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Thermal states of random quantum many-body systems
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We study a distribution of thermal states given by random Hamiltonians with a local structure. We show
that the ensemble of thermal states monotonically approaches the unitarily invariant ensemble with decreasing
temperature if all particles interact according to a single random interaction and achieves a state t-design at
temperature O(1/log(t)). For the system where the random interactions are local, we show that the ensemble
achieves a state 1-design. We then provide numerical evidence indicating that the ensemble undergoes a phase
transition at finite temperature.
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I. INTRODUCTION

In quantum many-body systems, the number of degrees of
freedom increases exponentially with the number of particles.
This leads to difficulties for analyzing their physics. One way
to circumvent this difficulty is to assume random interactions,
which are understood to be caused by inevitable impurities
and disorder present in the physical system, and study typical
properties of random many-body Hamiltonians. This idea is
developed in random matrix theory and provides a successful
description of the complicated physics of heavy atoms,
quantum chromodynamics, mesoscopic systems, quantum
gravity, and quantum chaotic systems (see, e.g., Ref. [1]). A
study of random Hamiltonians has recently been extended to
quantum spin systems on a lattice [2–9], where Hamiltonians
contain only local interactions and respect the local structure
of the system. Such random local Hamiltonians were shown in
Refs. [8,9] to have a distribution of eigenvalues different from
that of random Hamiltonians without local structure, which we
call random global Hamiltonians, implying that random local
models are significantly distinct from global ones.

The idea of randomization was applied to a study of
the typical properties of quantum states using the unitarily
invariant ensemble of states, often called random states.
It has been pointed out that random states play a basic
role in the foundation of physics, from quantum statistical
mechanics [10–13] to the black hole information paradox
[14–17]. From the viewpoint of random Hamiltonians, random
states are an ensemble of ground states of random global
Hamiltonians [1], so that their properties are those typically
observed in such global systems at zero temperature. It is then
natural to ask whether they are still observed in systems with
a local structure at finite temperature.

In this Rapid Communication, we extend a study of
the unitarily invariant ensemble of states (equivalently the
ensemble of ground states of random global Hamiltonians)
to the ensemble of thermal states of random global or
local Hamiltonians. We especially investigate the ensemble
of thermal states in comparison with the unitarily invariant
ensemble. To this end, we exploit the concept of a state
t-design, an ensemble of states simulating, up to the order t ,
statistical moments of random states [18,19], and investigate
whether or not a state t-design is approximately achievable
in random global or local Hamiltonian systems at finite
temperature. This provides an insight into the validity of

the foundation of physics using random states or a state
t-design when the system respects a local structure and is
at finite temperature. This also has importance in quantum
information science since random states have a wide range of
applications [19–24], and their approximate generation is one
of the central issues [21,25–33].

For an ensemble of thermal states in random global
Hamiltonian systems, we show that the ensemble monoton-
ically approaches the unitarily invariant one with decreasing
temperature and that a state t-design is approximately achieved
at O(1/log(t)) temperature. We then show that, for an ensem-
ble of thermal states in random local Hamiltonian systems,
the ensemble is a state 1-design at any temperature. We
numerically study how close the ensemble is to higher designs
and show that the ensemble quickly approaches the unitarily
invariant one in a high-temperature regime, but converges to
a nonuniform distribution at low temperature. We also give
numerical evidence that these two regimes of the ensemble are
separated by a singular point, indicating a phase transition of
the ensemble at finite temperature. Since the singularity is not
observed for random global Hamiltonians, this is an intrinsic
characteristic of random local Hamiltonians.

II. RANDOM STATES AND STATE t-DESIGN

Let K be a Hilbert space of dimension D. Random states
ϒ are an ensemble of pure states uniformly distributed in
Hilbert space with respect to the unitarily invariant measure.
Random states play a fundamental role in physics [10–17],
and are an important resource in quantum information pro-
cessing [19–24], however, they cannot be efficiently generated.
Hence, an ensemble of states, called an ε-approximate state
t-design ϒ

(ε)
t has been studied [21,25–33]. An ε-approximate

state t-design is defined by ‖E
�∈ϒ

(ε)
t

[�⊗t ] − E�∈ϒ [�⊗t ]‖1 �
ε [18,19]. Here, � = |�〉〈�|, E represents an expectation
over an ensemble, i.e., E[f (�)] = ∫

f (�)dμ(�) for the
uniform measure dμ, and ‖A‖1 = tr|A| is the trace norm.
The E�∈ϒ [�⊗t ] is calculated to be �(t)

sym/d (t)
sym using Schur’s

lemma [34], where �(t)
sym is a projection operator onto a

symmetric subspace of K⊗t and d (t)
sym = tr�(t)

sym = (D + t − 1
t ).

