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ABSTRACT

A law of gravitation is defined and justified for constant curvature planes
and it is demonstrated that Kepler’s three laws of planetary motion have
natural analogs in this new context.

1 Introduction

Gauss [4] took it for granted that every 2-dimensional surface S in <3 has,
at least locally, a geodesic polar parametrization ~X(ρ, θ) wherein the param-
eter ρ denotes the distance, on S, of the point ~X(ρ, θ) from the origin O
= ~X(0,0) and θ denotes the signed angle between a reference ρ-parameter
curve through O and the ρ-parameter curve from O to ~X(ρ, θ). Using some-
what more modern terminolgy, we simply assume that S is any 2-dimensional
manifold that consists of the plane together with the metric

dρ2 +G(ρ, θ)dθ2 (1)

The ρ-parameter curves of this metric are identical with the geodesics that
emanate from O. We follow the convention that

~X(ρ, π + θ) = ~X(−ρ, θ)

and note that all these metrics endow the same portion of the straight line
θ = c with the same lengths. These Euclidean straight lines are also geodesics
of S. The archtypical example is, of course, the (polar coordinates) metric

dρ2 + ρ2dθ2 (2)
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which defines a manifold that is isometric to the Euclidean plane. The
hyperbolic and elliptic planes have the respective metrics

dρ2 +R2 sinh2(
ρ

R
)dθ2 and dρ2 +R2 sin2(

ρ

R
)dθ2 (3)

where R is an arbitrary positive number. These are collectively called non-
Euclidean planes. The manifolds of (2) and (3) are also collectively known as
the constant curvature planes since their Gaussian curvatures are constant.
When R = 1 these are the unit hyperbolic plane and the unit elliptic plane.
The Euclidean, hyperbolic and elliptic planes are all symmertric (homoge-
neous) so that O can be an arbitrary point.

As is well known, in the Euclidean plane

ρ =
1

k(1 + e cos(θ − α))

is the equation of a circle, ellipse, parabola, or hyperbola according as e =
0, 0 < e < 1, e = 1, or e > 1. In view of the observations in [5, 8] it is
therefore reasonable to define the corresponding curves

ρ = R tanh−1
(

1

k(1 + e cos(θ − α))

)
(4)

as the hyperbolic circle, ellipse, parabola, or hyperbola (provided that
k|e− 1| > 1), and the corresponding curves

ρ = R tan−1
(

1

k(1 + e cos(θ − α))

)
(5)

as the elliptic circle, ellipse, parabola, or hyperbola. These definitions of
circles, agree, of course, with the standard one.

In Section 2 it will be shown that these curves describe planetary motion
and in Section 3 it will be demonstrated that these curves do indeed possess
the same focal properties as their Euclidean namesakes.

GEODESICS
These are curves whose second derivative is 0. Thus, both coefficients

of (xxx) vanish. The same substitutions that were used above lead to the
equation

d2u

dθ2
+
Gρ
2G

= 0

We add the assumption that

Gρ
2G

= −
∫

1

G

It follows that

d2u

dθ2
+ u = 0
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which has the solution
u = C cos(θ − α)

or
ρ = coth−1(C cos(θ + α)).

Let

Fρ = −
∫

dρ

Gρ

be the miracle function. Then the geodesic with x and y intercepts equal to
a and b respectively has

α = tan−1
(
−F (b)

F (a)

)
and C =

√
F (a)2 + F (b)2

ρ = coth−1(C cos(θ + α)).

Arclength of geodesic

∫ √
dρ2 + sinh2 ρdθ2 =

∫ √
C2 sin2(θ + α)

(C2 cos2(θ + α)− 1)2
+

1

C2 cos2(θ + α)− 1
dθ

=
√
C2 − 1

∫
dθ

C2 cos2(θ + α)− 1
= tanh−1

(
tan(θ + α)√
C2 − 1

)
The hyperbolic distance between the points (ρ1, θ1) and (ρ2, θ2) is

cosh−1[cosh(ρ1) cosh(ρ2)− cos(θ2 − θ1) sinh(ρ1) sinh(ρ2)]

2 Planetary Orbits

It is not unreasonable to speculate on the physics of the non-Euclidean
planes. The second half of the 19th century saw some work done on the
Archimedian Law of the Lever [1]. More recently, Gal’perin [2, 3] investi-
gated the concept of the center of mass of finite point-mass systems. Lam-
phere [8] studied uniform circular motion. The non-Euclidean analogs of
Kepler’s three laws of planetary motion are derived in this section.

