicate significantly lower prediction of average monthly 

runoff by JeDi-DVGM compared to SWAT simulated results and greater prediction 

by LPJmL. The results for paired t-tests are presented in Table 3.6.   

 The causes for these differences include model assumptions, model 

parameterization, input spatial resolution, and model structure in the respective 

models. Evapotranspiration was calculated using the PT method in LPJmL compared 

to the PM approach in SWAT. Suleiman and Hoogenboom (2007) report that the 

accuracy of the PM method for ET estimation is superior for predicting ET in the U.S. 

and that the PT method tends to overestimate ET for U.S. conditions. The difference 

in runoff prediction between the LPJmL and JeDi-DGVM models is also due to 

differences in approaches for representing dynamic vegetation in the model as 

presented in section 2.3. The lower peak monthly runoff and greater low runoff values 

in the gridded model output may also be due to simulation at a coarse resolution with 

a homogenous set of parameters compared to the fine resolution input data of SWAT 

model as described in section 2.1 and 2.3, as well as differences in accounting for 

local weather (i.e., statistical downscaling) and local hydrologic conditions (e.g. 

claypan).  The comparison shows the importance of impact assessment at the smaller 

scale to predict hydrologic change through representing soil and land use with greater 

detail. Recommending simulation at small scale for every single point on the globe 

can be resource intensive and even not possible. However, simulation of small 

watersheds that represent major characteristics of regions can be useful for 

anticipating risks and corresponding decision-making, especially within the 

agriculture sector, which can experience quick response to change in precipitation and 

temperature. Likewise, global gridded models, which are generally better at 

simulating average conditions, may be sufficient for other applications. For a global 
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resource analyst, general trends noted by a global gridded model may be sufficient. 

Although LPJmL was able to represent the long-term average monthly conditions, it 

failed to represent extremes (peak and minimum runoff), which are important from an 

agricultural perspective.  

Evapotranspiration 

Median annual ET in the near and far future had little change, -1 to 3% compared to 

historical observations on an annual basis (Table 3.5). There was minimal change in 

annual ET in the near future for RCP 2.6 and RCP 6.0 (Table 3.5). However, there 

was an increase in ET in spring months and a decrease in summer months for both the 

near and far future for all four RCPs (Figure 3.11). The decrease in summer ET was 

maximum for RCP 8.5 and minimum for RCP 2.6.  

 Results indicated shifts in the peak monthly ET from July (baseline) to June 

for RCP 4.5, RCP 6.0, and RCP 8.5 in the far future (Figure 3.11). Land use and land 

cover were fixed during the entire simulation period. Therefore, variation of the 

simulated ET from the watershed was mostly controlled by meteorological variables 

and corresponding plant growth responses. For each crop, a base T must be reached 

for plant growth to begin in SWAT. With increased T, base T values were reached 

sooner than they have been reached historically, resulting in a shift in the plant growth 

cycle to earlier in the calendar year. This earlier emergence of biomass resulted in a 

corresponding shift in evapotranspiration to earlier in the season, with an earlier peak 

for all far future RCPs except for 2.6. The impact of elevated T on the hydrologic 

cycle due to shift of the crop growth cycle has been documented previously by Ficklin 

et al. (2009). However, it remains unclear whether farmers would actually plant crops 
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earlier. In addition, for this study region, increased spring precipitation may preclude 

early planting. 

Conclusions 

A calibrated and validated SWAT model for the GCEW was used to simulate the 

effect of climate change using downscaled T and P data from 12 GCMs under four 

emission scenarios. Downscaled climate model projections suggested an increase in 

spring precipitation and increased temperatures in the future for the study region, with 

the magnitude varying with the GCM model and emission scenarios. The change in 

precipitation for the extreme scenario (RCP 8.5) ranged from -7 to 16% for near 

future and from -10 to 28% for far future scenarios. The majority of CMIP5 data 

showed a reduction of summer precipitation and increase in spring precipitation. 

SWAT simulated hydrologic results indicated a range of possible futures due to 

increased temperature, precipitation changes, and elevated CO2. Results show 

increased water yield, surface runoff during spring months, and a shift in ET for all 

the RCPs except RCP 2.6 in the far future. The greatest increase in the median water 

yield and surface runoff (29% and 30%) compared to the baseline was for the far 

future of the most extreme future climate scenario, i.e., RCP 8.5. Small changes in 

precipitation amounts can impact the runoff and water yield response, which is 

especially apparent at the small watershed scale. The shift in the peak ET from July to 

June for RCP 4.5, RCP 6.0, and RCP 8.5 indicated the probable impact of increased 

CO2 concentration and temperature on the planting dates and seasonality, which may 

ultimately impact future crop yields. The particular concern for this watershed is the 

increase in precipitation, and the potential for more frequent occurrence of high-

intensity rainfall events, in the springtime. This could negate potential for earlier 

planting, noted by some researchers as a potential benefit of increasing temperatures 
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due to climate change. Further, this study has found that cumulative precipitation is 

likely to decrease in the late summer, combined with higher temperatures could lead 

to drought conditions in July and August. Depending on planting date this could 

overlap with the tasseling stage of corn development. Modeling at this scale allows 

for a finer understanding of the patterns and processes of the hydrologic response, as 

well as potential implications with regard to agricultural activity, to changes in 

temperature and precipitation.  

The comparison with gridded model output indicated that hydrological modeling 

at larger scales fails to capture peak and minimum runoff, which may be very 

important for adaptation responses at small scales. Average annual surface runoff 

during 2016-2075 was over-estimated by 6-8% using LPJmL and under-estimated by 

5-30% using JeDi-DGVM compared to the SWAT simulated runoff. Global gridded 

data with coarse spatial resolution does not capture small-scale details that are 

necessary for agricultural management decisions. Simulation using higher spatial 

resolution as well as additional downscaling of weather data provided by CMIP5 

helps to adequately represent the hydrologic components of small watersheds. This 

may be particularly important in a watershed with problematic soils, such as claypan 

soils found in GCEW and the surrounding region that have a very thin top soil layer 

above claypan to hold and supply water to plants.  
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Table 3.S1. List of the model used for impact assessment, Table 3.S2. Monthly additive 

factor used for the bias correction of maximum temperature using delta method for all 

the models, Table 3.S3. Monthly additive factor used for the bias correction of 
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minimum temperature using delta method for all the models, Table 3.S4. Monthly 

scaling factor used for the bias correction of precipitation using quantile mapping for 

gage25 datasets for all the models and Table 3.S5. Monthly precipitation threshold 

(mm) used for the bias correction of precipitation using quantile mapping for gage25 

datasets for all models. 
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Table 3.1. Land use land cover for the Goodwater Creek Experimental Watershed 

based on NASS 2010 

Land use 

Area 

(ha) 

%Watershed 

area 

Corn 1702.6 23.1 

Forest 444.5 6.0 

Hay 540.7 7.3 

Pasture 1049.5 14.3 

Soybean 3052.1 41.4 

Switchgrass 73.5 1.0 

Urban 501.5 6.9 
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Table 3.2. List of the General Circulation Models used in this study 

Mode

l 

CMIP5 Climate Modeling 

Group Model ID Reference 

1 

Beijing Climate Center, China 

Meteorological 

Administration bcc-csm1-1 (Wu et al., 2014) 

2 

National Center for 

Atmospheric Research ccsm4.1  (Gent et al., 2011) 

3 

National Center for 

Atmospheric Research ccsm4.2 (Gent et al., 2011) 

4 

NOAA Geophysical Fluid 

Dynamics Laboratory gfdl-esm2g   (Dunne et al., 2012) 

5 

NOAA Geophysical Fluid 

Dynamics Laboratory gfdl-esm2m (Dunne et al., 2013) 

6 Institut Pierre-Simon Laplace ipsl-cm5a-lr  (Dunne et al., 2013) 

7 Institut Pierre-Simon Laplace ipsl-cm5a-mr (Dunne et al., 2013) 

8 

Japan Agency for Marine-

Earth Science and 

Technology, Atmosphere and 

Ocean Research Institute (The 

University of Tokyo), and 

National Institute for 

Environmental Studies miroc-esm  

(Watanabe et al., 

2011) 

9 

Japan Agency for Marine-

Earth Science and 

Technology, Atmosphere and 

Ocean Research Institute (The 

University of Tokyo), and 

National Institute for 

Environmental Studies 

miroc-esm-

chem 

(Watanabe et al., 

2011) 

10 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), 

National Institute for 

Environmental Studies, and 

Japan Agency for Marine-

Earth Science and 

Technology miroc5 

(Watanabe et al., 

2010) 

11 

Meteorological Research 

Institute mri-cgcm3 

(Yukimoto et al., 

2012) 

12 Norwegian Climate centre noresm1-m 

(Bentsen et al., 

2012) 
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Table 3.3. Variable initial carbon dioxide concentration used for SWAT simulation 

under different emission scenarios (Peters et al., 2013) 

Scenarios 2016-2045 2046-2075 

 CO2 concentration in part per million (ppm) 

RCP 2.6  428 440 

RCP 4.5 437 507 

RCP 6.0 431 515 

RCP 8.5 454 611 
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Table 3.4. Sensitivity results of key SWAT parameters for stream discharge in the 

Goodwater Creek Experimental Watershed including the default values 

Parameter Definition 

Default 

Value 

Adjusted 

Value 

ESCO Soil evaporation compensation factor 0.95 0.88 

GWQMN 

Shallow aquifer depth of water required for 

return flow to occur (mm) 0 55 

GW_DELAY Groundwater delay time (days) 31 55 

SOL_AWC 

Available water capacity of the soil layer 

(mm H2O/mm soil) - 0.04† 

CH_N Manning's "n" value for the main channel 0.014 0.019 

CH_K 

Effective hydraulic conductivity in main 

channel 0 0.08 

 Alluvium (mm/hr.)   

SMTMP Snow melt temperature (°C) 0.5 -2.5 

SMFMN Snow melt min rate (mm H20/°C-day) 4.5 1.5 

EVRCH Reach evaporation adjustment factor 1 0.5 

MSK_X 

Weighting factor that controls the relative 

importance of inflow and outflow in 

determining the storage in the reach 0.2 0.1 

MSK_CO2 

Calibration coefficient used to control impact 

of the storage time constant for low flow 

upon the time constant value calculated for 

the reach 0.25 3.5 

ALPHA_BF Baseflow alpha factor (1/days) 0.0048 0.1 

SHALLST 

Initial depth of water in the shallow aquifer 

(mm) 1000 600 

Note: † denote the relative change in the parameter value 
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Table 3.5. Ensemble median and quartiles of annual simulated water yield, surface 

runoff and ET changes (in percent) for the Goodwater Creek Experimental Watershed 

Water Yield (% change over the baseline) 

 RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

 Near 

future 

Far 

future 

Near 

future 

Far 

future 

Near 

future 

Far 

future 

Near 

future 

Far 

future 

Median 9.9 12.0 10.4 6.2 5.4 -1.0 19.0 29.4 

1st Quartile 5.6 8.4 2.4 0.1 -2.9 -2.7 7.7 19.9 

3rd 

Quartile 
11.1 19.2 11.6 28.3 8.9 16.3 23.1 31.4 

Surface Runoff 

Median 10.1 12.2 9.7 7.2 5.9 -0.9 20.9 29.9 

1st Quartile 6.6 10.0 3.6 1.6 -3.0 -3.0 7.8 20.0 

3rd 

Quartile 
12.4 20.0 11.3 28.1 8.2 17.6 24.4 31.0 

Evapotranspiration 

Median 0.1 3.1 1.6 0.1 0.8 -0.3 2.1 -2.1 

1st Quartile -1.1 1.9 1.8 -0.8 -0.7 -2.5 0.4 -1.4 

3rd 

Quartile 
1.0 2.2 0.1 1.3 0.5 0.7 0.4 -2.4 
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Table 3.6. Comparison of average monthly runoff predicted by the hydrologic models 

SWAT, JeDi-DVGM, and LPjmL forced with two different global climate model 

(GCM) datasets  

 Runoff (mm)-

SWAT 

Runoff (mm)-

LPJmL 

Runoff (mm)-JeDi-

DVGM 

GCM/Period NF FF NF FF NF FF 

ipsl-cm5a-lr 24.4aA 20cC 23.9a 23.3d 26.5A 15.5D 

miroc-esm-chem 20.7aA 26.4cC 24a 26.8c 18.4B 14.8D 

Note: Means followed by different letters between the columns for each of the time 

periods (Near Future (NF) and Far Future (FF)) are significant at p ≤ 0.05. Small 

letter shows difference in runoff between SWAT vs LPJmL and capital letter shows 

difference between SWAT vs JEDI-DVGM   
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Figure 3.1. Goodwater Creek Experimental Watershed showing rain gauges and weir 

outlets 
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Figure 3.2. A flow chart describing the analysis completed to assess climate change 

impact on the Goodwater Creek Experimental Watershed using historical weather 

observations, CMIP5 climate data, and SWAT. 

 

 

 

 

 

 

 



 

69 
 

 

 

Figure 3.3. Flow duration curve for calibration (a) and validation (b) of SWAT model 

for Goodwater Creek Experimental Watershed at weir 1 
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Figure 3.4. Monthly temperature (◦C) over Goodwater Creek Experimental 

Watershed for the period of 1971–2010. Results are shown for the observations, 

uncorrected, and bias-corrected RCP4.5 microesm.1 
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Figure 3.5. Change in average yearly temperature and total precipitation relative to 

the baseline (1981-2010) for the periods a) Near Future (2016–2045) and b) Far 

Future (2046–2075) for all the GCMs. 
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Figure 3.6. Monthly ensemble median and quartile of downscaled monthly 

precipitation for historic and future projections in Goodwater Creek Experimental 

Watershed. The median is represented by the solid line with Q1 represented by the 

lower bound of the shaded region and Q3 represented by the upper bound of the 

shaded region. 
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Figure 3.7. Quantile mapping approach for the correction of dry bias and 

representation of future extreme events (Plotted data: RCP 8.5 microesm.1) 
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Figure 3.8. Monthly ensemble median and quartile of downscaled monthly water 

yield for historic and future projections in Goodwater Creek Experimental Watershed. 

The median is represented by the solid line with Q1 represented by the lower bound 

of the shaded region and Q3 represented by the upper bound of the shaded region. 
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Figure 3.9. Monthly ensemble median and quartile of downscaled monthly surface 

runoff for historic and future projections in Goodwater Creek Experimental 

Watershed. The median is represented by the solid line with Q1 represented by the 

lower bound of the shaded region and Q3 represented by the upper bound of the 

shaded region 
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Figure 3.10. Runoff comparison of simulated monthly runoff from simulation forced 

with MIROC-ESM-CHEM (a) and IPSL-CM5A-LR (b) for RCP 8.5 climate 

scenarios for the SWAT, LPJmL and JeDi-DGVM model. 
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Figure 3.11. Monthly ensemble median and quartile of downscaled monthly 

evapotranspiration for historic and future projections in Goodwater Creek 

Experimental Watershed. The median is represented by the solid line with Q1 

represented by the lower bound of the shaded region and Q3 represented by the upper 

bound of the shaded region 
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CHAPTER 4 

MULTI-INDEX EVALUATION OF FUTURE DROUGHT AND CLIMATE 

EXTREME OCCURRENCE IN AN AGRICULTURAL WATERSHED 

ABSTRACT 

Understanding and projecting the frequency and occurrence of drought and extreme 

events under future climate is essential for managing natural resources, agricultural 

decision-making, and setting policy. This study identifies future (2016-2075) 

occurrence of meteorological, hydrological, agricultural droughts, and extreme events 

based on projections of future climate in the Goodwater Creek Experimental 

Watershed, which is dominated by agriculture and located in central Missouri, USA. 