When ε = 0, a state t-design is called exact and we denote it
by ϒt . Since a state t-design converges to random states when
t → ∞, the distance between a given ensemble of states and
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a state t-design provides a measure of the uniformity of the
ensemble.

III. RANDOM GLOBAL AND LOCAL HAMILTONIANS

We define random Hamiltonians using the Gaussian unitary
ensemble GUE(L), which is an ensemble of L × L Hermitian
matrices {H } distributed according to the Gaussian measure
dμ(H ) with density proportional to exp[−L

2 trH 2] [1]. We
call the GUE the ensemble of random global Hamiltonians
since it has no local structures. An important feature of
random global Hamiltonians is that they are invariant under
unitary conjugation, i.e., dμ(uHu†) = dμ(H ) for any u ∈
U(L) where U(L) is the unitary group of degree L. Hence,
their ground states are random states.

We also introduce the ensemble of random k-local Hamil-
tonians: Consider a system consisting of n particles, where the
dimension of each particle is d. We denote by H = (Cd )⊗n the
corresponding Hilbert space. A Hamiltonian H = ∑

E hE is
called k local if each term hE acts nontrivially on a set E of
at most k particles. An ensemble of k-local Hamiltonians Hk

is called random when each hE is independently chosen from
GUE(dk). Note that Hn=GUE(dn) is the ensemble of random
global Hamiltonians. Unlike random global Hamiltonians,
random k-local Hamiltonians for k 	= n do not have global
unitary invariance and the ensemble of ground states differs
from random states.

At finite temperature T , a state of a system at thermal
equilibrium is given by a thermal state ρH (β) := e−βH /ZH (β),
where β = 1/T is the inverse temperature and ZH (β) =
tre−βH is the partition function. Although a thermal state is
in general not a pure state, we straightforwardly extend the
definition of a t-design to a mixed state and define a distance
between an ensemble of thermal states {ρH (β)}H∈Hk

and a state
t-design by T

(k)
t (β) := 1

2‖EH∈Hk
[ρH (β)⊗t ] − E�∈ϒ [�⊗t ]‖1.

If an ensemble of thermal states satisfies T
(k)
t (β) = ε/2 for

some β, average properties of the system can be described by
an ε-approximate state t-design up to order t .

IV. RANDOM GLOBAL HAMILTONIAN SYSTEMS

We first study the ensemble of thermal states for random
global Hamiltonians Hn. Since an ensemble of their ground
states is unitarily invariant, we investigate how the ensemble
converges at finite temperature to the unitarily invariant one
with decreasing temperature. When t = 1, EH∈Hn

[ρH (β)⊗t ]
reduces to the completely mixed state ID/D, where D = dn

and ID is the identity matrix in H, since it commutes with
all u ∈ U(D) due to the unitary invariance of Hn =GUE(D).
Hence, T

(n)
1 (β) = 0 for any β, implying that the ensemble

of thermal states is a state 1-design at any temperature. For
t 	= 1, we show below that the distance T

(n)
t (β) for any t

monotonically decreases when β increases.
For simplicity, we denote EHn

[(ρH (β))⊗t ] by X(β). Due
to the unitary invariance of the GUE and the invari-
ance of the partition function under unitary conjugation,
X(β) commutes with any unitary matrices of the form of
u⊗t (u ∈ U(D)). From Schur-Weyl duality [34], X(β) =
(λ�(t)

sym) ⊕ A, where λ = 1
d

(t)
sym

trX(β)�(t)
sym < 1/d (t)

sym, and A

is some operator on the space orthogonal to the symmetric
subspace. Hence, we obtain �(t)

symX(β)�(t)
sym = λ(β)�(t)

sym.

