HYPERBOLIC CENTROIDS OF SOME REGIONS*

Saul Stahl

January 17, 2006

Department of Mathematics
University of Kansas
Lawrence, KS 66045, USA
stahl@math.ku.edu

Abstract

Explicit expressions for the centroids of hyperbolic pie shapes and isosceles triangles are found and compared to their Euclidean analogs.

1

Interest in the concepts of moment and center of mass of two point-mass systems in non-Euclidean geometries goes back to to the 1870's [1, 2]. Centers of mass of finite point systems in the context of spherical geometry were defined in 1947 [3, 4]. The general issue of finite point-mass systems in hyperbolic, elliptic, and Euclidean spaces [5, 6] was resolved by Gal'perin only relatively recently [5, 6]. It was demonstrated there that the center of mass of a finite point-mass system has a very elegant description in the Minkowski model of hyperbolic geometry. An excellent exposition of this model can be found in [8], and a short, necessarily incomplete, summary of the relevant facts is given here.

For any two vectors $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$ of \Re^{3} let

$$
\mathbf{x} \circ \mathbf{y}=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

The underlying set H^{2} of the model is the hyperboloid sheet

$$
\left\{\mathbf{x} \in \Re^{3} \mid \mathbf{x} \circ \mathbf{x}=-1, x_{1}>0\right\}
$$

[^0]If $\mathbf{x}, \mathbf{y} \in H^{2}$ then the hyperbolic distance between them is

$$
\begin{equation*}
d_{H}(\mathbf{x}, \mathbf{y})=\cosh ^{-1}(-\mathbf{x} \circ \mathbf{y}) \tag{1}
\end{equation*}
$$

The geodesics of this model are its intersections with the Euclidean planes that contain the origin of \Re^{3}. Let p and q be the geodesics determined by the planes normal to the vectors \vec{u} and \vec{v} respectively. Then the angle formed by p and q is defined by

$$
\angle(p, q)=\cos ^{-1}\left(\frac{\vec{u} \circ \vec{v}}{\sqrt{(\vec{u} \circ \vec{u})(\vec{v} \circ \vec{v})}}\right)
$$

Let $A_{1}, A_{2}, \ldots, A_{k}$ be points of H^{2} and let $m_{1}, m_{2}, \ldots, m_{k}$ be non-negative real numbers. Then $\chi=\left\{\left(A_{i}, m_{i}\right)\right\}_{i=1}^{k}$ is a finite point-mass system. The center of mass of χ is that point $C=C(\chi) \in H^{2}$ such that, if O denotes the origin of \Re^{3}, then

$$
m \cdot \overrightarrow{O C}=\sum_{i=1}^{k} m_{i} \overrightarrow{O A} \vec{A}_{i}
$$

for some real number m. The number m is interpreted as the total mass of the system χ. In the two point case the center of mass C is that point on the geodesic joining A_{1} and A_{2} such that

$$
m_{1} \sinh C A_{1}=m_{2} \sinh C A_{2}
$$

and the total mass of the system is

$$
m=m_{1} \cosh C A_{1}+m_{2} \cosh C A_{2}
$$

These equations were known in essence over a century ago [1, 2]. The center of mass of a uniform 3 point-mass system coincides with the point of intersection of the medians of the underlying hyperbolic triangle. This fact was observed in [10] in a rather specialized language and so we take this opportunity to offer an alternative proof. Let E, F be the respective midpoints of the sides $A C, A B$ of $\triangle A B C$ (Fig. 1). Then the center of mass of $\{(A, w),(B, w)\}$ is the point-mass

$$
(F, 2 w \cosh c)
$$

and hence the center of mass of $\{(A, w),(B, w),(C, w)\}$ lies on the point M of $C F$ such that

$$
2 w \cosh c \sinh d_{1}=w \sinh d_{2}
$$

It follows that

$$
\begin{gathered}
\frac{A E}{E C} \frac{C M}{M F} \frac{F B}{B A}=\frac{\sinh b}{\sinh b} \frac{\sinh d_{2}}{\sinh d_{1}} \frac{\sinh c}{\sinh 2 c} \\
=\frac{1}{1} \frac{2 w \cosh c}{w} \frac{1}{2 \cosh c}=1
\end{gathered}
$$

Figure 1:

Hence, by the converse to the theorem of Menelaus, the points B, M, and E are collinear. Since the medians of the hyperbolic triangle are concurrent, their common intersection is also the center of mass in question.

