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1 INTRODUCTION

Archimedes computed the center of mass of several regions and bodies [Di-
jksterhuis], and this fundamental physical notion may very well be due to
him. He based his investigations of this concept on the notion of moment
as it is used in his Law of the Lever. A hyperbolic version of this law was
formulated in the nineteenth century leading to the notion of a hyperbolic
center of mass of two point-masses [Andrade, Bonola]. In 1987 Galperin
proposed an axiomatic definition of the center of mass of finite systems of
point-masses in Euclidean, hyperbolic and elliptic n-dimensional spaces and
proved its uniqueness. His proof is based on Minkowskian, or relativistic,
models and evades the issue of moment. A surprising aspect of this work
is that hyperbolic mass is not additive. Ungar [2004] used the theory of
gyrogroups to show that in hyperbolic geometry the center of mass of three
point-masses of equal mass coincides with the point of intersection of the
medians. Some information regarding the centroids of finite point sets in
spherical spaces can be found in [Fog, Fabricius-Bjerre].

In this article we o↵er a physical motivation for the hyperbolic Law of
the Lever and go on to provide a model-free definition and development of
the notions of center of mass, moment, balance and mass of finite point-mass
systems in hyperbolic geometry. All these notions are then extended to linear
sets and laminae. Not surprisingly, the center of mass of the uniformly dense
hyperbolic triangle coincides with the intersection of the triangle’s medians.
However, it is pleasing that a hyperbolic analog of Archimedes’s mechanical
method can be brought to bear on this problem. The masses of uniform disks
and regular polygons are computed in the Gauss model and these formulas
are very surprising. Other configurations are examined as well.
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For general information regarding the hyperbolic plane the reader is
referred to [Greenberg, Stahl]

2 THE HYPERBOLIC LAW OF THE LEVER

Many hyperbolic formulas can be obtained from their Euclidean analogs
by the mere replacement of a length d by sinh d. The Law of Sines and
the Theorems of Menelaus and Ceva (see Appendix) are cases in point. It
therefore would make sense that for a lever in the hyperbolic plane a suitable
definition of the moment of a force w acting perpendicularly at distance d
from the fulcrum is

w sinh d

Nevertheless, a more physical motivation is in order. We begin with an
examination of the balanced weightless lever of Figure 1. This lever is pivoted
at E and has masses of weights w

1

and w
2

at A and B respectively. By this is
meant that there is a mass D, o↵ the lever, which exerts attractive forces ~w

1

and ~w
2

along the straight lines AD and BD. Since this system is assumed
to be in equilibrium, it follows that the resultant of the forces ~w

1

and ~w
2

acts along the straight line ED. Neither the direction nor the intensity of
the resultant are a↵ected by the addition of a pair of equal but opposite
forces ~f

1

and ~f
2

at A and B. (Here and below we employ the convention
that the magnitude of the vector ~v is denoted by v.) We assume that the
common magnitude of f

1

and f
2

is large enough so that the lines of direction
of the partial resultants ~ri = ~fi+ ~wi, i = 1,2, intersect in some point, say C.
Note that the quadrilateral ACBD lies in the hyperbolic plane whereas the
parallelograms of forces at A and B lie in the respective Euclidean tangent
planes. This is the standard operating procedure in mathematical physics.

It is now demonstrated that such a system in equilibrium must satisfy
the equation

F
1

sinh c
1

= F
2

sinh c
2

(1)

where each ~Fi is the component of ~wi in the direction orthogonal to AB.
Indeed, it follows from several applications of both the Euclidean and the
hyperbolic Laws of Sines that

w
1

sinh c
1

w
2

sinh c
2

=
w
1

sin �
1

· sinh a
sin �1

w
2

sin �
2

· sinh b
sin �2

=
w
1

sin �
1

sinh a

w
2

sin �
2

sinh b
=

sin �
1

· w1
sin↵1

sin �
2

· w2
sin↵2

=
sin �

1

· f1
sin�1

sin �
1

· f2
sin�2

=
sin �

1

sin �
2

sin ✏
2

sin ✏
1

=

sin ✏2
sin �2
sin ✏1
sin �1

=
sinh d
sinh e
sinh d
sinh g

=
sinh g

sinh e
=

sin ✓
2

sin ✓
1

and Eq’n (1) follows by cross-multiplication.
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Figure 1:

If we take the mass at D out of the picture and stipulate that ~F
1

and
~F
2

are simply two forces that act perpendicularly to the lever AB (Fig. 2)
then it is makes sense to regard the quantities

F
1

sinh c
1

and F
2

sinh c
2

as the respective moments of the forces ~F
1

and ~F
2

with respect to the pivot
point E. This facilitates the derivation of the resultant of ~F

1

and ~F
2

. Sup-
pose c

1

, c
2

and ~F
3

? AB are such that

F
1

sinh c
1

= F
2

sinh c
2

and F
3

= F
1

cosh c
1

+ F
2

cosh c
2

(2)

Then the moments of ~F
3

with respect to A and B are, respectively

(F
1

cosh c
1

+ F
2

cosh c
2

) sinh c
1

= F
2

cosh c
1

sinh c
2

+ F
2

sinh c
1

cosh c
2

= F
2

sinh(c
1

+ c
2

)

and
(F

1

cosh c
1

+ F
2

cosh c
2

) sinh c
2

= F
1

sinh(c
1

+ c
2

).