Our strategy is based on the derivation of Kepler’s classic laws in [7].
We begin by obtaining the connection form ω12 for the metric of (1). This
is accomplished by analyzing the moving frame.

~E1 = ~Xρ
~E2 =

1√
G
~Xθ (6)

After the connection form has been obtained, the covariant derivative is
used to determine the acceleration of any arbitrary path in general as well
as the planetary orbits in particular. The assumption of the centrality of the
force of attraction is tantamount to the vanishing of the coefficient of ~E2 in
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the acceleration vector and this yields a second order ordinary differential
equation which is easily integrated to Eq’n (8) if we stipulate that G is
independent of θ. When the metric in question is further specialized to the
non-Euclidean geometries of (3) an analog of Kepler’s second law is obtained.
A generalization of Newton’s inverse square gravitational law is then defined
and motivated. This law of attraction, in combination with the coefficient
of ~E1, yields the second order ordinary differential equation (11) which,
surprisingly, reduces to Newton’s Euclidean equation in the non-Euclidean
case as well. Analogs of Kepler’s first and third laws are then easily obtained.

When the vectors of (6) are used as a moving frame in the surface defined
by (1), they yield the connection [10, p. 277]

ω12 =
−(
√
E)θ√
G

dρ+
(
√
G)ρ√
E

dθ

= 0dρ+ (
√
G)ρdθ = (

√
G)ρdθ.

Let ~α(t) = ~X(ρ(t), θ(t)) be an arbitrary curve in this plane and let ~v(t)
and ~a(t) be its velocity and acceleration vectors, respectively. Then, if ′

denotes differentiation with respect to t, the velocity vector is

~v(t) = ~X′(t) = ~Xρρ
′ + ~Xθθ

′

= ρ′~E1 + θ′
√
G~E2

and the acceleration vector is its covariant derivative [10]

~a(t) = ∇~v~v

= [(ρ′)′ + θ′
√
G(−(

√
G)ρ)dθ (~v(t))]~E1+

[(θ′
√
G)′ + ρ′(

√
G)ρdθ (~v(t))]~E2

= [ρ′′ − θ′2
√
G(
√
G)ρ]~E1+

[θ′′
√
G+ θ′(

√
G)′ + ρ′θ′(

√
G)ρ]~E2

= [ρ′′ − θ′2
√
G(
√
G)ρ]~E1+

[θ′′
√
G+ θ′[(

√
G)ρρ

′ + (
√
G)θθ

′] + ρ′θ′(
√
G)ρ]~E2

= [ρ′′ − θ′2
√
G(
√
G)ρ]~E1+
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[θ′′
√
G+ 2ρ′θ′(

√
G)ρ + (

√
G)θθ

′2]~E2 (7)

Since the attraction the sun exerts on the planet is central, that is, di-
rected towards O, it follows that the coefficient of ~E2 in Eq’n (7) vanishes.
If we now add the assumption

G is independent of θ

then

θ′′
√
G+ 2ρ′θ′(

√
G)ρ = 0

or

1√
G

[
θ′′G+ ρ′θ′Gρ

]
= 0

or
1√
G

[θ′G]′ = 0

from which it follows that for some constant h

θ′G = h. (8)

Set

H(ρ) =

∫ √
Gdρ

and let the double of ~α(t) be the curve

2~α(t) = ~X(t) = (2ρ(t), θ(t))

Then the area of the wedge

θ ≤ τ ≤ θ + ∆θ, 0 ≤ r ≤ 2ρ = 2ρ(τ)

that is swept out by the radius 2ρ(t) of the double of ~α(t) is

A =

∫ θ+∆θ

θ

∫ 2ρ

0

√
Gdrdτ =

∫ θ+∆θ

θ
(H(2ρ)−H(0))dτ

Hence
dA

dθ
= H(2ρ)−H(0) (9)