Recalling that E�∈ϒ (t) [�⊗t ] = �(t)
sym/d (t)

sym, T
(n)
t (β) is di-

vided into two terms; T
(n)
t (β) = ||(I(t) − �(t)

sym)X(β)||1/2 +
||�(t)

sym(X(β) − �(t)
sym/d (t)

sym)||1/2, where I(t) is the identity op-

erator on H⊗t . Using λ(β) � 1/d (t)
sym, T

(n)
t (β) is given by

T
(n)
t (β) = 1 − trX(β)�(t)

sym. (1)

We express the projector �(t)
sym as 1

t!

∑
σ∈St

Vσ , where St

is the permutation group of order t and Vσ is a unitary
representation of σ . Using trVσc

ρ⊗t = trρ|c| for a cyclic
element σc in the permutation group, where |c| is the order
of the cycle, T

(n)
t (β) is rewritten as a function of purities of

thermal states as follows:

T
(n)
t (β) = 1 − 1

t!

∑

σ∈St

EHn

∏

σc∈σ

tr(ρH (β))|c|, (2)

where the product is taken over all cycles in σ .
We finally show that ∂

∂β
T (t)

n (β) � 0 for any β, which implies

a monotonic decrease of T (t)
n (β) with respect to β. It suffices

from Eq. (2) to show ∂
∂β

tr(ρH (β))m � 0 for any natural number

m. This simply holds since ∂
∂β

tr(ρH (β))m = m
ZH (mβ)

(ZH (β))m [〈H 〉β −
〈H 〉mβ ], where 〈H 〉β := tr[HρH (β)] is an internal energy of H

at the inverse temperature β, and the internal energy satisfies
〈H 〉β � 〈H 〉β ′ for β � β ′. The equality holds if and only if
β = 0,∞.

When β = 0, a thermal state ρH (β) is the completely mixed
state ID/D, so that T

(n)
t (0) = 1 − d (t)

sym/Dt , which is approxi-
mately given by 1 − 1/t! for a constant t . On the other hand,
limβ→∞ T (t)

n (β) = 0 since ground states of random global
Hamiltonians are random states. Hence, T (n)

t (β) monotonically
decreases from 1 − 1/t! to zero with decreasing temperature.

For sufficiently large t and β, T
(n)
t (β) can be fur-

ther calculated from Eq. (1). Let H = ∑D−1
m=0 Em|Em〉〈Em|

be an eigendecomposition of H , where the eigen-
values satisfy Ei � Ej , for i � j . Using this no-
tation, Eq. (1) is rewritten as T

(n)
t (β) = 1 − trEHn

[
∑∏t

j=1 pmj
(β)

⊗t
j=1 |Emj

〉〈Emj
|�(t)

sym], where the sum-
mation runs over all m1, · · · ,mt ∈ {0, · · · D − 1}. Since
tr

⊗t
j=1 |Emj

〉〈Emj
|�(t)

sym = 1 when mi = mj for all i,j ∈
{1, · · · ,t} and is at most O(1/t) otherwise, T

(n)
t (β) is simply

given by T
(n)
t (β) = 1 − EHn

[
∑

m(pm(β))t ] − O(1/t), where
we have used that EHn

[|Em〉〈Em|⊗t ] = �(t)
sym/d (t)

sym for any
m ∈ {0, · · · ,D − 1}. When β is sufficiently large such that
tβ � 1/�E where �E = E1 − E0, T

(n)
t (β) is approximately

given by

T
(n)
t (β) = 1 − EHn

[(p0(β))t ]. (3)

This provides, in general, an upper bound for T
(n)
t (β), and

it becomes exact when β → ∞. Since the joint probability
distribution of {Ek}D−1

k=0 for Hn is known [14–17], an upper
bound of T

(n)
t (β) can be numerically (but exactly) calculated

as given in Fig. 1.
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FIG. 1. (Color online) (a) Shows upper bounds on T
(n)
t (β) for

D = 4, where t = 11,8,5,2 from top to bottom. The inset shows the
scaling of T

(n)
t (β)/t with β for t = 3,6,9,12 from top to bottom,

which indicates that T
(n)
t (β) scales as te−cβ for large β. (b) Shows a

sufficient temperature for thermal states of Hn to be an ε-approximate
t-design for ε = 0.5,0.4,0.3,0.2 from top to bottom.

