
The Longest Common Exemplar Subsequence
Problem

Shu Zhang1, Ruizhi Wang1, Daming Zhu1,∗, Haitao Jiang1, Haodi Feng1, Jiong Guo1 and Xiaowen Liu2
1School of Computer Science and Technology, Shandong University

2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis
∗Corresponding author, Email: dmzhu@sdu.edu.cn

Abstract—In this paper, we propose to find order conserved
subsequences of genomes by finding longest common exemplar
subsequences of the genomes. The longest common exemplar
subsequence problem is given by two genomes, asks to find a
common exemplar subsequence of them, such that the exemplar
subsequence length is maximized.

We focus on genomes whose genes of the same gene family
are in at most s spans. We propose a dynamic programming
algorithm with time complexity O(s4smn) to find a longest
common exemplar subsequence of two genomes with one genome
admitting s span genes of the same gene family, where m, n stand
for the gene numbers of those two given genomes. Our algorithm
can be extended to find longest common exemplar subsequences
of more than one genomes.

Index Terms—dynamic programming, algorithm, exemplar
subsequence, genome, s-span.

I. INTRODUCTION

A set of genes that is conserved in the same order during the
evolution suggests that it participates to the same biological
process [1]. Finding conserved sets of genes in genomes can
be done by genome comparison, where a similarity measure
of genomes has to be introduced for measuring how good a
conserved gene set is. The number of breakpoints as well as
adjacencies has usually been used as the similarity measure in
genome comparisons [2] [3] [4] [5]. Other kinds of genome
similarity measures can be looked up in [6] [7] [8].

The exemplar breakpoint distance problem (abbr. EBD)
proposed by Sankoff [2] is representative in approaches for
finding conserved sets of genes. This problem is given by two
genomes, asks to find two respective exemplar gene sequence
of the two given genomes, such that the breakpoint distance
between the two exemplar gene sequence is minimized. For
finding solutions of EBD, Sankoff proposed a branch and
bound based algorithm [2], then later, Thach, Tay, and Zhang
proposed a divide and conquer based algorithm [4]. Moreover,
Zhu presented the tractability for parameterized computation
of universal EBD [9]. For two genomes in which one has
no repetition of the same gene family and the other has twice
repetition genes of the same gene family, EBD has been shown
to be NP-Hard by Bryant [5] and APX-Hard by Angibaud et al.
[10]. Blin et al. also showed that no performance factor can be
achieved for approximating this problem [1]. If one of the two
given genomes has no gene repetition of the same gene family,

This paper is supported by national natural science foundation of China,
No. 61472222, 61732009, 61761136017, 61672325.

the other allows genes of the same gene family to repeat
at most q times, Fu and Zhang developed an O(2mnO(1))
time algorithm for EBD, where m is the number of the gene
families and n is the number of genes in the genomes [11].

If it asks to find two exemplar gene sequence with zero
breakpoint distance, then EBD turns to be called the zero
exemplar breakpoint distance problem (abbr. ZEBD). ZEBD
is NP-Hard [1], even if those two given genomes all admit
at most 2 repetition genes of the same gene family. Blin et
al. used the color-coding technique to design an algorithm
with O(n2n) time for ZEBD, where n is the number of
gene families in the given genomes [1]. They also gave a
parameterized algorithm for ZEBD with O(m22ss3) time,
where m is the number of genes in that given genome with
less genes than the other given genome. Jiang proposed a
polynomial algorithm for a special version of ZEBD, where
one given genome is asked to have no repetition genes of the
same gene family and the other genome can admit q repetition
genes of the same gene family [12]. Moreover, Zhu and Wang
[13] proposed an exact algorithm for ZEBD, for the situation
where each of the two given genomes admits at most two
repetition genes of the same gene family, with running time
O(n21.86121n).

In this paper, we focus on how to find a longest subsequence
of exemplar genes that is conserved in two genomes. We set
up an optimization problem model to describe on finding a
longest subsequence of exemplar genes that is conserved in
two genomes, and name it as the longest common exemplar
subsequence problem (abbr. LCES). LCES can be recognized
to be NP-hard because ZEBD is NP-hard even if the two given
genome each admits at most twice repetitions of the same
gene family. Then, if in one of the two given genomes, any
two genes of the same gene family are in at most s spans, we
propose a dynamic programming algorithm to solve it with
O(s2smn) space and O(s4smn) time, where m, n stand for
the gene numbers of those two given genomes.

