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ABSTRACT

Explicit expressions for the centroids of hyperbolic pie shapes and isosce-
les triangles are found and compared to their Euclidean analogs.
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Interest in the concepts of moment and center of mass of two point-mass
systems in non-Euclidean geometries goes back to to the 1870’s [1, 2]. Cen-
ters of mass of finite point systems in the context of spherical geometry were
defined in 1947 [3, 4]. The general issue of finite point-mass systems in hy-
perbolic, elliptic, and Euclidean spaces [5, 6] was resolved by Gal’perin only
relatively recently [5, 6]. It was demonstrated there that the center of mass
of a finite point-mass system has a very elegant description in the Minkowski
model of hyperbolic geometry. An excellent exposition of this model can be
found in [8], and a short, necessarily incomplete, summary of the relevant
facts is given here.

For any two vectors x = (x1, x2, x3) and y = (y1, y2, y3) of ℜ3 let

x ◦ y = −x1y1 + x2y2 + x3y3

The underlying set H2 of the model is the hyperboloid sheet

{x ∈ ℜ3 | x ◦ x = −1, x1 > 0}
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If x,y ∈ H2 then the hyperbolic distance between them is

dH(x,y) = cosh−1(−x ◦ y) (1)

The geodesics of this model are its intersections with the Euclidean planes
that contain the origin of ℜ3. Let p and q be the geodesics determined by the
planes normal to the vectors ~u and ~v respectively. Then the angle formed
by p and q is defined by

6 (p, q) = cos−1

(

~u ◦ ~v
√

(~u ◦ ~u)(~v ◦ ~v)

)

Let A1, A2, ..., Ak be points of H2 and let m1,m2, ...,mk be non-negative
real numbers. Then χ = {(Ai,mi)}k

i=1 is a finite point-mass system. The
center of mass of χ is that point C = C(χ) ∈ H2 such that, if O denotes
the origin of ℜ3, then

m·
→

OC=
k
∑

i=1

mi

→

OAi

for some real number m. The number m is interpreted as the total mass of
the system χ. In the two point case the center of mass C is that point on
the geodesic joining A1 and A2 such that

m1 sinhCA1 = m2 sinhCA2

and the total mass of the system is

m = m1 cosh CA1 + m2 cosh CA2

These equations were known in essence over a century ago [1, 2]. The cen-
ter of mass of a uniform 3 point-mass system coincides with the point of
intersection of the medians of the underlying hyperbolic triangle. This fact
was observed in [10] in a rather specialized language and so we take this
opportunity to offer an alternative proof. Let E,F be the respective mid-
points of the sides AC,AB of ∆ABC (Fig. 1). Then the center of mass of
{(A,w), (B,w)} is the point-mass

(F, 2w cosh c)

and hence the center of mass of {(A,w), (B,w), (C,w)} lies on the point M
of CF such that

2w cosh c sinh d1 = w sinh d2

It follows that
AE

EC

CM

MF

FB

BA
=

sinh b

sinh b

sinh d2

sinh d1

sinh c

sinh 2c

=
1

1

2w cosh c

w

1

2 cosh c
= 1
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Figure 1:

Hence, by the converse to the theorem of Menelaus, the points B,M, and E
are collinear. Since the medians of the hyperbolic triangle are concurrent,
their common intersection is also the center of mass in question.

The model H2 is endowed with a polar coordinate-like parametrization
as follows. Let P = (1, 0, 0). For any point x ∈ H2, η = η(x) is its hyperbolic
distance from P whereas θ = θ(x) is the counterclockwise angle from the
positive x2 axis to the ray from the origin to the point (0, x2, x3). Then (see
[8, p. 88]),











x1 = cosh η
x2 = sinh η cos θ
x3 = sinh η sin θ

(2)

Moreover, the area element with respect to this parametrization is

sinh ηdηdθ

It is therefore natural to define the centroid of the region R ⊂ H2 as that

point C of H2 such that
→

OC is codirectional with

∫ ∫

R
(x1, x2, x3) sinh ηdηdθ (3)

We refer to the vector in (3) as the precentroid of R.
Let Πr,α denote the hyperbolic pie of radius r and central angle 2α.

Because of the transitivity of the hyperbolic plane and all of its models, it
may be assumed that Πr,α is positioned as in Figure 2. It is easily verified
that the hyperbolic angle between the geodesics PA and PB is indeed 2α.

Let C denote the centroid of Πr,α. Equations (2) and (3) imply that
→

OC is
codirectional with the vector

∫ r

0

∫ α

−α
(sinh η cosh η, sinh2 η cos θ, sinh2 η sin θ)dθdη

=

(

α sinh2 r,
sinα

2
(sinh 2r − 2r), 0

)

(4)
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Proposition 1.1 The distance d(Πr,α) from the vertex of the hyperbolic pie

Πr,α to its centroid is

tanh−1
(

sin α(sinh 2r − 2r)

2α sinh2 r

)

Proof: Let (c1, c2, 0) denote the precentroid of Πr,α given in (4). Then

dH(C,P ) = cosh−1



−(c1, c2, 0)
√

c2
1 − c2

2

◦ (1, 0, 0)



 = cosh−1





c1
√

c2
1 − c2

2





It follows from the identity

cosh−1
(

1√
1 − x2

)

= tanh−1 x (5)

that

d(Πr,α) = tanh−1
(

sinα(sinh 2r − 2r)

2α sinh2 r

)

Q.E.D.
Note that

lim
r→∞

d (Πr,α) = tanh−1
(

sin α

α

)

which is finite, in contrast with the Euclidean analog where the distance in
question is

