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Abstract

This paper presents a robust compound control strateqy to produce a stable
gait in dynamic bipedal robots under random perturbations. The proposed
control strategy consists of two interactive loops: an adaptive trajectory gen-
erator and a robust trajectory tracking controller. The adaptive trajectory
generator produces references for the robot controlled joints without a-priori
knowledge of the terrain features and minimizes the effects of disturbances
and model uncertainties during the gait, particularly during the support-leg
exchange. The trajectory tracking controller is a non-switching robust mul-
tivariable generalized proportional integral (GPI) controller. The GPI con-
troller rejects external disturbances and uncertainties faced by the robot dur-
ing the swing walking phase. The proposed control strateqy was evaluated
on the numerical model of a five-link planar bipedal robot with one degree of
under-actuation, four actuators, and point feet. The results showed robust
performance and stability under external disturbances and model parameter
uncertainties on uneven terrain with uphills and downhills. The stability of
the gait was proven through the computation of a Poincaré return map for
a hybrid zero dynamics with uncertainties (HZDU) model, which shows con-
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vergence to a bounded neighborhood of a nominal orbital periodic behavior.
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1. Introduction

After more than five decades of research on stability and motion control,
bipedal robots have evolved from passive walking mechanisms, e.g., [1], to
sophisticated humanoids with the ability to run and evade obstacles, e.g.,
[2]. Due to their potential application in tasks such as rescue missions [3],
space exploration [4], and rehabilitation [5] [6], research on bipedal robot mo-
tion remains increasingly active. According to the control strategy, walking
robots can be divided into two groups: (1) walkers with static stability and
(2) dynamic walkers. Walkers with static stability have achieved robust gaits
with skills to interact with complex environments—an outstanding example
is Honda R&D’s ASIMO [7]. The control of walkers with static stability is
based on the zero moment point (ZMP) principle [8]. The ZMP principle en-
sures static stability by locating a reaction point inside a supporting polygon
defined by the area under the robot’s feet. This control strategy provides
the robustness needed to reject disturbances generated by unstructured en-
vironments and allows them to move in areas built for humans [9]. While
effective, the use of the ZMP principle requires flat contact between the feet
and the ground during the complete gait cycle, which results in unnatural
movements and high energy consumption.

Dynamic walkers have been designed to utilize the potential energy of
their body, decrease energy consumption, and attain a natural gait [10, 11].
These robots can be described with hybrid dynamic models composed of
continuous dynamic functions connected by discrete reset functions. The
continuous dynamic functions simulate the swing phase of the gait and the
discrete reset functions simulate the support-leg exchange. The hybrid dy-
namics produced by the continuous and discrete functions are handled by
a compound control strategy that uses two interacting loops: a trajectory
generator and a trajectory tracking controller. The trajectory generator con-
sists of a set of off-line reference trajectories satisfying holonomic constraints.
These constraints, also referred to as virtual holonomic constraints (VHC),
are induced through a feedback control loop [12, 13| 14, 15]. The off-line
reference trajectories are the solution of a parameter optimization problem



consisting of minimizing the mechanical cost of transportation (MCT) sat-
isfying natural kinematic and dynamic constraints of a reduced model, i.e.,
hybrid zero dynamics (HZD) [16]. Exponentially stable periodic orbits of the
HZD correspond to exponentially stabilizable orbits of the full model.

The trajectory tracking controller implements feedback linearization and
proportional derivative controllers [16] [17]. Recently, robust nonlinear con-
trollers have been proposed [18], 19} 20} 21, 22, 23, 24], 25|, 26]. These con-
trollers can deal with random variations of the terrain through exhaustive
trajectory generation strategies and the optimization of trajectory references
or VHC [18] 19, 20]. Nonlinearities such as the physical saturation of the ac-
tuators have been also addressed through optimal nonlinear control strategies
nonholonomic, virtual constraints to generate gait trajectories [21], 22] 27, 26].
Unfortunately, such approaches rely on the accuracy of the robot model. Re-
cently, disturbance observers have been developed to estimate and reject
internal and external disturbance. [28, 29]. A limitation of these strategies
is the need of an explicit state observer. Benefits in robustness have been
also explored with the use of a motorized reaction wheel |30, B1]. However,
these current compound control strategies are susceptible to model mismatch-
ing and external disturbances in bipedal robots. This is evident during the
support-leg exchange event where the reference trajectories and the tracking
errors suffer a sudden change. This produces high transitory responses and,
ultimately, the instability of the gait. Examples of high transitory responses
on physical prototypes can be found in [32], 2I]. To alleviate this problem,
VHC modifications have been proposed in 2D and 3D bipedal robots [33], 2§].
Even though this technique improves gait stability, it requires an event-based
controller to select a VHC from a repository of reference trajectories.

This paper introduces a robust compound control strategy for dynamic
walkers. The trajectory generator of the proposed strategy uses modified
VHC, which include the step-length as one of the control variables. This
allows (1) to modify the walking pattern to address internal and external
disturbances such as model mismatching, external disturbance forces, and
changes in the terrain topography, and (2) to generate trajectories for stable
and smooth cyclic walking under reasonable deviations of the nominal states
during the support-leg exchange event. The trajectory tracking controller
of the proposed strategy is a multivariable robust GPI controller [34]. This
GPI controller, which is formulated within the scope of an active disturbance
rejection control (ADRC) framework [35] 29], assumes that the endogenous
and exogenous disturbances can be lumped into a total disturbance signal



[36, 37, 38]. The GPI controller has been successfully used in a flat-foot
bipedal gait exoskeleton [39] and a bipedal robot with static stability [40].
In this work, the GPI controller is further extended to trajectory tracking of
underactuated dynamic bipedal robots.

The effectiveness of the robust compound control strategy is demon-
strated with the analysis of the total walking stability of a dynamic bipedal
robot. The Poincaré section method is used to verify the existence of a
bounded neighborhood around a nominal, periodic, and stable orbit in the
states of the HZD. The existence of such neighborhood allows to conclude
that the full hybrid model also has a neighborhood around a nominal, pe-
riodic, and stable orbit, which proves gait stability under bounded model
uncertainties and bounded disturbances.

This paper is organized as follows: Section [2|describes the hybrid model of
the dynamic bipedal robot. Section |3| presents the multivariable robust GPI
control strategy. Section |3.4] analyzes the HZD for the uncertain dynamic
bipedal robot. Section [4] shows the results of the total stability test in which
the Poincaré return map is used. In Section 5], an adaptive virtual constraint
is proposed as trajectory generation strategy; here, a technique to minimize
the transitory responses in the support-leg change event is also presented.
Section [6] contains the numerical evaluation and physical experimentation of
the proposed strategies. Finally, Section [7] summarizes the accomplishments
of this work and draws recommendations for future developments.

