
Abstract—Online social networks (OSNs) often contain sensi-
tive information about individuals. Therefore, anonymizing social
network data before releasing it becomes an important issue.
Recent research introduces several graph abstraction models
to extract graph features and add sufficient noise to achieve
differential privacy.

In this paper, we design and analyze a comprehensive dif-
ferentially private graph model that combines the dK-1, dK-
2, and dK-3 series together. The dK-1 series stores the degree
frequency, the dK-2 series adds the joint degree frequency, and
the dK-3 series contains the linking information between edges.
In our scheme, low dimensional data makes the regeneration
process more executable and effective, while high dimensional
data preserves additional utility of the graph. As the higher
dimensional model is more sensitive to the noise, we carefully
design the executing sequence. The final released graph increases
the graph utility under differential privacy.

Index terms—Social network data publishing; anonymization;
differential privacy; dK graph abstraction model

I. INTRODUCTION

Studying OSNs through graph analysis could produce
knowledge of human social relationships, help feed advertise-
ments to recommendation targets, and evaluate the effective-
ness of applications. Since OSN data contains personal infor-
mation, any releasing procedure without sufficient anonymiza-
tion work causes panic to the users of social media. Various
anonymization techniques have been proposed. Differential
privacy is one of the most remarkable techniques, since it
could theoretically achieve a strong privacy guarantee [2].

Differential privacy requires graph abstraction models to
convert the graph structure into numerical-like data. Fig. 1
gives an example of the dK model. The dK model is separated
into different dimensions. The dK-N model captures the degree
distribution of connected components of size N. For example,
〈1, 4〉 = 2 means that there are two node groups of degree
1 and degree 4. Sala et al. employed the dK-2 series as the
graph abstraction model to achieve differential privacy [10].

However, deploying one abstraction model can only cap-
ture some aspects of information, while other utilities are
lost in the published graph. For example, because the dK-
2 graph model is the record of edges, it may not preserve
information involving more than two nodes, e.g., the clustering
coefficient. The limitations in the models restrict their abil-
ity to achieve structural similarity under differential privacy.
Therefore, choosing the right abstraction model becomes an
important issue. Mahadevan et al. proved that dK models in
higher dimensions have more information than the ones in
lower dimensions, e.g., the dK-3 model is more precise than
the dK-2 model [5].
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Fig. 1: An example of the dK model

Our initial idea is to preserve differential privacy with
the dK-3 model. To the best of our knowledge, there is no
systematic regeneration algorithm for dK-3 model because of
its complexity [5, 10]. In our study, we also find that it is hard
to reconstruct the graph with only the dK-3 series. However,
after studying the differences between the dK-1, dK-2, and
dK-3 series, we find that low dimension dK series, i.e., dK-
1 and dK-2, can help the regeneration process. And we can
use some rewiring algorithms to inject the dK-3 series in our
published graph.

In this paper, we absorb the benefits of different models
and design a new comprehensive model that combines three
levels of dK graph models together. To achieve differential
privacy, we introduce noise on the dK-2 level, which causes
less distortion than on dK-3 level. Then we use the perturbed
dK-2 series to get the corresponding dK-3 and dK-1 series.
After that, we use three levels of dK series together in our
scheme to construct a new graph. The noise impact is the
major challenge in the graph regeneration process. Although
the three models in our scheme are closely related, they may
conflict with each other because of noise. Hence, we first use
some dK information to regenerate an intermediate graph, then
use the remaining information to rewire the edges.

The major technical contributions are the following: (1) We
are the first to build the systematic regeneration algorithm for
embedding dK-3 information in graph anonymization, which
helps to preserve more utility than existing dK models. (2) We
combine the dK-3 model with both dK-1 and dK-2 models in
sampling and graph regeneration, which mitigates the high
sensitivity and complexity in the dK-3 model and makes the
design practical. (3) We design two different routes, CAT
and LTH, to generate the graph efficiently and effectively,
even under the noise impact. (4) We reveal the insights and
challenges of using different levels of dK abstraction models
jointly to enhance the utility under differential privacy.
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II. PRELIMINARIES

A. The dK graph model
In this paper, an OSN graph is modeled as an undirected

graph G = (V,E), where V is the set of vertices and E is
the set of edges. |V | means the cardinality of set V . dv is the
degree of the vertex v. eu,v means an edge between nodes u
and v.

Since differential privacy is applied on the query result, the
dK graph model is chosen to transform an input graph into
a set of structural statistics. Although many models can give
graph statistical information, the dK graph model is better than
most of them because the dK series could be used to construct
a new graph having structural similarities with the original
graph.