From Eq. (3), we also obtain the scaling of a threshold
temperature Tε , below which the ensemble of thermal states
is an ε-approximate t-design. Since (p0(β))t ∼ 1 − te−�Eβ

for large t and β, T
(n)
t (β) ∼ O(te−cβ), where c is a constant.

Thus, we obtain Tε = O((logt + log1/ε)−1). The numerics
show that this holds even for relatively small t [see (a) and (b)
insets in Fig. 1]. Thus, average properties of random global
Hamiltonian systems at temperature O((logt + log1/ε)−1)
are describable by an ε-approximate t-design. Since an ε-
approximate t-design has important properties of random
states, such as a scrambled feature [14–17], even if t is small,
and can be replaced with random states in many quantum
informational tasks using them [35], so does the ensemble of
thermal states in random global Hamiltonian systems at the
corresponding temperature.

V. RANDOM LOCAL HAMILTONIAN SYSTEMS

For random local Hamiltonians, the investigation of T
(k)
t is

not simple since the ensemble of local Hamiltonians Hk does
not have global unitary invariance. However, the ensemble of
thermal states of Hk for any k is still an exact state 1-design at
any temperature as shown below.

The Hk still remains invariant under the conjugation of
local unitary operations of the form ⊗n

l=1ul , where ul ∈ U(d).
Hence, the EHk

[ρH (β)] commutes with all local unitary
matrices, implying that it is in the commutant of them;
EHk

[ρH (β)] ∈ (⊗n
l=1U(d))′, where X′ is the commutant of

an algebra X. Since the commutant of the tensor products
is the same as the tensor product of the commutants of each
algebra, (⊗n

l=1U(d))′ = ⊗n
l=1(U(d))′ [36], EHk

[ρH (β)] is in
⊗n

l=1(U(d))′. Recalling (U(d))′ = {Id} and trEHk
[ρH (β)] = 1,

we obtain EHk
ρH (β) = ID/D, which implies that Hk is an

exact 1-design for any k and for any β.
We numerically study how close the ensemble of thermal

states is to higher designs. We particularly consider neighbor-
ing interactions on a line of qubits, i.e., d = 2. The results
are given for n = 5 and t = 2 in Fig. 2. It is observed
that the distance T

(k)
2 (β) quickly decreases with increasing

β in a small β region. However, when β is larger than
a certain value, T

(k)
2 (β) is almost constant. This limiting

value depends on k and is smaller for larger k, which is
intuitive since the ensemble becomes random states when
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FIG. 2. (Color online) (a) Shows the distance T
(k)
t (β) for n = 5,

t = 2, and neighboring interactions. (b) Shows its derivative ∂βT
(k)
t (β)

in terms of β. The purple (up-triangle), orange (square), green (circle)
represent k = 2,3,4, respectively, and the blue solid line is for random
global Hamiltonians Hn. The expectation of EHk

[(ρH (β))⊗t ] is taken
by sampling 2 × 104 Hamiltonians. It is observed that β (2)

c ∼ 0.8,
β (k)

c ∼ 0.85, and β (k)
c ∼ 1.05.

k = n and β → ∞. It is also observed in Fig. 2 that T
(k)

2 (β)
monotonically decreases with β when k 	= 2. In the case of k =
2, there exists a dip around β = 1, which is also observed for
different n.

Figure 2(b) shows that the two regimes of the ensemble of
thermal states, a quickly spreading regime and a converging
regime, are likely to be separated by a singular point β(k)

c . This
indicates an existence of a phase transition between the two
regimes. When β < β(k)

c , ∂βT
(k)
t (β) scales quadratically with

β, while it approaches zero exponentially for β > β(k)
c if k 	= 2.

For k = 2, ∂βT
(k)
t (β) approaches a positive value exponentially

and then decreases to zero, reflecting the dip of T
(2)
t (β).

Although the kink of ∂βT
(k)
t (β) at β(k)

c is less prominent for
larger k, it seems present even for k = n − 1 but not for
k = n, where the ensemble converges slowly and smoothly
to the unitarily invariant one with decreasing temperature.
From these observations, we conjecture that T

(k)
t (β) (k 	= n)

has a singular point β(k)
c in the thermodynamic limit (n → ∞),

leading to a second-order phase transition of the distribution
of thermal states. We also numerically checked that most
of the features are present for the case of interactions on
a complete graph, except that T

(k)
t (β) and ∂βT

(k)
t (β) do not

monotonically decrease in terms of k in a high-temperature
region.