Since the right hand sides of these two equations, are, respectively, the mo-
ments of ~F

2

with respect to A and the moment of ~F
1

with respect to B, it
follows that the equations of (2) do indeed imply equilibrium. Consequently,
the reverse of ~F

3

is indeed the resultant of ~F
1

and ~F
2

.
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Figure 2:

3 FINITE POINT-MASS SYSTEMS

The physical considerations of the previous section motivate the following
formal definitions. A point-mass is an ordered pair (X,x) where its location
X is a point of the hyperbolic plane and its weight x is a positive real number.
The (unsigned) moment of the point-mass (X,x) with respect to the point
N or the straight line n is, respectively,

MN (X,x) = x sinh d(X,N) or Mn(X,x) = x sinh d(X,n)

where d(X,N) and d(X,n) are the respective hyperbolic distances from X
to N and n.

Given any two point-masses (X,x) and (Y, y), their center of mass
or centroid (X,x) ⇤ (Y, y) is the point-mass (Z, z), where Z is that point
between X and Y such that

x sinhXZ = y sinhY Z

and

z = x coshXZ + y coshY Z (3)

Note that this means that the two point-masses have equal moments with
respect to their centroid. Moreover, ifX = Y then (X,x)⇤(Y, y) = (X,x+y).

The next two propositions demonstrate that the center of mass ”bal-
ances” its two constituent point-masses.

Proposition 3.1 If (Z, z) = (X,x) ⇤ (Y, y) then any two of these point-
masses have equal moments with respect to the location of the third one.
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Figure 3:

Proof: It follows from the definitions and that (X,x) and (Y, y) have equal
moments with respect to Z. Hence it only remains to show that (X,x) and
(Z, z) have equal moments with respect to Y . In other words, that

x sinh(XZ + Y Z) = z sinhY Z

or
x sinhXZ coshY Z + x coshXZ sinhY Z

= x coshXZ sinhY Z + y coshY Z sinhY Z

and this equation follows from the fact that (Z, z) is the centroid of (X,x)
and (Y, y). Q.E.D.
Given any two point-masses (X,x) and (Y, y), their external centroid is the
point-mass (Z, z) such that Z is on the straight line XY but outside the
segment joining X and Y ,

x sinhXZ = y sinhY Z

and

z = |x coshXZ � y coshY Z|
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Proposition 3.2 The two point-masses (X,x) and (Y, y) have equal mo-
ments with respect to the intersecting straight line m, if and only if m con-
tains at least one of their centroids. They have equal moments with respect
to every straight line if and only if they are identical.

PROOF: In both of the the diagrams of Figure 3

sinh d
1

sinh c
1

=
sinh d

2

sinh c
2

(= sin↵)

and consequently
sinh d

1

sinh d
2

=
sinh c

1

sinh c
2

.

Hence

x sinh d
1

= y sinh d
2

if and only if x sinh c
1

= y sinh c
2

.

This implies the first half of the proposition. The second half follows imme-
diately from the first one. Q.E.D.

The following proposition implies that the center of mass C(X ) =
(C, c) of any finite point-mass system X is well defined. This definition
clearly satisfies the axioms of [Galperin] and so the two are equivalent.

Proposition 3.3 The binary operation ” ⇤ ” is both commutative and asso-
ciative.

Proof: The commutativity of 00⇤00 follows immediately from its definition.
To prove its associativity, let (X,x), (Y, y), (Z, z) be three arbitrary point-
masses, and let (P, p) = (Y, y) ⇤ (Z, z), (Q, q) = (Z, z) ⇤ (X,x), (R, r) =
(X,x) ⇤ (Y, y) (Fig. 4). We may assume that X,Y, and Z are not collinear
since the degenerate cases follow by an easy independent argument or can
be verified from the assumed case by a continuity argument. Then

1 =
x

y
· y
z
· z
x
=

sinh b
1

sinh a
2

· sinh c1
sinh b

2

· sinh a1
sinh c

2

and the hyperbolic Theorem of Ceva implies that the cevians XP, Y Q,ZR
are concurrent, say at T .

Next we show that the point-masses (R, r) and (Z, z) have equal mo-
ments with respect to T . In other words, that

sinh r
1

sinh r
2

=
z

x cosh a
2

+ y cosh b
1

However, an application of the unsigned version of the hyperbolic Theorem
of Menelaus to �RY Z yields,

sinh r
1

sinh r
2

=
sinh b

2

sinh c
1

· sinh a
2

sinh(a
2

+ b
1

)
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Figure 4:

and hence it su�ces to prove that

x cosh a
2

sinh b
2

sinh a
2

+ y cosh b
1

sinh b
2

sinh a
2

= z sinh c
1

sinh(a
2

+ b
1

)

This, however, follows easily from the substitutions

x sinh a
2

= y sinh b
1

z sinh c
1

= y sinh b
2

and the formula for sinh(↵+ �).
This shows that

[(X,x) ⇤ (Y, y)] ⇤ (Z, z) (4)

is located at T . Because of the symmetry of the construction of T it may
be concluded that the same holds for every one of the systems obtained by
permuting the constituents of Eq’n (4).

Finally, note that if

[(X,x) ⇤ (Y, y)] ⇤ (Z, z) = (T, t),

then, by several applications of the hyperbolic Law of Cosines and Eq’n (3),

t = x cosh a
2

cosh r
1

+ y cosh b
1

cosh r
1

+ z cosh r
2

= x(cosh p
2

� cos � sinh a
2

sinh r
1

)

+y[cosh q
2

� cos(⇡ � �) sinh b
1

sinh r
1

] + z cosh r
2

)

= x cosh p
2

+ y cosh q
2

+ z cosh r
2

The pleasing symmetry of this expression demonstrates that all the permu-
tations of (4) also have the same masses. Q.E.D.