The model H^{2} is endowed with a polar coordinate-like parametrization as follows. Let $P=(1,0,0)$. For any point $\mathbf{x} \in H^{2}, \eta=\eta(\mathbf{x})$ is its hyperbolic distance from P whereas $\theta=\theta(\mathbf{x})$ is the counterclockwise angle from the positive x_{2} axis to the ray from the origin to the point ($0, x_{2}, x_{3}$). Then (see [8, p. 88]),

$$
\left\{\begin{array}{l}
x_{1}=\cosh \eta \tag{2}\\
x_{2}=\sinh \eta \cos \theta \\
x_{3}=\sinh \eta \sin \theta
\end{array}\right.
$$

Moreover, the area element with respect to this parametrization is

$$
\sinh \eta d \eta d \theta
$$

It is therefore natural to define the centroid of the region $R \subset H^{2}$ as that point C of H^{2} such that $\overrightarrow{O C}$ is codirectional with

$$
\begin{equation*}
\iint_{R}\left(x_{1}, x_{2}, x_{3}\right) \sinh \eta d \eta d \theta \tag{3}
\end{equation*}
$$

We refer to the vector in (3) as the precentroid of R.
Let $\Pi_{r, \alpha}$ denote the hyperbolic pie of radius r and central angle 2α. Because of the transitivity of the hyperbolic plane and all of its models, it may be assumed that $\Pi_{r, \alpha}$ is positioned as in Figure 2. It is easily verified that the hyperbolic angle between the geodesics $P A$ and $P B$ is indeed 2α. Let C denote the centroid of $\Pi_{r, \alpha}$. Equations (2) and (3) imply that $\overrightarrow{O C}$ is codirectional with the vector

$$
\begin{gather*}
\int_{0}^{r} \int_{-\alpha}^{\alpha}\left(\sinh \eta \cosh \eta, \sinh ^{2} \eta \cos \theta, \sinh ^{2} \eta \sin \theta\right) d \theta d \eta \\
=\left(\alpha \sinh ^{2} r, \frac{\sin \alpha}{2}(\sinh 2 r-2 r), 0\right) \tag{4}
\end{gather*}
$$

Figure 2:

Proposition 1.1 The distance $d\left(\Pi_{r, \alpha}\right)$ from the vertex of the hyperbolic pie $\Pi_{r, \alpha}$ to its centroid is

$$
\tanh ^{-1}\left(\frac{\sin \alpha(\sinh 2 r-2 r)}{2 \alpha \sinh ^{2} r}\right)
$$

Proof: Let $\left(c_{1}, c_{2}, 0\right)$ denote the precentroid of $\Pi_{r, \alpha}$ given in (4). Then

$$
d_{H}(C, P)=\cosh ^{-1}\left(-\frac{\left(c_{1}, c_{2}, 0\right)}{\sqrt{c_{1}^{2}-c_{2}^{2}}} \circ(1,0,0)\right)=\cosh ^{-1}\left(\frac{c_{1}}{\sqrt{c_{1}^{2}-c_{2}^{2}}}\right)
$$

It follows from the identity

$$
\begin{equation*}
\cosh ^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)=\tanh ^{-1} x \tag{5}
\end{equation*}
$$

that

$$
d\left(\Pi_{r, \alpha}\right)=\tanh ^{-1}\left(\frac{\sin \alpha(\sinh 2 r-2 r)}{2 \alpha \sinh ^{2} r}\right)
$$

Note that

$$
\lim _{r \rightarrow \infty} d\left(\Pi_{r, \alpha}\right)=\tanh ^{-1}\left(\frac{\sin \alpha}{\alpha}\right)
$$

which is finite, in contrast with the Euclidean analog where the distance in question is

$$
\frac{2 r \sin \alpha}{3 \alpha}
$$

which is clearly unbounded. On the other hand, since

$$
d\left(\Pi_{r, \alpha}\right)=\frac{2 r \sin \alpha}{3 \alpha}+O\left(r^{3}\right)
$$

it follows that

$$
\lim _{r \rightarrow 0} \frac{1}{r} d\left(\Pi_{r, \alpha}\right)=\frac{2 \sin \alpha}{3 \alpha}
$$

which is consistent with the fact that infinitesimal hyperbolic regions are Euclidean.

Figure 3:

Next we turn to isosceles triangles. In Figure 3, $A=(\cosh c, \cos \alpha \sinh c$, $\sin \alpha \sinh c), B=(\cosh \eta, \cos \alpha \sinh c,-\sin \alpha \sinh c)$ and $\operatorname{arc} A m B$ is the intersection of the hyperboloid H^{2} with the plane $O A B$. Then $\triangle P A B$ on H^{2} has vertex angle $\angle A P B=2 \alpha$ and equal sides $P A=P B$ of hyperbolic length c. Let D be the midpoint of the side $A B$ and let a and b be the hyperbolic lengths of $A D=D B$ and $P D$ respectively. It follows from the trigonometry of the hyperbolic right triangle [7,9] that

$$
\sinh a=\sin \alpha \sinh c \quad \text { and } \quad \tanh b=\cos \alpha \tanh c
$$