The dK-N model captures the degree distribution of con-
nected components of size N in a target graph [5]. For
example, dK-1, also known as the node degree distribution,
counts the number of nodes in each degree value. The dK-
2 model, also called joint degree distribution, captures the
number of edges in each combination of two degree values. In
this paper, we define the dimension of dK information as the
subgraph size (N). Hence, the dK-1 series has lower dimension
than dK-2.

The dK-3 model captures the number of 3-node subgraphs
with different combinations of node degrees. Specifically, there
are two kinds of 3-node subgraphs: wedges and triangles.

The wedge dK-3 entry: The dK-3 entry 〈∨, du, dv, dw〉 =
k means that there are k 3-node wedges which have the
node degree values equal to du, dv , and dw, and each of the
two subgraphs have at least one different node. In order to
prevent double counting, du should be less than or equal to
dw. Assume the combination of nodes u, v and w forms such
a subgraph, then w should not be the neighbor of u.

The triangle dK-3 entry: The dK-3 entry
〈5, du, dv, dw〉 = k means that there are k triangles with
node degree du , dv , and dw. To prevent double counting, we
have du 6 dv 6 dw. The node set of the subgraph should be
V = {u} ∪ {v|eu,v ∈ E} ∪ {w|ev,w ∈ E ∧ eu,w ∈ E}.

The error between two dK-3 series is defined as the sum of
all absolute differences in each corresponding dK-3 entry.

err3 =
∑

dK-3 entry

|ki − k′i|. (1)

Similarly, err1 and err2 measure the errors in the dK-1
and dK-2 series. Our purpose here is to reduce these errors to
decrease unnecessary noise.

III. SCHEME

Given an OSN, our goal is to publish an anonymized
network that preserves the structural utility as much as possible
while satisfying ε-differential privacy. The general idea is to
add sufficient noise to the dK model and reconstruct a graph
G based on the perturbed dK series.

As mentioned in previous research, a model of higher
dimension is more precise, but it is difficult to directly
reconstruct the graph from the dK-3 series [5, 10]. It is not a
good idea to start with adding noise to the dK-3 series. Another
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Fig. 2: Scheme overview

option is to add noise to the dK-1 series. However, the dK-2
and dK-3 series also need the corresponding perturbation in
order to maintain consistency. Because the dK-1 series has no
information of edges, it is hard to do those perturbations. In
the scheme, we inject noise into the dK-2 series.

After injecting noise, our purpose in the graph regeneration
process is to publish a graph with similar dK series as the
perturbed results (in all three levels). There are two main
routes in graph regeneration, starting with the dK-1 series or
starting with the dK-2 series. We design two sub-schemes,
shown in Fig.2, called CAT and LTH, and the mutual steps
are marked in ‘both’. After the regeneration part, both sub-
schemes have an active rewiring procedure to mitigate their
errors, e.g., the dK-2 and dK-3 series have not been used by
LTH.

In the following sections, we discuss these components,
which are also shown in Fig. 2:
1. Perturb the dK-2 series under differential privacy,
2. Build the dK-3 model with perturbed dK-2 series,
3. Recover the dK-1 information,
4. Reconstruct the perturbed graph with different combina-

tions of dK series,

A. dK-2 perturbation
After counting the dK-2 entries, we apply the Laplace

mechanism to achieve differential privacy [3].

Theorem 1 (LAPLACE MECHANISM). For a function f :
D → Rd, the randomized algorithm A

A(G) = f(G) + Lap(
4f
ε

) (2)

achieves ε-differential privacy [6]. The sensitivity 4f of a
function f is the maximum distance of any two neighbor
databases D1 and D2 in `1 norm.

According to Equation 2, the noise level is determined
by the sensitivity 4f and the privacy parameter ε. In OSN
anonymization problem, the sensitivity shows the impact of
adding or deleting an edge in the model. The sensitivity of
dK-2 series is shown below.

Property 1. Given an entry 〈dx, dy〉 in the dK-2 model, the
sensitivity 4f is upper bounded by 2 · dx + 2 · dy + 1.

Proof. Let ex,y be a new edge added to the graph G between
nodes x and y. There is one new dK-2 series 〈dx, dy〉 getting



incremented by 1. Also, the degrees of x and y increase from
dx and dy to dx+1 and dy+1, respectively. In the original dK-
2 model, there are dx series related with the node x, which are
in the form of 〈du, dx〉 and 〈dx, du〉. These series are deleted,
while new series, 〈du, dx + 1〉 and 〈dx + 1, du〉, are added.
Hence, totally 2 ·dx+2 ·dy+1 dK-2 series are changed when
the new edge is added.

Hence, we set 4f = 2 · dx+2 · dy +1 in our scheme. The
perturbed dK-2 entry is 〈dx, dy〉 = k + Lap(4fε ).