Daily precipitation and temperature projections until 2075 were taken from the 

Couple Model Intercomparison Project phase 5 (CMIP5) and statistically downscaled 

using historical observations. Twelve different general circulation models were 

selected for two Representative Concentration Pathways (RCPs) (RCP 4.5 and RCP 

8.5). These data were used as input to the Soil and Water Assessment Tool (SWAT) 

hydrological model to simulate streamflow and soil moisture content. Standardized 

Precipitation Index, Standardized Streamflow Index, and Soil Moisture Index were 

used to represent the three types of drought. Historical drought events were calculated 

based on observed precipitation and observed streamflow and SWAT soil moisture 

datasets for the period of 1980-2015. The physical values corresponding to the indices 

used to identify drought in the past were used to characterize drought in the future. 

The analysis of multiple drought types provides multiple perspective for evaluating 

drought under future climate. All three-drought indices indicated increased drought 

occurrence for the future in this region for both RCP 4.5 and RCP 8.5 emission 

pathways. Seven different indices developed by the Expert Team on Climate Change 

Detection Monitoring Indices were calculated on an annual scale for extreme analysis. 
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The results based on extreme indices indicate increased warm spell duration along 

with projected decline in summer precipitation favoring summer drought for study 

region.   

KEYWORDS: Climate; Climate Adaptation; Drought; Extreme Events; Index; 

Model; SWAT; Agriculture 

Introduction 

Global climate change due to anthropogenic activities has a significant impact on 

atmospheric circulation and ultimately hydrologic cycling (IPCC, 2007; Kramer and 

Soden, 2016). Of the many potential impacts associated with these changes, drought 

and extreme precipitation events pose considerable risks to agricultural and energy 

systems, as well as the built environment. Increased temperatures lead to greater 

evaporation leading to surface drying, thereby increasing the frequency of drought. 

On the other hand, a temperature increase of 1°C was found to lead to a 7% increase 

in the water holding capacity of air resulting in increased probability of more intense 

precipitation (Trenberth, 2011). While hydrologic impacts due to climate change are 

often reported in terms of long-term annual averages, there is increasing attention to 

the impacts of increasing frequency and intensity of extreme events, e.g., heavy 

rainfall over a short duration, consecutive warm days and prolonged consecutive days 

without rain. Extreme occurrences can alter terrestrial water cycling, which can result 

in both excess water traveling over the land surface causing flooding, and prolonged 

absence of water causing drought. The Intergovernmental Panel on Climate Change 

(IPCC) points out the increased risk of drought and extreme events during the 21st 

century across the globe (IPCC, 2007, 2014). Some studies have analyzed the 

potential changes in drought using the future climate scenarios at the global scale 

(Hirabayashi et al., 2008; Sheffield and Wood, 2008; Touma et al., 2015; Wang, 
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2005), regional scale (Huang et al., 2015; Romanowicz and Wong, 2016), and 

watershed scale (Liu et al., 2012; Vu et al., 2015; Wang et al., 2011). Drought is 

projected to vary considerably across the globe and little work has been done at the 

small watershed-scale (~100 km2 to 585 km2) using both drought indices and extreme 

indices.  

Drought is one of the most costly natural disasters, averaging annual damages 

of $6-$8 billion globally and affecting around 2 billion people since 1990 

(Organization, 2013; Wilhite, 2012). Researchers have identified links between 

droughts in 20th century and a changing climate. Significant droughts over this time 

period include long-term events in the western United States, northeast China, 

southeast Australia and recent severe short-term drought events in central United 

States and Russia (Sheffield et al., 2012). The occurrence of drought is likely to 

increase given projected future climate with increased temperature, more frequent 

weather extremes and variability in precipitation (Sheffield et al., 2012). Past drought 

events have significantly impacted crop yields across the globe. The 2012 drought 

event in the United States resulted in approximately $17.3 billion damage to crop 

production (O’Connor, 2013). In comparison, the historic flood of 2011 along the 

Mississippi and Missouri Rivers inundated large acreage, resulting in loss of around 

5.2 billion dollar (NOAA, 2013). In addition, an analysis of long-term historic data 

suggests climatic extremes are increasing globally with changing climate (Frich et al., 

2002; Tigchelaar et al., 2018). Characterizing and anticipating climate change-

induced risk of drought and extreme events at the local or regional scale is an 

important query for planning adaptive measures. 

Drought is a natural feature of climate that occurs over most parts of the world 

and is defined as a dry spell relative to conditions in the location (Dai, 2011; 
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Redmond, 2002). Droughts are often defined based on disciplinary perspectives. 

Specifically, meteorological drought is defined using precipitation data, hydrological 

drought is defined using streamflow data and agricultural drought is defined using soil 

moisture, each of which are of interest from environmental and agriculture 

perspectives (Wilhite and Glantz, 1985). Drought has most often been evaluated using 

precipitation and temperature data due to data availability and the relative simplicity 

(Touma et al., 2015). Thus, earlier work has primarily focused on meteorological 

drought (Panu and Sharma, 2002). A more sophisticated approach is to use 

temperature and precipitation data and outputs from climate models to force 

hydrological models and use model output, i.e., streamflow and soil water, to evaluate 

drought conditions. Such an approach benefits from process-based simulations of land 

surface processes including those affecting vegetation and soils and their impact on 

water balance, which is not considered in precipitation based indices.  

Drought development is complex and depends on a variety of factors, e.g. soil, 

plant species, and topography (Wilhite, 2012). Previous studies on drought modeling 

suggest use of multiple drought indices, defined using different critical variables, is 

necessary to comprehensively evaluate drought conditions (Tian et al., 2018) and its 

associated impacts. The time scale for drought analysis varies from the frequently 

used annual time step to the monthly and seasonal time steps (Panu and Sharma, 

2002). Annual time scale analysis can help to understand the regional behavior of 

drought and monthly time scale is more appropriate for evaluating the effect of 

drought on agriculture, groundwater abstraction, and water supply (Panu and Sharma, 

2002). 

In addition to drought indices, the calculation of extreme indices based on 

climate variables (temperature and precipitation) can inform the future risk to 
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agriculture. Occurrence of climatic extremes during critical growing periods can 

significantly impact crop production (Gourdji et al., 2013). The Expert Team on 

Climate Change Detection (ETTCCDI) defined a set of indices to analyze extreme 

weather events (Sillmann et al., 2013b). These indices have been widely used for 

analyzing changes in extremes in observed records and under projected future 

climates (Alexander et al., 2006; N’Tcha M’Po et al., 2017; Sillmann et al., 2013a; 

Sillmann et al., 2013b). Drought characterization and extreme analysis can help 

provide early warning and drought risk analysis, which can help in drought and 

extreme preparedness (Zargar et al., 2011).   

The study area is the Goodwater Creek Experimental Watershed (GCEW) 

located at the headwater of the Salt River Basin. The geophysical context of the study 

area represents most of the Central Claypan region, which includes Northeast 

Missouri, Southeast Iowa, and Southern Illinois (Baffaut et al., 2015; Sadler et al., 

2015). Historically, major droughts occurred in 1901, the Dust Bowl years of the 

1930’s and early 1940’s, the drought years of the 1950’s, particularly 1953-1957, and 

the summer of 1988 (Center, 2010). The recent drought of 2012 was the worst 

drought experienced in nearly 60 years for the state of Missouri, with 93% of the state 

under “extreme” drought conditions based on the U.S. Drought Monitor (Fuchs et al., 

2015). In the study watershed, a restrictive clay layer in the subsurface soil (B-

Horizon) and low hydraulic conductivity limit vertical infiltration, which results in a 

lower water holding capacity of soil profile above the restrictive layer (Jiang et al., 

2007; Mudgal et al., 2012; Udawatta et al., 2004). The lower water holding capacity 

makes the watershed vulnerable under projected future with more extreme dry and 

wet conditions. The thin layer of topsoil leads to short-term drought whenever there is 

shortage of precipitation even for short periods. The objective of this study was to 
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project change in frequency of short term drought and climate extremes in the future 

relative to historic trends using output (soil water, streamflow) from the Soil and 

Water Assessment Tool (SWAT) forced with downscaled climate data from 12 

General Circulation Models under two Representative Concentration Pathways (RCP 

4.5 and RCP 8.5) using multiple drought and climate extreme indices. Analysis of 

future short-term drought frequency can help to make appropriate adaptation 

decisions. This work is important for effectively projecting the potential future 

drought occurrence for the region with limiting subsurface soil, which is often poorly 

represented using global projections due to coarse resolution.                                                                                                                                 

Materials and Methods 

Watershed, model description, and climate data 

The study is conducted in the GCEW, located in Boone and Audrain counties, 

Missouri (Fig. 4.1) with a drainage area of approximately 73 km2. Land use in the 

watershed includes row crops (72.8 %), pasture (14.3%), forest (6.0%), and urban 

land (6.8%). The majority of soils in the watershed are claypan with lower available 

water for plants. For this study a previously calibrated SWAT model output was used 

(Gautam et al., 2018) in which the watershed was divided into 93 homogenous units 

with unique soil, land use and slope combination known as hydrologic response units 

(HRU). Climate data (T and P) from 12 GCMs (Table 4.1) with two RCPs for each 

GCM were obtained from CMIP5 for the near future (2016-2045) and far future 

(2046-2075) scenarios. These projected T and P data were downscaled to GCEW 

using observed historic data (1980-2015) and were used  to force SWAT to analyze 

changes in hydrologic components given future climate data (Gautam et al., 2018).   
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Three different drought indices were used to quantify different types of 

drought, all used on monthly basis. The indices, variables used, and the distribution 

fitting approach for calculation of different indices are described in Table 4.2. Note 

that the drought indices are used for calculation of drought frequency in historic 

period using observed precipitation, observed streamflow and SWAT simulated soil 

water data. For future projection, threshold physical values of precipitation, 

streamflow and soil water corresponding to drought class based on historic calculation 

were used. The approach used for calculation of the indices for historic period and 

future projection is presented in Fig. 4.2. These indices were also used to characterize 

normal and wet periods. Additional indices were used to characterize events that were 

considered to be extreme due to prolonged dryness, wetness, coldness or hotness. 

These indices were calculated on an annual basis using historical and projected daily 

temperature and precipitation. The next few sections describe all the indices applied 

to define drought and extreme events in this study. 

Standardized Index for calculation of meteorological and hydrologic drought 

Meteorological drought was quantified based on Standardized Precipitation Index 

(SPI) (McKee et al., 1993) and hydrologic drought was quantified using the 

Standardized Streamflow Index (SSFI) (Modarres, 2007). The SPI calculations are 

based on the long-term precipitation record, with the data series fitted to a probability 

distribution. The two-parameter gamma distribution is recommended for general use 

for calculating SPI (Stagge et al., 2015). This index gives the relative measure of both 

the dryness and wetness for the location based on the historical precipitation data in 

the study region. Both precipitation and streamflow empirical distributions tend to 

have positive skewness, and therefore gamma distribution has often been a natural 

choice for statistically describing these data (Stagge et al., 2015). The gamma 
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distribution is fitted through a process of maximum likelihood estimation of the 

gamma distribution parameters, α and β (Thom, 1958), eq. (1). The inverse normal 

function is then applied to the cumulative probability to calculate the SPI (Guttman, 

1999), eq. (2).  

𝑔(𝑥) =  
1

𝛽𝛼𝛤(𝛼)
𝑥𝛼−1𝑒

−𝑥
𝛽 ,                                       𝑓𝑜𝑟 𝑥 > 0                       (1) 

                    𝛤(𝛼) = ∫ 𝑥𝛼−1∞

0
𝑒−𝑥𝑑𝑥                                                                  (2) 

where x is the monthly precipitation and 𝛤(𝛼) is the Gamma function. In eqs. 

(3) and (4), α and β are the shape and scale parameters, which are estimated by the 

maximum likelihood method as follows: 

𝛼 =
1

4𝐴
(1 + √1 +

4𝐴

3
) ,

𝛽 =
𝑥̅

𝛼
                                                           (3)                        

𝐴 = 𝑙𝑛(𝑥̅) −
∑ 𝑙𝑛(𝑥)

𝑛
                                     (4) 

where n is the number of months. The resulting parameters are then used to 

find the cumulative probability of precipitation for the given month as follows: 

𝐺(𝑋) = ∫ 𝑔(𝑥)𝑑𝑥 =
1

𝛽𝛼𝛤(𝑥)

𝑥

0

= ∫ 𝑥𝛼−1𝑒
−𝑥
𝛽

𝑥

0

𝑑𝑥          (5)    

The cumulative probability G(X) is transformed to standard normal random 

variable z with mean of zero and variance of one, which is termed as SPI. Same 

methodology was applied for calculation of SSFI using monthly simulated streamflow 

data. The criteria to define the SPI/SSFI threshold values are presented in Table 4.3.  
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Index for calculation of agricultural drought 

The monitoring and projection of agricultural drought can provide the means for 

taking appropriate relief measures for the reduction of economic loss by farmers. 

Agricultural drought is computed using soil water available for the entire soil profile 

(1.5 m to 2 m based on soil series). Spatial coverage of soil water observation is 

limited across most of the United States, soil water is estimated by the SWAT model 

for the GCEW. Soil water is a good indicator of available water reflecting the impact 

of recent precipitation and antecedent soil moisture content on plant growth. The 

available root zone soil moisture is a major factor in biomass accumulation 

(vegetative growth) through the availability of water for transpiration (Keyantash and 

Dracup, 2002). This study used soil water from the entire profile to make comparisons 

between the soils in the watershed, even though the ability of a crop to extract soil 

water from different depths varies based on crop, crop growth stage, and soil. 

The response to drought may differ based on soil type, as the water retention 

capacity differs based on soil properties (physical, chemical and biological). Major 

soil series in the watershed included: Adco, Armstrong, Belknap, Leonard, Mexico, 

and Putnam. All these soil series except Belknap were characterized by a claypan 

underlying a top soil layer, which restricted the storage of plant-available water 

holding capacity, thus leaving soil dry more frequently and causing short-term 

drought. Drought projection using Soil Moisture Index (SMI) was made for each soil 

series present in GCEW. A one-month index was calculated to account for short-term 

drought. Dry and wet spells were defined in term of deviation from the average soil 

water value determined using the historical dataset. Monthly soil moisture values for 

each soil were computed by aggregating the soil moisture value of each HRU with the 

same soil.  
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                                       𝑍𝑖,𝑘 =  
 𝜃𝑖,𝑘−𝜃𝑖̅

𝜎𝑖
        (6) 

 Where,  𝜃𝑖,𝑘 is the monthly average soil moisture for ith month at kth year, 𝜃𝑖̅ and  𝜎𝑖 

are long-term average and standard deviation of the soil moisture for ith month. 

Agricultural drought is characterized into four categories by the European Drought 

Observatory (EDO) based on z-score, eq. (6): severely dry (z ≤ -2), moderately dry (-

2 < z < -1), Normal (-1 ≥ z ≥1) moderately wet (1 < z < 2) and severely wet (z ≥ 2). A 

previous study conducted in South-central United States suggested the superiority of 

the z-score compared to precipitation-based indices as it accounts for the influence of 

land surface processes for drought calculation (Tian et al., 2018). Droughts defined 

using these Z-scores showed higher correlation with crop yield changes (Tian et al., 

2018).  