A possible interpretation of the distinctive temperature β(k)
c ,

combined with a fact that the expected density of states for the
ensemble of random local Hamiltonians is a Gaussian [6,8],
is that the distribution of eigenstates with low energies
intrinsically differs from those with intermediate energies. To
explain this clearly, let P (E)�E ∝ exp[−(E−Ē

σ
)2] e−βE

Z(β) �E be
the population of eigenstates between the energy [E,E + �E]
for a small �E in a thermal state, where Ē and σ is the mean
and the standard deviation of the Gaussian density of states,
respectively. When β is sufficiently small such that the thermal
population e−βE/Z(β) is close to 1/dn for any E, the Gaussian
term in P (E) is dominant. Hence, the corresponding thermal
state is effectively described by a mixture of the eigenstates
with eigenenergies in [Ē − σ,Ē + σ ]. On the other hand, the
thermal population in P (E) becomes dominant when β is
large. For instance, the population of eigenstates with energy
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E ∈ [Ē − σ,Ē + σ ] is comparable with that of ground states
at βE = (E − E0)/σ 2. For β � βE , eigenstates with energy
E does not contribute to the thermal state.

Due to this tradeoff between the Gaussian and the
thermal factors in P (E)�E, T

(k)
t (β) in a small (large) β

reflects the properties of eigenstates with intermediate (low)
eigenenergies. The β(k)

c point is understood as the point
where this transition happens. The singularity of T

(k)
t (β)

at β(k)
c then indicates that the distribution of intermediate

eigenstates for H ∈ Hk is qualitatively different from that
of low-energy eigenstates. Since T

(k)
t (β) rapidly decrease

with β when β < β(k)
c , the distribution of intermediate

eigenstates is likely to be similar to the unitarily invariant
one.

The situation is entirely different for the ensemble of
random global Hamiltonians, where no distinctive temperature
is observed, for the following two reasons. First, there is
no tradeoff between the density of states and the thermal
population in P (E) since the density of states obeys the
semicircle law given by

√
c − (E − Eμ)2 [1]. This is negli-

gible at any temperature compared to the thermal population
that exponentially scales with E. Second, the ensemble of
eigenstates of any eigenenergy is unitarily invariant, which is
in sharp contrast to the distribution of eigenstates of random
local Hamiltonians.

These results show that the distribution of thermal states in
random k-local Hamiltonian systems has a rich structure and is
qualitatively different from that in global Hamiltonian systems,
even if k = O(n). This is not only interesting from a theoretical
point of view but also physically important since it means
that most of the previously known results of random states,
equivalently an ensemble of ground states in random global
Hamiltonian systems, related to physical situations [10–17]
cannot be directly applied to many-body systems with local
interactions.

VI. SUMMARY AND OUTLOOK

In this Rapid Communication we have investigated a distri-
bution of thermal states in random global or local Hamiltonian
systems. For random global Hamiltonians, we analytically
showed that the ensemble of thermal states monotonically
approaches the unitarily invariant one with decreasing temper-
ature and achieves an ε-approximate state t-design when the
temperature is O(1/(logt + log1/ε)). On the other hand, the
ensemble of thermal states for random k-local Hamiltonians
achieves a state 1-design but not higher designs. We then
showed by studying a higher design that the ensemble is di-
vided into two regimes of temperature, a regime where the en-
semble quickly spreads toward the uniform one with decreas-
ing temperature and a regime where the ensemble converges to
a nonuniform one, which are likely to be separated by a singu-
lar point. These studies have revealed the similarities and the
differences of random global or local Hamiltonians from the
viewpoint of the distribution of thermal states, and have opened
a new approach for studying random systems by connecting
random matrix theory and quantum information science.

It is desirable to analytically confirm the features numeri-
cally observed in this paper. Proving the phase transition of the
ensemble of thermal states is especially important. It is also in-
teresting to derive the probability distribution of ground states
in random local Hamiltonian systems, by which an understand-
ing of local Hamiltonian systems will be further deepened.
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