In contrast with masses, moments are additive in the following sense.
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Figure 5:

Theorem 3.4 Let (X, x) and (Y, y) be two point-masses, and let m be any
directed straight line then

Mm ((X,x) ⇤ (Y, y)) = Mm(X,x) +Mm(Y, y)

Proof: As this is trivial when X = Y we assume that X and Y are distinct.
We first suppose thatXY ||m. In that case they are known to have a common
perpendicular line, say p (Fig. 5). By Equation (i) on p. 344 of [Greenberg]

sinh b
1

= cosh a
0

sinh b
0

sinh b
2

= cosh(a
0

+ a
1

) sinh b
0

sinh b
3

= cosh(a
0

+ a
1

+ a
2

) sinh b
0

The proposed equation is now proved by observing that each of the following
equations is equivalent to the next.

(x cosh a
1

+ y cosh a
2

) sinh b
2

= x sinh b
1

+ y sinh b
3

(x cosh a
1

+ y cosh a
2

) cosh(a
0

+ a
1

) = x cosh a
0

+ y cosh(a
0

+ a
1

+ a
2

)

x cosh2 a
1

cosh a
0

+ x cosh a
1

sinh a
0

sinh a
1

+y cosh a
2

cosh a
0

cosh a
1

+ y cosh a
2

sinh a
0

sinh a
1

= x cosh a
0

+ y cosh a
0

cosh a
1

cosh a
2

+ y sinh a
0

sinh a
1

cosh a
2

+y sinh a
0

cosh a
1

sinh a
2

+ y cosh a
0

sinh a
1

sinh a
2

x cosh a
0

+ x cosh a
0

sinh2 a
1

+ x sinh a
0

sinh a
1

cosh a
1

= x cosh a
0

+ x sinh a
0

sinh a
1

cosh a
1

+ x cosh a
0

sinh2 a
1
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Figure 6:

0 = 0.

On the other hand, if XY and m intersect, say at P (Fig. 6) with X and
Y on the same side of m, then, by Theorem 8.4ii of [Stahl],

sin ✓ =
sinh b

1

sinh a
0

=
sinh b

2

sinh(a
0

+ a
1

)
=

sinh b
3

sinh(a
0

+ a
1

+ a
2

)
(5)

The required equation is tantamount to

(x cosh a
1

+ y cosh a
2

) sinh b
2

= x sinh b
1

+ y sinh b
3

which by Eq’n (5) is tantamount to

(x cosh a
1

+ y cosh a
2

) sinh(a
0

+ a
1

)

= x sinh a
0

+ y sinh(a
0

+ a
1

+ a
2

)

This however, is easily proved by the same technique as was used in the first
half of this proof.

If X and Y are separated by m, then the same proof holds provided
that the quantities a

0

, a
1

, a
2

, b
1

, b
2

, b
3

are signed. Q.E.D.

The (signed) moment of the finite point-mass system X = {(Xi, xi), i =
1, 2, 3, ..., n} with respect to the directed straight line m is

Mm(X ) =
nX

i=1

�m(Xi)Mm(Xi, xi)

where �m(X) = 1,�1, 0 according as X is in the left half-plane of m, right
half-plane of m or on m itself. The finite point-mass system X is said to be
balanced with respect to the directed straight line m provided

Mm(X ) = 0.
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Figure 7:

It is clear that if m and m0 are reverses of each other, then for every finite
system X we have

Mm(X ) = �Mm0(X )

and
Mm(X ) = 0 if and only if Mm0(X ) = 0

Corollary 3.5 For every finite point-mass system X and directed straight
line m

Mm(X ) = Mm(C(X ))

PROOF: This follows from Theorem 3.4 by induction. Q.E.D.

Corollary 3.6 Every finite point-mass system is balanced with respect to
every straight line that contains its centroid.

Proof: This follows immediately from Corollary 3.5. Q.E.D.

We now generalize Eq’n (3) to a formula for the mass of an arbitrary
finite point-mass system.

Theorem 3.7 Let X = {(Xi, xi), i = 1, 2, 3, ..., n} be a finite point-mass
system and let

(C, c) = C(X ).

If di denotes the hyperbolic distance from Xi to C for i = 1, 2, ..., n, then

c =
nX

i=1

xi cosh di.

PROOF: We proceed by mathematical induction on n. The case n = 1 is self
evident. The case n = 2 is Eq’n (3). The case n = 3 is the last paragraph
of the proof of Proposition 3.3. Assume the theorem has been proved for
n = k and let

(C, c) = C(X ) where X = {(Xi, xi), i = 1, 2, 3, ..., k + 1}
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and
(C 0, c0) = C(X 0) where X 0 = {(Xi, xi), i = 1, 2, 3, ..., k}.

Let (see Fig. 7)

di = d(Xi, C) i = 1, 2, ..., k + 1 d0i = d(Xi, C
0) i = 1, 2, ..., k

and
d = d(C,C 0).

By the induction hypothesis

x0 =
kX

i=1

xi cosh d
0
i

Since
(C, c) = (C 0, c0) ⇤ (Xk+1

, xk+1

)

it follows from Eq’n (4) and the Law of Cosines that

x = x0 cosh d+ xk+1

cosh dk+1

=
kX

i=1

xi cosh d
0
i cosh d+ xk+1

cosh dk+1

=
kX

i=1

xi(cos↵i sinh d
0
i sinh d+ cosh di) + xk+1

cosh dk+1

= �
 

kX

i=1

xi(sin(↵i � ⇡/2) sinh d0i

!
sinh d+

k+1X

i=1

xi cosh di

which, by Corollary 3.6, where the line m in question passes through C 0 and
is perpendicular to CC 0, equals

�0 sinh d+
k+1X

i=1

xi cosh di

=
k+1X

i=1

xi cosh di.

Q.E.D.

Proposition 3.8 Two finite point-mass systems have the same moment
with respect to a straight line if and only if it contains at least one of the
centroids of their centroids.