Future projection of drought 

The major concern in the GCEW watershed includes projected decreases in summer 

precipitation and higher temperatures, which could lead to more frequent short term 

drought (Gautam et al., 2018). The standardized indices used in this study are 

designed to express drought conditions relative to normal conditions at a given site for 

a given period. Independent calculations and comparison of drought indices for two 

different periods are not applicable. The ranges of values for precipitation, 

streamflow, and soil moisture that corresponded to a particular index during the 

historic period were used to evaluate future drought. This ensured a consistent 

definition of droughts during the historic and future periods. Use of a physical value 

of variable (i.e., mm of precipitation, streamflow and soil water) to define drought for 

the future period based on historic drought ensures robustness of future drought 

projection. These indices were calculated each month using 36 years of historic 
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observed (precipitation and stream flow) and simulated (soil moisture) data (1980-

2015). The ranges of physical values corresponding to the drought categories for each 

index were then used for defining drought in near (2016-2045) and far future (2046-

2075). This calculation was made for all 12 models under RCP 4.5 and 8.5. The 

results are presented as ensemble and compared with historic projection.  

Extreme precipitation and temperature indices 

Multiple indicators have been established by the Expert Team on Climate Change 

Detection Monitoring Indices (ETCCDMI) for understanding climate extremes and 

trends. The ETCCDI community supports the need of multi-parameters indices, that 

describe high impact phenomena, such as drought indices that are based on 

temperature and precipitation (Zhang et al., 2011). Seven extreme indices, proposed 

by ETCCDMI and based on temperature and precipitation, were analyzed (Table 4.4). 

While ETCCDI defines 20 mm precipitation days as very heavy precipitation days, 

the threshold for very heavy precipitation days was modified to 50 mm to represent 

the study area. Rabinowitz (2016) used a similar value (50.8 mm) to define the heavy 

precipitation threshold, based on regional precipitation behavior (Rabinowitz, 2016). 

These extreme event indices were calculated for the historic, near and far future 

periods. The results are presented as ensemble of 12 GCM models using histograms.  

Results and Discussion 

Historic and Projected Drought for GCEW 

Meteorological and Hydrological Drought 

The threshold monthly ranges of precipitation that define drought classes based on 

SPI calculated over the historic period are presented on Table 4.5. Analysis of future 

precipitation indicated an increased risk of wet periods during the spring, and 
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increased risk of drought during summer. The number of meteorological drought 

months, i.e., with SPI< -1, during the historic period were 27, 28, 23 and 23 months 

for winter, spring, summer and, fall, respectively (Fig. 4.3). These results indicated 

more meteorological drought months for the winter and spring seasons compared to 

other seasons during historic period. The same was observed recently with 2017/2018 

being the driest winter among the last four decades with Missouri receiving an 

average precipitation of 211 mm during the winter months (September through 

January) compared to the historic average of 404 mm (Colville, 2018). Historic SPI 

projection was able to match the historic drought severity during growing season for 

major drought years (e.g 1992, 2005 and 2012) during the historic simulation period 

used in this study. The results for the near and far future indicated increased 

frequency of dry months for both RCPs for the winter, summer, and fall seasons (Fig. 

4.3 and Fig 4.4). Further, the count of months rated as extremely dry months almost 

doubled for winter, summer and fall suggesting more extreme dry spells in the future. 

No change in meteorological drought frequency was projected for the spring months 

the results are similar to Ahmadalipour et al. (2017). The spring precipitation is 

projected to increase in the region for future resulting no drought in spring. A 

previous modeling study on drought projection in the contiguous USA indicated a 

tendency toward more frequent and intense summer droughts for Missouri 

(Ahmadalipour et al., 2017).  

Ensemble results indicated a decrease of wet months during the winter and an 

increase of wet months during the spring for both RCPs for near and far future (Fig. 

4.3 and Fig. 4.4). The increased instances of meteorological drought during summer 

were due to projected increases in temperature and decreases in summer precipitation. 

Previous modeling studies are also consistent in predicting global summer dryness for 
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future (Wang, 2005).  Studies have reported increased drying trends during summer 

months in Europe (Pal et al., 2004), U.S. (Cayan et al., 2010), and Asia (Kim and 

Byun, 2009). Previous study indicates impact of prolonged drought in agricultural 

yield, water supply and hydropower in the US (Feng et al., 2010).  

Threshold monthly values of streamflow that define the different drought 

classes based on SSFI calculation using historic observed streamflow data are 

presented in Table 4.6. Historical comparison of the number of hydrologic drought 

months based on SSFI indicated that months with SSFI< -1 were 29, 31, 34 and 43 for 

winter, spring, summer and fall, respectively (Fig. 4.5), which indicates more 

hydrologic drought months for summer and fall seasons during the historic period 

compared to other seasons. Historic SSFI projection was able to predict the historic 

drought severity during the growing season for major drought years (e.g. 1992, 1997, 

2002, 2005, and 2012) of the historic simulation period used in this study. Results 

indicate SSFI is a better predictor of historic drought events than SPI. SPI being 

solely based on precipitation, requires stationary of other variable e.g., temperature 

and evapotranspiration. The result for near and far future indicated an increase in the 

frequency of dry months and a decrease in the number of wet months for both RCPs 

for all four seasons compared to historic (Fig. 4.5 and Fig. 4.6). The ensemble results 

for hydrologic drought also indicated an increase in the frequency of extremely dry 

months by nearly three times for summer and spring months for both near and far 

future (Fig. 4.5 and Fig. 4.6), indicating more dry surface water bodies in future. The 

simulated streamflow for future July and August are very small, resulting in more 

extremely dry months. Results based on SSFI indicate the increase in the frequency of 

hydrologic drought months during the crop-growing season (spring and summer). 
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Studies conducted in Midwest region also report increased hydrologic drought based 

on long term historic streamflow data (Lu et al., 2015).  

Agricultural Drought 

The threshold monthly values of soil moisture (mm), based on simulated 

historic soil moisture, were used to define agricultural drought and are presented in 

Supplement Table 4.1 through Supplement Table 4.6. The ranges of soil moisture 

values to define drought class differed based on depth of soil profile. The ranges were 

highest for Belknap soil with 2 m soil profile depth and lowest for Adco soil with 1.5 

m soil profile depth. Note that the SMI indicated drought on floodplain soil of the 

watershed (Belknap) as the dryness in SMI is defined based on moisture distribution 

within the soil series, which is one of the limitation of SMI based drought calculation. 

The comparison of agricultural drought indices for spring and summer months for 

RCP 4.5 and RCP 8.5 are presented in Fig. 4.7 and Fig. 4.8 indicating more wet or dry 

months in the future. Different soil types across the watershed exhibited different 

frequencies of the dry, normal, and wet months for the historic period (Fig. 4.7). 

However, a few consistent patterns appeared clearly across all soil types. In all cases, 

the number of months in which the soil moisture was in the “normal” historical range 

decreased in the future while counts in both the dry and wet SMI categories increased.  

Mexico silt loam soil, covering around 80% of the watershed area, showed 

more drought months during summer (6 months) compared to spring months (3 

months) over the historic period (Fig. 4.7). Increased chance of drought was greater in 

summer compared to spring for the Mexico soils for both RCPs for the future then for 

the historic period (Fig. 4.7 and Fig. 4.8). This result confirms earlier studies based on 

multi model-simulated soil moisture, which indicated decreased soil moisture globally 

with a corresponding doubling of the spatial extent of severe soil moisture deficits and 
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frequency of short-term drought in the future (Sheffield and Wood, 2008). Our results 

at local scale were similar to earlier continental-scale results, which showed increased 

summer time drought across US based on soil moisture as proxy for drought 

estimation (Wang, 2005). Similarly, a study conducted in Southwest U.S. reported 

more severe future drought due to increased temperature, which leads to reduced 

spring snowpack, late spring and summer soil moisture resulting in more drought. In 

Missouri, short-term droughts are projected to increase similar to our results, however 

long-duration droughts (two years or more) are likely to decline due to projected 

increase in precipitation (UCS, 2009). From an agriculture prospective, short-term 

drought assessments are important as these events directly impact crop phenology and 

ultimately biomass production. The study region could face greater risk of short-term 

drought, with temperature rise, the evaporative demand increases, requiring more 

precipitation to maintain the same soil moisture level. In addition, projected decrease 

in summer precipitation and soil with low water holding capacity leads to increase 

drought during summer.  

Annual Historic and Future Climate Indices Trends for GCEW 

The major concerns about the potential impacts of climate change include increased 

frequency of extreme events; a study using observed data indicated amplified tails for 

total precipitation and increased temperature extreme (Easterling et al., 2000). 

Ensemble comparison of consecutive dry day (CDD) in a year indicated no change in 

median number of CDD in a year for both near and far future compared to historic for 

both RCP 4.5 and RCP 8.5 (Supplement Fig. 4.1a). Ensemble comparison of 

consecutive wet days (CWD) indicated an increase in median number of CWD in a 

year for both near and far future both RCPs compared to the historic period 

(Supplement Fig. 4.1b). The range for the CWD indicated comparatively greater 
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variability in the future for the occurrence of consecutive wet days compared to CWD 

(Supplement Fig. 4.1a and Fig. 4.1b).  

Ensemble comparison of annual total precipitation greater than 1 mm indicated an 

increase in median precipitation for both RCPs (RCP 4.5 and RCP 8.5) compared to 

historic period for both near and far future (Supplement Fig. 4.2a). Seasonal 

comparison of total precipitation indicated an increase in total precipitation for spring 

and decrease in total precipitation for summer for all the RCPs for both near and far 

future. However, there was not much change for winter and fall season. This result 

indicates future wetter springs and dryer summers, which may bring some challenges 

to agricultural land management. The ensemble comparison of annual count of days 

with >50 mm precipitation (R50) indicated no change in the median number of R50 

for near future and far future for all the ensemble of the RCPs (Supplement Fig. 4.2b). 

Historical data also showed the similar trend, despite the increase of total precipitation 

since the mid-1950, the distribution of precipitation event 50.8 mm or greater has 

remained the same (Rabinowitz, 2016).  

Ensemble comparison of annual total very wet days (R95p) and extremely wet 

days (R99p) precipitation indicated an increase in median R95p and R99p for both 

RCPs for near future with greatest increase in median R95p and R99p for extreme 

scenario (RCP 8.5) (Fig. 4.9a and  Fig. 4.9b). Seasonal comparison of R95p indicates 

increased R95p for spring and decreases R95p for summer for all the RCPs for both 

near and far future; however, there was little change for winter and fall season. The 

increase in heavy precipitation days and amount during spring as indicated by R95p 

and R99p may lead to more frequent wet field conditions during planting time 

hindering agricultural operations. The increased extreme precipitation for future have 

been reported in various studies for global (Min et al., 2011), Scandinavian 
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(Irannezhad et al., 2017) and Central/Eastern Europe (Bartholy et al., 2015). 

Ensemble comparison of warm spell duration indicator (WSDI) indicated significant 

increases in WSDI days for all RCPs for both near future and far future (Fig. 4.10). 

The occurrence of WSDI is expected to increase significantly for RCP 8.5 in far 

future compared to the near future (Fig. 4.10). These results support the finding of 

increased instances of summer droughts under dryer summers with warmer 

temperatures. Previous studies also projected increases in heatwave and warm spell 

duration over the next century over both the Northern Hemisphere and Southern 

Hemisphere (Alexander and Arblaster, 2009; Meehl and Tebaldi, 2004). Although 

GCM projected a wetter future, summers are expected to be drier due to decreased 

summer precipitation.  

Conclusions 

In this study, a modeling approach of projecting future climate change impact on 

drought events in the Goodwater Creek Experimental Water (GCEW) was presented. 

The modeling approach included using the SWAT hydrological model forced with 

climate outputs from multiple models under two RCP scenarios for streamflow and 

soil water prediction. Frequency analysis of monthly occurrence of three major 

drought types was conducted. Use of physical values to define droughts for future 

period based on historic drought can be a robust option for future drought projection. 

The meteorological drought indicated increased frequency of dry months; especially 

extremely dry months for both RCPs for winter, summer, and fall season for both near 

and far future. Hydrologic drought results indicated an increase in the frequency of 

hydrologic drought, especially extremely dry months throughout the all four season. 

The agricultural drought results indicated increased frequency of dry months for all 

RCPs for both spring and summer for future. The overall analysis of drought 
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frequency using multiple indices indicated the increase frequency of overall drought 

condition for both near and far future. The results from the precipitation-based indices 

indicate an increase in heavy precipitation days and amount for the spring season and 

decrease in heavy precipitation days and amount for summer season. The results 

based on the warm spell duration indicator indicate significant increase in WSDI days 

for future for all the RCPs. The results based on both drought and extreme indices 

indicate extreme summer with dry and hot condition.  In addition, projected increase 

in heavy precipitation days and amount during spring may lead to frequent wet field 

conditions during planting time hindering agricultural management. Future studies 

should focus on building mitigation scenarios to combat the impact of these changes. 
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Table 4.1. List of the models used in the study 

Model 

CMIP5 Climate Modeling 

Group 

CMIP5 Climate 

Model ID Reference 

1 

Beijing Climate Center, China 

Meteorological Administration BCC-CSM1-1 (Wu et al., 2014) 

2 

National Center for 

Atmospheric Research CCSM4.1  (Gent et al., 2011) 

3 

National Center for 

Atmospheric Research CCSM4.2 (Gent et al., 2011) 

4 

NOAA Geophysical Fluid 

Dynamics Laboratory GFDL-ESM2G   

(Dunne et al., 

2012) 

5 

NOAA Geophysical Fluid 

Dynamics Laboratory GFDL-ESM2M 

(Dunne et al., 

2013) 

6 Institut Pierre-Simon Laplace IPSL-CM5A-LR  

(Dufresne et al., 

2013) 

7 Institut Pierre-Simon Laplace IPSL-CM5A-MR 

(Dufresne et al., 

2013) 

8 

Japan Agency for Marine-

Earth Science and Technology, 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), and 

National Institute for 

Environmental Studies MIROC-ESM  

(Watanabe et al., 

2011) 

9 

Japan Agency for Marine-

Earth Science and Technology, 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), and 

National Institute for 

Environmental Studies 

MIROC-ESM-

CHEM 

(Watanabe et al., 

2011) 

10 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), National 

Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology MIROC5 

(Watanabe et al., 

2010) 

11 

Meteorological Research 

Institute MRI-CGCM3 

(Yukimoto et al., 

2012) 

12 Norwegian Climate Centre NorESM1-M 

(Bentsen et al., 

2012) 
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Table 4.2. Drought indices used, variables used in their calculation, and methods with 

which the time series of the variables are standardized 

Drought Index † Variable used Distribution Fitted Standardization 

SPI Precipitation  Gamma 

Distribution 

CDF standardized to 

Gaussian values 

SSFI Streamflow Gamma 

Distribution 

CDF standardized to 

Gaussian values 

Z-score based 

SMI 

Soil Moisture Empirical 

Cumulative 

Probability 

Z-score 

† SPI, Standardized Precipitation Index; SSFI, Standardized Stream Flow Index; SMI, Soil Moisture 

Index. 
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Table 4.3. Drought index class definition for standardized precipitation and 

standardized streamflow index 

SPI or SSFI† Classification 

2.0 > Extremely wet 

1.5-1.99 Very wet 

1.0-1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2 < Extremely dry 
† SPI, Standardized Precipitation Index; SSFI, Standardized Stream Flow Index 
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Table 4.4. List of the extreme precipitation indices used in this study 

