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1. A hyperbolic Theorem of Pappus.

2. A hyperbolic version of Newton’s Theorem that the center of gravity
and the center of mass of the uniform sphere are identical.

3. A hyperbolic version of the characterization of concurrent cevians
for the n-simplex.

Preliminaries:

The (unsigned) moment of the point-mass (X,x) with respect to the
hyperplane ν is

Mν(X,x) = x sinh d(X, ν)

Proposition 3.1 verbatim

Proposition 3.2: The two point-masses (X,x) and (Y, y) have equal
moments with respect to the intersecting hyperplane µ, if and only if µ
contains at least one of their centroids. They have equal moments with
respect to every straight line if and only if they are identical.

PROOF: ? �
Proposition 3.3 Verbatim Proof: very slight modifications, if any.

A hyperplane is said to be oriented if one of its sides is designated
as positive and the other as negative. It is clear that every hyperplane
has two orientations.The (signed) moment of the finite point-mass system
X = {(Xi, xi), i = 1, 2, 3, ..., n} with respect to the oriented hyperplane µ is

Mµ(X ) =

n∑
i=1

σµ(Xi)Mµ(Xi, xi)
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where σµ(X) = 1,−1, 0 according as X is in the positive half-space of µ,
negative half-space of µ or on µ itself. The finite point-mass system X is
said to be balanced with respect to the oriented plane provided

Mm(X ) = 0.

It is clear that if µ and µ′ are reverses of each other, then for every finite
system X we have

Mµ(X ) = −Mµ′(X )

and
Mµ(X ) = 0 if and only if Mµ′(X ) = 0

Corollary 0.1 For every finite point-mass system X and oriented hyper-
plane µ

Mµ(X ) = Mµ(C(X ))

PROOF: This follows from Theorem 3.4 by induction. Q.E.D.

Theorem 3.7. Just need to replace ”line m” with ”hyperplane µ” once
in proof.
Proposition 3.8: replace ”straight line” with ”intersecting hyperplane”.

1 Examples

In n dimensions(?),

ds2 = dρ2 + sinh2 ρdθ21 + · · ·+ sinh2 ρ sin2 θ1 · · · sin2 θn−2dθ
2
n−1

dV = sinhn−1 ρ sinn−2 θ1 · · · sin θn−2
3-Mass of solid of revolution∫ ∫ ∫

D
cosh ρ sinh2 ρ sinφdρ ∧ dθ ∧ dφ

= 2π

∫ ∫
S

cosh ρ sinh2 ρ sinφdρ ∧ dφ

3-Mass of sphere of radius r:

2π

∫ r

0
cosh ρ sinh2 ρ

(∫ π

0
sinφdφ

)
dρ =

4π

3
sinh3 r

2-Mass of generator ∫ ∫
cosh r sinh rdr ∧ dτ
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Theorems:

It is widely accepted [Refs] that the hyperbolic analog of Newton’s
Law of Gravitation is

F =
m1 ×m2

sinh2 d
(1)

This can be argued as follows. One of the ways of justifying Newton’s
inverse square assumption is to observe that the total flux of the gravitational
field across any sphere centered at the sun is independent of that sphere’s
radius. Consequently the gravitational flux arriving at a planet at distance
r from the sun should be inversely proportional to the surface area of the
sphere of radius r. In the unit hyperbolic case this sphere is known [11, Ex.
3.4.5] to have volume

π(sinh 2r − 2r)

which, when differentiated, yields a surface area of

4π sinh2 r

which lends plausibility to (3). Assuming this Law of Gravitation we prove
the hyperbolic version of a famous Theorem of Newton’s. A different proof
appears in [Velpry].

Theorem 1.1 The gravitational attraction that a uniform spherical mass
exerts on a point mass outside the sphere and at distance R from its center
is inversely propostional to sinh2R.