II. PRELIMINARIES

Let Σ be an alphabet. Each symbol in Σ represents a gene
family. A genome on Σ refers to a sequence of occurrences
of the gene families in Σ. Each occurrence of a gene family
in a genome is referred to as a gene. There can be more than
one genes of the same gene family in a genome. Two genes
in a genome are referred to as identical, if they are of the

__

This is the author's manuscript of the article published in final edited form as:

Zhang, S., Wang, R., Zhu, D., Jiang, H., Feng, H., Guo, J., & Liu, X. (2018). The Longest Common Exemplar Subsequence Problem. 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 92–95. https://doi.org/10.1109/BIBM.2018.8621304

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/275751392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/BIBM.2018.8621304

same gene family. We always use the same symbol as used
to represent a gene’s family to represent the gene. Thus two
genes, say x and y, are identical, if and only if x = y. A
sequence of genes is referred to as a subsequence of a genome,
if it can be obtained by deleting some genes (not necessarily
consecutive) from the genome. A subsequence of a genome
is referred to as an exemplar subsequence of the genome, if
every gene family in Σ occurs in the subsequence at most
once.

Let A = A[1] .. A[m] be a genome on Σ, C = A[x[1]]
... A[x[p]] an exemplar subsequence of A, 1 ≤ x[1] < ...
< x[p] ≤ m. Then , A[x[i]] ̸= A[x[j]] for x[i] ̸= x[j]. A
common exemplar subsequence of more than one genomes
(or gene sequences) refers to a sequence of genes, which is
an exemplar subsequence of each of the genomes. The length
of a genome (or a gene sequence) A, which is denoted as |A|,
is the gene number of A. A common exemplar subsequence
of more than one genomes is longest, if no other common
exemplar subsequence of these genomes can be longer than
it. The longest common exemplar subsequence problem (abbr.
LCES) of two genomes is motivated by finding a set of genes
that is conserved in the same order, and can be formalized as,

Instance: Two genomes A, B on Σ.
Object: Find a longest common exemplar subsequence of

both A and B.
For an arbitrary genome A = A[1] ... A[m], let A[i, j]

denote the consecutive subsequence A[i] A[i + 1] ... A[j] of
A, 1 ≤ i ≤ j ≤ m. Let X and Y be two gene sequences on
Σ. We denote by X ∥ Y the concatenation of X and Y . For
example, A[i, j] = A[i, j − 1] ∥ A[j].

Moreover, we refer to j − i for i ≤ j as the span of A[i]
and A[j] in A. Two genes are adjacent in a genome if their
span is 1 in the genome. The span of a genome refers to
the maximum span of two identical genes in that genome. A
genome is referred to as s-span if the span of the genome is
s.

Without loss of generality, every gene family in Σ is
assumed to occur in both A and B. Moreover, since for two
adjacent genes A[i], A[i + 1] in A, if A[i] = A[i + 1], the
deletion of A[i + 1] (or A[i]) from A doesn’t change the set
of A’s exemplar subsequences, we assume any two adjacent
genes in A as well as B are not identical.

III. AN ALGORITHM FOR LCES WITH S-SPAN

Researches on comparing human and mouse genomes shows
that a large number of micro-rearrangements happen to human
or mouse genomic sequences [14]. In the algorithm design
literatures of genome comparison, the span of two identical
genes in a genome has usually been used as a parameter
to design efficient algorithms [1] [15]. Since so, we pay
attention to s-span genomes to find their common exemplar
subsequences.

Assume A = A[1] ... A[m] and B = B[1] ... B[n] serve as
an instance of LCES.

A. The primary dynamic programming

All common exemplar subsequences of A and B can be
enumerated by dynamic programming, which goes from a set
of all common exemplar subsequences of A[1, i], B[1, j− 1],
a set of all common exemplar subsequences of A[1, i − 1],
B[1, j] and a set of all common exemplar subsequences of
A[1, i − 1], B[1, j − 1] to a set of all common exemplar
subsequences of A[1, i], B[1, j].

Let C(i, j) denote the set of all common exemplar sub-
sequences of A[1, i] and B[1, j]. Since no gene occurs at
position 0 in A as well as B, C(i, j) is assigned with an
empty set for i = 0 or j = 0.