2r sin α

3α
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which is clearly unbounded. On the other hand, since

d(Πr,α) =
2r sin α

3α
+ O(r3)

it follows that

lim
r→0

1

r
d (Πr,α) =

2 sin α

3α

which is consistent with the fact that infinitesimal hyperbolic regions are
Euclidean.
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Figure 3:

Next we turn to isosceles triangles. In Figure 3, A = (cosh c, cos α sinh c,
sin α sinh c), B = (cosh η, cos α sinh c,− sin α sinh c) and arc AmB is the in-
tersection of the hyperboloid H2 with the plane OAB . Then ∆PAB on H2

has vertex angle 6 APB = 2α and equal sides PA = PB of hyperbolic length
c. Let D be the midpoint of the side AB and let a and b be the hyperbolic
lengths of AD = DB and PD respectively. It follows from the trigonometry
of the hyperbolic right triangle [7, 9] that

sinh a = sin α sinh c and tanh b = cos α tanh c

In order to determine a parametrization of the geodesic AB on H2 we
observe that a normal to the Euclidean plane OAB is

(cosh c, cos α sinh c, sin α sinh c) × (cosh c, cos α sinh c,− sin α sinh c)

= 2 sin α sinh c(− cos α sinh c, cosh c, 0)

Hence, if (x1, x2, x3) is any point on the geodesic AB, then

x1 cos α sinh c = x2 cosh c
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or
x2 = x1 cos α tanh c = x1 tanh b

Conversion to the hyperbolic polar coordinates of (1) yields

x1 tanh b = x2 = sinh η cos θ =
√

x2
1 − 1 cos θ

or
x2

1 cos2 θ − cos2 θ = x2
1 tanh2 b

It follows that the geodesic AB has the parametrization











x1(θ) = cos θ(cos2 θ − tanh2 b)−1/2

x2(θ) = cos θ tanh b(cos2 θ − tanh2 b)−1/2

x3(θ) = sin θ tanh b(cos2 θ − tanh2 b)−1/2

or

x(θ) =
(cos θ, cos θ tanh b, sin θ tanh b)

√

cos2 θ − tanh2 b

In the calculations below, x(θ)P denotes the hyperbolic distance from
the point x(θ) on AmB to P , and (x1, x2, x3) denotes an arbitrary point
in ∆PAB on H2. Let (I, II, III) be the precentroid of ∆PAB. Symmetry
dictates that III = 0. Moreover,

I =

∫ α

−α

∫

x(θ)P

0
sinh ηx1dηdθ =

∫ α

−α

∫

x(θ)P

0
sinh η cosh ηdηdθ

=

∫ α

−α

1

2

(

cosh2(x(θ)P ) − cosh2 0
)

=
1

2

∫ α

−α
x2

1(θ)dθ − α

=

∫ α

0

cos2 θdθ

cos2 θ − tanh2 b
− α

=
[

θ + tanh−1(sinh b tan θ) sinh b
]α

0
= a sinh b

II =

∫ α

−α

∫

x(θ)P

0
sinh ηx2dηdθ =

∫ α

−α

∫

x(θ)P

0
sinh2 η cos θdηdθ

=
1

2

∫ α

−α
cos θ

∫

x(θ)P

0
(cosh 2η − 1)dηdθ

=
1

4

∫ α

−α
cos θ (sinh 2x(θ)P − 2x(θ)P ) dθ

=
1

4

∫ α

−α
cos θ

[

2 cosh x(θ)P
√

cosh2 x(θ)P − 1 − 2x(θ)P

]

dθ

=
1

2

∫ α

−α
cos θ

[

x1(θ)
√

x2
1(θ) − 1 − cosh−1 x1(θ)

]

dθ
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= tanh b

∫ α

0

cos2 θdθ

cos2 θ − tanh2 b

−
∫ α

0
cos θ cosh−1

(

cos θ
√

cos2 θ − tanh2 b

)

dθ

= (α + a sinh b) tanh b −
∫ α

0
cos θ tanh−1(tanh b sec θ)dθ

= (α + a sinh b) tanh b

−
[

tanh−1(tanh b sec θ) sin θ − tanh−1(sinh b tan θ)/ cosh b + θ tanh b
]α

0

= (α + a sinh b) tanh b − (c sin α − a sech b + α tanh b)

= a cosh b − c sin α

These expressions for I and II together with Eqn’s (3, 5) yield the following
proposition.

Proposition 1.2 In a hyperbolic isosceles triangle with equal sides c and

vertex angle 2α the distance from the vertex to the triangle’s centroid is

tanh−1
(

a cosh b − c sin α

a sinh b

)

2

Let C denote the centroid of the ∆ABC and let M be the intersection
of its medians. If α = π/4 and c = 1 then

PC = 0.417455..., PM = 0.434114...

and so C 6= M . Thus, in contrast with the situation in Euclidean geometry,
the centroid of a triangle and the center of mass of a uniform point-mass
system located at its vertices are in general distinct. It would be interesting
to find a (necessarily non-uniform) mass distribution on the vertices of a
triangle whose center of mass agrees with its centroid.

The asymptotic behavior of δ(α, c) is similar to that of d(α, c). Since

δ(α, c)

b
=

1

b
tanh−1

(

a cosh b − c sin α

a sinh b

)

=

(

2

3
+ O(α3)

)

+ O(c3)

it follows that

lim
c→0

δ(α, c)

PD
=

2

3
.

On the other hand,

lim
c→∞

δ(α, c)

PD
= lim

c→∞

tanh−1
(

coth b − c
a

sinα
sinh b

)

tanh−1(cos α tanh b)
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=
tanh−1

(

sec α − 1 · sinα
cot α

)

tanh−1(cos α)
= 1
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