PROOF: Let the given spherical mass be a sphere S centered at O with
radius r and let the given point mass be located at P . Because of the homo-
geneity of mass and the law of gravitational attraction, it may be assumed
that the given sphere has uniform density 1 and that the mass at P is 1.
Then the total force with which the sphere attracts P is∫ ∫ ∫

S

cosα

sinh2 s
cosh ρ sinh2 ρ sinφdρdφdθ

= 2π

∫ r

0
sinh2 ρ cosh ρ

∫ π

0
sinφ · cosα

sinh2 s
dφdρ

By the Law of Cosines

cosφ =
coshR cosh ρ− cosh s

sinhR sinh ρ

and hence

sinφdφ =
sinh sds

sinhR sinh ρ
.
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Consequently,

sinφ · cosα

sinh2 s
dφ =

1

sinhR sinh ρ
· tanh(R− b)

sinh s tanh s
ds

=
1

sinhR sinh ρ
· tanhR− tanh b

1− tanhR tanh b
· cosh sds

sinh2 s

=
1

sinhR sinh ρ
· tanhR− cosφ tanh ρ

1− tanhR cos θ tanh ρ
· cosh sds

sinh2 s

=
1

sinhR sinh ρ
·

tanhR− tanh ρ coshR cosh ρ−cosh s
sinhR sinh ρ

1− tanhR tanh ρ coshR cosh ρ−cosh s
sinhR sinh ρ

· cosh sds

sinh2 s

=
tanhR sinh ρ sinhR− tanh ρ cosh ρ coshR+ tanh ρ cosh s

cosh s tanhR tanh ρ

· 1

sinhR sinh ρ
· cosh sds

sinh2 s

=
1

sinhR sinh ρ
· 1

sinh2 s

(
cosh ρ sinhR− cosh ρ coshR

tanhR
+

cosh s

tanhR

)
ds

=
coth ρ

sinh2 s sinh2R

(
sinh2R− cosh2R+ cosh s

coshR

cosh ρ

)
ds

=
1

sinh ρ sinh2R

(
coshR

cosh s

sinh2 s
− cosh ρ

1

sinh2 s

)
ds.

It follows that ∫ π

0
sinφ · cosα

sinh2 s
dφ

=
1

sinh ρ sinh2R

∫ R+ρ

R−ρ

(
coshR

cosh s

sinh2 s
− cosh ρ

1

sinh2 s

)
ds

=
1

sinh ρ sinh2R

[
− coshR

1

sinh s
+ cosh ρ

cosh s

sinh s

]R+ρ

R−ρ

=
1

sinh ρ sinh2R

[
− coshR

sin(R+ r)
+ cosh ρ

cosh(R+ r)

sinh(R+ r)

+
coshR

sin(R− r)
− cosh ρ

cosh(R− r)
sinh(R− r)

]

=
1

sinh ρ sinh2R
· cosh ρ sinh(R− ρ−R− ρ) + 2 coshR coshR sinh ρ

sinh(R+ ρ) sinh(R− ρ)

=
2

sinh2R
· cosh2R− cosh2 ρ

sinh2R cosh2 ρ− cosh2R sinh2 ρ
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=
2

sinh2R
· cosh2R− cosh2 ρ

(cosh2R− 1) cosh2 ρ− cosh2R(cosh2 ρ− 1)

=
2

sinh2R

Hence the total force is

4π

∫ r

0

sinh2 ρ cosh ρ

sinh2R
dρ =

4π
3 sinh3 ρ

sinh2R
.

Q.E.D.

A simplex {A0, A1, ..., An} of Hn is a set of points no k of which
are contained in a (k − 2)-dimensional subspace of Hn. A cevian of this
simplex is a line segment AkBk where Bk is in the span (convex hull) of
{A0, A1, ..., Ak−1, Ak+1, ..., An}. The Euclidean version of the following the-
orem was proved in [Landy].

Theorem 1.2 A set {A0B0, A1B1, ..., AnBn} of cevians of a simplex {A0, A1, ..., An}
in <n is concurrent if and only if each of the vertices can be assigned a weight
so that the centroid of each weighted face(t) is located at Bk.

Proof: Suppose first that each vertex has been assigned a weight so that the
centroid of each weighted face is located at its base point. Then, by Prop’n
xxx?, each of the cevians balances the simplex. Consequently each of the
cevians contains the centroid of the weighted simplex and so the cevians are
concurrent.

The converse is proved by induction on n. The case n = 0 is trivial.
If n = 1 and 0 < d < A0A1, set

λ0 = sinh d, λ1 = sinh(A0A1)

Then the centroid of the point-mass system {A0, λ0}, (A1, λ1)} is located at
the point X of A0A1 such that A0X = d.