A common exemplar subsequence of A[1, i − 1], B[1, j]or
A[1, i], B[1, j−1] or A[1, i−1], B[1, j−1] must be a common
exemplar subsequence of A[1, i] and B[1, j]. Thus C(i−1, j)
⊆ C(i, j), C(i− 1, j − 1) ⊆ C(i, j) and C(i, j − 1) ⊆ C(i,
j). Let C denote an arbitrary common exemplar subsequence
of A[1, i] and B[1, j] (1 ≤ i ≤ m and 1 ≤ j ≤ n). Then C
can be arrived at from a member in C(i− 1, j) or C(i, j− 1)
or C(i− 1, j − 1) under two situations.
(1) If A[i] ̸= B[j], then C ∈ C(i−1, j) or C ∈ C(i, j−1).

It follows C(i − 1, j) ⊆ C(i, j) and C(i, j − 1) ⊆ C(i, j)
that C(i, j) = C(i− 1, j) ∪ C(i, j − 1).
(2) If A[i] = B[j], let C ′ be a member in C(i− 1, j − 1),

which does not admit any identical gene to A[i], then C ∈
C(i − 1, j) or C ∈ C(i, j − 1) or C ′ ∥ A[i] ∈ C(i, j). Let
C(i− 1, j− 1, A[i]) denote the subset of C(i− 1, j− 1) with
all those members in C(i− 1, j− 1) which admit no identical
genes to A[i], C(i, j, A[i]) = {C ′ ∥ A[i] | C ′ ∈ C(i − 1,
j − 1, A[i])}. Then C ∈ C(i, j, A[i]). It follows C(i− 1, j)
⊆ C(i, j), C(i, j − 1) ⊆ C(i, j) and C(i, j, A[i]) ⊆ C(i, j)
that C(i, j) = C(i− 1, j) ∪ C(i, j − 1) ∪ C(i, j, A[i]).

Then C(i, j) can be arrived at recursively as in Formula
(1). This leads to a dynamic programming based algorithm to
find a longest common exemplar subsequence of A, B.

C(i,j)=

∅ i=0 or j=0

C(i−1, j)∪C(i, j−1) A[i]̸=B[j], i ̸=0 and j ̸=0

C(i−1, j)∪C(i, j−1)∪C(i, j, A[i]) A[i]=B[j], i ̸=0 and j ̸=0

(1)

A member in C(i, j) has at most |Σ| genes, each of which
can occur in a member in C(i, j) or not. It follows that |C(i,
j)| ≤ 2|Σ|. It takes O(|Σ|2|Σ|) time to get C(i, j, A[i]) if A[i]
= B[j]. It also takes O(|Σ|2|Σ|) time to get C(i−1, j) ∪ C(i,
j − 1) ∪ C(i, j, A[i]) if A[i] = B[j], or C(i − 1, j) ∪ C(i,
j − 1) if A[i] ̸= B[j]. Thus the time complexity of getting
C(i, j) from C(i− 1, j) ∪ C(i, j − 1) ∪ C(i− 1, j − 1) is
O(|Σ|2|Σ|). Since 1 ≤ i ≤ m, 1 ≤ j ≤ n, the time complexity
of getting a longest common exemplar subsequence of A and
B is O(nm|Σ|2|Σ|).

B. Gene family set based dynamic programming

To improve the time complexity, an intuitive way is to store
less common exemplar subsequences of A[1, i] and B[1, j]
than those in C(i, j) in the dynamic programming. To achieve
this point, we pay attention to those sets of gene families which

occur both in the members in C(i, j) and A[i+1, m] or B[j+1,
n]. Let C be a common exemplar subsequence of A[1, i] and
B[1, j]. A gene family which occurs in C is referred to as
confused, if it also occurs in A[i+ 1, m] as well as B[j + 1,
n]. The confused gene family set of C refers to the set of all
confused gene families which occur in C, and will be denoted
as F (i, j, C). Every common exemplar subsequence in C(i,j)
is accompanied with a confused gene family set. In fact, if
two common exemplar subsequences in C(i, j) have the same
confused gene family sets, then we can show it sufficient to
give up that one with less genes than the other. That is,

Lemma III.1. Let for i ≤ m and j ≤ n, C1 and C2 be two
common exemplar subsequences of A[1, i] and B[1, j] with
F (i, j, C1) = F (i, j, C2). If |C1| ≥ |C2|, the longest extension
of C1 in C(m,n), must have no less genes than any extension
of C2 in C(m,n).