PROOF: This follows immediately from Proposition 3.2 and Corollary 3.5.
Q.E.D.
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4 CENTROIDS OF LAMINAE

A region is a compact subset of the hyperbolic plane of finite positive mea-
sure. A lamina L is a pair (L,�) where L is a region and � is a continuous
non-negative valued function on L such that

Z Z

L
�(X)dA > 0.

The value �(X) is the density of L at X. The lamina is said to be uniform
if its density is constant throughout L. The maximum value of � over L is
denoted by ⇤(L). If P is any point and p is any straight line, then

�p(L) = max
X2L

{cosh[d(X, p)]} and �P (L) = max
X2L

{cosh[d(X,P )]}

A decomposition of L is a family of sets L̃ = {L
1

, L
2

, ..., Ln} such that

L = L
1

[ L
2

[ · · · [ Ln

where distinct Li’s intersect in sets of measure 0. If each of the Li’s has
diameter less than �, this is a �-decomposition. A �-transversal of the �-
decomposition L̃ is a point-mass system X = {(X

1

, x
1

), (X
2

, x
2

), ..., (Xn, xn)}
such that

Xi 2 Li and xi = �(Xi)area(Li), i = 1, 2, ..., n.

Let m be a directed straight line. We define the moment of L with
respect to m as

Mm(L) =
Z Z

L
�m(X)�(X) sinh[d(X,m)]dA

where dA is the area element. The following technical lemma is needed for
the proof of the crucial Theorem 4.2.

Lemma 4.1 Let the distinct straight lines m
1

and m
2

intersect in the point
P . For each point X 6= P and i = 1, 2, let ↵i(X) denote the non-obtuse
angle between mi and XP , and let � be one of the angles determined by m

1

and m
2

. Then there exists a positive number �(m
1

,m
2

) such that

min {csc (↵
1

(X)) , csc (↵
2

(X))} < �(m
1

,m
2

) for all X 6= P.

PROOF: Suppose, by way of contradiction, that �(m
1

,m
2

) does not exist.
It follows that for each positive integer n there exists a point Xn 6= P such
that

csc (↵
1

(Xn)) � n and csc (↵
2

(Xn)) � n.

It follows that
lim
n!1

↵i(Xn) = 0, i = 1, 2. (6)
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However, it is clear from Figure 8a that for each X 6= P either

↵
1

(X) + ↵
2

(X) 2 {�,⇡ � �}

or
|↵

1

(X)� ↵
2

(X)| 2 {�,⇡ � �}.

Since the lines m
1

,m
2

are distinct it follows that the angles � and ⇡�� are
neither 0 nor ⇡ so that Eq’n (6) above leads to a contradiction. Hence the
required �(m

1

,m
2

) exists. Q.E.D.

Theorem 4.2 Let L = (L,�) be a lamina and let mi, i = 1, 2, 3 be three
concurrent straight lines such that

Mm1(L) = Mm2(L) = 0.

Then
Mm3(L) = 0.

PROOF: Let P be the intersection of all the mi’s and suppose, by way of
contradiction, that

a = |Mm3(L)| 6= 0.

Let n be an integer greater than 1 + �(m
1

,m
2

). By the definition of
integrals, there exists a partition L̃ of L and a transversal X of L̃ such that

|Mm
i

(X )| = |Mm
i

(X )�Mm
i

(L)| < a

n
i = 1, 2 (7)

and
|Mm3(X )�Mm3(L)| <

a

n
. (8)

Direct the mi’s so that

Mm
i

(X ) � 0, i = 1, 2, 3.

Let C(X ) = (C, c), di = d(C,mi) and let ↵i be either of the positive angles
between mi and CP (see Fig. 8b). Then, for i = 1, 2, 3,

Mm
i

(X ) = Mm
i

(C(X )) = c sinh di = c sinh d sin↵i

so that
Mm1(X )

sin↵
1

=
Mm2(X )

sin↵
2

=
Mm3(X )

sin↵
3

= c sinh d.

It follows from Eq’n (8) that

�a

n
< Mm3(X )� a

or

a

✓
1� 1

n

◆
< Mm3(X ).
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Figure 8:
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Eq’n (7) yields

Mm
i

(X ) <
a

n
, i = 1, 2.

Hence

csc↵i �
sin↵

3

sin↵i
=

Mm3(X )

Mm
i

(X )
> n� 1 > �(m

1

,m
2

), i = 1, 2,

which contradicts the definition of �(m
1

,m
2

). Q.E.D.

It follows that for any lamina L = (L,�), the straight lines with respect
to which L is balanced (i.e., has moment 0) are concurrent and this common
point is the location of the center of mass of L. If this location is denoted
by C(L) then, consistently with Theorem 3.7, the mass of L is defined as

c(L) =
Z Z

L
�(X) cosh[d(X,C(L)]dA.

The pair (C(L)), c(L)) is the center of mass or centroid C(L) of L.

Proposition 4.3 Let L = (L,�) be a lamina. Then for every ✏ > 0 there is
a � > 0 such that for every �-transversal X of L

d(C(X ), C(L)) < ✏ and |c(X )� c(L)| < ✏, (9)

where C(L) = (C(L), c(L)) and C(X ) = (C(X ), c(X )).