2. Dynamic Bipedal Robot Hybrid Model

The bipedal robot prototype considered in this work is shown in Figure[1]
This robot consists of five rigid links forming a torso, two identical legs, and
a hip. Each legs is composed of a thigh and a shin connected by a revolute
joint working as a knee. The legs-ends have a point-foot without ankle. The
robot’s hip is attached to a bar that constraints the gait to a circular path;
however, for all practical purposes, it is assumed that the robot follows a
straight path and all movements are on the sagittal plane.

The robot has seven degrees of freedom (DOFs) as shown in Figure [1}
two thigh angles h, and h; at the right and left side of the hip, two shin
angles k, and k; at the right and left knees, one angle at the torso g with
respect to a global fixed frame, and two cartesian coordinates x and y of the
standing leg.



It is assumed that the double support phase of the gait is instantaneous
and that the support leg-end in the swing phase has unilateral constraints.
In this way, it does not have rebound or slip, its normal reaction force is
repulsive, and the (tangential) friction force is inside of a friction cone. The
unilateral constraints transform the support leg-end into a pivot and reduces
the DOF's from seven to five. Therefore, the robot is designed with only four
actuators: two in the hip and two in the knees. The robot has one degree of
underactuation.

Figure 1: Multibody model of the bipedal robot and robot prototype

In this work, the Lagrange differential equation is used to find a per-
turbed model of the robot in the swing phase. For detaills about the model
construction see: [17], 36, 41]. The resulting Euler-Lagrange equation is

Ds(Qs)éjs + Cs(st (js)(js + GS(QS) = BS(QS)U + 5((]57 QS) + Cv (1>

where ¢, is a vector of the generalized coordinates. The configuration of the
vector ¢; dependents on which leg is in support. This is,

. ._{ [hy h. ki k. qr]T  for left support,

[ h, Iy k. Kk qr ]t  for right support, (2)

Dq(gs) is the inertial matrix, C(gs, 4s)gs is a vector of centripetal and Coriolis
effects, G4(gs) is a vector of torques associated to the gravity, B,(gqs)u is a



vector of generalized torques, §(¢s, ¢s) is an unknown bounded vector of model
uncertainties, and ¢ is an unknown bounded vector of external disturbances.

The perturbed model can be expressed in state space by rewriting in
the general input affine form

&= [f(x) + g(x)u +(z,1), (3)

where x := [ gt Gst }T is the state space vector in R",

J— i qs
f(l’) T ! Ds(qs)_l [—CS(QS7QS>QS - Gs(Qs)] :| 7 (4>
g(l’) - L Ds(qs(;_lBs :| , (5>
B [ 0
V(@ t) = | Dy(qs) 7 [0(gs, Gs) + C(2)] } ‘ o

The support-leg exchange is a discrete event that can be modeled as
rigid body collision [42]. To find a suitable mathematical description, our
work follows the approach proposed by [43, [16]. The connection between the
continuous dynamics of the swing leg phases is given by an instantaneous
double support phase, which is modeled by a discrete reset function that maps
the state variables from the values just before the support-leg exchange to
the values after it. In order to consider the uncertainties of the model, a reset
function with uncertainties is proposed to describe the discrete dynamics in
the support-leg exchange. This is,

= A(z7) + ya, (7)

where = and a7 are the state variables just before and after the support-
leg exchange, respectively. A(z~) is a reset function that under nominal
condition maps the states variables before the support-leg exchange to the
states after the support-leg exchange. This function is described by

Al = [ Af(rgq; } | ¥

where A, represents the angles relabeling in the role change of the legs in

the support-leg exchange and A, is a function that resets and relabels the
angular velocities [17]. Given that A, and A; are functions of the robot’s
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parameters, the uncertainties in such parameters produce also uncertainties
in the state variable after the support-leg exchange. In order to model the
effects of such uncertainties, an input-equivalent disturbance v, is added to
the reset map function as shown in ([7)).

The hybrid model considers the continuous model and the discrete
reset function ([7)) as

Ja=f@) +g@uta(zt), 1 ¢S
% { xt =A(z7) + ya, r~ €S8, ©)

where the switching set is defined as

S={[a" ¢ ]TeR"|plas) =d, P3¢, ds) <0}, (10)

where p4(qs) is the vertical Cartesian position of the swing leg-end, and d is
the terrain height. The terrain height is defined with respect to the support
leg-end. In this way, d = 0 represents a flat terrain, which corresponds to
walking on nominal condition, d > 0 indicates an uphill terrain, and d < 0 is
a downhill terrain. If the terrain is rough (uncertain), then d is random. For
control design purpose d is considered constant d = 0 and the robustness of
the control strategy is evaluated in bonded values of d such as

dmin S d S dmax; (11>

where d,,;, and d,,q, are the minimum and maximum terrain heights, respec-
tively.

Since the model uncertainties and the external disturbances act collec-
tively attempting against the gait stability, this work develops in Section [3| a
robust multivariable control strategy to reject disturbances in the continuous
dynamics of the actuated robot joints. On the other hand, Section [5|develops
an adaptive trajectory generation strategies to overcome the disturbances in
the discrete dynamics and underactuated degrees of freedom.

3. Robust Multivariable Generalized Proportional Integral (GPI)
Controller

Robust generalized proportional integral controllers are known to effi-
ciently track trajectories and reject input perturbations avoiding the explicit
use of state observers [44]. Instead, a structural reconstruction of the state



variables is performed through iterated integrations of the inputs, outputs,
and the errors, which complete the stable feedback design. As a result, con-
trol laws based on state feedback can be implemented without the necessity
of asymptotic observers [45]. However, the necessary conditions to apply GPI
controllers to underactuated hybrid dynamic systems is still unclear.

In order to define the operation conditions of a GPI controller in a hybrid
dynamic system, a robust multivariable GPI controller is designed into four
stages. First, a model decomposition is performed to isolate the actuated
joints from the underactuated one. Second, a partial feedback linearization is
performed to linearize the actuated part of the continuous dynamics. Third,
a chain of iterated integral reconstructors is built to form the GPI control
structure. Finally, the internal dynamics of the robot is analyzed with the
definition of a hybrid zero dynamics with uncertainties.