By Lemma III.1, to achieve a longest common exemplar
subsequence of A and B by dynamic programming, it suffices
to maintain a subset of C(i, j) whose common exemplar
subsequences admit mutually distinct confused gene family
sets. Let for a common exemplar subsequence C ∈ C(i,j),
f(i, j, C) denote the confused gene family set of C. The
confused gene family set collection of a subset of C(i, j)
refers to the collection of the confused gene family sets of
all those common exemplar subsequences in the subset of
C(i, j). A subset of C(i, j) is referred to as representative,
if each member in C(i, j) admits the same confused gene
family set with a member in the subset, each member in it is
the longest over all common exemplar subsequences in C(i,
j) with the same confused gene family sets. A subset of C(i,
j) is referred to as minimum, if every two members in it admit
distinct confused gene family sets. A representative subset
of C(i, j) is not guaranteed unique, even if it is minimum.
Let CF (i, j) be an arbitrary minimum representative subset
of C(i, j). A longest common exemplar subsequence of A
and B must occur in a minimum representative subset of
C(m,n). Instead of getting a minimum representative subset
of C(i, j) from C(i, j), we pay attention to getting a minimum
representative subset of C(i, j) from CF (i−1, j), CF (i, j−1)
and CF (i− 1, j − 1).

It is trivial for CF (i, j) to be initialized as ∅, if i = 0 or j
= 0. Then there are two cases to get a minimum representative
subset of C(i, j) from CF (i− 1, j) and CF (i, j − 1).

(1) If A[i] ̸= B[j], since C(i, j) = C(i, j − 1) ∪ C(i− 1,
j) by Formula (1), then there exists a minimum representative
subset of C(i, j) which is a subset of CF (i, j−1) ∪ CF (i−1,
j). A common exemplar subsequence in CF (i, j − 1) and
CF (i − 1, j) will turn into a member in C(i, j) with an
other confused gene family set than it is in CF (i, j − 1) and
CF (i − 1, j). Let C ∈ CF (i, j − 1) (resp. CF (i − 1, j)).
The confused gene family set of C in C(i, j) can be extracted
under two subcases.

(1.1) If no identical gene to A[i] (resp. B[j]) occurs in
A[i+ 1, m] as well as B[j + 1, n], and f(i− 1, j, C) (resp.
f(i, j − 1, C)) contains the gene family of A[i] (resp. B[j]),

then f(i, j, C) = f(i−1, j, C) (resp. f(i, j−1, C)) \ {A[i]}
(resp. \ B[j]), where A[i] (resp. B[j]) represents a gene as
well as its gene family.

(1.2) Otherwise, f(i, j, C) = f(i−1, j, C) (resp. f(i, j−1,
C)).

Let C(i, j, CF (i, j−1)) (resp. C(i, j, CF (i−1, j))) denote
the subset of C(i, j) with none other than those member in
CF (i− 1, j) (resp. CF (i, j− 1)), F (i, j, CF (i− 1, j)) (resp.
F (i, j, CF (i, j− 1))) the confused gene family set collection
of those members in C(i, j, CF (i − 1, j)) (resp. C(i, j,
CF (i, j − 1))). We set a subroutine named as SM(F (x, y),
G) to remove those gene families in a gene family set G
from every set in F (x, y), and output the sets in F (x, y) in
exclusion of the gene families in G. Thus for x = i− 1, y =
j or x = i, y = j− 1, F (i, j, CF (x, y)) can be expressed in
Formula (2).

A minimum representative subset of C(i, j), say CF (i, j),
can be got by checking every two members in C(i, j, CF (i,
j − 1)) ∪ C(i, j, CF (i − 1, j)) for if they admit the same
confused gene family sets, and if yes, removing the shorter
one of them.
(2) If A[i] = B[j], then by Formula (1), C(i, j) = C(i,

j−1) ∪ C(i−1, j) ∪ C(i, j, A[i]). Let CF (i, j, A[i]) denote
a minimum representative subset of C(i, j, A[i]). There exists
a minimum representative subset of C(i, j) which is a subset
of CF (i, j−1) ∪ CF (i−1, j) ∪ CF (i, j, A[i]). A minimum
representative subset of C(i, j, A[i]) can be identified as,

Lemma III.2. The set {C ′ ∥ A[i] | C ′ ∈ CF (i − 1, j − 1
A[i])} is a minimum representative subset of C(i, j, A[i]).