PROOF: Let ✏ > 0 and let � be such that for every �-decomposition L̃ =
{Li, i = 1, 2, ..., n} of L and for all directed straight lines m through C(L)

0 < max
X2L

i

{�(X)}� min
X2L

i

{�(X)} <
✏

2�C(L)(L)area(L)

0 < max
X2L

i

{sinh[d(X,m)]}� min
X2L

i

{sinh[d(X,m)]} <
✏

2⇤(L)area(L)

for all i = 1, 2, ..., n.
Then, for every m through C(L)

|Mm(X )| = |Mm(X )�Mm(L)|

=

�����

nX

i=1

�m(Xi)�(Xi) sinh[d(Xi,m)]area(Li)

�
Z Z

L
�m(X)�(X) sinh[d(X,m)]dA

����


nX

i=1


max
X2L

i

{�(X) sinh[d(X,m)]}
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� min
X2L

i

{�(X) sinh[d(X,m)]}
�
area(Li)


nX

i=1


max
X2L

i

{�(X)} max
X2L

i

{sinh[d(Xi,m)]}

� min
X2L

i

{�(X)} min
X2L

i

{sinh[d(Xi,m)]}
�
area(Li)

=
nX

i=1


max
X2L

i

{�(X)}
✓
max
X2L

i

{sinh[d(Xi,m)]}� min
X2L

i

{sinh[d(Xi,m)]}
◆

+

✓
max
X2L

i

{�(X)}� min
X2L

i

{�(X)}
◆

min
X2L

i

{sinh[d(Xi,m)]}
�
area(Li)

<
nX

i=1


⇤(L)

✏

2⇤(L) · area(L)area(Li)

+
✏

2�C(L)(L)area(L)
�C(L)(L)area(Li)

�

<
✏

2
+

✏

2
= ✏.

Suppose, by way of contradiction, that the first inequality of (9) is
false. Then there exists an ✏

0

> 0 such that for every positive integer k there
is a 1

k -transversal X
(k) such that

n
kX

i=1

�(Xi)area(Li) �
1

2

Z Z

L
�(X)dA

and
sinh[d(C(X (k)), C(L))] � d(C(X (k)), C(L)) � ✏

0

.

However, by the first part of the proof and Corollary 3.5, for all su�ciently
large k and for that m that is perpendicular to the straight line joining
C(X (k)) to C(L)

c(X (k))✏
0

 c(X (k)) sinh[d(C(X (k)), C(L)]

= c(X (k)) sinh[d(C(X (k)),m)]

= |Mm(X (k))| < ✏
0

2

Z Z

L
�(X)dA.

Hence
1

2

Z Z

L
�(X)dA > c(X (k))

=
n
kX

i=1

�(Xi)area(Li) cosh[d(Xi, C(X (k)))

16



�
n
kX

i=1

�(Xi)area(Li) �
1

2

Z Z

L
�(X)dA

which is impossible. This establishes the first inequality of (9).
The second inequality now follows by standard arguments. For any

�-transversal X of L we have

|c(X )� c(L)|

=

�����

nX

i=1

�(Xi)area(Li) cosh[d(Xi, C(X ))]�
Z Z

L
�(X) cosh[d(X,C(L))]dA

�����



�����

nX

i=1

�(Xi)area(Li) cosh[d(Xi, C(X ))]�
nX

i=1

�(Xi)area(Li) cosh[d(Xi, C(L))]

�����

+

�����

nX

i=1

�(Xi)area(Li) cosh[d(Xi, C(L))]�
Z Z

L
�(X) cosh[d(X,C(L))]dA

�����


nX

i=1

�(Xi)area(Li) |cosh[d(Xi, C(X ))]� cosh[d(Xi, C(L))]|

+

�����

nX

i=1

�(Xi)area(Li) cosh[d(Xi, C(L))]�
Z Z

L
�(X) cosh[d(X,C(L))]dA

�����


nX

i=1

�(Xi)area(Li)2 sinh[diameter(L)] sinh[d(C(X ), C(L))]

+

�����

nX

i=1

�(Xi)area(Li) cosh[d(Xi, C(L))]�
Z Z

L
�(X) cosh[d(X,C(L))]dA

�����

However, it is clear that each of the two summands of the above expression
can be made arbitrarily small by choosing � small enough.

Q.E.D.

Proposition 4.4 If L is a lamina, and m is any straight line, then

Mm(L) = Mm(C(L)).

PROOF: Let m be a fixed straight line, let ✏ > 0 be given and let X be a
�-transversal of L such that

d(C(X ), C(L)) < min

⇢
✏

8c(L)�m(L)
, d(C(L),m)

�
,

17



|c(X )� c(L)| < min

⇢
✏

4�m(L)
, c(L)

�

and
|Mm(X )�Mm(L)| < ✏

2
.

Set

C(X ) = (C
1

, c
1

), C(L) = (C
2

, c
2

) di = d(Ci,m), i = 1, 2.

Then C(X ) and C(L) are on the same side of m and

|Mm(C(X ))�Mm(C(L))| = |c
1

sinh d
1

� c
2

sinh d
2

|
 c

1

| sinh d
1

� sinh d
2

|+ |c
1

� c
2

| sinh d
2

 2c
2

�m(L)|d
1

� d
2

|+ ✏

4�m(L)
�m(L)

 2c
2

�m(L)d(C
1

, C
2

) +
✏

4

<
✏

4
+

✏

4
=

✏

2
.

It follows that
|Mm(L)�Mm(C(L))|

 |Mm(L)�Mm(X ))|+ |Mm(X )�Mm(C(X ))|
+ |Mm(C(X ))�Mm(C(L))|

 ✏

2
+ 0 +

✏

2
= ✏.

Since ✏ is arbitrary, the proposition follows. Q.E.D.

Corollary 4.5 Two laminae have the same moment with respect to every
directed straight line if and only if they have identical centroids.

PROOF: This follows from Propositions 4.4 and 3.2. Q.E..D.

Proposition 4.6 Let L = (L,�) be a lamina, L̃ = {L
1

, L
2

, ..., Ln} a decom-
position of L and set

Li = (Li,�|L
i

), i = 1, 2, ..., n.