For the general hyperbolic plane

H(ρ) =

∫ √
Gdρ =

∫
R sinh(ρ/R)dρ = R2 cosh(ρ/R) + C

and for the general elliptic plane

H(ρ) =

∫ √
Gdρ =

∫
R sin(ρ/R)dρ = −R2 cos(ρ/R) + C

The following proposition is the constant curvature analog of Kepler’s
second law.
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Figure 1:

Theorem 2.1 In a constant curvature plane, let ~α(t) denote a curve whose
acceleration vector is constantly directed at the origin O. Then, if t is inter-
preted as time, the radius of the double of ~α(t) sweeps equal areas in equal
times.

Proof: Let A denote the area swept out by the doubled radius. In the
hyperbolic case, by (9),

dA

dθ
= R2 cosh(2ρ/R)−R2 = 2R2 sinh2(ρ/R)

so that
dA

dt
=
dA

dθ

dθ

dt
= 2R2 sinh2(ρ/R)θ′ = 2Gθ′ = 2h

which means that the area swept by the doubled radius is proportional to
the elapsed time.

In the elliptic case, by (9),

dA

dθ
= R2 −R2 cos(2ρ/R) = 2R2 sin2(ρ/R)

or
dA

dt
=
dA

dθ

dθ

dt
= 2R2 sin2(ρ/R)θ′ = 2Gθ′ = 2h

which means that here too the area swept by the doubled radius is propor-
tional to the elapsed time.

In the Euclidean plane the area swept out by the double radius is four
times that swept out by the radius. Therefore the statement of the theorem
is equivalent to the classical Kepler’s second law.

2

We next turn to Kepler’s first law. This calls for a law of gravitation for
which we propose an attraction of

k

G
(10)

where k > 0. Note that in the Euclidean case (2) this reduces to Newton’s
law of gravitation. This observation, together with Occam’s razor, could
be sufficient grounds for the proposed attraction of (10), but we offer an
additional heuristic rationale. One of the ways of justifying Newton’s inverse
square assumption is to observe that the total flux of the gravitational field
across any sphere centered at the sun is independent of that sphere’s radius.
Consequently the gravitational flux arriving at a planet at distance ρ from
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the sun should be inversely proportional to the surface area of the sphere of
radius ρ. In the unit hyperbolic case this sphere is known [11, Ex. 3.4.5] to
have volume

π(sinh 2ρ− 2ρ)

which, when differentiated, yields a surface area of

4π sinh2 ρ = 4πG

Thus, assumption (10) is reasonable in this well known plane as well.
Since the assumption of the centrality of the attraction resulted in the

vanishing of the coefficient of ~E2 of Eq’n (7), it follows that the magnitude
of the force is proportional to the coefficient of ~E1 and so the gravitational
equation is

ρ′′ − θ′2
√
G(
√
G)ρ = − k

G
(11)

The substitution

u = −
∫

1

G
dρ (12)

yields
du

dθ
= − 1

G

dρ

dθ
or

dρ

dθ
= −Gdu

dθ

Hence, by two applications of (8)

dρ

dt
=
dρ

dθ

dθ

dt
= −Gdu

dθ

h

G
= −hdu

dθ

d2ρ

dt2
= −hd

2u

dθ2

dθ

dt
= −h h

G

d2u

dθ2
= −h

2

G

d2u

dθ2

The substitution of this value into the gravitational equation (11) yields

−h
2

G

d2u

dθ2
− h2

G3/2
(
√
G)ρ = − k

G

or
d2u

dθ2
+

(
√
G)ρ√
G

=
k

h2

or
d2u

dθ2
+
Gρ
2G

=
k

h2
(13)

In all three cases, the Euclidean, the hyperbolic and the elliptic, the fact
that