Let C ′ ∈ CF (i− 1, j − 1,A[i]). In consideration of getting
f(i, j, C ′ ∥ A[i]), it suffices to check for f(i, j, C ′ ∥ A[i])
= f(i− 1, j − 1, C ′) or f(i− 1, j − 1, C ′) ∪ {A[i]}. If no
identical gene to A[i] occurs in A[i + 1, m] or B[j + 1, n],
then f(i, j, C ′ ∥ A[i]) = f(i− 1, j − 1, C ′). If an identical
gene to A[i] occurs in both A[i+1, m] and B[j +1, n], then
f(i, j, C ′ ∥ A[i]) = f(i− 1, j − 1, C ′) ∪ {A[i]}.

Then, the confused gene family set of a member C = C ′ ∥
A[i] ∈ CF (i, j, A[i]), can be expressed as,

f(i, j, C) =

{
f(i, j, C′) A[i] /∈ A[i + 1,m] ∨ B[j + 1, n];

f(i, j, C′) ∪ {A[i]} A[i] ∈ A[i + 1,m] ∧ B[j + 1, n].
(3)

Let F (i, j, A[i]) denote the confused gene family set
collection of CF (i, j, A[i]). Then,

F (i, j, A[i]) = {f(i, j, C)|C ∈ CF (i, j, A[i])}. (4)

A minimum representative subset of C(i, j), say CF (i, j),
can be got by checking every two members in CF (i, j − 1)
∪ CF (i− 1, j) ∪ CF (i, j, A[i]) for if they admit the same
confused gene family sets in C(i, j), and if yes, removing the
shorter one of them.

Aiming to use less storage space in the dynamic program-
ming, we select to maintain the confused gene family sets and
lengths of those common exemplar subsequences in CF (i, j)

F (i, j, CF (x, y)) =

F (x, y) A[i] ∈ A[i + 1,m] ∧ B[j + 1, n], B[j] ∈ A[i + 1,m] ∧ B[j + 1, n];

SM(F (x, y), {A[i]}) A[i] /∈ A[i + 1,m] ∧ B[j + 1, n], B[j] ∈ A[i + 1,m] ∧ B[j + 1, n];

SM(F (x, y), {B[j]}) A[i] ∈ A[i + 1,m] ∧ B[j + 1, n], B[j] /∈ A[i + 1,m] ∧ B[j + 1, n];

SM(F (x, y), {A[i], B[j]}) A[i] /∈ A[i + 1,m] ∧ B[j + 1, n], B[j] /∈ A[i + 1,m] ∧ B[j + 1, n];

(2)

instead of CF (i, j) itself. Let f = f(i, j, C) be the confused
gene family set of C ∈ C(i, j). Then the length of C is referred
to as the CES length of f and denoted as L(f). The CES
length of an arbitrary confused gene family set f in F (i, j,
CF (i− 1, j)), F (i, j, CF (i, j − 1)), or F (i, j, A[i]), can be
computed recursively as in Formula (5).

L(f)=

L(f(i−1, j, C)) f=f(i, j, C)∈F (i, j, CF (i−1, j));

L(f(i, j−1, C)) f=f(i, j, C)∈F (i, j, CF (i, j−1));

L(f(i−1, j−1, C′)+1 f=f(i, j, C)∈F (i, j, A[i]), C=C′ ∥A[i].

(5)

Let F (i, j) denote the confused gene family set collection
of CF (i, j). To extract F (i, j) from F (i, j, CF (i − 1, j))
∪ F (i, j, CF (i, j − 1)), or F (i, j, CF (i − 1, j)) ∪ F (i, j,
CF (i, j − 1)) ∪ F (i, j, A[i]), it suffices to check every two
members in F (i, j, CF (i− 1, j)) ∪ F (i, j, CF (i, j − 1)) or
F (i, j, CF (i−1, j)) ∪ F (i, j, CF (i, j−1)) ∪ F (i, j, A[i]) for
if they are equal to each other, and if yes, removing from them
that one with small CES length than the other. Let F denote
a confused gene family set collection. We use a subroutine
named as U(F) to find a minimum representative subset of F .
Finally, F (i, j) can be expressed recursively in Formula (6).