ID Indicator Definitions† Units 

WSDI 

Warm spell 

duration indicator 

Annual count of days with 

at least 6 consecutive days 

when TX>90th percentile 

Days 

CDD 

Consecutive dry 

days 

Maximum number of 

consecutive days with 

RR<1mm 

Days 

CWD 

Consecutive wet 

days 

Maximum number of 

consecutive days with 

RR>=1mm 

Days 

R95p 
Very wet days Annual total PRCP when 

RR>95
th

 percentile 
Mm 

R99p 
Extremely wet 

days 

Annual total PRCP when 

RR>99
th

 percentile 
Mm 

PRCPTOT 

Annual total 

wet-day 

precipitation 

Annual total PRCP in wet 

days (RR>=1mm) 
Mm 

R50 

Number of very 

heavy precipitation 

days 

Annual count of days when 

PRCP>=50mm 
Days 

† TX, daily max temperature; PRCP, Precipitation. 
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Table 4.5. Threshold monthly precipitation (mm) value to define different drought 

classes based on Standardized Precipitation Index (SPI) calculation using historical 

precipitation datasets 

Month EW VW MW NN MD SD ED 

Jan 101.1 82.8 64.3 17.5 11.9 9.9 <9.9 

Feb 105.2 88.7 79.8 25.9 19 16.3 <16.3 

Mar 122.7 106.7 94.2 48.2 42.2 38.6 <38.6 

Apr 184.7 162.8 135.9 65.5 56.1 42.9 <42.9 

May 216.2 192.8 173.2 82.8 68.6 56.9 <56.9 

Jun 308.9 208.8 171.7 76.7 65.3 51.6 <51.6 

Jul 253 182.1 151.6 50.8 35.6 23.6 <23.6 

Aug 206 168.2 143 62.2 50.3 38.1 <38.1 

Sep 196.4 156.7 140 47.5 35.3 32.8 <32.8 

Oct 218.9 139.7 116.6 49 38.1 38.1 <38.1 

Nov 173.5 126.5 107.7 45 35.3 35.3 <35.3 

Dec 137.4 110.5 78.5 34 25.1 20.6 <20.6 

EW=Extremely Wet; VW=Very wet; MW=Moderately Wet; NN=Normal; MD=Moderately Dry; SD= 

Severely Dry; ED=Extremely Dry 

Precipitation values greater than or equal to the value presented in the EW column are considered 

extremely wet; values smaller than the value presented in the EW column and greater than or equal to 

the value presented in the VW column is considered very wet and so on; values lower than SD are 

considered extremely dry 
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Table 4.6. Threshold monthly streamflow (mm) value to define different drought 

classes based on Standardized Streamflow Index (SSFI) calculation using historical 

streamflow datasets 

Month EW VW MW NN MD SD ED 

Jan 77.9 56.8 44.1 5 2.1 1.1 <1.1 

Feb 101.8 88.8 52.2 10.2 5.2 3.4 <3.4 

Mar 91.5 68.8 60 12.6 7.7 4.8 <4.8 

Apr 139.6 100 74 12.6 6.6 3.1 <3.1 

May 176.8 95.9 80.9 15.9 8.8 4.2 <4.2 

Jun 113.7 103 60.1 9.6 5 2.9 <2.9 

Jul 151.1 117.5 62.2 4.7 1.3 0.3 <0.3 

Aug 59.3 46.9 27.2 1.4 0.4 0.1 <0.1 

Sep 175.4 66.1 51.5 1.5 0.2 0.1 <0.1 

Oct 96.4 44.6 44.6 1 0.4 0.1 <0.1 

Nov 119.7 56.8 39.2 6.4 1.1 0.4 <0.4 

Dec 134.6 74.6 44.2 4.1 2.5 0.6 <0.6 

EW=Extremely Wet; VW=Very wet; MW=Moderately Wet; NN=Normal; MD=Moderately Dry; SD= 

Severely Dry; ED=Extremely Dry 

Precipitation values greater than or equal to the value presented in the EW column are considered 

extremely wet; values smaller than the value presented in the EW column and greater than or equal to 

the value presented in the VW column is considered very wet and so on; values lower than SD are 

considered extremely dry 
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Figure 4.1. Goodwater Creek Experimental Watershed showing rain gauge and weir 

outlets 
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Figure 4.2. A flow chart describing the drought analysis for the historic period and 

future projection of drought based on GCM projected precipitation, simulated stream 

flow and simulated soil moisture 
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Figure 4.3. Projected seasonal count of month over 30 years for seven classifications 

of standardized precipitation index for near future (2016-2045) for ensemble of each 

of two RCPs scenarios   
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Figure 4.4. Projected seasonal count of month over 30 years for seven classifications 

of standardized precipitation index for far future (2046-2075) for ensemble of each of 

two RCPs scenarios    
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Figure 4.5. Projected seasonal count of months over 30 years for seven classifications 

of standardized streamflow index for near future (2016-2045) for ensemble of each of 

two RCPs scenarios
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Figure 4.6. Projected seasonal count of months over 30 years for seven classifications 

of standardized streamflow index for far future (2046-2075) for ensemble of each of 

four RCPs scenarios
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Figure 4.7. Projected count of months for five classifications of drought (MD: Moderately Dry, MW: Moderately Wet, N: Normal, SD: Severely 

Dry, and SW: Severely Wet) for near (2016-2045) and far (2046-2075) future scenarios for soils across the watershed under RCP 4.5 scenarios. 

Color dots represent outliers, defined by more than 1.5 times the interquartile range above the third quartile or below the first quartile 
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Figure 4.8. Projected count of month for five classifications of drought (MD: Moderately Dry, MW: Moderately Wet, N: Normal, SD: Severely 

Dry, and SW: Severely Wet) for near (2016-2045) and far (2046-2075) future scenarios for soils across the watershed under RCP 8.5 scenarios. 

Color dots represent outliers, defined as more than 1.5 times the interquartile range above the third quartile or below the first quartile 
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Figure 4.9. Projected annual precipitation ≥ 95th percentile (a) and annual sum of total 

precipitation ≥ 99th percentile (b) presented as ensemble for two RCPs (E. RCP 4.5 

and E. RCP8.5) scenarios and its comparison with historic data 

a 

b 
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Figure 4.10. Projected annual count of number of warm spell duration days presented 

as ensemble for two RCPs (E. RCP 4.5 and E. RCP8.5) scenarios and its comparison 

with historic data 
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CHAPTER 5 

ASSESSING THE MANAGEMENT AND CLIMATE CHANGE IMPACTS ON 

HYDROLOGIC COMPONENTS: A CASE STUDY ON A FIELD LOCATED 

AT CENTRAL MISSOURI 

ABSTRACT 

Runoff and water quality are influenced by management decisions at the field-scale 

within a watershed. Simulation studies are crucial for quantifying impacts of 

management and climate change on hydrologic components at field scales where 

management practices are applied. This study was conducted to evaluate the impact of 

management and climate change on water quality and quantity. The specific objective 

was to compare Business-As-Usual (BAU) and Aspirational (ASP) management 

systems under current and future climate to understand how climate change alone 

could affect hydrology and determine if the ASP management interventions could 

mitigate the impacts of climate. Twelve different Global Climate Models (GCMs) 

under two Representative Concentration Pathways (RCP 4.5 and RCP 8.5) were used 

for future projection. This study was congruent to Central Mississippi River Basin 

(CMRB)-Long-Term Agroecosystems Research (LTAR) common experiment. This 

study was conducted to evaluate the impact of best management practices, specifically 

cover crop planting, longer crop rotation, and no-till practices over historic and future 

timeframes, within the experimental field (Field 1) located at Goodwater Creek 

Experimental Watershed (GCEW), Missouri. GCEW is within the Central Mississippi 

River Basin site of the USDA’s Long Term Agroecosystems Research program. The 

Agricultural Policy Environmental eXtender (APEX), a field scale hydrologic model 

was used for the simulation. The APEX model was calibrated and validated for runoff 

and water quality using data collected at the edge of field and management scenarios 

in combination with climate scenarios were compared. The change in management 
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alone from BAU to ASP during the historic period (1981-2010) resulted in 25% less 

annual median runoff. The median annual runoff loss was reduced by 16.5% and 

18.8% in ASP scenario compared to BAU for ensemble of RCP 8.5 for near (2016-

2045) and far future (2046-2075) respectively. The average ensemble annual soluble 

nitrogen in watershed outflow was 14 kg/ha for BAU compared to 12 kg/ha for ASP 

management for the baseline historic period. The results indicate the inclusion of no-

till and winter cover crop resulted in increased subsurface flow. The results indicate 

the environmental benefit of crop rotation and cover crop with reduction in runoff and 

nutrient losses. The ASP management provides surface cover all year round and 

improves soil water properties resulting in lower runoff. Although, there is a benefit 

of ASP for reduction of nitrogen in water there is higher denitrification and 

volatilization loss of nitrogen under ASP compared to BAU. 

Keyword: APEX, Climate, Runoff, Nitrate 

Introduction 

Conventional agricultural practices have been shown to result in a variety of negative 

environmental impacts due to runoff and nutrient losses in surface water bodies 

(Andraski et al., 2003; Ghidey and Alberts, 1998; Johnson et al., 1979). In response to 

the need to mitigate the negative impacts of agriculture while ensuring sufficient 

production of food to meet the needs of growing populations, a variety of best 

management practices (BMPs) have been studied over the past few decades. BMPs 

have been shown to help decrease surface runoff, improve water quality, e.g., through 

nutrient retention, and improve long-term soil health. Increasing pressure on 

agricultural systems due to climate change creates an increasing need for impact 

assessment under multiple future climate scenarios in order to plan for mitigation and 

adaptation as needed. Agriculture systems are a key focus due to the direct connection 
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to climatic conditions and corresponding potential for significant impacts to human 

life and the economy (Schlenker and Roberts, 2009). 

Anticipating impacts to agricultural systems due to future climate via model 

simulation is often limited by lack of data and resources required to properly calibrate 

and validate models. As more data are collected, it becomes possible to simulate the 

performance of BMPs in a field or watershed to assess current performance as well as 

to identify or rule out risks under future climate conditions. The projected increase in 

temperature and variable precipitation patterns associated with future climate are 

expected to impact the volume of surface runoff and soil erosion (Zhang et al., 2012) 

and ultimately crop production (Lobell and Field, 2007; Rosenzweig et al., 2013; 

Rosenzweig et al., 2002). Increased runoff can result in induced erosion, which can 

transport sediment and soil organic carbon, impacting soil health (Novara et al., 2018) 

and ultimately impact crop production. In addition, increased runoff can result in 

increased nitrate loss, which is of major concern for Midwestern watersheds. 

However, there are many complex and dynamic interactions among climate, 

vegetation, hydrology, and other biogeochemical cycles that are important in relation 

to evaluating the productivity and environmental performance of agricultural systems 

under both current and changing future climate. Alternative management system can 

be a viable alternative to combat future climate change impacts on agriculture. 

BMPs such as crop rotation and conservation tillage have been shown to 

improve soil physical and biological properties resulting in increased water retention, 

increased carbon sequestration, runoff reduction, pest and disease control, and 

improve water quality (Hoorman, 2009; Poeplau and Don, 2015). Introducing cover 

crops in rotation are found to improve soil water retention properties due to increased 
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soil organic matter (Mills et al., 1988). Other benefits of crop rotation, cover crops 

and tillage include their capacity to influence soil water movement by inducing 

physical changes in soil macro and micro-pore structure, which significantly influence 

the surface and subsurface flow (Baker, 1987). Earlier studies have reported greater 

reductions in runoff and increased ground water recharge from no-till systems 

compared to conventional tillage (Edwards et al., 1990; Plaster, 2013) as no-till 

improves soil structure and soil organic matter. Increased surface residue, water 

infiltration, and improved soil aggregate stability are found to be major benefits of 

application of BMPs (Reeves, 1997).  

 Simulation models can be used as a cost effective tool to assess the impacts of 

climate and management change on hydrology. With increased climate-driven risk to 

hydrology and crop production, simulation models are useful tools to better 

understand benefits of BMPs and adoption need under climate change. Simulation 

models have been widely used for accessing long-term management and climate 

change impact on hydrologic components. Past studies have used process-based 

hydrologic models (e.g., SWAT and APEX) to simulate management and climate 

change impact on hydrologic components. Unlike simple water balance models, 

process-based hydrologic models take into consideration many key processes and 

spatial heterogeneity to better replicate cause and effect relations (Graeff et al., 2012). 

There have been many studies using the SWAT model to simulate impact on 

alternative management and climate change impact on hydrology (Ficklin et al., 

2013a; Ficklin et al., 2013b; Tuppad et al., 2010; Ullrich and Volk, 2009), which 

report the benefits of alternative management systems on runoff and nutrient loading 

reductions. Earlier simulation studies conducted using APEX report the benefits of 
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inclusion of BMPs (e.g., cover cop and crop rotation) on runoff reduction compared to 

continuous corn under climate change (Gautam et al., 2015).  

This study was conducted on a field located within Goodwater Creek 

Experimental Watershed (GCEW) and is unique due to the extensive data available to 

characterize hydrology, soil and weather for the long term. Future precipitation and 

ultimately runoff is projected to increase for Salt River Basin and GCEW (Gautam et 

al., 2018). The GCEW is part of a Central Mississippi River Basin (CMRB)-Long 

Term Agroecosystems Research (LTAR) network, and long-term measured data 

include flow data since 1971 and runoff and water quality data from fields and plot 

since 1992.This makes it a unique site for impact assessment using simulation models. 

Details regarding the measured long-term data for the study watershed including 

weather, water quality and quantity have been described by Baffaut et al. (2015); 

Lerch et al. (2015); Sadler et al. (2015a); Sadler et al. (2015b). Projected increase in 

future precipitation is a major challenge for this study watershed, where the majority 

of the soils include a claypan layer at a fairly shallow depth. Runoff is projected to 

increase in GCEW based on simulation model projections (Gautam et al., 2018). 

Claypan soils have very slow vertical movement of water due to the restrictive clay in 

subsoil. As a result, the thin layer of top soil can quickly saturate resulting in runoff. 

Alternative management systems on these restrictive layer soils should aim to 

increase infiltration by improving surface cover and crop residue incorporation. In this 

study, APEX simulations were used to assess the impact of management on runoff, 

soluble nitrogen yield in watershed outflow and evapotranspiration. The management 

scenarios include the typical cropping system that represents management in the 

region (Business As Usual (BAU)) and an improved management scenario 
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(Aspirational (ASP)), which includes cover cropping, a more diverse crop rotation, 

and no tillage.  

Materials and Methods 

Description of Study Watershed 

The study was conducted in a 35 ha agricultural field (Field 1) located in GCEW 

(figure 5.1). This study area is managed by the USDA Agricultural Research Service 

Cropping System and Water Quality Research Unit in Columbia, Missouri. The study 

watershed is characteristic of the Central Claypan Major Land Resource Area, which 

encompasses around 3 million ha in Missouri and Illinois. Management on Field 1 

during 1991-2003 included a corn-soybean rotation and mulch tillage (Lerch et al., 

2005). An aspirational management system that includes a corn-soybean-wheat 

rotation with cover crop between main crops and no tillage was started after 2004. 

Historically, the northern three-fourths of the field were managed with corn, soybean, 

wheat and grain sorghum using plow and disk till (intensive tillage) and the southern 

one-fourth was under pasture until 1981 when this pasture was converted to cropland 

(Mudgal et al., 2012). The soils in the watershed are silt loam type with 0% to 3% 

slope, and contain a claypan found 15 cm below surface in the most eroded zone to 

100 cm in deposit zones (Mudgal et al., 2012). The study area received an average 

annual precipitation of 974 mm between1969 and 2010, with maximum and minimum 

annual rainfall of 1580 and 465 mm, in 2008 and 1971 respectively. The daily average 

maximum and minimum temperatures during the 42-year (1969-2010) period were 

17.2°C and 6.5°C, respectively.  