In order to determine a parametrization of the geodesic $A B$ on H^{2} we observe that a normal to the Euclidean plane $O A B$ is

$$
\begin{gathered}
(\cosh c, \cos \alpha \sinh c, \sin \alpha \sinh c) \times(\cosh c, \cos \alpha \sinh c,-\sin \alpha \sinh c) \\
=2 \sin \alpha \sinh c(-\cos \alpha \sinh c, \cosh c, 0)
\end{gathered}
$$

Hence, if $\left(x_{1}, x_{2}, x_{3}\right)$ is any point on the geodesic $A B$, then

$$
x_{1} \cos \alpha \sinh c=x_{2} \cosh c
$$

or

$$
x_{2}=x_{1} \cos \alpha \tanh c=x_{1} \tanh b
$$

Conversion to the hyperbolic polar coordinates of (1) yields

$$
x_{1} \tanh b=x_{2}=\sinh \eta \cos \theta=\sqrt{x_{1}^{2}-1} \cos \theta
$$

or

$$
x_{1}^{2} \cos ^{2} \theta-\cos ^{2} \theta=x_{1}^{2} \tanh ^{2} b
$$

It follows that the geodesic $A B$ has the parametrization

$$
\left\{\begin{array}{l}
x_{1}(\theta)=\cos \theta\left(\cos ^{2} \theta-\tanh ^{2} b\right)^{-1 / 2} \\
x_{2}(\theta)=\cos \theta \tanh b\left(\cos ^{2} \theta-\tanh ^{2} b\right)^{-1 / 2} \\
x_{3}(\theta)=\sin \theta \tanh b\left(\cos ^{2} \theta-\tanh ^{2} b\right)^{-1 / 2}
\end{array}\right.
$$

or

$$
\mathbf{x}(\theta)=\frac{(\cos \theta, \cos \theta \tanh b, \sin \theta \tanh b)}{\sqrt{\cos ^{2} \theta-\tanh ^{2} b}}
$$

In the calculations below, $\mathbf{x}(\theta) P$ denotes the hyperbolic distance from the point $\mathbf{x}(\theta)$ on $A m B$ to P, and $\left(x_{1}, x_{2}, x_{3}\right)$ denotes an arbitrary point in $\triangle P A B$ on H^{2}. Let (I, II, III) be the precentroid of $\triangle P A B$. Symmetry dictates that III $=0$. Moreover,

$$
\begin{gathered}
\begin{aligned}
\mathrm{I}=\int_{-\alpha}^{\alpha} \int_{0}^{\mathbf{x}(\theta) P} \sinh \eta x_{1} d \eta d \theta=\int_{-\alpha}^{\alpha} \int_{0}^{\mathbf{x}(\theta) P} \sinh \eta \cosh \eta d \eta d \theta \\
\begin{array}{c}
=\int_{-\alpha}^{\alpha} \frac{1}{2}\left(\cosh ^{2}(\mathbf{x}(\theta) P)-\cosh ^{2} 0\right)=\frac{1}{2} \int_{-\alpha}^{\alpha} x_{1}^{2}(\theta) d \theta-\alpha \\
\\
=\int_{0}^{\alpha} \frac{\cos ^{2} \theta d \theta}{\cos ^{2} \theta-\tanh ^{2} b}-\alpha
\end{array} \\
\begin{array}{r}
\mathrm{II}=\int_{-\alpha}^{\alpha} \int_{0}^{\mathbf{x}(\theta) P} \sinh \eta x_{2} d \eta d \theta=\int_{-\alpha}^{\alpha} \int_{0}^{\mathbf{x}(\theta) P} \sinh ^{2} \eta \cos \theta d \eta d \theta \\
\\
=\frac{1}{2} \int_{-\alpha}^{\alpha} \cos \theta \int_{0}^{\mathbf{x}(\theta) P}(\cosh 2 \eta-1) d \eta d \theta \\
\left.\quad=\frac{1}{4} \int_{-\alpha}^{\alpha} \cos \theta(\sinh \theta) \sinh b\right]_{0}^{\alpha}=a \sinh b
\end{array} \\
=\frac{1}{4} \int_{-\alpha}^{\alpha} \cos \theta[2 \cosh \mathbf{x}(\theta) P \sqrt{\cosh 2} \mathbf{x}(\theta) P-1-2 \mathbf{x}(\theta) P) d \theta \\
=\frac{1}{2} \int_{-\alpha}^{\alpha} \cos \theta\left[x_{1}(\theta) \sqrt{x_{1}^{2}(\theta)-1}-\cosh ^{-1} x_{1}(\theta)\right] d \theta
\end{aligned}
\end{gathered}
$$