Gρ
2G

= −
∫

1

G
dρ = u
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converts Eq’n (13) into the second order linear equation

d2u

dθ2
+ u =

k

h2

whose general solution can be expressed as

u =
k

h2
(1 + e cos(θ − α)) (14)

for some positive real number e and arbitrary real number α. In the Eu-
clidean case this yields

ρ =
h2/k

1 + e cos(θ − α)

which, for 0 < e < 1 describes a Euclidean ellipse.
In the general hyperbolic case, Eq’n (14) yields the hyperbolic ellipse

ρ = R tanh−1

(
h2

kR(1 + e cos(θ − α))

)

and in the general elliptic case Eq’n (14) yields the elliptic ellipse

ρ = R tan−1

(
h2

kR(1 + e cos(θ − α))

)

These considerations prove the following theorem which is the constant
curvature analog of Kepler’s first law.

Theorem 2.2 The planetary orbits in the non-Euclidean geometries are el-
lipses.

2

This section concludes with an analog of Kepler’s third law which states
that in the Euclidean case the squares of the return times of the planets is
proportional to the cubes of their semi major axes. Let E denote either of
the non-Euclidean ellipses

tanh(ρ/R) =
1

k(1 + e cos(θ − α))
(15)

or

tan(ρ/R) =
1

k(1 + e cos(θ − α))
(16)

The associated Euclidean ellipse E′ is defined to be

E′ : ρ =
1

k(1 + e cos(θ − α))
, (17)

drawn in the same polar coordinate system as E.
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Figure 2:

Theorem 2.3 The squares of the return times of the non-Euclidean plan-
etary motion about a fixed mass is proportional to the cubes on the semi
major axes of the associated Euclidean ellipses.

Proof: Let P be an arbitrary point on the orbit E of (15, 16) and let P ′

be the intersection of the radius OP with the auxiliary ellipse E′ (Fig. 1).
As P traces out its orbit E, P ′ traces out the Euclidean ellipse E′. Let

T be their common return time. Since P ′ traces out an ellipse it follows
from [9 Book I Proposition XI, 7] that its acceleration vector is directed
towards the origin O and has a magnitude that is inversely proportional to
the OP ′2. It therefore follows from the Euclidean Kepler’s third law that T 2

is proportional to the cube on the semi major axis of the Euclidean ellipse
E′ of (17).

2

3 Geometric Properties

In this section we discuss the geometric properties of the curves of (4, 5).
It turns out that in this respect they are quite similar to their Euclidean
analogs.

Theorem 3.1 In a constant curvature plane a curve is an ellipse (hyper-
bola) if and only if has two foci such that the sum (difference) of the distances
of the arbitrary point on the curve from the foci is constant.

Proof: This is, of course, well known in the Euclidean case. Since rota-
tions about the origin are isometries of all the constant curvature manifolds,
it may be assumed that α = 0. In the hyperbolic case of (4) set

A = (ρ(0), 0), B = (ρ(π), π), F = (ρ(0)− ρ(π), 0)

where

ρ(0) = tanh−1
(

1

k + ke

)
, ρ(π) = tanh−1

(
1

k − ke

)
Note that there are two possible dispositions for O,A,B and F according
as 0 < e < 1 or e > 1 (Fig. 2). Moreover, the branch H1 consists of those
points (ρ, θ) of the hyperbola H1 ∪H2 for which ρ > 0, whereas the branch
H2 consists of the points for which ρ < 0. We define a and c by means of
the equations

2a = tanh−1
(

1

k(1− e)

)
+ tanh−1

(
1

k(1 + e)

)
(18)
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2c = tanh−1
(

1

k(1− e)

)
− tanh−1

(
1

k(1 + e)

)
(19)

Assume first that
R = 1

It is easily verified in the unit hyperbolic case that if we set

∆1 =
k − ke+ 1

k − ke− 1

k + ke+ 1

k + ke− 1

∆2 =
k − ke+ 1

k − ke− 1

k + ke− 1

k + ke+ 1

then

2a =
1

2
ln ∆1 (20)

2c =
1

2
ln ∆2 (21)