3.1. Model decomposition

In order to apply the GPI controller to the trajectory tracking problem
of a dynamic bipedal robot, the continuous model is written in compact
form as

Ds(Qs)ds +Q<QS) = BS(QS)U’—F&E(q'ﬁq‘S)? (12>

where
Q(gs) = Gs(gs), (13)
:)/E(qsa Qs) = _Cs(qsa %’)st + 6((157 QS) + C (14>

Now, let us decompose the perturbed model into the actuated and
the underactuated parts of the system. This is:

|:D11(QS> Du(%)} {db} . {Ql(qs)} .

ey

where ¢, are the controlled joints and gy is the underactuated DOF. In our
robot this corresponds to the torso absolute angle gr. Then, the decomposed
model representation is used to express the model as a function of the
actuated variables as follows:

Go = K (qs)u +V(qs) + 7e(qs, s), (16)
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where

) = Ky Bi(gs),

Ve (@ Gs) = 17" (Fer(gs: ds) — D12(4s) D33 (45)¥e2(4s, 9))
) == k1" (=Q1(gs) + Dia(gs) D3 (45)Q0(qs))

k1 := [D11(¢s) — D12(g5) D35 (¢5) D2n(q5)] -

3.2. Partial feedback linearization

The following assumptions are proposed for the lumped disturbance vec-
tor ~e(gs, ) in (L6):

(1) 7e(gs,gs) contains endogenous and exogenous disturbances,

(i) 7Ye(gs, ds) can be locally approximated, on a time window around the
current time, by self-updating time polynomials of m — 1 order,

(iii) 7¢(gs,¢s) and its first m time-derivatives are bounded almost every-
where. In such a way, there exists a finite constant &; that satisfies
sup |7€(l)| <e;, i=0,...,m for all £ > 0 except during the discontinu-
ities of the lumped disturbance signals.

In a self-updating fashion, this allows to reject the disturbance effects through
the base of its internal model [44] 46]. In our robot, this is taken as

m

T 12(s:65) 20, (17)

for y=1,2,...,k, and m = 3.
With the aforementioned assumptions, the following control law is pro-
posed:

u = ug + v, (18)

with
uf = k7 g.) (—0 () (19)
ve =1 (gs) (ugpr) - (20)

By applying the control law to the system , the tracking control task
is transformed into a set of Single-Input and Single-Output (SISO) control



design problems, instead of a more complex Multiple-Input and Multiple-
Output (MIMO) problem.

The effects of the lumped disturbances fyg (¢s, G) are dynamically coupled
and it is not possible to mathematically decouple them. Remarkably, the
GPI controller rejects the effect of such coupling. Thus, each SISO problem
can be represented by an integrator chain ¢, and the lumped disturbance
variable vg(qs, q) as

ij = uéPI + ,.)/g(QSa Q)7 (21)

where ul,p; is the control signal for the jth joint produced by the GPI con-
troller.

3.3. Integral reconstructors

The GPI controller is developed in the context of output trajectory track-
ing. It takes into account desired trajectories of the actuated joints. The
desired trajectories can be defined by a vector g4, ,. The design of ¢4 will be
discussed in Section |5l Thus, the output tracking error is governed by

éqj =€y T 72 (QS7 Q)7 (22>

where e, = gy, (s) — qa,(s) is the tracking error vector, e,; = ulp; — Ulp; i
the control signal error and ugp; = Gg, is the nominal control signal, so

€wi = UGpr — Ga,- (23)

The regulation of can be achieved with a state feedback controller as
follows:

Cui = _kj,n—l—méqj - kj,n+m—1€qja (24)

where éq is an estimation of ¢,. This can be computed by neglecting the total
disturbance terms in and applying the integral reconstructors

€y = /0 t eu(01)doy. (25)

Integrating and replacing in , the estimation takes the form

~

by = é4(t) — ¢4(0) - / ve(01)do. (26)
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The use of the integral reconstructor on the states estimation avoids
the need for an asymptotic state observer. However, this integral reconstruc-
tor does not consider the initial conditions, which produces a discrepancy
between the reconstructed states and their actual values. To compensate
this discrepancy, an integral of the tracking errors is included in the feedback
controller (24)) [46]. The resulting controller can be expressed as

t
Guj = _kj,n—l-meqj - kj,n—l—m—leqj - kj,n—l—m—Z/ Gq]. (Ul)dUl. (27)
0

The integral of the tracking errors in banishes the estimation error
caused by the initial conditions.

In order to increase the robustness of the controller against unmodeled
dynamics and the external disturbances, a finite number of iterated integrals
of the tracking errors are added to the proposed control . The number
of iterated integrals is defined by the degree of the derivative in the internal
model assumption . Hence, m + 1 iterated integrals are included in the
feedback controller of our robot. These take the form

Cu; = — kj7n+WGQj - k:jvn-f—m—lqu' T

t
J,n+m— 2/ eq (Ul)dal

Kjntm— 3/ / ;(02)doadoy - - (28)
T JO/ / / Um+1 do'm+1 dO’QdO’l.

An explicit expression for the GPI controller can be obtained replacing
into (28)). Substituting the nominal control signal upy;(s) and applying
Laplace transform yields

Y. LU RN 1 k.
s +1S + + ],13 + ],0) eqj (S) (29>

. k
ucpri(s) = ugpy(s) — < : $™(5 + k;min)
Jym+n

Substituting and into leads to the dynamic equation that
describes the closed-loop behavior. Applying Laplace transform, the closed-
loop behavior can be expressed as

(Sm+n+1 + kj,m+nsm+n + -+ ijS —+ kj,O) €qj (8) =

=S /75](3)(5 + kj,m—f—n) +s kj,m+neq(0>-

11



Given that the term k;,,4,6,(0) is a constant due to the initial conditions,
then

§"kjm4n€q(0) = 0. (31)
According to the internal model assumption ,
sm'yg(s)(s + kjmin) = 0. (32)

In order to impose a dominant dynamic on the tracking errors, the designer
can select the gains k;; of the GPI controller. The appropriate selection
of these gains results in tracking errors that are ultimately, uniformly, and
absolutely bounded [47]. Finally, a dominant characteristic polynomial of
the closed-loop system is

(3m+n+1 + kj,m-i—nsm—'—n +oet kj718 + kj,O) qu‘(S) ~ 0. <33>

3.4. Hybrid Zero Dynamics with Uncertainties

The robust multivariable GPI controller is designed to track a set of four
trajectory references qq,, ..., qq,- An underactuated (not controllable) DOF
s, corresponding to the torso absolute angle, produces the internal dynamics
that defines the stability of the robot. In order to analyze the stability
of the internal dynamics, let us consider that the GPI controller creates a
submanifold where the tracking error of the controlled joints converges to a
bounded vicinity of zero. Thus, the dynamics of the full hybrid model @D is
constrained by the conditions e, ~ 0 and ¢,, ~ 0. These conditions allow to
define a hybrid zero dynamics with uncertainties (HZDU) as

| i=Ff(2)+E, 2= ¢ Z,
=2 { = A(z)+Za, 2 €Z. (34)

where Z C 8§ and it is defined as

Z={[a¢" ¢" |"€S|e=2as d=da}, (35)

f.(2) and A, (z7) are the zero dynamics and its reset map without dis-
turbances, respectively. The vectors = and Za represent the discrepancy
between the nominal hybrid zero dynamics and the internal dynamics under
uncertainties and disturbances. The proposed HZDU allows to analyze the
full hybrid model stability with the reduced order subsystem (34]). Details
of its derivation are included in The existence of bounded or-
bital behaviors in the presence of lumped disturbances is demonstrated in
the following section.
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4. Orbital Gait Stability Analysis