F (i, j)=

{
U(F (i, j, CF (i−1, j))∪F (i, j, CF (i, j−1))) A[i]̸=B[j];

U(F (i, j, CF (i−1, j))∪F (i, j, CF (i, j−1))∪F (i, j, A[i])) A[i]=B[j]
(6)

The confused gene family set collections of A[1, i] and
B[1, j], F (i, j) for 0 ≤ i ≤ m, 0 ≤ j ≤ n, can be got by
Algorithm 1.

Algorithm 1 The dynamic programming for LCES
1: F (i, 0) = F (0, j) ← {∅}, 0 ≤ i ≤ m, 0 ≤ j ≤ n;
2: for i from 1 to m do
3: for j from 1 to n do
4: Get F (i, j) by (2), (3), (4), (5), (6);
5: end for
6: end for

Then by tracing back from F (m,n) to F (i, j) where i = 0
or j = 0, a common exemplar subsequence of A and B can
be got.

If at least one of the two given genomes is s-span, then
Algorithm 1 can get a longest common exemplar subsequence
of A and B in O(s4smn) time with O(s2smn) space.

IV. CONCLUSION

In this paper, we proposed a dynamic programming algo-
rithm for LCES with space complexity O(s2smn) and time
complexity O(s4smn) if one of the two given genomes is s-
span, where m, n stand for the gene numbers of those two
given genomes. Our algorithm can be extended to find longest
common exemplar subsequences of more than one genomes.

REFERENCES

[1] G. Blin, G. Fertin, F. Sikora, and S. Vialette, “The exemplarbreakpoint-
distance for non-trivial genomes cannot be approximated,” Journal of
Thermal Analysis & Calorimetry, vol. 36, no. 1, pp. 1–7, 2009.

[2] D. Sankoff, “Genome rearrangement with gene families,” Bioinformatics,
vol. 15, no. 11, pp. 909–917, 1999.

[3] Z. Chen, B. Fu, and B. Zhu, The Approximability of the Exemplar
Breakpoint Distance Problem. Springer Berlin Heidelberg, 2006.

[4] C. T. Nguyen, Y. C. Tay, and L. Zhang, “Divide-and-conquer approach
for the exemplar breakpoint distance.” Bioinformatics, vol. 21, no. 10,
pp. 2171–2176, 2005.

[5] D. Bryant, “The complexity of calculating exemplar distances,” Compu-
tational Biology, vol. 1, pp. 207–211, 2000.

[6] G. Blin and R. Rizzi, Conserved Interval Distance Computation Between
Non-trivial Genomes. Springer Berlin Heidelberg, 2005.

[7] A. Bergeron and J. Stoye, “On the similarity of sets of permutations and
its applications to genome comparison,” in International Computing and
Combinatorics Conference, 2003, pp. 68–79.

[8] S. Bérard, A. Bergeron, and C. Chauve, “Conservation of combinatorial
structures in evolution scenarios,” Lecture Notes in Computer Science,
vol. 3388, pp. 1–14, 2004.

[9] B. Zhu, “Approximability and fixed-parameter tractability for the exem-
plar genomic distance problems,” Lecture Notes in Computer Science,
vol. 5532, pp. 71–80, 2009.

[10] S. Angibaud, G. Fertin, and I. Rusu, “On the approximability of
comparing genomes with duplicates,” in International Workshop on
Algorithms and Computation. Springer, 2008, pp. 34–45.

[11] B. Fu and L. Zhang, “A polynomial algebra method for computing exem-
plar breakpoint distance,” in International Symposium on Bioinformatics
Research and Applications. Springer, 2011, pp. 297–305.

[12] M. Jiang, “The zero exemplar distance problem,” Journal of Compu-
tational Biology A Journal of Computational Molecular Cell Biology,
vol. 18, no. 9, p. 1077, 2011.

[13] D. Zhu and L. Wang, “An exact algorithm for the zero exemplar break-
point distance problem,” IEEE/ACM Transactions on Computational
Biology & Bioinformatics, vol. 10, no. 6, pp. 1469–1477, 2014.

[14] P. Pevzner and G. Tesler, “Genome rearrangements in mammalian
evolution: lessons from human and mouse genomes.” Genome Research,
vol. 13, no. 1, pp. 37–45, 2003.

[15] Z. Wei and D. Zhu, “A dynamic programming algorithm for unsigned
(1,2)-exemplar breakpoint distance problem with span constraint,” in
Sixth International Conference on Business Intelligence and Financial
Engineering, 2014, pp. 39–43.