Assume the theorem holds for n − 2. Suppose the cevians AiBi, i =
0, 1, 2, ..., n, are concurrent at X. The straight lines A0B1 and A1B0 intersect
at X and hence they span a plane, say α.

Let σ be the simplex spanned by A2, A3, ..., An. The straight line A0B1

intersects σ in some point F1 whereas the straight lineA1B0 intersects σ in
some point F2. Since α∩σ is necessarily convex, it follows that F1 = F2 = F .

Let the vertices A2, A3, ..., An of σ be assigned respective weights λ2,
λ3, ..., λn so that their centroid is (F, λ01). Let λ0, λ1 be weights such that

C{(A0, λ0), (A2, λ2), ..., (An, λn)}

= C{(A0, λ0), (F, λ01)} = (B1, .)

and
C{(A1, λ1), (A2, λ2), ..., (An, λn)}
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= C{(A0, λ0), (F, λ01)} = (B0, .)

Then, by Prop’n xxx,

C{(A0, λ0), (A1, λ1), ..., (An, λn)}

= C{(A0, λ0), (A1, λ1), (F, λ01) = (X, .)

Q.E.D.

In the Euclidean case it is known that the barycentric coordinates of a
point in the interior of a triangle are proportional to the areas of the triangles
formed by that point with each of the three sides of the triangle. This fails
to work in hyperbolic geometry with respect to either area or mass.

Proposition 1.3 Let α and β be asymptotically parallel hyperplanes of Hn

and let P be a point on neither. If the (n−1)-dimensional solid S is a subset
of α and

T = projP,α,β(S)

then
C(T ) = projP,α,β(C(S))

Proof: The validity of this proposition for the case when S is a two-point
mass system follows from Lemma 6.3 (plane paper). The case where S is
an arbitrary finite point mass system follows by a straightforward induction
on the number of points. Finally, when S is a solid, the proposition follows
from Proposition 4.3 (xxxplane paper). Q.E.D.

An n-simplex ofHn is a set of n+1 points (vertices) σ = {A0, A1, ..., An}
that are not contained in any n−1 dimensional hyperplane. The convex hull
of σ is the solid simplex denoted by |σ|. We assume that each point of a solid
simplex is assigned mass density 1. A facet σi of σ is the (n − 1)-simplex
obtained by deleting Ai from σ. A median from a vertex Ai of a simplex is
the line segment joining Ai to the centroid of the solid facet |σi|.

Theorem 1.4 The centroid of every solid n-simplex is located at the inter-
section of its medians.

Proof: This is obvious if n = 1 and the case n = 2 was proved in xxx.
We proceed by induction on n and assume that the theorem holds for all
simplices of dimension less than k ≥ 2. Let {A0, A1, ..., Ak} be a k-simplexσ
in a hyperbolic space of dimension k. Let α be the hyperplane containing
A1, A2, ..., Ak and let β be any hyperplane that is asymptotically parallel to
α and intersects m0 in one of its interior points. If

A′i = projP,α,β(A′i), and C ′ = projP,α,β(C)
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then it follows from the previous proposition that C ′ is the location of the
centroid of the cross section {A′1, A′2, · · ·, A′k}. By xxx

Mm0({A′1, A′2, · · ·, A′k}) = 0

and hence by the above lemma

Mm0({A′0, A′1, · · ·, A′k}) = 0

Proposition 1.5 For each i = 0, 1, · · · , n , let σi denote the facet of the
simplex σ = {A0, A1, · · · , An} opposite the vertex Ai. Then

mass(σ) =
1

n

n∑
i=0

sinh[d(O, σi]V ol(σi)

Proof???: To find the mass of the simplex, we assume without loss of general-
ity that its centroid is located at the origin O of a Gaussian parametrization
of Hn. Then

mass(σ) =

∫ (n)

σ
cosh ρdV

=
n∑
i=0

∫ (n)

K(O,σiO
cosh ρdV.

Let
ρi = ρi(θi) = coth−1(Ci cos(θ − αi))

be the equation of the hyperplane that contains σi. If,

dΘ = sinn−2 θ1 · · · sin θn−2dρdθ1dθ2 · · · dθn−1

then ∫ (n)

K(O,σi)
cosh ρdV

=

∫ (n−1)

σi

∫ ρi(θ1)

0
cosh ρ sinhn−1 ρdθ

=
1

n

∫ (n−1)

σi

sinhn ρidΘ

=

∫ (n−1)

σi

[sinh(coth−1(Ci cos(θ1 − αi)]ndΘ

=

∫ (n−1)

σi

dΘ

[C2
i cos2(θ1 − αi)− 1]n/2

.