In order to define the conditions that provide gait stability in the presence
of external disturbances and model uncertainties, let us define ¢(t) as the
trajectory that results from the solution of . Under the assumption of
zero disturbances and zero uncertainties, the gait of the robot is periodic if the
trajectory ¢(t) belongs to a nominal periodic orbit O, such that ¢(t +7T') =
©(t), where T is the time period between each support-leg exchanges. Under
bounded uncertainties and bounded disturbances, the trajectory ¢(t) has
deviations from the nominal orbit O. Therefore, it is necessary to define the
Euclidean distance between ¢(t) and O as dist (¢(t), O).

In order to define the conditions for gait stability under external distur-
bances and model uncertainties, an ultimate boundedness for the dist ((t), O)
is established. If there exist a constant ¢ > 0 and an open neighborhood V of
O such that for every p € V there exist a solution ¢(t) that satisfy ¢(0) = p,
and dist(p(t),0) < e, Vt > 0. The boundedness concept around the nominal
orbit is illustrated in Figure [2]

Figure 2: Neighborhood around the nominal periodic orbit

The periodicity of the gait makes the stability analysis a special case that
is commonly treated with the method of Poincaré sections [17, Ch. 4]. Un-
der undisturbed operation conditions, referred to as nominal behavior, the
Poincaré method searches for periodic orbits in the evolution of the state vari-
ables. This allows to demonstrate orbital gait stability. The Poincaré method
transforms the problem of finding periodic orbits into finding a fixed point on
a nonlinear discrete dynamics referred as Poincaré return map. The Poincaré
return map P(z~(k)) is built with samples of the zero dynamics state vari-

13



ables just before the support-leg exchange. The undisturbed Poincaré return
map is described as

2 (k+1)=P(z (k)), (36)

where 2z~ (k) and z~ (k + 1) are the zero dynamics state variables just before
the support-leg exchange at the k-th step and the next, respectively. The
stability test of the Poincaré return map is summarized in the tasks of
evaluating the existence of a stable fixed point 2=, such that 2= = P (z*) :

In order to define the stability of the Poincaré return map, a linear ap-
proximation is computed around the fixed point [34]. This is,

T (k+1) = P(z~ (k) ~ 0z~ (k), (37)

where ® is the Jacobian of the Poincaré return map. The eigenvalues of ®
are used to determine the stability of around the fixed point 2= . Thus,
if the magnitude of each eigenvalue is less than one, then the robot has
an orbital periodic stable behavior with asymptotic stability. However, un-
der uncertainties and disturbed operation condition, the asymptotic stability
with convergence to a periodic orbit cannot be ensured [48]. For that reason,
the distance dist (¢(t), O) is utilized just before the support-leg exchange.
The result is a Poincaré return map with uncertainties defined as

27 (k+1) = Pz (k) + Zo, (38)

where =¢ represents the model uncertainties and external disturbances affect-
ing the Poincaré return map. By definition, =g is assumed to be uniformly
and absolutely bounded around the origin.

Finally, if ¢(k) is the solution of , then the gait under model uncer-
tainties and disturbances is stable if there exist a constant p > 0 and an open
neighborhood U C S of the fixed point 2= such that for every v € U there
exist a solution (k) that satisfy ¢(0) =+, and ||[¢(k) — 27| < p, V k > 0.

The effects of the total hybrid disturbances Z4 in (38)) are rejected through
the trajectory generation strategy. This strategy is described in the next
section. Since Zg is bounded, the stability of the Poincaré return map
in the vicinity of the fixed point 2~ is defined by the eigenvalues of ®. Thus,
if the magnitude of all the eigenvalues A (®) is less than one, the following
statements are equivalent:

(i) the Poincaré return map P(z~(k)) is stable in a bounded neighborhood
around 2~ ,

14



(ii) the zero dynamic state variables,; z, converge to a bounded neighbor-
hood around the nominal orbital behavior O,

(iii) the full state variables, z, converge to a bounded neighborhood around
a nominal orbital behavior, and

(iv) the gait has orbital periodic stability in a bounded neighborhood.

A trajectory generation strategy to adapt the gait to the effect of model
uncertainties and external disturbances is described in the following section.

5. Adaptive Trajectory Generation

The trajectory generation strategy produces adaptive reference trajecto-
ries for the GPI controllers. The strategy proposed in this work is divided
into three parts: first, definition of virtual holonomic constraints for a given
step length; second, generation of surface virtual holonomic constraints for
a given set of gait patterns; and third, a reset control law to determine the
best gait pattern to fit the post-impact robot state and allows a smooth tran-
sition from the post-impact robot states to the selected gait pattern. The
remaining of this section describes these three parts.

5.1. Definition of virtual holonomic constraints for a given step length

In order to achieve a periodic gait pattern with asymptotic stability, a
nominal reference trajectory is generated using virtual holonomic constraints
(VHC) [49]. VHC are imposed through feedback control with the action
of actuators rather than internal forces of physical constraints. The main
difference between physical and virtual holonomic constraints is that VHC
can be modified on the fly without physical changes on the robot. In such
a way, robustness against external disturbances and model uncertainties can
be achieved through the modification of the reference trajectory defined by
the nominal VHC [50].

To achieve a stable gait, the controlled joints track a set of nominal ref-
erence trajectories that are synchronized with the underactuated degree of
freedom ¢y. In that way, the nominal reference trajectories are designed as
functions of the angle O(gs) between the ground and the virtual link that
connects the support leg-end with the hip. Since ©(gs) is a function of gy,
then synchronizing the references with ©(gs) also synchronizes the references
with the underactuated degree of freedom.