B. dK-3 construction

Given the dK-2 model, we construct the dK-3 model to
preserve edge linking information. Particularly, if one dK-2
entry is perturbed, its corresponding dK-3 entries are also
perturbed, which leaks no edge information beyond differential
privacy. Hence, we examine the influence of dK-2 perturbation
on the dK-3 model in the example of one edge eu,v , then do
the modification.

First, there is a simple case in which all three-node pairs in
the graph are wedges. There are du− 1 edges connected with
the node u. Then the edge produces du − 1 dK-3 entries in
the form of 〈∨, dx, du, dv〉 or 〈∨, dv, du, dx〉. Similarly, it also
produces dv − 1 dK-3 entries in the form of 〈∨, dy, dv, du〉
or 〈∨, du, dv, dy〉. Hence, there are totally du + dv − 2 dK-3
wedges entries produced by the edge eu,v .

Second, we improve the case that the graph has some
triangles. Adding an edge eu,v between node u and v, if they
have a common neighbor x, the original entry 〈∨, du, dx, dv〉
will be changed to 〈5, du, dx, dv〉. However, if they do not
have a common neighbor, there will be some new entries
added, like the case before. Therefore, the total number of
dK-3 entries containing the edge eu,v is also affected by the
number of triangles.

Adjusted dK-3 model. We find that if we deploy some
specific counting method for triangles, the wedges and trian-
gles can be treated equally. Thus, the adjusted dK-3 model is
proposed to simplify the calculation of the dK-3 series. The ad-
justed model is completely based on the basic dK-3 series. Us-
ing the adjusted model will not increase or decrease the ability
of the dK-3 series to present or reconstruct the graph. The new
model does not change the wedge entry 〈∨, du, dv, dw〉. But if
there is a triangle entry 〈5, du, dv, dw〉 = k, it will be replaced
by three entries, 〈5, du, dv, dw〉 = k, 〈5, dv, dw, du〉 = k, and
〈5, dw, du, dv〉 = k. In the following sections, all dK-3 series
are sampled in the adjusted dK-3 model. After deploying the
adjusted dK-3 model, deleting or adding an edge eu,v always
changes du + dv − 2 dK-3 entries. In the following sections,
a wildcard character ∗ is used to match ∨ and 5. The dK-3
entry is like 〈∗, du, dv, dw〉.

In the above section, the dK-2 series is perturbed for privacy.
Each unit of increment or decrement in dK-2 entries could
be viewed as one edge adding or deleting. Then we do
corresponding modifications on the dK-3 series. Specifically,
for increasing or decreasing, there are three possible changes
in dK-3 entries

1) Replacement: If 〈du, dv〉 decreased by one and 〈du, dw〉
increased by one, the graph replaces the edge eu,v by

Algorithm 1 dK-1 graph regeneration (LTH)
Input: dK-1
Output: G1(V1, E1): the perturbed graph

1: V1 ← dK-1 I add nodes with degree labels
2: for i = 1, i 6 |V |, i++ do
3: pick a node u with degree di
4: while u is unsaturated do
5: if all nodes linked with u then break I non-graphical
6: pick v with the highest degree among all unsaturated

nodes unconnected with u, adds edge eu,v
7: end while
8: end for
9: return G1

eu,w. So we pick min(dw, dv)+du−2 dK-3 entries and
use the number dw to replace dv in the dK-3 entries.

2) Subtracting: For each unit of decrement in 〈du, dv〉, the
graph deletes the edge eu,v . So we reduce the dK-3 entries
containing 〈du, dv〉 by the total value of du + dv − 2.

3) Adding: For each unit of increment in 〈du, dv〉, the graph
adds an edge eu,v . The formation part is a little special
because there is no original record of the neighbors of u
or v. So we randomly pick a structure, wedge or triangle,
and a degree number, dx, in the range of [1, dmax]. Then
we add the total value of du+ dv − 2 to the dK-3 entries
containing 〈du, dv, dx〉.

C. dK-1 recovery
The dK-1 series is also important in the generation of the

graph. Unlike the dK-3 series, it can be recovered directly from
the dK-2 series. It is calculated by the following equation.

〈dv〉 =
∑

dK-2 entry〈du, dv〉+
∑

dK-2 entry〈dv, du〉
dv

. (3)

Equation 3 shows that the high dimensional data, e.g., dK-2,
contains all the information of the low dimensional data, e.g.,
dK-1.

D. Graph regeneration
Given the target dK-2, dK-3, and dK-1 series, we need to

regenerate the corresponding graph. Focusing on a different
level of dK series, we propose two sub-schemes, namely CAT
and LTH, with different regeneration algorithms.