APEX model Calibration, Validation and Evaluation Criteria 

APEX is a field-scale model that is designed to simulate the impact of change in 

agricultural management systems on water quality and quantity (Williams and 
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Izaurralde, 2006). This model has also been used to simulate the potential impacts of 

climate change (Gautam et al., 2015). The APEX model (version 808) was used for 

this study. Measured weather data (daily precipitation and daily maximum and 

minimum temperature) were used for simulating the hydrology of Field 1 during the 

historic period (Sadler et al., 2015b). Measured soil properties including soil texture, 

cation exchange capacity, organic carbon content, and soil pH (Sudduth et al., 2003; 

Sudduth et al., 2005), soil hydraulic properties including soil water parameters (field 

capacity and wilting point) (Jiang et al., 2007) and saturated hydraulic conductivity 

and bulk density were used to describe soil in the watershed (Mudgal et al., 2010). 

Elevation data previously collected using kinematic global positioning system survey 

on 10-m transects were used in this study (Fraisse et al., 2001). The field was divided 

into 35 subareas based on slope, depth of claypan and soil mapping units. Details on 

model setup can be found in Mudgal et al. (2012). 

The modification in APEX model setup was made to improve its utility for 

climate change impact assessment. The crop management operations, including 

planting and other operations were scheduled based on heat units (HU) accumulated 

since the beginning of the year or since planting. This is based on heat unit theory, 

which is used to predicting development stage of crops in relation to heat unit 

accumulated (Cross and Zuber, 1972). With HU based management, scheduling of 

any operations are triggered based on accumulated temperature. The HU based crop 

management scheduling was used to represent the change in planting dates in the 

future because of projected increased temperatures. In APEX, HU based crop 

operation scheduling can coincide with precipitation events as it is solely based on 

temperature, which is not a true replication of farmer decision-making practice. 
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The APEX model was calibrated using historic observations with a two-year 

warmup period (1991-1992). Data from 1993-1998 were used for calibration and 

1999-2003 data were used for validation. Model calibration was conducted for runoff, 

nitrate, phosphorus and atrazine. APEX being a daily time step model, daily runoff 

and pollutant transport of successive days were combined when those belonged to the 

same event based on hydrograph dynamics. Sensitivity analysis was conducted using 

one parameter at a time and sensitive parameters were changed to maximize model 

evaluation criteria. The model performance was tested using the coefficient of 

determination (r2) and Nash-Sutcliffe efficiency (NSE). The r2 value above 0.60 and 

NSE values above 0.50 during the calibration and validation periods were set as a 

criterion for satisfactory model performance during the model simulation of daily 

streamflow as defined by Moriasi et al. (2015). 

 

Long-Term Simulation Scenarios 

Two different management scenarios and output from twelve GCMs including two 

different RCPs were used for simulation. Details of the management and climate 

scenarios are presented in sections below.  

Management scenarios 

Management Scenario 1. Business as usual (BAU). This scenario included a 2-year 

corn-soybean rotation using conventional tillage. For BAU, nitrogen was applied at 

the rate of 190 kg/ha when corn was planted resulting in a total application of 2850 kg 

nitrogen per hectare over a 30-year period. This was the dominant crop rotation 

scenario in the study region. 
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Management Scenario 2. Aspirational scenario (ASP). This scenario included a 3-

year crop rotation (corn-soybean-wheat) with the addition of cover crops, rye grass or 

clover in the winter under no-till management. In this scenario, nitrogen fertilizer was 

applied at the rate of 161 kg-N/ha during the first year while planting of corn and 

cover crop and 122 kg-N/ha was applied as split dose during planting and during 

wheat emergence (spring) for winter wheat during the three-year rotation period. The 

resulting total nitrogen application was 2830 kg nitrogen per hectare over a 30-year 

period. The goal of this management system was to build soil health by increasing 

species diversity and carbon sequestration.  

Climate scenarios and future projection 

Climate data from the CMIP5 project available at 12 km2 horizontal resolution for 

GCM models were obtained (Maurer et al., 2007). These data were downscaled using 

observed P and T data over the years from the local weather station located in Field 1. 

The bias in temperature and precipitation were corrected using delta and quantile 

mapping, respectively. Details for each of the bias correction approach can be found 

in Gautam et al. (2018). The ensemble of multiple model projection of precipitation 

and temperature is presented in figure 5.2. The potential for future advancements in 

crop cultivators was not simulated in the present study due to lack of a clear 

understanding of potential future crop cultivars.  

The long-term scenario was run for 60 years (2016-2075) for each of the 12 

GCM models under two RCPs (RCP 4.5 and RCP 8.5) under the two management 

scenarios (BAU and ASP). The comparisons between BAU and ASP during the 

historic period (1981-2010) represents the impact of management change alone on 

hydrologic components as the climate data were similar across the baseline historic 
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period for all the climate models. Only two RCPs were used to represent the worst 

and moderate case scenarios, which are based on the projected radiative forcing of 4.5 

and 8.5 W/m2, respectively. RCP 2.6 had already been surpassed when we conducted 

this study and RCP 6.0 is intermediate to RCP 4.5 and RCP 8.5. All the results are 

presented as the ensemble median of hydrologic parameters and water quality 

parameters simulated with APEX using 12 GCM model datasets. The Q1 and Q3 

values were used to represent the uncertainty of values for simulated components, 

when using precipitation and temperature data form the multiple GCM models. 

Results and Discussions 

Model Calibration and Validation 

The default and adjusted model parameter values are presented in table 5.1. The 

calibration objective was to maximize the model evaluation criteria for all the output 

variables considered for calibration of the model. Model parameters, including the 

curve number and associated parameters, hydraulic conductivity, evapotranspiration 

related parameters and depth of claypan were determined to be sensitive to runoff 

based on an earlier study (Mudgal et al., 2012). The model parameters controlling 

surface runoff, atrazine, biological processes, and nutrient runoff were important 

parameters considered during the calibration-validation process. Daily streamflow 

simulation at the field outlet resulted in r2 of 0.94 and NSE of 0.94 during calibration 

(1993–1998), and r2 of 0.86 and NSE of 0.0.86 during the validation. Other output 

variables including pesticide and nutrients were considered during calibration and 

validation (table 5.2). Calibration of a model using multiple outputs increased 

confidence of the model.  
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Management and climate change impacts on hydrology and water quality  

Water Yield and Surface Runoff 

Simulation of management change from BAU to ASP during the historic 

period resulted in 7% (223 mm to 206 mm) reduction in annual median simulated 

water yield. Future climate simulation results indicated a 5.9% (254 mm to 239 mm) 

and 7.6% (242 mm to 223 mm) decrease in annual median ensemble water yield from 

application of the aspirational scenario instead of business as usual for near future and 

far future for model forced with RCP 4.5 climate models (Table 5.3). Results 

indicated that the majority of the water yield reduction occurred during April, May, 

and June (figure 5.3a). For RCP 8.5, overall results indicated around 0.9% and 0.2% 

decrease in annual median ensemble water yield from application of aspirational 

scenario instead of business as usual for near and far future (Table 5.3). Similarly, the 

RCP 4.5 results indicated the majority of water yield reduction was simulated to occur 

during April, May and June (figure 5.3b). The reduction in water yield was due to the 

application of no-till and cover crops. The comparison of simulated soil organic 

content under BAU and ASP indicated around 13% increase under ASP management 

compared to BAU. Previous studies also report the benefit of no-till on improving soil 

organic content and ultimately soil water properties (Huang et al., 2010; Kumar et al., 

2012).  

Simulation of management change from BAU to ASP during the historic 

period resulted in 25% (162 mm to 120 mm) reduction in annual median simulated 

surface runoff. A recent experimental study in Iowa reported a 15% increase in soil 

organic matter for top soil after nine year from inclusion of cover crop (rye) to a no-

till corn silage-soybean rotation (Moore et al., 2014). The runoff reduction after 
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application of aspirational management practices was attributed to increased organic 

matter and decreased curve number due to no-till management and cover crop. Future 

simulation results for surface runoff indicate a 21.9% (185 mm to 144 mm) and 

23.6% (178 mm to 135 mm) decrease in the RCP4.5 near and far future, respectively, 

based on the annual median ensemble surface runoff due to the application of ASP 

scenario instead of BAU (Table 5.3). Results indicate that the median ensemble 

surface runoff decreases in most months of the year (figure 5.4a). For RCP 8.5 overall 

the results indicate around 16.5% (192 mm to 160 mm) and 18.8% (203 mm to 164 

mm) decrease in annual median ensemble surface runoff from application of the ASP 

scenario instead of BAU for near future and far future for model forced with RCP 8.5 

climate models (Table 5.3). For extreme scenarios (RCP 8.5), the ASP management 

can at best achieve the highest median annual runoff observed in the past. Even with 

the addition of this management change (BAU to ASP), climate change will increase 

surface runoff. Similar to RCP 4.5, results indicated surface runoff reduction in 

almost all months of the year due to management change (figure 5.4b). Previous 

studies also indicated improvement of soil water properties due to decreased bulk 

density, increased water-aggregate stability, and improved soil porosity after the 

introduction of a cover crop in the rotation (Hatfield and Sauer, 2011). Smaller 

changes in water yield compared to surface runoff in the study are attributed to the 

fact that ASP management increased the subsurface flow. Calculation based on 

historic median results presented for BAU and ASP indicate around 25 mm increase 

in subsurface flow after implementation of ASP. Improved water infiltration can be 

attributed to increased crop residue, increased available water content, decreased 

curve number, and improved soil organic matter provided by cover crop and no-till 

management system. Cover crops provide soil cover and are also known for 
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improving soil organic matter; 9% to 85% increases in soil organic matter are 

reported for different soil and climatic conditions (Hatfield and Sauer, 2011). The 

ensemble median water yield and surface runoff values including Q1 and Q3 value 

based on multi-model projection for field 1 for both RCPs under BAU and ASP is 

presented in Supplement fig 5.1 and Supplement fig 5.2. 

Evapotranspiration 

Simulation of management change from BAU to ASP during the historic period 

resulted in 1.5% (723 mm to 712 mm) reduction in annual median simulated 

evapotranspiration. Higher ET occurs during June, July, and August for BAU as the 

crop grown (Corn and Soybean) in this management system reaches optimum growth 

during these months (Supplement fig 5.3). For the ASP scenario, ET is also higher 

during April and May due to inclusion of winter wheat in the rotation which reach 

optimum growth during these months (Supplement fig 5.3). The comparison of ET 

response between the two management systems indicates higher monthly peak for 

BAU management compared to ASP management where cultivation of cover crop 

and winter wheat flatten monthly ET response. Future simulation results indicate 

around 1.58% (730 mm to 718 mm) and 1.89% (725 mm to 711 mm) decrease in 

annual median ensemble evapotranspiration from application of ASP instead of BAU 

for near future and far future for model forced with RCP 4.5 climate models (Table 

5.3). Results indicate an increase in ET during March, April and May (figure 5.5a). 

For RCP 8.5 overall the results indicate around 3% (729 mm to 707 mm) and 3.47% 

(735 mm to 710 mm) decrease in annual median ensemble evapotranspiration from 

application of ASP instead of BAU for near future and far future for model forced 

with RCP 8.5 climate models (Table 5.3). Result indicates the increase in ET during 

March, April and May (figure 5.5b). Results indicate increase in ET in summer 
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months and decrease in fall ET for future for model forced with both RCPs. The 

increase in summer ET is the result of projected increase in summer temperature.  

Soluble Nitrogen 

The median annual simulated soluble nitrogen loss was 8 kg/ha for BAU compared to 

3.9 kg/ha for ASP management for the historic period, which indicates benefit of 

management change on reduction of nitrogen loss. The ensemble soluble nitrogen 

values including Q1 and Q3 values based on multi model projection for Field 1 for 

both RCPs under BAU and ASP is presented in Supplement fig 5.4. The wide range 

of Q1 and Q3 for monthly soluble nitrogen yield indicates the sensitivity of nitrogen 

loss to precipitation (Supplement fig 5.4). Future simulation results indicate a 

decrease in annual median ensemble soluble nitrogen yield from application of ASP 

scenario compared to the BAU scenario for models forced with both RCP 4.5 and 

RCP 8.5 climate data. Median annual values of soluble nitrogen loss based on the 

ensemble of multiple models was simulated to be 7.8 kg/ha for BAU management 

compared to 4.7 kg/ha for ASP for models forced with RCP 8.5 for 60-year future 

period. Similar reduction of nitrogen was simulated for RCP 4.5 models. Studies 

indicate benefit of cover crop on reduction of nitrogen loss by 1% to 89% based on 

results across 10 studies (Tellatin and Myers, 2017). In addition to annual reduction 

potential, it is very important to know the seasonal behavior of nitrate loss. The 

hypoxic zone in the Gulf of Mexico occurs annually during early spring and summer 

(Rabalais et al., 2002). Results indicate that the majority of soluble nitrogen yield was 

simulated to reduce during February through August for models forced with both RCP 

4.5 and RCP 8.5 climate data (figure 5.6a and figure 5.6b) after application of ASP. 

The main reason for reduction of soluble nitrogen yield during February through 

August is caused by runoff reduction from application of cover crop and no-till 
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(figure 5.4 and Supplement fig 5.4). Another reason for reduction of soluble nitrogen 

yield during spring for the ASP scenario is due to application of fertilizer in split dose 

compared to BAU where majority of nutrients are applied during April and May 

during Corn years. Increase in the soluble nitrogen yield during September through 

December after application of ASP scenario is due to loss of N-fertilizer applied for 

winter wheat and cover crop. Note that the nitrogen loss during winter is very small. 

Decreased loss of nitrogen in outflow is due to decrease in surface runoff and 

increased loss of nitrogen via denitrification and ammonia volatilization after the 

application of aspirational management. A previous study shows higher volatilization 

loss due to surface application of fertilizer (Rochette et al., 2009). In addition, residue 

from no-till in ASP has increased supply of energy material available to 

denitrification organism and increased soil moisture content favoring denitrification 

(Aulakh et al., 1984). Note that the overall amount of nitrogen applied over the period 

of comparison is similar, as presented in section 2.3. A previous study also reports 

benefits of improved cropping management system, a simulation study conducted at 

Southwestern Minnesota using soil-plant-atmosphere simulation reports reduced in 

Nitrogen loss by 11.1 kg N/ha for corn-soybean rotation (Feyereisen et al., 2006). 

Cover crops affect the hydrologic balance, lower soil NO3-N level and provide cover 

for fallow period between summer crops. The major benefit of having soil cover year 

round includes uptake of soil NO3-N by crop leachable, and its conversion to organic 

nitrogen in plant biomass (Hoyt and Mikkelsen, 1991). 