15



In order to obtain a smooth motion of the controlled joints, the nominal
reference trajectories are determined through the Bézier polynomials

0 O0)) = Y A (1= ¥ (39)

where s is defined in the interval [0, 1] and is computed with the normalization
of the variable ©(gs) as
_ @(QS) -0
- @_* . @+* ’

Bij are the coefficients of the Bézier polynomials, M is the degree of the
polynomials, ©7" and ©~" are the target values of the angle ©(q,) at the
beginning and ending of the step, respectively. Details about the features of
Bézier polynomials can be seen in [I7, Ch. 6]

In order to impose a periodic behavior in the robot’s hybrid dynamics, the
target angles and angular velocities before and after the support-leg exchange
can be linked through the reset map as

i |- L s | a

This relation reduces the amount of unknown coefficients, B{ , in two times
the number of controlled joints, for our robot the reduction of unknown
coefficients is eight.

The remaining coefficients Bij in are numerically determined as the
parameters that minimize the difference between the state variables of the
robot and their target values at the end of a step. This objective is defined

(40)

as
q; " q5
J = S — | s 42
) H{Q] [q] 5 42)
where ,
j
B=1av |
anN'

fOI'j:{1727374} andi:{2737.“ ’M}
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The optimization problem can be stated as

min J(B)
B
subject to Behavioral constraints

Nonlinear equality constraints
Nonlinear inequality constraints

B<B<B,

where [ is the lower boundary vector and the B upper boundary vector.
The behavioral, nonlinear equality, and nonlinear inequality constraints that
produces a stable gait are described in the following sections.

5.1.1. Behavioral constraints

A behavioral constraint imposed by the robot’s dynamics is considered
in the optimization problem (43]). The nonlinearity and high order of the
model that describes the robot’s dynamics increases the complexity of the
optimization problem. In order to reduce such complexity, the order of the
robot’s model can be enormously reduced with the assumption that a tracking
control law u, in , allows tracking the VHC and zeroing the tracking error
eq- Then, the VHC induce a reduced-dimensional model, less complex than
the original robot’s model, defined by the zero dynamics. Thus, the zero
dynamics can become the behavioral constraint of the optimization problem
and, in that way, reduce the complexity of the searching process. Assuming
perfect knowledge of the robot’s model and without external disturbances,
the zero dynamics of our robot can be extracted from by replacing
= =0, Vt. Then, the zero dynamics can be expressed as

2= f.(2), 2 ¢ 2Z, (44)

where
Z:={[d¢ ¢ ]"€R" @ =qa 4= da}- (45)

5.1.2. Nonlinear equality constraints

Nonlinear equality constraints are imposed in the optimization problem
to satisfies a target step length si*. Thus, the horizontal position of the swing
leg-end at the beginning and ending of the step must be equal to the value of
sl*. Under the assumptions that the support leg-end is in the zero position
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and that the robot walks in the negative direction, the nonlinear equality
constraints can be formulated as

pg+ —sl" = 07 (46>
—ph sl =0. (47)
In the same way, the vertical position of the swing leg-end at the beginning
and ending of the step must be equal to the ground’s height d. Since the
design is being developed for nominal conditions, the ground’s height is d = 0.
Then,

pyt =0, (48)
Py =0. (49)

5.1.3. Nonlinear inequality constraints
Nonlinear inequality constraints are imposed in the gait design to satisfy

conditions on the reaction forces in the support leg-end. Thus, the normal
reaction force FY is restricted to apply an unilateral constraint, such as

— F/ <0. (50)

On the other hand, the tangential reaction force F is used to compute the
ratio F'/F}, which must be less than the friction coefficient y. This is,

Fl'/FY — < 0. (51)

A constraint in the control signals is imposed to ensure that the torque
required to track the trajectories are reachable by the actuators. In such a
way, the values of the torque signals u in are bounded by the nominal
torque of the gearmotors, 7y, installed in the robot. Then, the constraint is

max |u| — 7y < 0. (52)

Finally, boundary constraints are imposed to the reference trajectories to
ensure that the target movements are inside of the feasible range of movement
of each joint. These constraints can be described as

max (qa;) — 45 <0, VY j, (53)
—min (Gay) +¢7; <0, Vi, (54)

where ¢% and ¢; are the upper bound and lower bound of the jth joint,
respectively. The following section presents a recurrent method to generate
a set of gait patterns with different step length.
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5.2. Generation of a surface of virtual holonomic constraints for a set of gait
patterns

The VHC approach developed in Sec. is used to generate a set of gait
patterns that allows to reconfigure the VHC through software manipulation
[12, B3]. In the method presented by [17], VHC are functions of the evolu-
tion angle ©(gs). Typically, VHC are updated only after each support-leg
exchange, right before the swing phase. This feature implies a limitation in
the classical VHC approach, because reaction to disturbances are taken just
at the support leg exchange.

In this work, we propose to dynamically adjust VHC during the swing
phase by adding the step length sl as an additional control variable. To this
end, a set of gait patterns is defined for 0.13 m < sl < 0.20 m. After all gait
patterns have been defined, the results of each combination of sl and ©(qg;) are
used to fit four smooth 5 x 5 polynomials that allow to continuously modify
the step length. The result of the fitting is shown in the Figure 3] These
surfaces are defined by ¢7'*(0(gs), sl), which are the reference trajectories
for each controlled joint.

Including the step length as a control variable to define the reference
trajectories gives the trajectory generator the flexibility to reject model un-
certainties and external disturbances in both continuous and discrete of a
bipedal robot’s dynamics. In such a way, the following section develops a
reset control law to deal with disturbances that apart the robot from its
nominal walking conditions.

5.3. Reset control law to reject disturbances at the support-leg exchange

A reset control law is proposed to reject disturbances at the support-leg
exchange. This reset control law combines a reset trajectory with a smooth
transition from the post-impact robot states to the selected gait pattern.
The reset trajectory uses an optimization process to find the gait pattern
that best fit the configuration of the robot after each support-leg exchange.
In a complementary fashion, a smooth functions uses the passive trend of
the post-impact states to perform a transition from the state of the robot
after the support-leg exchange to the target trajectory. These two parts of
the reset control law are described in the remainder of this section.
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Figure 3: Trajectory reference surfaces based on ©(g;) and step length, si.

5.8.1. Reset trajectory optimization at the transition of the support-leg ex-
change

The main limitation associated with the traditional use of VHC is the
need of continuity on the trajectory references to ensure zero tracking error
after the support-leg exchange. This limitation implies that, after the support
leg exchange, the robot should be in a geometric configuration that coincides
with the reference trajectory of the coming swing phase. This condition is
almost never satisfied in uncertain walking conditions; therefore, the tracking
errors at the beginning of swing phase are not zero. Despite the fact that
the tracking controller can rapidly reduce the tracking error, a transitory
response affects the controlled joints suffering sudden changes. These sudden
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changes can produce a violation of the contact constraints on the support
leg-end and cause the robot to take off the ground or slide.