Then
C(L) = C(L

1

) ⇤ C(L
2

) ⇤ · · · ⇤ C(Ln).

PROOF: It follows from Proposition 4.4 and the additivity of integrals that
for any directed straight line m

Mm[C(L)] = Mm(L) = Mm(L
1

) +Mm(L
2

) + · · ·+Mm(Ln)

= Mm(C(L
1

)) +Mm(C(L
2

)) + · · ·+Mm(C(Ln))

= Mm[C(L
1

) ⇤ C(L
2

) ⇤ · · · ⇤ C(L
3

)].

The validity of the proposition now follows from the arbitrariness of m and
Corollary 4.5. Q.E.D.
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5 CENTROIDS OF LINEAR SETS

We now briefly discuss the 1-dimensional analogs of laminae. A linear set
L = (l,�) is a non-empty, compact, and measurable subset l of a straight
line in the hyperbolic plane, and a non-negative function � : l ! R such
that Z

l
�(X)dX > 0.

If m is either of the directed straight lines that contain l and A is any point
of l then the moment of L with respect to A is

MA(L) =
Z

l
�A(X)�(X) sinh[d(X,A)]dX.

where �A(X) = 1 or -1 according as the direction from A to X agrees or
disagrees with that of m, and �A(A) = 0. The unique point C of m such
that

MC(L) = 0

is the location of the centroid of L. In analogy with Theorem 3.7 and the
definition of the mass of a lamina, the mass of the linear set L is

c(L) = mass(L) =
Z

l
�(X) cosh[d(X,C)]dX

If m is another directed straight line then the moment of L with respect to
m is

Mm(L) =
Z

l
�m(X)�(X) sinh[d(X,m)]dX.

The pair
C(L) = (C(L), c(L))

is the centroid of L.

Example 5.1

The centroid of a hyperbolic line segment of length d and uniform density 1
is located at its midpoint and its mass is defined to be

2

Z d/2

0

coshxdx = 2 sinh(d/2).

The following four propositions are linear analogs of Propositions 3.2
and 4.3 - 4.5 and their proofs, being simplifications of the 2-dimensional
proofs are omitted.

Proposition 5.2 If L is a linear set and m is any straight line that contains
C(L), then Mm(L) = 0.
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⇤

Proposition 5.3 Let L = (L,�) be a linear set. Then for every ✏ > 0 there
is a � > 0 such that for every �-transversal X of L

d(C(X ), C(L)) < ✏ and |c(X )� c(L)| < ✏,

where C(L) = (C(L), c(L)) and C(X ) = (C(X ), c(X )).

⇤

Proposition 5.4 If L is a linear set, and m is any straight line, then

Mm(L) = Mm(C(L)).

⇤

Proposition 5.5 Let L = (L,�) be a linear set, L̃ = {L
1

, L
2

, ..., Ln} a
decomposition of L and set

Li = (Li,�|L
i

), i = 1, 2, ..., n.

Then
C(L) = C(L

1

) ⇤ C(L
2

) ⇤ · · · ⇤ C(Ln).

⇤

The following proposition is a mathematical analog of Archimedes’s
”mechanical” method for finding volumes and centroids [Archimedes].

Proposition 5.6 Let L = (L,�) be a lamina, ⇧ a pencil of asymptotically
parallel straight lines, and m a straight line. Suppose that for every p 2 ⇧,
the pair (L\p,�|L\p) is a linear set whenever L\p has positive 1-dimensional
measure, and

Mm(L \ p,�|L\p) = 0.

Then
Mm(L) = 0.

PROOF: We work in the upper half-plane model where

ds =

p
x2 + y2

y
and dA =

dxdy

y2
.

By symmetry it may be assumed that ⇧ consists of all the geodesics of the
form

pa = {(a, y) | a is fixed and y > 0}.
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Figure 9:

Let
N = {x | L \ px 6= ;}.

Then

Mm(L) =
Z Z

L
�m(x, y)�(x, y) sinh d[((x, y),m)]

dxdy

y2

=

Z

N

Z

L\p
x

�m(x, y)�(x, y) sinh d[((x, y),m)]
dy

y

�
dx

y

=

Z

N
Mm(L \ px,�|L\p

x

)

dx

y

=

Z

N
0
dx

dy
= 0.

Q.E.D.

6 EXAMPLES

The Euclidean analog of the following proposition [Ungar] is well known.

Proposition 6.1 Let (C, c) = C{(X
1

, w), (X
2

, w), (X
3

, w)}. Then C is the
point of intersection of the medians of �X

1

X
2

X
3

.

Proof: Let E,F be the respective midpoints of the sides X
1

X
3

and X
1

X
2

of �X
1

X
2

X
3

(Fig. 9). Then the centroid of {(X
1

, w), (X
2

, w)} is the point-
mass

(F, 2w cosh c)

and hence the centroid of the system {(X
1

, w), (X
2

, w), (X
3

, w)} lies on the
point M of X

3

F such that

2w cosh c sinh d
1

= w sinh d
2

.

It follows that

sinhX
1

E

sinhEX
3

sinhX
3

M

sinhMF

sinhFX
2

sinhX
2

X
1

=
sinh b

sinh b

sinh d
2

sinh d
1

sinh c

sinh 2c
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=
1

1

2w cosh c

w

1

2 cosh c
= 1.

Hence, by the converse to the theorem of Menelaus, the points X
2

,M, and
E are collinear. Since the medians of the hyperbolic triangle are concur-
rent, their common intersection is also the location of the centre of mass in
question.

Q.E.D.