$$
\begin{gathered}
=\tanh b \int_{0}^{\alpha} \frac{\cos ^{2} \theta d \theta}{\cos ^{2} \theta-\tanh ^{2} b} \\
-\int_{0}^{\alpha} \cos \theta \cosh ^{-1}\left(\frac{\cos \theta}{\sqrt{\cos ^{2} \theta-\tanh ^{2} b}}\right) d \theta \\
=(\alpha+a \sinh b) \tanh b-\int_{0}^{\alpha} \cos \theta \tanh ^{-1}(\tanh b \sec \theta) d \theta \\
=(\alpha+a \sinh b) \tanh b \\
-\left[\tanh ^{-1}(\tanh b \sec \theta) \sin \theta-\tanh ^{-1}(\sinh b \tan \theta) / \cosh b+\theta \tanh b\right]_{0}^{\alpha} \\
=(\alpha+a \sinh b) \tanh b-(c \sin \alpha-a \operatorname{sech} b+\alpha \tanh b) \\
=a \cosh b-c \sin \alpha
\end{gathered}
$$

These expressions for I and II together with Eqn's (3,5) yield the following proposition.

Proposition 1.2 In a hyperbolic isosceles triangle with equal sides c and vertex angle 2α the distance from the vertex to the triangle's centroid is

$$
\tanh ^{-1}\left(\frac{a \cosh b-c \sin \alpha}{a \sinh b}\right)
$$

Let C denote the centroid of the $\triangle A B C$ and let M be the intersection of its medians. If $\alpha=\pi / 4$ and $c=1$ then

$$
P C=0.417455 \ldots, P M=0.434114 \ldots
$$

and so $C \neq M$. Thus, in contrast with the situation in Euclidean geometry, the centroid of a triangle and the center of mass of a uniform point-mass system located at its vertices are in general distinct. It would be interesting to find a (necessarily non-uniform) mass distribution on the vertices of a triangle whose center of mass agrees with its centroid.

The asymptotic behavior of $\delta(\alpha, c)$ is similar to that of $d(\alpha, c)$. Since

$$
\frac{\delta(\alpha, c)}{b}=\frac{1}{b} \tanh ^{-1}\left(\frac{a \cosh b-c \sin \alpha}{a \sinh b}\right)=\left(\frac{2}{3}+O\left(\alpha^{3}\right)\right)+O\left(c^{3}\right)
$$

it follows that

$$
\lim _{c \rightarrow 0} \frac{\delta(\alpha, c)}{P D}=\frac{2}{3}
$$

On the other hand,

$$
\left.\lim _{c \rightarrow \infty} \frac{\delta(\alpha, c)}{P D}=\lim _{c \rightarrow \infty} \frac{\tanh ^{-1}\left(\operatorname{coth} b-\frac{c}{a} \sin \alpha\right.}{\sinh b}\right)
$$

$$
=\frac{\tanh ^{-1}\left(\sec \alpha-1 \cdot \frac{\sin \alpha}{\cot \alpha}\right)}{\tanh ^{-1}(\cos \alpha)}=1
$$

Acknowledgements: The author is indebted to his colleague David Lerner for his help and patience.

References

[1] Jules F. C. Andrade, Leçons de Mécanique Physique, Société d'Editions Scientifiques, 1898, pp. 370-389.
[2] Roberto Bonola, Non-Euclidean Geometry, Dover Publications, New York, 1955.
[3] Fr. Fabricius-Bjerre, Centroids and medians in spherical space I, Mat. Tidsskr. B. 1947, 48-52.
[4] David Fog, Centroids and medians in spherical space I, Mat. Tidsskr. B. 1947, 41-47.
[5] G. A. Gal'perin, On the concept of the Center of Mass of a System of Point-Masses In spaces of Constant Curvature, Soviet Math. Dokl. 38 (1989), No. 2, 367-371.
[6] - A concept of the mass center of a system of material points in the constant curvature spaces. Comm. Math. Phys. 54 (1993), No. 1, 63-84.
[7] Marvin J. Greenberg, Euclidean and non-Euclidean Geometries: Development and History, W. H. Freeman, 3rd edition, 1995.
[8] John G. Ratcliffe, Foundations of Hyperbolic Manifolds, SpringerVerlag, New York, 1994.
[9] Saul Stahl, The Poincaré Half-plane: A Gateway to Modern Geometry, Jones and Bartlett, Boston, 1993.
[10] Abraham D. Ungar, The Hyperbolic Triangle Centroid, Comment. Math. Univ. Carolinae, 45(2004), No. 2, 355-369.

[^0]: *This research was supported in part by University of Kansas General Research Allocation 2301559-003