In order to address the continuity limitations of the VHC approach in
the support leg-exchange, this work presents an optimization strategy that
minimizes the tracking errors after the support leg exchange and, therefore,
minimizes the effects of the transitory responses. To this end, let us find
a post-impact step length slI that minimizes the tracking error right af-
ter the support-leg exchange. The post-impact tracking error is defined as
the difference between a set of references ¢5**(©(gs)*, sl;) and the robot’s
configuration ql: . The optimization problem is formulated as

2
2

4
min > [l (Oa) L slf) — 4 (55)
=1

+
sly

st 013 < sl <0.20.

The optimal post-impact step length (sl;)* is found by solving the opti-
mization problem (55)) online after each support-leg exchange. This solution
is used as the initial step length in each swing phase. Then, a dynamic tran-
sition between the initial step length (slj)* and the target step length sl is
determined by the transfer function

sl, = slq, (56)

with the initial condition (sl:{)*. The transfer function incorporates a
step length dynamics to the trajectory definition. This dynamics is defined
to be stable and with a steady state gain equals to one. The corresponding
time constant 7, is appropriately chosen to guarantee that the step length
sl, converges to its stationary value before the next support-leg exchange.
This work uses the condition 57y < t,,,/2, where t,,, is the average time
that a swing phase takes. The reference polynomials evaluated at sl,. in (56
produce an auxiliary set of trajectories ¢§"*(©(qs), sl,). Such trajectories are
illustrated in Figure[d This figure also shows the transition of the reference
from (slj)* to the target step length sl;. With the proposed approach, the
transitory responses are minimized and the best gait pattern is defined for
the robot’s state after each support-leg exchange. The next section presents
a strategy to connect the post-impact robot configuration with the target
trajectory.
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Figure 4: Optimal reset reference trajectory.

5.3.2. Smooth transition from the passive dynamics to the target trajectory

In order to provide continuity to the robot’s motion on uncertain walking
conditions, this work proposes a smooth transition function that drives the
robot’s states from the post-impact state to the target reference trajectories.
This smooth transition benefits estimation of the state variables because
jumps in the controlled joints are avoided and the state variables estimation
remains in an invariant set [51) p. 68].

Under uncertain discrete dynamics, it is not possible to ensure that the
robot’s states before the support-leg exchange are in their nominal values,

defined here as
__ q; "
=2, 57
L (57)
In that way, let us define the real pre-impact states as

=3 te, (58)

where £~ is the offset between the nominal pre-impact states and the real
ones. Then, the post-impact states are defined by an extension of the reset

map in as

= A(x7) + 74, (59)
(Tt +em)=A(z +e). (60)
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The above result shows that even though the reference trajectories are de-
signed as in to satisfy that J () — 0, it is unsure whether these condi-
tions will be satisfied on uncertain terrain.

In order to avoid the sudden changes that could be produced by the un-
certain terrain, the post-impact angles ¢; and the angular velocities ¢, are
used to perform a smooth transition from the post-impact states to the nom-
inal reference trajectories. To this end, let us define a passive trend function
that will act as a passive reference just after the support-leg exchange. This
is,

ﬁj:(q;)jT+(q2_)j’ v 7, (61)
considering the reset map in , takes the form
;= (Aag:)d; ); 7+ (Dgds); 5 V4, (62)

where 7 is a time variable that is reset to zero after each support-leg ex-
change. The functions ¥; in are used as the main passive reference just
after the support-leg exchange. Then, a transition from ¥ to the trajectory

q5"“*(O(gs), sl,) is performed with the use of the function

qdj = qux + (193 - qg};x) Bz<tau:v>7 v j7 (63>

where ¢3%" is the short of ¢3%* (O(gs, sl,)), Bz (taus) is a smooth function that
changes from one to zero in a given period of time. The function B, (t4.) is
defined by a third-order Bézier polynomial as

3

3! i 3—
Bz(tauz) = z;bzmtaux(l - taux) s 0 S tauz S 17 (64)

where b; are the Bézier coefficients, t,,, is the auxiliary time variable, which
is defined in such a way that converges to zero in a time significantly
lower than the duration of the nominal swing phase. In other words,

toue = kTT7 <65>

where k, is a constant that sets the transition period of the reference to 1/k,.
The Bézier polynomial satisfy the boundary conditions



(M) = 3(by — by) =0,

at(L”LLCE tauz:0
and OB, (tus)
— = 3(bs — by) = 0.
( Otaus > tauz=1 (s 2

Figure 5| shows the evolution of a reference ¢q; from the trend function v;
to the target trajectory ¢g'%". As observed, the proposed smooth transition
technique produces zero tracking error and zero first time-derivative error at
the beginning of each step.

Angle (rad)

Figure 5: Transference from the trend to the designed trajectory.

6. Simulation and Experimental Test

Numerical simulations are performed to evaluate the robustness of the
proposed compound control strategy. Table [1] shows the physical parameters
of the robot. The controller tuning is based on a third-degree time polynomial
approximation of the lumped disturbances 7¢(gs, ¢) in . Following the
protocol proposed in [52], the coefficients k; ; of the GPI controller are tuned
to provide a stable and dominant behavior in the characteristic polynomial
(33). The corresponding closed-loop roots are found to be —40, —50, —60,
—65, =70, and —75. The time constant 7 in the transfer function is set
at 7y = 0.05.

The gait of the robot is tested through the simulation with four oper-
ation conditions. The first operation condition is a horizontal walk on flat
terrain. The second operation condition corresponds to a walk on a terrain
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Table 1: Physical parameters of the robot (Fig. .

Model Parameter | Unit | Link | Value
Torso 2.5

Mass kg Tight 1.0
Shin 0.4

Torso | 0.291

Length m Tight | 0.185
Shin | 0.185

Torso | 0.014

Inertia kg-m? | Tight | 0.010
Shin | 0.002

Mass T(?rso 0.062
contor® m Tight | 0.086
Shin | 0.055

*Mass center with respect to the proximal joints.

with height changes in uphill and downhill directions. The third operation
condition is a horizontal walk on flat terrain with external force disturbances.
Robustness against external disturbance is evaluated in this operation condi-
tion. The fourth operation condition corresponds to a horizontal walk on flat
terrain with variations of the robot parameters. Robustness against model
mismatching is evaluated in this operation condition. Finally, a physical ex-
perimentation on the prototype of a planar biped robot is developed with
walking over a flat terrain.