If we also set

∆0 = (k − ke+ 1)(k − ke− 1)(k + ke+ 1)(k + ke− 1)

and

∆θ =
k(1 + e cos θ) + 1

k(1 + e cos θ)− 1

then it follows from Eq’ns (20, 21) that

cosh 2a =
1

2

(√
∆1 +

1√
∆1

)
=
k2 + 1− k2e2

√
∆0

sinh 2a =
1

2

(√
∆1 −

1√
∆1

)
=

2k√
∆0

cosh ρ = cosh

(
tanh−1

[
1

k(1 + e cos θ)

])

= cosh

(
1

2
ln ∆θ

)
=

1

2

(√
∆θ +

1√
∆θ

)

sinh ρ =
1

2

(√
∆θ −

1√
∆θ

)

cosh 2c =
1

2

(√
∆2 +

1√
∆2

)
=
k2 − 1− k2e2

√
∆0
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sinh 2c =
1

2

(√
∆2 −

1√
∆2

)
=

2ke√
∆0

For the points P on the ellipse E of Figure 2, the hyperbolic law of cosines
states that

cosh ρ̃ = cosh ρ cosh 2c− cos(π − θ) sinh ρ sinh 2c

We verify that
ρ̃+ ρ = 2a

by simplifying
cosh ρ̃− cosh(2a− ρ)

= cosh ρ cosh 2c+ cos θ sinh ρ sinh 2c− cosh 2a cosh ρ+ sinh 2a sinh ρ

= cosh ρ[cosh 2c− cosh 2a] + sinh ρ[cos θ sinh 2c+ sinh 2a]

=
1

2

(√
∆θ +

1√
∆θ

)( −2√
∆0

)
+

1

2

(√
∆θ −

1√
∆θ

)(
cos θ

2ke√
∆0

+
2k√
∆0

)
=

1

2
√

∆θ

√
∆0

[−(∆θ + 1) + (∆θ − 1)k(1 + e cos θ)]

=
1

2
√

∆θ

√
∆0

[
− 2k(1 + e cos θ)

k(1 + e cos θ)− 1
+

2k(1 + e cos θ)

k(1 + e cos θ)− 1

]
= 0

For the points P on the branch H1 of the hyperbola of Figure 2, the hyper-
bolic law of cosines yields

cosh ρ̃ = cosh ρ cos 2c− cos θ sinh ρ sinh 2c

We verify that
ρ− ρ̃ = 2a

by noting that

cosh ρ̃− cosh(ρ− 2a) = cosh ρ̃− cosh(2a− ρ)

which, by the above calculations for the ellipse equals 0. Finally, for the
points P on the branch H2 of the hyperbola of Figure 2, the hyperbolic law
of cosines yields

cosh ρ̃ = cosh ρ cosh 2c− cos(θ − π) sinh ρ sinh 2c

= cosh ρ cosh 2c+ cos θ sinh ρ sinh 2c

We verify that
ρ− ρ̃ = 2a
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by noting that

cosh ρ̃− cosh(ρ− 2a) = cosh ρ̃− cosh(2a− ρ)

which, by the above calculations for the ellipse, also equals 0.
Conversely, let a > c > 0 and let loop E (resp. curve H1 ∪H2) of Figure

2 be the locus of all the points the sum (resp. differenece) of whose distances
from O and F equals 2a, where OF = 2c. Set

e =
tanh(a+ c)− tanh(a− c)
tanh(a+ c) + tanh(a− c)

(22)

and

k =
tanh(a+ c) + tanh(a− c)
2 tanh(a+ c) tanh(a− c)

(23)

Then 0 < e < 1 (resp. 1 < e) and e and k satisfy E’qns (18, 19). It follows
that the corresponding graph of (4) and loop E (resp. curve H1 ∪H2) are
identical sets.