Conclusions 

A calibrated APEX model was used to simulate the effect of climate change and 

management change on hydrologic components using downscaled T and P data from 

GCMs under two emission scenarios. Management change alone resulted in 25% (162 
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mm to 120 mm) decrease in median annual simulated surface runoff and 4.1 kg/ha (8 

kg/ha to 3.9 kg/ha) reduction on annual simulated soluble nitrogen yield. Comparison 

of two management scenarios, business as usual (two year corn-soybean rotation) and 

aspirational scenario (three year corn-soybean-wheat rotation with no-till), 

demonstrate the benefits of aspirational management system under the future 

projected by RCP 4.5 and RCP 8.5 scenarios. Overall the results for surface runoff 

indicate around 21.9% (185 mm to 144 mm) and 23.6% (178 mm to 135 mm)  

decrease in annual median ensemble surface runoff in with application of aspirational 

scenario instead of business as usual for near future and far future for model forced 

with RCP 4.5 climate models. Similarly, for RCP 8.5 overall the results indicate 

around 16.5% (192 mm to 160 mm) and 18.8% (203 mm to 164 mm) decrease in 

annual median ensemble surface runoff from application of aspirational scenario 

instead of business as usual for near future and far future. Aspirational scenarios 

resulted in reduction in average annual soluble nitrogen yield. Median annual values 

of soluble nitrogen loss based on ensemble of multiple model was simulated to be 7.8 

kg/ha for BAU management compared to 4.7 kg/ha for ASP for model forced with 

RCP 8.5 for 60-year future period. Decreased loss of nitrogen is due to decrease in 

surface runoff and increase loss of nitrogen via denitrification and ammonia 

volatilization.  
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Table 5.1. Parameters and selected value used in simulation of runoff and water 

quality using APEX model for field 1. 

Parameter 

ID 

Parameter name Parameter 

range 

Selected 

value 

Parameter that affect runoff 

12 Soil evaporation coefficient 1.5-2.5 1.5 

16 Expands CN retention parameter 1-1.5 1.5 

17 Plant cover factor for evaporation 0-0.5 0.05 

20 CN initial abstraction 0.05-4 0.2 

34 Hargreaves equation exponent 0.5-0.6 0.6 

46 RUSLE C-factor coefficient 0.5-1.5 0.5 

51 Water stored in residue coefficient 0.1-0.9 0.9 

Parameters that affect atrazine fate and transport 

24 Pesticide leaching ratio 0.1-1 0.15 

Parameters that affect biological processes (e.g., microbial degradation) 

29 Biological mixing efficiency 0.1-0.5 0.10 

31 Maximum depth for biological mixing 0.1-0.3 0.30 

69 Microbial activity adjustment 0.1-1 0.2 

70 Microbial decay rate coefficient 0.5-1.5 0.5 

Parameters that affect dissolved nitrogen fate and transport 

4 Water storage N leaching 0-1 0.55 

14 Nitrate leaching ratio 0.1-1 0.20 

28 Upper nitrogen fixation limit 0.1-20 2 

54 N enrichment ratio coefficient 0.3-0.9 0.6 

80 Upper limit of nitrification-

volatilization 

0-0.5 0.1 

86 N upward movement by evaporation 

coefficient 

0.001-20 1 

Parameters that affect dissolved phosphorus fate and transport 

8 Soluble P runoff coefficient 10-20 13 

30 Soluble P runoff exponent 1-1.5 1.3 

58 P enrichment ratio exponent 0.3-0.9 0.6 

59 P upward movement by evaporation 

coefficient 

1-20 1 

84 P mineralization coefficient 0.001-20 0.2 
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Table 5.2. Calibration and validation of daily runoff and water quality parameters 

Variable Calibration (1993-1998) Validation (1999-2003) 

 r2 NSE RSR r2 NSE RSR 

Runoff 0.94 0.94 0.25 0.86 0.86 0.37 

Atrazine 0.81 0.79 0.46 0.85 0.57 0.66 

Nitrate 0.5 0.49 0.72 0.5 0.47 0.73 

Phosphorus 0.54 0.52 0.66 0.47 0.47 0.73 
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Table 5.3. Ensemble median and quartiles of annual simulated water yield, surface 

runoff and evapotranspiration 

Water Yield (% Change due management change BAU to ASP) 

 RCP 4.5 RCP 8.5 

 Near Future Far Future Near Future Far Future 

Median -5.9 -7.6 -0.9 -0.2 

1st Quartile -14.2 -3.2 -7.9 -6.8 

3rd Quartile -13.1 2.9 2.9 1.7 

Surface Runoff 

Median -21.9 -23.6 -16.5 -18.8 

1st Quartile -37.9 -30.0 -29.6 -24.4 

3rd Quartile -17.3 2.9 -10 -10 

Evapotranspiration 

Median -1.6 -1.9 -3 -3.5 

1st Quartile 0.9 0.5 -0.4 -1.1 

3rd Quartile -2 -3.2 -5.9 -3.8 

 

 

 

 

 

 

 

 

 

 



  

139 
 

 

Figure 5.1. Location of Field 1 and weather station within Goodwater Creek 

Experimental Watershed. 
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Figure 5.2. Monthly ensemble median and quartile of downscaled monthly 

precipitation and temperature for historic and future projections in field 1. The median 

is represented by the solid line with Q1 represented by the lower bound of the shaded 

region and Q3 represented by the upper bound of the shaded region. 
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Figure 5.3. Monthly change in ensemble median water yield (mm) after 

implementation of aspirational management scenario a) model forced RCP 4.5 models 

and b) model forced with RCP 8.5 climate models  
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Figure 5.4. Monthly change in ensemble median surface runoff (mm) after 

implementation of aspirational management scenario a) model forced with RCP 4.5 

climate data and b) model forced with RCP 8.5 climate data. 
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Figure 5.5. Monthly change in ensemble median evapotranspiration (mm) after 

implementation of Aspirational management scenario a) model forced RCP 4.5 

models and b) model forced with RCP 8.5 climate models 
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Figure 5.6. Monthly change in ensemble median soluble nitrogen yield (kg/ha) after 

implementation of Aspirational management scenario a) model forced RCP 4.5 

models and b) model forced with RCP 8.5 climate models 
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CHAPTER 6 

CONCLUSIONS 

Future impacts of climate change on hydrologic components of Goodwater Creek 

Experimental Watershed (GCEW) and experimental field (Field 1) were simulated 

using watershed and field scale hydrologic model Soil and Water Assessment Tool 

(SWAT) and Agricultural Policy Environmental eXtender (APEX), respectively. 

Multiple climate model predictions from the Coupled Model Intercomparison Project 

(CMIP5) were statistically downscaled and used for SWAT simulation. Climate 

model output and future SWAT simulated hydrology data were used to predict future 

occurrence of drought and extreme events. Further, Field scale study was focused to 

simulate alternative management scenarios. 

The following conclusions are determined from three simulation studies: 

Study 1- Hydrological impact of climate change over GCEW 

1. Downscaled climate model projections suggested an increase in spring 

precipitation and increased temperatures in the future for the study region, 

with the magnitude varying with the GCM model and emission scenarios. The 

change in precipitation for the extreme scenario (RCP 8.5) ranged from −7% 

to 16% for near future, and from −10% to 28% for far future scenarios.  

2. Results showed increased water yield, surface runoff during spring months, 

and a shift in ET for all the RCPs except RCP 2.6 in the far future. The 

greatest increase in the median water yield and surface runoff (29% and 30%) 

compared to the baseline was for the far future of the most extreme future 

climate scenario, i.e., RCP 8.5.  

3. The shift in the peak ET from July to June for RCP 4.5, RCP 6.0, and RCP 8.5 

indicated the probable impact of increased CO2 concentration and temperature 
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on planting dates and seasonality, which may ultimately impact future crop 

yields.  

4. The comparison with gridded model output indicated that hydrological 

modeling at larger scales fails to capture peak and minimum runoff, which 

may be very important for adaptation responses at local scales. Average 

annual surface runoff during 2016–2075 was over-estimated by 6–8% using 

LPJmL and under-estimated by 5–30% using JeDi-DGVM, compared to the 

simulated SWAT results. Global gridded data with coarse spatial resolution 

does not capture small-scale details that are necessary for agricultural 

management decisions.  

5. Simulation using higher spatial resolution, as well as additional downscaling 

of weather data provided by CMIP5, helps to adequately represent the 

hydrological components of small watersheds. This may be particularly 

important in watersheds with problematic soils, such as claypan soils found in 

GCEW and the surrounding region, which have a very thin top-soil layer 

above a claypan to hold and supply water to plants. 

 

Study 2- Multi-index evaluation of future drought and extreme over GCEW  

1. The results from meteorological drought indicate increased frequency of dry 

months for both RCPs for winter, summer, and fall seasons for both near and 

far future. Hydrologic drought indicates increase in the frequency of 

hydrologic drought for all four seasons. The results from agricultural drought 

indicate increased frequency of dry months for all RCPs for both spring and 

summer months for future.  
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2. The results from the precipitation-based indices indicates an increase in heavy 

precipitation days and amount for the spring season and decrease in heavy 

precipitation days and amount for summer season. The results based on the 

warm spell duration indicator indicates significant increase in WSDI days for 

future for all the RCPs.  

3. The results based on both drought and extreme indices indicate extreme 

summer with dry and hot condition. In addition, projected increase in heavy 

precipitation days and amount during spring may lead to more frequent wet 

field conditions during planting time hindering agricultural management. 

Future studies should focus on building mitigation scenarios to combat the 

impact of these changes. 

Study 3- Management and climate change impact assessment at field scale  

1. Comparison of two management scenarios, business as usual (two year corn-

soybean rotation) and aspirational scenario (three year corn-soybean-wheat 

rotation with no-till), demonstrate the benefits of aspirational management 

system on runoff and nitrogen loss reduction for both historic and future 

period. 

2. The change in management alone from BAU to ASP during the historic period 

(1981-2010) resulted in 25% less annual median simulated runoff. The median 

annual runoff loss was reduced by 16.5% and 18.8% in ASP scenario 

compared to BAU for ensemble of RCP 8.5 for near (2016-2045) and far 

future (2046-2075) respectively. 

3. Aspirational scenarios resulted in reduction in average simulated annual 

soluble nitrogen yield. Average annual values of simulated soluble nitrate loss 

based on ensemble of multiple models were simulated to be 15.7 kg/ha for 
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BAU management compared to 13.8 kg/ha for ASP for models forced with 

RCP 8.5 for 60-year future period. Although, there is a benefit of ASP for 

reduction of nitrogen in water there is higher denitrification and volatilization 

loss of nitrogen under ASP compared to BAU. 
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APPENDIX 1 

Supplemental Table 3.S1. List of the model used for impact assessment. 

SN Model SN Model 

1 bcc-csm1-1.1.rcp26 25 ipsl-cm5a-mr.1.rcp26 

2 bcc-csm1-1.1.rcp45 26 ipsl-cm5a-mr.1.rcp45 

3 bcc-csm1-1.1.rcp60 27 ipsl-cm5a-mr.1.rcp60 

4 bcc-csm1-1.1.rcp85 28 ipsl-cm5a-mr.1.rcp85 

5 ccsm4.1.rcp26 29 miroc-esm.1.rcp26 

6 ccsm4.2.rcp26 30 miroc-esm.1.rcp45 

7 ccsm4.1.rcp45 31 miroc-esm.1.rcp60 

8 ccsm4.2.rcp45 32 miroc-esm.1.rcp85 

9 ccsm4.1.rcp60 33 miroc-esm-chem.1.rcp26 

10 ccsm4.2.rcp60 34 miroc-esm-chem.1.rcp45 

11 ccsm4.1.rcp85 35 miroc-esm-chem.1.rcp60 

12 ccsm4.2.rcp85 36 miroc-esm-chem.1.rcp85 

13 gfdl-esm2g.1.rcp26 37 miroc5.1.rcp26 

14 gfdl-esm2g.1.rcp45 38 miroc5.1.rcp45 

15 gfdl-esm2g.1.rcp60 39 miroc5.1.rcp60 

16 gfdl-esm2g.1.rcp85 40 miroc5.1.rcp85 

17 gfdl-esm2m.1.rcp26 41 mri-cgcm3.1.rcp26 

18 gfdl-esm2m.1.rcp45 42 mri-cgcm3.1.rcp45 

19 gfdl-esm2m.1.rcp60 43 mri-cgcm3.1.rcp60 

20 gfdl-esm2m.1.rcp85 44 mri-cgcm3.1.rcp85 

21 ipsl-cm5a-lr.1.rcp26 45 noresm1-m.1.rcp26 

22 ipsl-cm5a-lr.1.rcp45 46 noresm1-m.1.rcp45 

23 ipsl-cm5a-lr.1.rcp60 47 noresm1-m.1.rcp60 

24 ipsl-cm5a-lr.1.rcp85 48 noresm1-m.1.rcp85 
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           Supplemental Table 3.S2. Monthly additive factor used for the bias correction of maximum temperature using delta method for all the models 

Model 

SN. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 -0.90 -0.31 0.91 -1.04 -1.12 -1.11 -1.64 -1.50 -2.09 -2.31 -0.19 -0.34 

2 -1.24 -0.82 0.58 -1.04 -1.04 -1.04 -1.89 -1.49 -1.99 -2.37 -0.87 -0.55 

3 -1.27 -0.46 0.67 -0.91 -1.36 -1.18 -1.95 -1.49 -1.95 -2.75 -0.69 -0.57 

4 -0.97 -0.45 0.38 -1.27 -1.09 -1.15 -1.95 -1.69 -2.06 -2.41 -0.37 -0.28 

5 -0.64 -1.01 -0.76 -1.19 -1.80 -1.29 -1.66 -1.37 -1.65 -1.49 -0.56 -1.42 

6 -0.84 -0.96 -0.53 -1.37 -1.75 -1.40 -2.04 -1.68 -1.70 -1.89 -1.12 -1.35 

7 -0.62 -0.84 -0.50 -1.09 -1.94 -1.33 -1.91 -1.47 -1.85 -1.81 -0.65 -1.30 

8 -0.76 -0.39 -0.24 -1.11 -1.91 -1.28 -2.04 -1.57 -1.87 -1.77 -1.13 -1.05 

9 -1.04 -1.05 -1.05 -1.09 -1.95 -1.19 -1.72 -1.50 -1.64 -1.54 -0.79 -1.59 

10 -0.65 -0.03 -0.22 -1.15 -1.91 -1.47 -2.18 -1.76 -1.82 -1.93 -0.81 -1.13 

11 -1.24 -1.32 -0.63 -1.15 -1.90 -1.26 -1.87 -1.41 -1.67 -1.78 -0.64 -1.48 

12 -0.64 -0.23 -0.23 -1.17 -1.96 -1.62 -2.07 -1.73 -1.93 -1.93 -1.12 -1.35 

13 -0.21 -0.99 -0.05 -1.29 -1.71 -1.25 -1.91 -1.43 -1.59 -2.25 -0.84 -1.32 

14 -0.39 -1.21 -0.33 -1.18 -1.65 -1.24 -1.70 -1.27 -1.67 -2.42 -0.89 -0.83 

15 -0.36 -1.26 0.26 -1.13 -1.62 -1.42 -1.84 -1.23 -1.59 -2.06 -0.91 -1.14 

16 -0.37 -0.96 -0.11 -1.27 -1.77 -1.25 -1.75 -1.23 -1.60 -2.17 -0.82 -1.02 

17 -0.64 -0.86 -0.06 -0.81 -1.66 -1.22 -1.64 -1.23 -1.62 -1.97 -1.07 -1.13 

18 -0.21 -0.83 -0.03 -0.80 -1.64 -1.09 -1.61 -1.18 -1.46 -1.87 -0.76 -1.43 

19 -0.45 -1.11 -0.26 -0.76 -1.49 -1.23 -1.66 -1.15 -1.73 -1.82 -0.84 -1.28 

20 -0.27 -1.25 -0.07 -0.73 -1.76 -1.30 -1.78 -1.19 -1.62 -1.98 -0.65 -1.11 

21 -0.70 -1.70 0.21 -1.25 -2.01 -1.80 -2.06 -1.45 -1.66 -2.02 -1.39 -1.11 

22 -0.99 -1.78 0.25 -1.41 -2.09 -1.79 -2.08 -1.51 -1.66 -1.97 -1.63 -1.35 

23 -0.87 -1.55 0.06 -1.23 -2.04 -1.74 -2.05 -1.41 -1.57 -2.13 -1.20 -1.18 

24 -0.93 -1.47 0.56 -1.01 -1.94 -1.69 -2.05 -1.51 -1.77 -2.00 -1.12 -1.06 

25 -0.88 -0.40 -0.26 -1.06 -1.84 -1.65 -1.58 -1.49 -1.84 -1.50 -0.65 -0.66 

26 -0.69 -0.36 -0.30 -0.84 -1.79 -1.48 -1.43 -1.33 -1.81 -1.14 -0.60 -0.70 

27 -0.74 -0.64 -0.34 -1.03 -2.00 -1.60 -1.65 -1.44 -1.74 -1.44 -0.65 -0.79 

28 -0.79 -0.46 -0.19 -1.13 -1.73 -1.52 -1.54 -1.46 -1.69 -1.45 -0.61 -0.46 
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29 -1.01 -0.84 -0.28 -1.25 -1.25 -1.32 -1.60 -1.42 -1.70 -1.32 -0.52 -1.12 