Some of the subsequent examples are worked out in a specific model
that is based on a general geodesic polar parametrization used by Gauss in
[Gauss]. This Gaussian model presents the hyperbolic plane as a Riemannian
geometry whose domain is the entire plane with polar coordinates (⇢, ✓) and
metric [Gauss, Stahl]

d⇢2 + sinh2 ⇢d✓2

The geodesics of this metric are the Euclidean straight lines ✓ = c and the
curves

⇢ = coth�1(C cos(✓ � ↵)

where ↵ is arbitrary and C > 1. The area element of this metric is

dA = sinh ⇢d⇢d✓.

It is clear that mass is invariant under rigid motions and consequently the
axes of reflections of a region contain its centroid. In particular the centroid
of a uniform disk is located at its center.

Proposition 6.2 The mass of a disk of uniform density 1 and hyperbolic
radius r is

⇡ sinh2 r.

PROOF: We employ the Gauss model and assume that the disk is centered
at the origin which coincides with its centroid. By the definition of mass,
the mass of this disk is

Z
2⇡

0

Z r

0

cosh ⇢ sinh ⇢d⇢d✓ = ⇡ sinh2 r.

Q.E.D.

This formula is particularly interesting for the following reason. As was
noted above, many hyperbolic formulas can be obtained from their Euclidean
analogs by the heuristic means of replacing a certain length d by sinh d. One
of the exceptions to this informal rule is the area of a circle of radius r. The
Euclidean formula is

⇡r2

whereas the hypebolic formula is

4⇡ sinh2
⇣r
2

⌘
.
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Thus, it would seem that while in Euclidean geometry area and uniform mass
are essentially equivalent, in hyperbolic geometry, where they are distinct,
sometimes it is the notion of mass that is better behaved (by Euclidean
standards, of course). Another instance is o↵ered in Proposition 6.5.

We next turn to some uniform wedges; first their centroids are located
and then their masses are computed. Let Dn = Dn(r) denote the lamina
consisting of the subset

{(⇢, ✓) 2 Dn(r) | � ⇡

n
 ✓  ⇡

n
}

of the disk D(r) with uniform density 1 (Fig. 10). Let dn denote the distance
from the origin O to C(Dn) and R = RO,2⇡/n denote the counterclockwise
rotation by the angle 2⇡/n about O. Then, by symmetry, Proposition 4.6,
and the Law of Cosines

⇡ sinh2 r = mass(D(r)) =
nX

i=1

mass(Ri(D))dn = n mass(Dn) cosh dn (10)

= n cosh dn

Z ⇡/n

�⇡/n

Z r

0

cosh[d(C(Dn), X)] sinh ⇢d⇢d✓

= n cosh dn

Z ⇡/n

�⇡/n

Z r

0

(cosh dn cosh ⇢� cos ✓ sinh dn sinh ⇢) sinh ⇢d⇢d✓

= n cosh2 dn

Z ⇡/n

�⇡/n

Z r

0

cosh ⇢ sinh ⇢d⇢d✓

�n cosh dn sinh dn

Z ⇡/n

�⇡/n

Z r

0

cos ✓ sinh2 ⇢d⇢d✓

= cosh2 dn⇡ sinh2 r � n cosh dn sinh dn · 2 sin ⇡

n

Z r

0

cosh 2⇢� 1

2
d⇢

= ⇡ cosh2 dn sinh
2 r � n sinh dn cosh dn sin

⇡

n

✓
sinh 2r

2
� r

◆
.

Dvision by ⇡ sinh2 r yields

1 = cosh2 dn � n

⇡
sin

⇡

n
sinh dn cosh dn

sinh 2r � 2r

cosh 2r � 1

or

sinh2 dn =
n

⇡
sin

⇡

n
sinh dn cosh dn

sinh 2r � 2r

cosh 2r � 1
or

tanh dn =
n

⇡
sin
⇣⇡
n

⌘ sinh 2r � 2r

cosh 2r � 1
.

It follows that
dn
r

=
n

⇡
sin
⇣⇡
n

⌘ ✓2

3
+O(r2)

◆
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Figure 10:

in comparison to the Euclidean analog of 2/3.

2n

3⇡
sin
⇣⇡
n

⌘

It follows from Eq’n (10) that

mass(Dn) =
⇡ sinh2 r

n cosh dn

from which is obtained

mass (Dn(r)) =
⇡ sinh2 r

n

s

1�

n

⇡
sin
⇣⇡
n

⌘ sinh 2r � 2r

cosh 2r � 1

�
2

.

We next turn to the centroid of the uniform triangular lamina. A
technical lemma sets the stage for a short proof that makes use of a math-
ematical analog of the ”mechanical method” of Archimedes. The Euclidean
centroid of the uniform triangle lamina is, of course, well known.

Lemma 6.3 Let �ABC be a hyperbolic triangle with points D, E, F, on the
respective sides AB, BC, AC, such that EF is asymptotically parallel to BC
and let G = AD \ EF . Then

sinhBD

sinhCD
=

sinhGF

sinhGE

PROOF: In Figure 11, apply the Theorem of Menelaus to �FBH twice to
obtain

sinhFA

sinhAB

sinhBD

sinhDH

sinhHG0

sinhG0F
=

sinhFA

sinhAB

sinhBC

sinhCH

sinhHE0

sinhE0F

Two similar applications to �E0CH yield

sinhE0A

sinhAC

sinhCB

sinhBH

sinhHF

sinhFE0 =
sinhE0A

sinhAC

sinhCD

sinhDH

sinhHG0

sinhG0E0
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Figure 11:

The multiplication of these two equations simplifies to

sinhBD

sinhG0F

sinhHF

sinhBH
=

sinhHE0

sinhCH

sinhCD

sinhG0E0

or
sinhBD

sinhCD

sinhHF

sinhHE0 =
sinhG0F

sinhG0E0
sinhBH

sinhCH

Since the limiting position of E0 and G0 as H recedes to infinity along BC
(and F is held fixed) are E and G, respectively, it follows that

sinhBD

sinhCD
=

sinhGF

sinhGE0

Q.E.D.