The LTH scheme starts from the dK-1 series, the main
reason is that dK-1 series is the base of the graph. If the
degree of a node has an error, there will be large distortion
on the corresponding dK-2 and dK-3 series. Hence, LTH just
needs the dK-1 information and to generate a graph with the
least err1. By contrast, the CAT scheme considers the dK-2
and dK-3 series in regeneration because rewiring edges cannot
guarantee to achieve the lowest err2 and err3. This scheme
aims to reduce err2 the most, while preserving some dK-3
information as well.

In both schemes, we call a node ‘saturated’ if it has as
many neighbors as its label (dK-1 information), and call it
‘unsaturated’ otherwise. If the value of a dK entry in the graph
reaches the target value, we call it ‘full’.

LTH Algorithm 1 firstly sorts the degree sequence into a
non-increasing order, which means d1 > d2 > ... > d|V |.



Algorithm 2 dK-2+ graph regeneration (CAT)
Input: dK-1, dK-2, dK-3
Output: G1(V1, E1): the perturbed graph

1: V1 ← dK-1 I add nodes with degree labels
2: while exists dK-2 entry not full do
3: ———————–beginning phase————————
4: randomly pick 〈∗, du, dv, dw〉 not full in dK-3′

5: if 〈du, dv〉 not full in dK2′ then
6: if exists u and v unconnected and unsaturated
7: if ∗ = ∨, add edge eu,v
8: if ∗ = 5, add edge eu,v, eu,w
9: update dK-2 and dK-3 entries

10: else if exists u and v connected and unsaturated
11: I adding edge causes multi-edges
12: NeighborSwitch(u, v)
13: else mark 〈du, dv〉 full, continue
14: I 〈du, dv〉 cannot form an edge
15: else continue
16: end if
17: do Step 5-16, between v and w
18: ——————–continuing phase————————–
19: pick 〈∗, dv, dw, dx〉, do Step 5-16 between w and x
20: end while
21: return G1

Algorithm 3 NeighborSwitch(u,v)

1: find unsaturated node v′ with degree dv , eu,v′ /∈ E1

2: let z be a neighbor of v′, ez,v′ ∈ E1 and ez,v /∈ E1

3: E1 removes edge ez,v′ , adds edge ez,v and eu,v′

4: increase 〈du, dv〉 in dK-2′

Each number in the sequence also represents the target degree
value of a corresponding node. Then, beginning from the first
node with degree d1, the algorithm links the node with d1
nodes. These nodes are chosen from the set of nodes that
are unconnected with the first node, which having highest
degree values among the set. According to [1], a graph can be
reconstructed with the exact dK-1 information if and only if
every node v is connected to all dv nodes in the leftmost part
of the degree sequence (having the highest degree values).

CAT Algorithm 2 orderly picks dK-3 entries. For example,
if it picks 〈∗, du, dv, dw〉 in previous round, this round it picks
〈∗, dv, dw, dx〉. Then it tries to add one edge to the graph if
these two nodes can pass the edge check. Here, the edge check
means there are two unsaturated nodes with the correct degree,
the two nodes are not connected, and the corresponding dK-
2 entry is not full. After adding the edge, the corresponding
dK-2 and dK-3 entries are updated. The regeneration process
stops when there are no node pairs that can pass the edge
check. Also, in the edge check process, it may happen that
the only pair of unsaturated nodes are already connected.
Simply connecting them together forms multi-edges in the
graph, which is forbidden in OSNs. Algorithm 3 switches one
neighbor from a saturated node to an unsaturated node with
the same label.

The orderly picking is the continuing phase in Algorithm
2. However, if Algorithm 2 cannot find the continuing dK-
3 series, e.g., 〈∗, dv, dw, dx〉, it uses the beginning phase to
randomly choose a new dK-3 series, and adds two (wedge
dK-3) or three (triangle dK-3) edges in the graph.

IV. RELATED WORK

For sharing social network data, naive ID removal and K-
anonymity are two widely used methods in social network
data anonymization [7, 12, 13]. Recently, researchers proposed
various kinds of structural-based de-anonymization attacks
[4, 8, 9, 11]. They revealed the vulnerabilities of previous
anonymization techniques in different angles. Differential pri-
vacy, which could achieve a strong privacy guarantee, was
initially proposed to release certain data mining results, like
the degree distribution and other graph patterns [2].

V. CONCLUSION

In this paper, we propose a uniform scheme that combines
three levels of dK graph models to publish a perturbed social
network. We design two different sub-schemes, CAT and
LTH, to regenerate the graph and reduce the error under the
differential privacy noise impact. Our two schemes have dif-
ferent merits in preserving graph utility. The design, analysis,
and comparison also reveal more insights and challenges in
using multiple levels of graph abstraction models together in
differential private graph releasing for OSNs.
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