30 -1.44 -0.87 -0.06 -1.20 -1.24 -1.36 -1.75 -1.76 -2.06 -1.47 -0.73 -1.28 

31 -1.03 -1.07 -0.32 -1.18 -1.21 -1.37 -1.66 -1.47 -1.93 -1.33 -0.36 -0.96 

32 -1.05 -0.70 -0.26 -1.30 -1.30 -1.28 -1.69 -1.60 -1.90 -1.47 -0.47 -1.36 

33 -0.35 0.02 0.38 -1.01 -1.57 -1.08 -1.43 -1.36 -1.36 -1.56 -0.37 -1.50 

34 -0.41 -0.17 0.32 -0.57 -1.44 -1.13 -1.40 -1.27 -1.39 -1.50 -0.48 -1.13 

35 -0.38 0.00 0.50 -0.87 -1.65 -1.08 -1.40 -1.36 -1.60 -1.71 -0.58 -1.06 

36 -0.30 -0.10 0.58 -0.77 -1.71 -1.15 -1.49 -1.38 -1.29 -1.47 -0.56 -1.19 

37 -0.53 0.19 0.17 -0.89 -1.41 -1.25 -1.73 -1.43 -1.57 -1.93 -0.91 -0.93 

38 -0.92 -0.17 -0.03 -1.19 -1.56 -1.23 -1.68 -1.52 -1.69 -2.15 -0.89 -1.17 

39 -0.59 0.13 0.14 -1.06 -1.53 -1.34 -1.74 -1.48 -1.83 -2.00 -0.76 -0.86 

40 -0.83 -0.35 -0.07 -1.15 -1.47 -1.23 -1.70 -1.47 -1.68 -2.10 -0.95 -0.99 

41 -0.91 -0.89 0.38 -1.09 -1.21 -1.13 -1.48 -1.29 -0.71 -0.97 0.02 -0.86 

42 -0.64 -0.66 0.00 -0.88 -1.32 -1.11 -1.48 -1.31 -0.83 -0.98 -0.20 -0.65 

43 -0.93 -0.80 0.21 -0.94 -1.33 -0.98 -1.38 -1.24 -0.85 -1.05 -0.10 -0.75 

44 -0.77 -0.66 -0.16 -1.06 -1.26 -1.21 -1.39 -1.22 -0.75 -1.18 -0.21 -0.90 

45 -0.57 -0.89 -0.24 -0.57 -1.51 -1.26 -1.60 -1.35 -1.70 -1.38 -0.64 -0.69 

46 -0.37 -0.84 -0.48 -0.61 -1.22 -1.24 -1.58 -1.52 -1.80 -1.57 -0.58 -0.43 

47 -0.62 -0.92 -0.36 -0.51 -1.42 -1.23 -1.69 -1.62 -1.81 -1.63 -0.54 -0.55 

48 -0.22 -0.75 -0.34 -0.56 -1.44 -1.17 -1.55 -1.41 -1.82 -1.58 -0.54 -0.26 
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Supplemental Table 3.S3. Monthly additive factor used for the bias correction of minimum temperature using delta method for all the models 

Model 

SN Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 0.36 0.83 1.95 0.54 0.62 0.30 -0.03 -0.08 -0.68 -0.44 0.91 0.95 

2 0.11 0.54 1.84 0.56 0.72 0.34 -0.23 -0.10 -0.47 -0.35 0.46 0.76 

3 -0.02 0.74 1.88 0.60 0.44 0.25 -0.27 -0.11 -0.61 -0.61 0.65 0.75 

4 0.27 0.83 1.69 0.34 0.57 0.27 -0.32 -0.27 -0.60 -0.42 0.74 0.96 

5 0.27 0.83 1.69 0.34 0.57 0.27 -0.32 -0.27 -0.60 -0.42 0.74 0.96 

6 0.77 0.55 1.09 0.24 0.20 0.00 -0.36 -0.26 -0.27 0.00 0.48 0.18 

7 0.98 0.44 1.11 0.49 -0.09 0.06 -0.33 -0.17 -0.47 0.22 0.84 0.20 

8 0.76 0.99 1.36 0.47 0.05 0.10 -0.38 -0.17 -0.37 0.21 0.27 0.38 

9 0.65 0.38 0.66 0.53 -0.10 0.18 -0.22 -0.18 -0.22 0.49 0.85 -0.02 

10 0.94 1.40 1.42 0.42 0.07 -0.02 -0.45 -0.29 -0.38 -0.02 0.66 0.37 

11 0.48 0.13 1.02 0.44 -0.06 0.13 -0.32 -0.07 -0.24 0.19 1.03 0.11 

12 0.93 1.13 1.35 0.38 0.02 -0.18 -0.43 -0.31 -0.54 -0.04 0.40 0.16 

13 1.23 0.57 1.15 0.14 -0.01 0.14 -0.30 0.01 0.16 0.02 0.93 0.37 

14 1.04 0.43 1.01 0.11 0.01 0.17 -0.13 0.13 0.02 0.04 0.82 0.73 

15 1.01 0.42 1.41 0.19 0.02 0.01 -0.27 0.17 0.05 0.30 0.83 0.49 

16 1.05 0.56 1.10 0.05 -0.10 0.16 -0.13 0.15 0.10 0.14 0.83 0.66 

17 0.74 0.26 1.34 0.55 0.05 0.33 -0.12 0.13 -0.01 0.19 0.80 0.25 

18 1.13 0.31 1.34 0.56 0.15 0.46 -0.12 0.20 0.04 0.17 1.07 0.03 

19 0.94 0.15 1.16 0.64 0.25 0.29 -0.10 0.28 -0.14 0.36 1.03 0.10 

20 1.09 0.04 1.33 0.64 0.05 0.23 -0.18 0.24 -0.04 0.06 1.14 0.23 

21 0.76 -0.09 1.41 0.49 -0.21 -0.28 -0.41 -0.02 -0.19 -0.08 0.19 0.45 

22 0.49 -0.17 1.48 0.37 -0.29 -0.26 -0.44 -0.08 -0.18 0.06 0.01 0.30 

23 0.62 0.10 1.37 0.52 -0.27 -0.23 -0.38 0.03 -0.07 -0.09 0.24 0.33 

24 0.54 0.15 1.72 0.71 -0.16 -0.19 -0.41 -0.09 -0.28 -0.01 0.36 0.36 

25 0.88 0.97 1.37 0.51 -0.02 -0.06 0.10 -0.01 -0.31 0.34 0.81 0.80 

26 1.03 0.97 1.30 0.63 -0.01 0.00 0.20 0.08 -0.33 0.60 0.88 0.75 

27 0.92 0.71 1.22 0.48 -0.18 -0.08 0.00 -0.04 -0.18 0.48 0.85 0.72 

28 0.88 0.90 1.29 0.41 0.02 -0.01 0.13 -0.04 -0.21 0.36 0.91 1.00 

29 0.48 0.55 1.11 0.22 0.41 0.04 -0.09 -0.08 -0.45 0.48 0.89 0.44 
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30 0.25 0.64 1.43 0.26 0.39 0.05 -0.20 -0.27 -0.62 0.38 0.76 0.33 

31 0.47 0.39 1.17 0.24 0.43 0.04 -0.19 -0.13 -0.55 0.53 1.04 0.62 

32 0.42 0.72 1.21 0.18 0.37 0.06 -0.18 -0.16 -0.58 0.42 0.99 0.29 

33 1.04 1.15 1.64 0.45 0.17 0.31 -0.03 -0.10 -0.10 0.32 1.31 0.26 

34 1.08 0.95 1.52 0.77 0.23 0.22 0.00 -0.02 -0.14 0.30 1.17 0.51 

35 1.13 1.12 1.73 0.53 0.03 0.31 0.04 -0.07 -0.26 0.17 1.15 0.60 

36 1.22 1.14 1.73 0.64 0.04 0.21 -0.03 -0.11 -0.06 0.35 1.19 0.49 

37 1.19 1.31 1.45 0.48 0.20 0.18 -0.21 -0.09 -0.08 0.16 0.69 0.72 

38 0.78 0.98 1.24 0.31 0.11 0.20 -0.18 -0.17 -0.28 -0.10 0.74 0.45 

39 1.08 1.31 1.42 0.42 0.10 0.11 -0.23 -0.16 -0.29 0.05 0.72 0.73 

40 0.87 0.86 1.28 0.32 0.12 0.23 -0.18 -0.14 -0.15 0.00 0.65 0.65 

41 0.60 0.42 1.60 0.47 0.50 0.30 0.05 0.01 0.64 0.90 1.54 0.64 

42 0.91 0.67 1.27 0.70 0.38 0.32 0.05 0.01 0.59 0.92 1.24 0.77 

43 0.58 0.42 1.44 0.60 0.36 0.51 0.13 0.07 0.54 0.82 1.39 0.74 

44 0.71 0.59 1.15 0.50 0.45 0.24 0.11 0.12 0.63 0.73 1.28 0.66 

45 1.17 0.65 1.10 0.73 0.17 0.23 -0.03 -0.06 -0.26 0.53 0.80 0.81 

46 1.35 0.80 0.79 0.72 0.48 0.26 -0.05 -0.20 -0.33 0.31 0.84 0.99 

47 1.18 0.61 1.04 0.79 0.26 0.27 -0.14 -0.25 -0.27 0.28 0.80 0.82 

48 1.48 0.76 0.96 0.80 0.31 0.30 -0.03 -0.11 -0.38 0.44 0.89 1.17 
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   Supplemental Table 3.S4. Monthly scaling factor used for the bias correction of precipitation using quantile mapping for gage25 datasets for all the models 

Model 

SN. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 1.35 2.17 1.72 1.58 1.20 1.87 2.23 2.71 1.64 0.98 0.85 2.87 

2 1.35 2.17 2.08 1.58 1.20 2.33 1.31 2.59 1.64 0.98 0.85 2.87 

3 1.35 2.17 2.08 1.58 1.20 2.33 2.23 2.71 1.64 0.98 0.85 2.87 

4 1.35 2.17 1.71 1.35 1.20 2.33 2.23 2.71 1.64 0.98 0.85 2.87 

5 1.73 2.37 1.95 2.48 1.17 2.70 2.49 2.67 2.23 1.43 1.20 4.72 

6 1.87 1.76 1.92 1.89 1.14 2.88 2.70 2.66 2.16 1.38 1.23 2.69 

7 1.73 2.37 1.95 2.48 1.17 2.70 2.49 2.67 2.23 1.43 1.32 4.72 

8 2.03 1.76 1.65 2.27 1.14 2.88 2.70 2.66 2.16 1.38 1.23 2.69 

9 1.73 2.37 1.95 2.48 1.17 2.70 2.49 2.67 2.23 1.43 1.32 4.40 

10 2.03 1.76 1.31 2.27 1.14 2.88 2.70 2.66 2.16 1.38 1.12 2.69 

11 1.73 2.37 1.95 2.48 1.17 2.28 2.25 2.67 2.23 1.43 1.32 4.72 

12 2.03 1.76 1.92 2.27 1.14 2.24 2.70 2.66 2.16 1.38 1.23 2.69 

13 1.69 3.66 1.61 2.24 1.21 2.74 2.36 2.89 2.31 1.66 1.38 3.03 

14 1.69 3.04 1.53 2.24 1.13 2.74 2.36 2.89 2.31 1.85 1.38 3.03 

15 1.69 2.40 1.61 2.24 1.21 2.74 2.36 2.89 2.31 1.38 1.15 3.03 

16 1.69 2.69 1.61 2.24 1.21 2.74 2.36 1.71 2.31 1.22 0.79 3.03 

17 1.49 2.60 1.52 1.71 1.48 2.07 1.89 3.42 1.96 1.51 0.91 2.88 

18 1.49 2.60 1.52 1.71 1.48 2.07 1.89 3.42 1.96 1.51 0.91 2.88 

19 1.49 2.60 1.52 1.71 1.48 2.07 1.89 3.42 1.96 1.51 0.86 2.88 

20 1.49 2.60 1.52 1.71 1.48 2.07 1.89 2.62 1.96 1.51 0.91 2.88 

21 1.46 2.79 1.33 1.95 1.42 2.89 2.40 2.79 1.45 1.13 0.99 2.74 

22 1.46 2.79 1.33 1.95 1.42 2.89 2.44 2.79 1.28 1.13 0.99 2.74 

23 1.46 2.79 1.33 1.95 1.42 2.49 2.44 2.79 1.45 1.13 0.99 2.74 

24 1.46 2.79 1.17 1.95 1.42 2.43 2.44 2.79 1.45 1.13 0.99 2.74 

25 1.89 2.03 1.89 2.55 1.87 2.95 1.52 3.02 2.15 1.58 1.17 3.62 

26 1.94 2.03 1.82 2.55 1.87 2.95 1.52 3.02 2.15 1.58 1.17 3.62 

27 1.43 2.03 1.94 1.45 1.40 2.95 1.52 3.02 1.91 1.58 1.17 3.62 
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28 2.06 2.03 1.94 2.55 1.30 2.95 1.52 3.02 2.15 1.58 1.17 3.62 

29 1.83 1.93 1.52 1.62 1.47 3.04 2.40 3.19 1.62 1.17 1.27 2.54 

30 1.83 1.93 1.52 1.62 1.47 3.04 2.40 3.19 1.62 1.17 1.41 2.54 

31 1.83 1.93 1.52 1.62 1.47 3.04 2.40 3.05 1.62 1.17 1.01 2.54 

32 1.83 1.93 1.52 1.62 1.47 3.04 1.84 3.19 1.62 1.17 1.27 2.50 

33 1.76 2.84 1.67 2.58 1.18 2.95 2.18 2.65 1.82 1.53 1.10 3.42 

34 1.76 1.84 1.75 2.58 1.18 2.95 2.18 2.65 1.82 1.53 1.05 3.42 

35 1.47 2.84 1.75 2.58 1.18 2.77 2.18 2.65 1.82 1.53 1.07 2.19 

36 1.55 2.84 1.75 2.51 1.18 2.95 2.18 2.65 1.82 1.53 1.10 3.42 

37 1.70 3.29 1.55 2.95 1.08 2.73 2.69 2.89 2.09 1.35 0.93 3.34 

38 1.70 3.29 1.55 3.20 1.08 2.73 2.69 2.89 2.09 1.35 0.93 3.34 

39 1.70 3.29 1.55 3.10 1.08 2.73 2.57 2.89 2.09 1.35 0.93 2.98 

40 1.70 3.29 1.55 3.20 1.08 2.73 2.69 2.89 2.09 1.35 0.93 3.34 

41 1.54 1.75 1.64 2.12 1.27 3.06 2.45 3.34 2.05 2.08 1.03 4.23 

42 1.54 1.75 1.64 2.12 1.27 3.88 2.45 3.26 2.05 1.60 1.11 4.23 

43 1.54 1.75 1.64 2.12 1.27 3.88 2.45 2.67 2.05 2.21 1.11 4.23 

44 1.54 1.75 1.64 2.12 1.27 3.88 2.45 3.34 2.05 2.21 1.11 3.87 

45 1.84 2.13 1.81 1.95 1.74 2.75 1.77 2.52 2.21 1.76 1.41 3.87 

46 1.84 2.13 1.81 1.95 1.74 2.75 1.77 2.52 2.21 1.76 1.37 3.87 

47 1.24 2.13 1.81 1.95 1.74 2.49 1.77 2.52 2.21 1.76 1.41 3.87 

48 1.84 2.13 1.81 1.95 1.74 2.75 1.77 2.52 2.05 1.74 1.39 3.87 
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Supplemental Table 3.S5. Monthly precipitation threshold (mm) used for the bias correction of precipitation using quantile mapping for gage25 datasets for all the models 