On the other hand, the volume of the simplex σi is∫ (n−1)

σi

dV (n−1)

�
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Lemma 1.6 Let C = (C, c) be the centroid of the point-mass system X =
{(X,xi)}ni=1 and let A = (A, a) be an arbitrary point-mass. Then

a cosh[d(A,C)] =

n∑
i=1

xi cosh[d(A,Xi)]

PROOF: By induction on n. The case n = 1 is clear. Assume the lemma
holds for n and let

X = {(X,xi)}ni=1 and X ′ = {(X,xi)}n+1
i=1

be point-mass systems with respective centroids (X∗n, x
∗
n) and (X∗n+1, x

∗
n+1).

When the hyperbolic Law of Cosines is applied to Figure 6 we obtain

cos δ =
cosh r1 cosh[d(A,X∗n+1)]− cosh[d(A,X∗n)]

sinh r1 sinh[d(A,X∗n+1)]

and

cos(π − δ) =
cosh r2 cosh[d(A,X∗n+1)]− cosh[d(A,Xn+1)]

sinh r2 sinh[d(A,X∗n+1)]
.

The addition of these two equations yields

sinh r2(cosh r1 cosh[d(A,X∗n+1)]− cosh[d(A,X∗n)])

+ sinh r1(cosh r2 cosh[d(A,X∗n+1)]− cosh[d(A,Xn+1)]) = 0

from which it follows that

cosh[d(A,X∗n+1)] =
sinh r2 cosh[d(A,X∗n)] + sinh r1 cosh[d(A,Xn+1)]

sinh r2 cosh r1 + sinh r1 cosh r2
.

It follows from the fact that (X∗n+1, x
∗
n+1) is the centroid of (X∗n, x

∗
n) and

(Xn+1, xn+1) that
x∗n sinh r1 = xn+1 sinh r2

and hence

cosh[d(A,X∗n+1)] =
x∗n cosh[d(A,X∗n)] + xn+1 cosh[d(A,Xn+1)]

x∗n cosh r1 + xn+1 cosh r2
.

Proposition xxx and the induction hypothesis now yield

cosh[d(A,X∗n+1)] =

∑n+1
i=1 xi cosh[d(A,Xi)]

x∗n+1

which completes both the induction step and the proof. Q.E.D.

Theorem 1.7 Let C = (C, c) be the centroid of the finite mass-system X =
{(X,xi)}ni=1. Then

c2 =

n∑
i,j=1

xixj cosh[d(Xi, Xj)].
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PROOF: By induction on n. The theorem is clearly valid for n = 1. Assume
it is valid for n and let {(Xi, xi)}ni=1 and {(Xi, xi)}n+1

i=1 be point-mass systems
with centroids (Cn, cn) and (Cn+1, cn+1 respectively (Fig. 7). Then

c2n+1 = (cn cosh r1 + xn+1 cosh r2)
2

= c2n + c2n sinh2 r1 + x2n+1 + x2n+1 sinh2 r2 + 2cnxn+1 cosh r1 cosh r2

=
n∑

i,j=1

xixj cosh[d(Xi, Xj)]

+x2n+1 + c2n sinh2 r1 + x2n+1 sinh2 r2 + 2cnxn+1 cosh r1 cosh r2

=

n∑
i,j=1

xixj cosh[d(Xi, Xj)]

+x2n+1 + (cn sinh r1 − xn+1 sinh r2)
2 + 2cnxn+1 cosh(r1 + r2)

=
n∑

i,j=1

xixj cosh[d(Xi, Xj)] + x2n+1 + 2cnxn+1 cosh[d(Xn+1, Cn)].

Hence, by the lemma above,

c2n+1 =
n∑

i,j=1

xixj cosh[d(Xi, Xj)] + x2n+1 + 2
n∑
i=1

xn+1xi cosh d[(Xn+1, Xi)]

=

n+1∑
i,j=1

xixj cosh[d(Xi, Xj)].

This completes both the induction step and the proof. Q.E.D.
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