For the unit elliptic case the reader is reminded that

cos(tan−1 x) =
1√

x2 + 1
sin(tan−1 x) =

x√
x2 + 1

Set

x1 =
1

k(1− e)
, x2 =

1

k(1 + e)
, xθ =

1

k(1 + e cos θ)

and
2a = tan−1 x1 + tan−1 x2

2c = tan−1 x1 − tan−1 x2

Then
cos 2a = cos

(
tan−1 x1 + tan−1 x2

)
=

1√
x2

1 + 1

1√
x2

2 + 1
− x1√

x2
1 + 1

x2√
x2

2 + 1
=

1− x1x2√
(x2

1 + 1)(x2
2 + 1)

and

sin 2a =
x1 + x2√

(x2
1 + 1)(x2

2 + 1)

tan ρ = xθ, cos ρ =
1√

x2
θ + 1

, sin ρ =
xθ√
x2
θ + 1

cos 2c =
1 + x1x2√

(x2
1 + 1)(x2

2 + 1)
, sin 2c =

x1 − x2√
(x2

1 + 1)(x2
2 + 1)

Hence, by the elliptic (or spherical) law of cosines,
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cos ρ̃− cos(2a− ρ) = cos ρ cos 2c− cos θ sin ρ sin 2c

− cos 2a cos ρ− sin 2a sin ρ

=
(1 + x1x2)− xθ(x1 − x2) cos θ − (1− x1x2)− (x1 + x2)xθ√

(x2
θ + 1)(x2

1 + 1)(x2
2 + 1)

=

2
k2−k2e2 −

cos θ
k(1+e cos θ)

2ke
k2−k2e2 −

2k
(k2−k2e2)k(1+e cos θ)√

(x2
θ + 1)(x2

1 + 1)(x2
2 + 1)

= 0

from which it follows that
ρ̃+ ρ = 2a.

The unit elliptic hyperbola is disposed of by the same argument that
was used for the unit hyperbolic hyperbola. The converse follows from an
argument similar to that given in the unit hyperbolic case.

The proof of the theorem for general R is obtained by replacing the
quantities

ρA, ρB, a, c, ρ, ρ̃

of the foregoing arguments with

ρA
R
,
ρB
R
,
a

R
,
c

R
,
ρ

R
,
ρ̃

R

respectively.

2

It is well known that Euclidean parabolas can be given a two-foci defini-
tion by fixing one of the foci of the ellipse and letting the other diverge to
infinity. Similarly, the hyperbolic parabola (4) is the limiting configuration
of hyperbolic ellipses. This can be justified by examining the effect on the
ellipse E of Figure 2 of letting c diverge to infinity while holding a− c con-
stant. It follows from Eq’n (22) that e converges to 1 so that the limiting
configuration is indeed a hyperbolic parabola. It is clear that such is also
the case for the elliptic parabola. We note in passing that the curve of the
hyperbolic plane defined as the locus of all points that are equidistant from
a given point (focus) to given straight line (directrix) is not a hyperbolic
parabola.

Theorem 3.2 Ellipses, hyperbolas, and parabolas are conic sections.
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Figure 3:

Figure 4:

Proof: For the hyperbolic ellipse we use a slight modification of the well-
known diagram and argument that appear in pp. 7-9 of [6]. In Figure 3
the curve E is the intersection of a plane and a cone. We then inscribe
two spheres that are tangent to both the cone (along K and L) and the
intersecting plane (at F and G). Let SQBP be a generating line of the
cone. It is clear that the length of PQ is independent of the position of P
on K. Moreover,

PQ = BP +BQ = BF +BG

so that the fixed points F and G are indeed the foci of the ellipse E.
Figure 10 of [6] can be used for the hyperbola. As for the hyperbolic

parabola, suppose the smaller sphere that is tangent to the cone along L is
fixed while the plane containing the ellipse E pivots so that A moves closer
to S while C recedes to infinity. Let a, c, e, k be as defined in the proof of
Theorem 2.1. Then GA = a− c remains bounded while c = GF/2 diverges
to infinity. It follows from Eq’ns (22, 23) that the limiting cross section
is indeed a parabola. In Figures 4 and 5 elliptic 3-space is visualized as a
ball in 3-space in which antipodal points are identified. Figure 4 displays an
ellipse and a parabola, whereas Figure 5 displays a hyperbola. Note that the
parabola still has two foci. With this understanding the above argument in
hyperbolic space still works in this space as well.

2
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