6.1. Simulation under nominal conditions

The first simulation evaluates the compound controller under nominal
conditions, namely, gait on flat terrain without external disturbances and
without model uncertainties. Figure [6] shows the trajectory tracking and the
control torques required to drive the robot to stable walking. As observed,
the controlled joints, gs1,. .., ¢s4,, effectively track the trajectory references,
qdis- - -, qda,, with the maximum values of the torques in an admissible range
of £5 N-m. Figure [7| shows the reaction forces on the support leg-end. The
positive sign of the normal force F} proves that the robot does not take
off from the ground. In addition, the ratio between the tangential and the
normal reaction forces is less than the friction coefficient p = 0.6, which
guarantees that the support leg does not slip. These two characteristics of
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the reaction forces demonstrate that the unilateral constraints are satisfied.
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Figure 6: Tracking references and control signals.

The Poincaré return map is computed with the hybrid zero dynamics
state variables and the robot walking on nominal conditions. For this robot,

the Jacobian ® in is

o | —0:2719 —0.0065
~ | 05637 07718 |°

and the corresponding magnitudes of the eigenvalues are

0.2754
A @)l = { 0.7753 } '

Given that the magnitudes of those eigenvalues are less than one, the total
walking is asymptotically stable with periodic behavior.

6.2. Simulation on uneven terrain

The second simulation is performed over an uneven terrain with slopes of
+3° (uphill), 0° (flat), and —3° (downhill). Considering that the gait patterns
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Figure 7: Reaction forces.

were designed for a flat terrain, the evaluation over an uneven ground entails
a challenging robustness test that reveals the capabilities of the robot to
walk over uncertain terrain. Figure |8 a) shows a stick diagram of the robot
walking over flat, uphill, and downhill terrains. The robot maintains balance
and satisfies all physical constraints.

In order to estimate the robustness of the proposed compound controller
against uneven terrain, simulations of the robot facing discrete changes in
the terrain’s height are performed. The resulting maximum terrain’s height
variation is found to be within the range [—10 , 10] mm. Figure [8|b) shows
the stick diagram of the gait evolution over a terrain with discrete height
changes. The results of the simulations over uneven terrain show the capa-
bilities of the proposed control to increase the robustness of the walking over
uneven terrain.

6.3. Simulation with external disturbances

The third group of simulations demonstrate the robustness of the com-
pound controller against external disturbances. The robot model is exposed
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Figure 8: Stick diagram with the evolution of the walking over uneven terrain.a) uphill
and downhill b) stairs down and stairs up.

to persistent and impulsive disturbances. In order to test the robot’s behav-
ior with persistent disturbances, constant external forces are applied on the
robot’s hip as in [53]. A positive persistent disturbance of [0.4 0] N acts in
the walking direction and produces an absolute forward velocity of 0.53 m/s,
which is higher than the absolute nominal velocity of 0.42 m/s. An equiva-
lent persistent disturbance is applied on the opposite direction. Under this
external force, the walking converges to a lower speed of 0.20 m/s. Figure
[9 shows the average horizontal velocity of the robot’s hip during the walk.
Additional simulations are performed with the robot walking on nominal
conditions for ten steps. Then, disturbance torques are applied for 0.02 s in
the middle of the swing phase with a magnitude of £40% of the maximum
torque available on the motors, which is 5 N-m. Figure [J] also shows how the
robot recovers its nominal average velocity after the external disturbances
demonstrating the effectiveness of the disturbance rejection strategy. Figure
shows the phase portrait with the evolution of the states of the robot after
the external disturbance. In this figure, the phase portraits show a transient
response followed by a convergence to a limit cycle. This demonstrates the
effective rejection of the external disturbance by the proposed controller.

6.4. Simulation with parameter uncertainties

The final simulation evaluates the robustness against parameter uncer-
tainties (internal disturbances) with variation of £20% on the mass of the
torso, tights, and shins. Figure |11 shows the evolution of ©(¢s) and G(qs)
for the robot walking with time-invariant masses of 80%, 100%, and 120%
of their nominal values (Table [1). All the simulations start at the same ini-
tial conditions and all them have the same step length target. This figure
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Figure 9: Hip’s horizontal average velocity.

shows the expected adaptive behavior on the step length as a response to the
disturbances produced by the parameter uncertainties.

6.5. Physical experiment

In order to verify the effectiveness of the proposed GPI controller and the
trajectory generation strategy, a physical experiment is performed on a planar
biped robot prototype—refereed to as Saurian. The complete scheme of
control is presented in the Figure[T2] The physical prototype is exposed to the
persistent external disturbances of the central bar and model uncertainties,
which include but are not limited to backlash, joint compliance, Coulomb
friction, and parameter uncertainties.

The results shown in Figure[13|demonstrate that the four controlled joints
(hi, hy, ki, k) closely track the trajectory references generated for a fixed
step length of 15 c¢m as described in Sec. [f] The periodic behavior of the
underactuated degrees of freedom (gr) along with the periodic behavior of
the controlled joints demonstrate that the proposed control strategy produces
a stable walking.

A sequence of photos taken from a video of the Saurian walking with
the proposed control law are shown in Figure The effective experiments
performed on Saurian confirm that the proposed compound control strategy
produces robust stable gaits even walking under model uncertainties and
external disturbances.
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Figure 10: States convergence to nominal cycles after external disturbance. The initial
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In order to estimate the energy cost of the robot’s gait, a metric based
on the specific mechanical cost of transport is utilized. For a nominal step,
the specific mechanical cost of transport is defined as the ratio between the
energy consumed in a step and the product of the step length and the robot’s
weight [54]. This can be expressed as

ty
1

Cp— — ’ / Py dt, (66)

mg |h1ph(tf) — hlph(t0)| .

0

where T -
| ¢ Bu, if ¢s Bu>0,

P = { 0, if  ¢,'Bu<0, (67)

hip”(t) is the horizontal position of the hip at time #, m is the total mass of
the robot, g is the gravity constant, ¢y and ¢y are the time at the beginning
and end of a step, respectively.

The specific mechanical cost of transport is presented in Table 2. When
compared to other testbeds with equivalent degrees of mobility, the proposed
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strategy has a relatively low Cr demonstrating an efficient energy use.

Table 2: Specific mechanical cost of transport Crp.

Testbed Cr

RABBIT [ 0.380
MABEL [50] 0.290
Saurian (Robust Compound GPI controller) | 0.129
Cornell Biped [54] 0.055

7. Conclusion

A robust compound control strategy for dynamic bipedal robots was de-
veloped in this work. The compound control strategy consists of a non-
switching robust GPI controller (inner loop) and an adaptive trajectory gen-
eration strategy (outer loop). The adaptive trajectory generator was devel-
oped to provide robustness against external disturbances and model uncer-
tainties. This adaptive trajectory generator minimizes the disturbance and
uncertainty effects by updating the step length of the gait patter. The robust
GPI controller effectively tracks reference trajectories and rejects lumped dis-
turbance signals that act on the actuated joints. The results demonstrate
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that the proposed compound controller achieved periodic and asymptotic sta-
ble walking on nominal operation conditions. Additionally, under disturbed
operation conditions the numerical and physical evaluations show stable be-
havior on a neighborhood around the nominal gait.