Model 

SN. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 1.32 1.81 2.10 1.93 2.71 3.55 3.57 2.46 2.27 1.20 1.84 1.60 

2 1.50 1.86 2.01 2.02 2.68 3.54 3.24 2.63 2.09 1.04 1.90 1.66 

3 1.32 1.87 2.07 2.10 2.62 3.55 3.23 2.69 2.43 0.98 1.83 1.57 

4 1.37 1.86 2.03 1.94 2.85 3.27 3.08 2.44 2.12 1.17 2.09 1.64 

5 1.27 2.26 2.12 2.49 3.27 3.87 3.86 3.33 2.84 1.97 2.09 1.73 

6 1.34 2.13 2.41 2.49 2.99 4.00 3.13 3.14 3.34 1.84 1.99 1.92 

7 1.25 1.88 2.18 2.48 3.32 3.75 3.41 3.34 2.88 1.90 2.00 1.56 

8 1.40 1.92 2.36 2.41 2.84 4.26 3.13 3.17 3.24 1.70 2.04 1.63 

9 1.31 2.11 2.18 2.58 3.35 3.91 3.91 3.29 2.59 1.83 2.07 1.66 

10 1.38 1.92 2.41 2.36 2.78 4.00 3.03 3.03 3.15 1.70 2.14 1.92 

11 1.09 2.09 2.34 2.44 3.31 3.73 3.75 3.31 2.72 2.03 2.13 1.59 

12 1.49 1.97 2.36 2.33 2.92 4.04 3.19 3.03 3.42 1.86 1.91 1.75 

13 1.39 1.48 2.10 2.61 2.67 4.14 3.69 2.64 2.14 1.12 1.97 1.89 

14 1.44 1.55 2.04 2.61 2.72 3.81 3.69 2.84 2.31 0.94 2.23 1.75 

15 1.38 1.48 2.23 2.61 2.76 4.24 3.69 2.85 2.41 1.09 2.06 1.99 

16 1.43 1.71 2.30 2.60 2.67 4.20 3.76 2.85 2.31 1.21 2.19 1.99 

17 1.33 1.99 1.94 2.67 2.87 3.84 3.70 3.61 2.29 1.23 2.02 1.69 

18 1.33 1.70 2.00 2.73 2.48 3.73 3.87 3.70 2.61 1.36 1.88 1.70 

19 1.34 2.07 1.94 2.75 2.56 3.47 3.76 3.37 2.53 1.24 1.96 1.70 

20 1.38 1.87 1.84 2.64 2.51 3.55 3.70 3.72 2.44 1.34 1.96 1.70 

21 1.39 1.50 2.70 1.97 2.59 2.79 3.74 2.69 2.59 1.90 1.59 1.46 

22 1.36 1.56 2.88 1.87 2.87 2.65 3.34 2.74 2.78 1.80 1.60 1.39 

23 1.26 1.52 2.63 2.05 2.62 2.79 3.35 2.74 2.78 1.76 1.72 1.58 

24 1.19 1.47 2.84 1.97 2.73 2.69 3.72 2.77 2.69 1.88 1.73 1.56 

25 0.89 1.98 1.62 1.90 2.48 3.35 4.03 2.68 2.93 1.59 1.82 1.89 

26 0.94 1.99 1.72 2.06 2.68 3.58 4.12 2.66 3.13 1.79 1.61 1.94 

27 0.98 1.97 1.73 2.00 2.62 3.57 3.96 2.82 2.63 1.66 1.64 1.90 

28 0.91 2.08 1.75 1.93 2.57 3.35 3.88 2.82 2.90 1.68 1.59 1.87 

29 1.28 1.94 2.19 2.32 2.87 3.43 3.40 2.68 2.54 1.99 1.83 1.69 

30 1.26 2.15 1.99 2.27 2.90 3.14 3.39 2.40 2.29 1.99 1.88 1.65 
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31 1.19 1.97 2.12 2.39 3.02 3.23 3.40 2.68 2.28 1.77 1.83 1.68 

32 1.28 1.96 2.04 2.34 2.75 3.33 3.55 2.48 2.51 1.86 1.82 1.62 

33 1.41 1.48 2.14 2.51 2.56 4.11 3.27 2.48 2.30 1.66 1.65 1.68 

34 1.31 1.47 2.20 2.64 2.86 4.18 3.30 2.48 2.28 1.78 1.82 1.82 

35 1.30 1.67 2.19 2.70 2.87 4.11 3.30 2.59 2.36 1.58 1.90 1.57 

36 1.44 1.43 2.26 2.51 2.74 4.27 3.25 2.43 2.48 1.72 1.56 1.68 

37 1.21 2.03 1.99 2.62 2.73 3.11 3.25 2.89 2.62 1.62 2.22 1.63 

38 1.21 2.00 2.00 2.38 2.58 3.17 3.26 2.68 2.68 1.70 2.04 1.56 

39 1.22 1.99 1.99 2.48 2.70 2.96 3.08 2.77 2.18 1.64 2.50 1.65 

40 1.23 2.27 1.97 2.43 2.82 3.09 3.08 2.90 2.35 1.62 2.45 1.52 

41 1.25 2.11 2.20 2.44 2.89 3.21 3.98 2.87 2.95 1.89 1.72 1.83 

42 1.24 2.11 2.21 2.33 2.91 3.25 3.73 3.13 2.64 1.83 1.98 1.83 

43 1.13 2.30 2.22 2.31 2.92 3.11 3.73 3.19 2.69 1.74 2.02 1.85 

44 1.16 2.16 2.22 2.39 2.92 3.17 3.79 2.89 2.63 1.89 2.00 1.93 

45 1.21 1.84 2.11 2.73 2.94 3.36 3.30 3.37 2.56 1.70 2.27 1.57 

46 1.23 1.61 2.46 2.65 2.79 3.49 3.37 3.01 2.38 1.92 2.09 1.59 

47 1.18 1.87 2.33 2.82 2.94 3.41 3.31 2.91 2.35 1.79 2.39 1.38 

48 1.23 1.83 2.21 2.56 2.79 3.52 3.32 3.17 2.44 1.62 2.10 1.44 
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APPENDIX 2 

 

 

 

Supplement fig 4.1. Projected annual count of consecutive dry days (a) and 

consecutive wet days (b) presented as ensemble of each of four RCP scenarios and its 

comparison with historic data 

a 

b 
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Supplement fig 4.2 Projected annual total precipitation (a) and annual count of days 

with ≥ 50 mm precipitation (b) presented as ensemble of each of four RCP scenarios 

and its comparison with historic data. 

a 

b 
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Supplement table 4.1. Monthly soil water (mm) threshold values that define drought 

classes based on Soil Moisture Index (SMI) calculation using simulate historic soil 

datasets for Adco soil 

Month SD MD Nor MW 

Jan 173 221 264 290 

Feb 191 221 261 284 

Mar 209 226 269 288 

Apr 182 227 269 291 

May 176 222 266 291 

Jun 121 176 243 270 

Jul 78 114 199 239 

Aug 16 106 208 253 

Sep 14 118 234 267 

Oct 78 140 248 295 

Nov 116 179 265 299 

Dec 151 212 265 284 
SD= Severely dry; MD= Moderately dry; Nor=Normal; MW= Moderately wet. 

Soil moisture value smaller or equal to SD are considered severely dry; values greater than SD and 

smaller than or equal than MD is considered moderately dry; value greater than MD and smaller than 

or equal to Nor are consider normal and values greater than Nor and smaller than or equal to MW are 

considered moderately wet and values greater than MW are severely wet. 
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Supplement table 4.2. Monthly soil water (mm) threshold values that define drought 

classes based on Soil Moisture Index (SMI) calculation using simulate historic soil 

datasets for Armstrong soil 

Month SD MD Nor MW 

Jan 169 233 265 281 

Feb 216 239 260 270 

Mar 220 237 264 269 

Apr 204 230 265 275 

May 193 224 261 281 

Jun 159 199 247 261 

Jul 159 180 232 244 

Aug 123 191 241 274 

Sep 100 185 265 272 

Oct 101 184 260 285 

Nov 122 214 266 279 

Dec 146 229 271 277 
SD= Severely dry; MD= Moderately dry; Nor=Normal; MW= Moderately wet. 

Soil moisture value smaller or equal to SD are considered severely dry; values greater than SD and 

smaller than or equal than MD is considered moderately dry; value greater than MD and smaller than 

or equal to Nor are consider normal and values greater than Nor and smaller than or equal to MW are 

considered moderately wet and values greater than MW are severely wet. 
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Supplement table 4.3. Monthly soil water (mm) threshold values that define drought 

classes based on Soil Moisture Index (SMI) calculation using simulate historic soil 

datasets for Belknap soil 

Month SD MD Nor MW 

Jan 428 493 561 594 

Feb 474 498 556 580 

Mar 482 510 564 589 

Apr 477 514 572 602 

May 477 512 578 609 

Jun 427 481 560 586 

Jul 410 461 539 580 

Aug 400 467 538 570 

Sep 370 464 556 592 

Oct 348 460 557 593 

Nov 390 480 564 591 

Dec 406 492 561 592 

SD= Severely dry; MD= Moderately dry; Nor=Normal; MW= Moderately wet. 

Soil moisture value smaller or equal to SD are considered severely dry; values greater than SD and 

smaller than or equal than MD is considered moderately dry; value greater than MD and smaller than 

or equal to Nor are consider normal and values greater than Nor and smaller than or equal to MW are 

considered moderately wet and values greater than MW are severely wet. 
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Supplement table 4.4. Monthly soil water (mm) threshold values that define drought 

classes based on Soil Moisture Index (SMI) calculation using simulate historic soil 

datasets for Leonard soil 

Month SD MD Nor MW 

Jan 176 242 313 350 

Feb 210 259 317 344 

Mar 232 273 316 340 

Apr 225 268 327 353 

May 223 269 328 356 

Jun 208 241 318 338 

Jul 163 213 292 331 

Aug 124 199 293 321 

Sep 115 195 294 343 

Oct 107 182 298 340 

Nov 136 208 313 355 

Dec 157 233 315 354 
SD= Severely dry; MD= Moderately dry; Nor=Normal; MW= Moderately wet. 

Soil moisture value smaller or equal to SD are considered severely dry; values greater than SD and 

smaller than or equal than MD is considered moderately dry; value greater than MD and smaller than 

or equal to Nor are consider normal and values greater than Nor and smaller than or equal to MW are 

considered moderately wet and values greater than MW are severely wet. 
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Supplement table 4.5. Monthly soil water (mm) threshold values that define drought 

classes based on Soil Moisture Index (SMI) calculation using simulate historic soil 

datasets for Mexico soil 

Month SD MD Nor MW 

Jan 314 361 394 416 

Feb 352 367 390 400 

Mar 345 365 396 402 

Apr 322 356 394 406 

May 316 352 388 412 

Jun 259 314 375 392 

Jul 229 274 347 366 

Aug 202 283 362 405 

Sep 175 284 395 407 

Oct 216 310 392 421 

Nov 243 335 400 411 

Dec 293 355 400 408 
SD= Severely dry; MD= Moderately dry; Nor=Normal; MW= Moderately wet. 

Soil moisture value smaller or equal to SD are considered severely dry; values greater than SD and 

smaller than or equal than MD is considered moderately dry; value greater than MD and smaller than 

or equal to Nor are consider normal and values greater than Nor and smaller than or equal to MW are 

considered moderately wet and values greater than MW are severely wet. 
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Supplement table 4.6. Monthly soil water (mm) threshold values that define drought 

classes based on Soil Moisture Index (SMI) calculation using simulate historic soil 

datasets for Putnam soil 

Month SD MD Nor MW 

Jan 321 344 374 384 

Feb 331 344 372 383 

Mar 327 343 377 389 

Apr 307 337 375 385 

May 303 334 372 379 

Jun 228 285 344 371 

Jul 184 229 315 349 

Aug 135 232 343 382 

Sep 122 259 376 386 

Oct 186 288 373 399 

Nov 223 317 381 400 

Dec 302 339 379 390 
SD= Severely dry; MD= Moderately dry; Nor=Normal; MW= Moderately wet. 

Soil moisture value smaller or equal to SD are considered severely dry; values greater than SD and 

smaller than or equal than MD is considered moderately dry; value greater than MD and smaller than 

or equal to Nor are consider normal and values greater than Nor and smaller than or equal to MW are 

considered moderately wet and values greater than MW are severely wet. 
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APPENDIX 3 

 

 

  

 

Supplement fig 5.1. Monthly ensemble median and quartile of water yield projections 

for Field1 for BAU (a) and ASP (b). The median is represented by the solid line with 

Q1 represented by the lower bound of the shaded region and Q3 represented by the 

upper bound of the shaded region. 
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Supplement fig 5.2. Monthly ensemble median and quartile of surface runoff 

projections for Field1 for BAU (a) and ASP (b). The median is represented by the 

solid line with Q1 represented by the lower bound of the shaded region and Q3 

represented by the upper bound of the shaded region. 
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Supplement fig 5.3. Monthly ensemble median and quartile of evapotranspiration 

projections for Field1 for BAU (a) and ASP (b). The median is represented by the 

solid line with Q1 represented by the lower bound of the shaded region and Q3 

represented by the upper bound of the shaded region 
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Supplement fig 5.3. Monthly ensemble median and quartile of soluble nitrogen yeild 

for Field1 for BAU (a) and ASP (b). The median is represented by the solid line with 

Q1 represented by the lower bound of the shaded region and Q3 represented by the 

upper bound of the shaded region 

 

 

 

 

 

 

 

 

  (BAU)   (BAU) 

(BAU) (BAU) 

(ASP) (ASP) 

a 

a 



  

171 
 

VITA 

Sagar Gautam was born on December 19, 1989 at Butwal, Nepal to Mrs. T.N Gautam 

and Mrs. M Gautam. He received his B.S. (Agriculture) in 2012 from Banaras Hindu 

University, Varanasi (India). He joined South Dakota State University in 2013 and 

received the MS in Soil Science in 2014 under the supervision of Dr. Sandeep Kumar. 

For his PhD, he joined University of Missouri-Columbia in 2015 and received the 

doctorate degree in Bioengineering in 2018 under the supervision of Dr. Christine 

Costello. He has accepted a Research Scientist position at Minnesota Pollution 

Control Agency, Saint Paul, Minnesota where he will be moving after his graduation. 

 