Theorem 6.4 The center of mass of a uniform triangle is located at the
intersection of its medians.

PROOF: It su�ces to show that the uniform triangle is balanced with respect
to its medians. Let �ABC be such a triangle and AD its median (Fig. 12).
By Lemma 5.4, if FE is asymptotically parallel to BC, then

FG = EG.

Hence,
MAD(FG) = MAD(EG)

and so, by Proposition 5.6.

MAD(�ABD) = MAD(�ACD).

Q.E.D.

In both the statement and the proof below, the index i is computed
modulo 3.

25



Figure 12:

Proposition 6.5 Let �X
1

X
2

X
3

be a triangular lamina with uniform den-
sity 1. Then

mass(�X
1

X
2

X
3

) =
1

2

3X

i=1

sinh[(d(O,XiXi+1

)]d(Xi, Xi+1

).

PROOF: To find the mass of the triangle we may assume that O, the inter-
section point of the medians, is the origin of a Gaussian parametrization of
the hyperbolic plane (Fig. 13). Then

mass(�X
1

X
2

X
3

) =

Z Z

�X1X2X3

cosh ⇢dA

=
3X

i=1

Z Z

�OX
i

X
i+1

cosh ⇢dA.

Let
⇢i = ⇢i(✓) = coth�1 (Ci cos(✓ � ↵i))

be the equation of the geodesic joining Xi+1

and Xi+2

. If, for i = 1, 2, 3, ✓i
is the angle from the horizontal axis to the geodesic OXi then

Z Z

�OX
i

X
i+1

cosh ⇢dA =

Z ✓
i+1

✓
i

Z ⇢
i+2(✓)

0

cosh ⇢ sinh ⇢d⇢d✓

=
1

2

Z ✓
i+1

✓
i

sinh2 ⇢i+2

d✓

=
1

2

Z ✓
i+1

✓
i

[sinh(coth�1(Ci+2

cos(✓ � ↵i+2

)]2d✓

=
1

2

Z ✓
i+1

✓
i

d✓

C2

i+2

cos2(✓ � ↵i+2

)� 1
.
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Figure 13:

On the other hand, the length of the geodesic segment joining XiXi+1

is

d(Xi, Xi+1

) =

Z ✓
i+1

✓
i

q
d⇢2i+2

+ sinh2 ⇢i+2

d✓2

=

Z ✓
i+1

✓
i

s
C2

i+2

sin2(✓ � ↵i+2

)

(C2

i cos
2(✓ � ↵i+2

)� 1)2
+

1

C2

i+2

cos2(✓ � ↵i+2

)� 1
d✓

=
q
C2

i+2

� 1

Z ✓
i+1

✓
i

d✓

C2

i+2

cos2(✓ � ↵i+2

)� 1

=
q
C2

i+2

� 1

Z Z

�OX
i

X
i+1

cosh ⇢dA

Set di = d(O,Xi+1

Xi+2

). Then

q
C2

i � 1 =
q
coth2 di � 1 = csch di

Hence,
Z Z

�OX
i

X
i+1

cosh ⇢dA =
sinh di+2

2
d(Xi, Xi+1

)

and the proposition now follows immediately. Q.E.D.

The Euclidean analog of our last proposition is also well known.

Proposition 6.6 The mass of the regular n-gon of in-radius r is half the
product of its perimeter with sinh r.
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Figure 14:

PROOF: Once again we work in the Gauss model of the hyperbolic plane.
Set C = coth r and let a be the hyperbolic length of one of the polygon’s
sides (see Fig. 14). Then one side of the polygon is parametrized as

⇢ = coth�1(C cos ✓), �⇡/n  ✓  ⇡/n.

It follows from the symmetry of the polygon that its mass equals

2n

Z ⇡/n

0

Z
coth

�1
(C cos ✓)

0

cosh ⇢ sinh ⇢d⇢d✓

= n

Z ⇡/n

0

[sinh(coth�1(C cos ✓)]2d✓

= n

Z ⇡/n

0

2

4

q
C cos ✓+1

C cos ✓�1

�
q

C cos ✓�1

C cos ✓+1

2

3

5

2

d✓

= n

Z ⇡/n

0

d✓

C2 cos2 ✓ � 1
=

np
C2 � 1

tanh�1


tan(⇡/n)p
C2 � 1

�

= n sinh r tanh�1 [tan(⇡/n) sinh r]

= n sinh r tanh�1

h
tanh

⇣a
2

⌘i
=

na sinh r

2
.

Q.E.D.
The area of the above regular polygon is well known to be

(n� 2)⇡ � 2n�.

Thus the mass of the uniform regular polygon is also ”better behaved” than
its area.
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Figure 15:

7 Appendix

Theorem 7.1 Let �ABC be the hyperbolic triangle of Figure 15. Then

sinh a

sin↵
=

sinh b

sin�
=

sinh c

sin �
(Law of Sines)

cosh a = cosh b cosh c� cos↵ sinh b sinh c (Law of Cosines)

Theorem 7.2 Let P, Q, R, be points on the respective extended sides AB,
BC, AC of the hyperbolic �ABC. Then

Theorem of Ceva:
AP,BQ,CR are concurrent

if and only if

sinhAR

sinhRB

sinhBP

sinhPC

sinhCQ

sinhQA
= 1;

Theorem of Menelaus:
P,Q,R are collinear

if and only if

sinhAR

sinhRB

sinhBP

sinhPC

sinhCQ

sinhQA
= �1.
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