This work contributes to two specific areas within dynamical bipedal
robotics: trajectory tracking control and trajectory generation. In terms of
trajectory tracking control, the use of a simplified model allows the dynamic
decoupling of multivariate disturbances. The implementation of a robust
GPI controller for a hybrid nonlinear, multi-input multi-output and under-
actuated system, provides an effective trajectory tracking and the rejection
of external disturbances and model uncertainties without the explicit use of
state observers. In terms of trajectory generation, a dynamic adjustment
of VHC during the swing phase as integral part of the adaptive trajectory
generation strategy is developed. This is achieved by adding the step length
as a control variable. The result is the rejection of model uncertainties and
external disturbances such as terrain variations. The adaptive trajectory gen-
erator minimize the effect of transitory responses at the support-leg exchange
and drives the robot from its passive dynamics to a target gait pattern.

Ongoing research endeavors include feedback control of the forward aver-
age velocity and the design of gait patters for uphill and downhill terrains.
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Appendix A. Derivation of the HZDU

In order to describe the internal dynamics, a transformation of the last
row of the decomposed model is developed. This part of the model is
directly related to the acceleration §y. First, let us consider the Lagrange
differential equation used to find the underactuated part of the robot model,

A T Ao = ;5/52 (QS7 QS> ’ (A1>

which has a control input equal to zero and is affected by the model un-
certainties and external disturbances g2 (¢s,s). Using the kinetic energy
K (gs, qs) and the potential energy V (gs), the Lagrangian is expressed as

L:=K (Qw qs) -V (QS) ) (A2)
and the Lagrange differential equation (A.1)) can be written as

4 (K lad)) _d (V)
dt 4N dt d4n

oK (qs,4s) OV (qs) . .
T + = sy Ys) -
dqn oqn e (q e )

(A.3)

Following the concept that the kinetic energy is independent of the world
frame and that the angle gy determines the orientation of the robot with
respect to that frame, then

0K (gs, 4s)

= 0. A4
Daim (A4)

In addition, since the potential energy is not a function of the velocity, then

IV (gs)

— =0. A5
Din (A.5)
Thus, (A.3)) takes the form

d (0K (gs:4s)\ , OV (gs) - .

- = ) A.
Considering that

. 1, .
K (QS7 QS) = §QSTD (QS) ds, (A7>
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then, OK (gs, Gs)/0dn can be simplified through the following procedure:

K (¢5,4) 0 (1 )

- T
. - . A Us D s s
Din i \ 24 (¢s) g

oo (1 0 [y D] [4]),

= [Dai(gs) Daa(gs)] Lﬂ ’

= D,, (qs) Gs- (A.8)
Replacing (A.8) into (A.6) yields
d 9V (gs)

(Dn (45) 4s) +

— =4 is) . A.
dt an Ye2 (qs7 QS) ( 9)

In (A.9), the internal dynamic states can be defined as

Ne1 = Dn (QS) sta (Al())
Me2 := O(gs), (A.11)

where O(g;) is a function of ¢y that represents the angle between the ground
and the virtual link that connects the support leg-end with the hip as shown
in Figure [l Hence, the underactuated dynamics of the system can be de-
scribed by

. d - .y OVi(gs)
7751 - dt (Dn <QS) QS) - 7{2 <QS> QS) 8QN ) (A12>
. 00(gs) .

= . Al
7752 aqs s ( 3)

If there is an initial condition ¢4() for which e, (¢y) ~ 0 and a control
signal u* such that ey, (t) ~ 0, for all ¢ > t,, where ¢, represents the initial
time, then the system is constrained by the conditions ¢, = g4 + ¢, and
dp = qq + é,. Therefore,

dey, _ dey, .

— = 0. A.14
dt | a=aqd+eq 0qs s @ =qa +eq ( )
db = Ga + €éq db = qd + €q
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Using (A.10) and (A.14)), the angular velocity vector can be expressed as

[ = ] 71 !
. a3 4x1
s = 94 { } Ne1 : (A.15)
I
Dn <QS) 1x1 0 = qq+ g
Go = qa + €q

and (A.12)) and (A.13]) take the form

. i .y OV (gs)
= 5y (s) — ——— , A.16
Te1 <’ng (95:6) = 57 o vten (A.16)
Gb = qd + €q
a@( ) 8€q. -1 0

Neg = 5 s [ Daqés ] [ [jxi } Ne1 . (A.17)

s n (4s) x @ = qa +eq

Gb = qd + €q

Finally, the zero dynamics with uncertainties can be expressed as the sum
of a nominal zero dynamics without uncertainties and two signals that lump
the uncertainties and disturbances in the internal dynamics with the effect
of small tracking errors in the controlled joints. This is,

Ner = K1+ Y, (A.18)
Ne2 = Ralel + Y2, (A.19)
where
IV (qs
o = - 20 , (A.20)
95 a=4qd, b=4d
a@ ( ) Beq. _1 0
s qs 6;7 4x1 A 91
Hf2 aqs [ an(qs) ] |: lel :| ) ( . )
@=4qd, 9b=4d
(A.22)

Y and 7,2 are the lumped disturbance signals in the internal dynamics of

the robot. In compact form, (A.18) and (A.19)) are written as
Z=f.(2)+Z, (A.23)

Ne1 | A = |
z = , (2)=|. , =Z= )
) o=l ==l
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The zero dynamics states are exposed to the discrete event of the support-
leg exchange. This natural walking feature implies that the zero dynamics
has a hybrid behavior. Therefore, the zero dynamics state vectors before
and after the impact are described by z; = [;; 7] and 25 = [, nS]"
respectively. The zero dynamics state vector after the impact is defined by

Y

g = D () i, (A.24)
ey = O(qy)- (A.25)
Using the post-impact states (A.24) and (A.25)) can be expressed in a

compact form as

2P =A,(27) + Ea. (A.26)

With the zero dynamics (A.23]) and the reset law (A.26), the resulting hybrid
zero dynamics with uncertainties (HZDU) can be expressed as

| 2= [f.2) +E, 2 ¢ Z,
=2 { P=A,(27)+EA, 2 €Z. (A.27)

where Z C S and it is defined as

Z={[a¢" " ]"€S|%=qs & =da} (A.28)
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