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Variational matrix product ansatz for nonuniform dynamics in the thermodynamic limit

Ashley Milsted,1,* Jutho Haegeman,2 Tobias J. Osborne,1 and Frank Verstraete2

1Leibniz Universität Hannover, Institute of Theoretical Physics, Appelstrasse 2, D-30167 Hannover, Germany
2Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Wien, Austria

(Received 20 June 2013; revised manuscript received 30 September 2013; published 14 October 2013)

We describe how to implement the time-dependent variational principle for matrix product states in the
thermodynamic limit for nonuniform lattice systems. This is achieved by confining the nonuniformity to
a (dynamically expandable) finite region with fixed boundary conditions. The suppression of nonphysical
quasiparticle reflections from the boundary of the nonuniform region is also discussed. Using this algorithm
we study the dynamics of localized excitations in infinite systems, which we illustrate in the case of the spin-1
antiferromagnetic Heisenberg model and the φ4 model.
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Douglas Adams (nearly) put it best: “[Hilbert] space is
big. . . You just won’t believe how vastly hugely mindbog-
glingly big it is. I mean, you may think it’s a long way down
the road to the chemist, but that’s just peanuts compared to
[Hilbert] space.” Given said space’s exponential growth with
the size of a many-particle system, it is a little astounding
that general techniques exist to allow efficient numerical
calculations in a wide range of physically interesting cases.
This is possible because physically relevant states have limited
entanglement.1–3 This observation may be exploited to obtain
an efficient parametrization of this physical corner of Hilbert
space.

The class of matrix product states (MPSs)4 represents, in
one dimension, a good parametrization of the physical corner.
This is amply demonstrated by the unparalleled success of the
density matrix renormalization group (DMRG),5 which can be
viewed as a variational method when formulated in the MPS
language.6 The MPS class has served as the basis for many
exciting generalizations, including the study of nonequilibrium
dynamics7 and higher-dimensional systems.8 More recently,
Haegeman et al. have implemented the time-dependent varia-
tional principle (TDVP—see boxout) for MPSs,9 providing a
locally optimal (in time) framework for simulating dynamics,
including finding ground states via imaginary time evolution,
and an ansatz for studying excitations of one-dimensional
lattice systems.

The simulation of infinite quantum spin systems has mostly
been confined to the translation invariant setting (usually by
restricting states to subsets of MPSs that are either fully
translation invariant or invariant under translations by k > 1
sites10). However, the ability to explore locally nonuniform
states on an infinite lattice is particularly attractive for studying
the dynamics, e.g., scattering, of localized excitations in
large systems. For example, this would provide a realistic
setting in which to study quantum field excitations. There
has been some prior work in this direction, building on
previous light-cone results,3,11,12 where the dynamics of a
local disturbance is (partially) studied in the Heisenberg
picture. These approaches can become expensive for systems
with large local spin dimensions (such as those appearing
in lattice field theory). Another direction that has been
suggested,13 is to work completely in the Schrödinger picture

with infinite uniform MPSs and to add a finite nonuniform
region.

The time-dependent variational principle

H

M|Ψ[a(t)]
|Φ

A variational man-
ifold M is depicted
as embedded in a
Hilbert space H. Be-
ginning with a state
|Ψ[a(t = 0)] in M,
where a(t) are the
variational parameters,
we wish to compute the
time-evolution accord-
ing to the Schrödinger
equation d

dt
|Ψ[a(t)] = −iH |Ψ[a(t)] .

The exact evolution generally leads out of M. Equiva-
lently, the infinitesimal time step −iH |Ψ[a(t)] (the blue
dashed arrow) need not lie within the tangent plane to
M at point |Ψ[a(t)] (the green dotted line). The best
approximation to the exact evolution, whilst remaining in
M, requires a tangent vector |Φ (the red solid arrow)
that best approximates −iH |Ψ[a(t)] , which is found by
projecting −iH |Ψ[a(t)] onto . In other words, |Φ must
minimize iH |Ψ[a(t)] + |Φ 2.

This is equivalent to finding optimal equations of mo-
tion for a. Writing |Φ = ȧj |∂jΨ (where |∂jΨ :=
∂/∂aj |Ψ[a(t)] ) and taking the derivative of the above

magnitude with respect to ȧ
j

results in the flow equa-
tions

iȧj(t) = gjk ∂kΨ|H |Ψ
where gjk is the inverse of gjk = ∂jΨ|∂kΨ , which is
the pullback metric on . Here, we assume that |Ψ[a(t)]
is a holomorphic function of a(t), although this is not
necessary.

In this work we explore the locally optimal implementation
of the TDVP for uniform MPSs with a dynamically expandable
nonuniform segment. We derive the equations of motion for
the variational parameters using a particular choice of gauge
fixing which allows us to integrate the variational dynamics
with a complexity that scales as d|t |D3N , where N is the
length of the nonuniform piece (the number of sites), |t | is the
desired integration time, d is the local spin dimension, and D is
the bond dimension. Even though the ends of the nonuniform
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region can move, there may be some backscattering due to
boundary effects; we describe how to compensate for these
with the addition of an optical potential term. These methods
are illustrated in the case of local excitations of the spin-1
antiferromagnetic Heisenberg model and for particles in φ4

theory.
We assume throughout that our Hamiltonian H contains

only nearest-neighbor terms. It is decomposed as H = H uni +
H loc, where H uni = ∑∞

n=−∞ huni
n,n+1 with huni

n,n+1
∼= huni

m,m+1,

∀n,m, and H loc = ∑N−1
n=1 hloc

n,n+1 with [1,N ] representing a
contiguous region of the lattice and hloc

n,n+1 ≡ 0 for n < 1,n �
N , allowing us to also write H = ∑

n hn,n+1 = ∑
n[huni

n,n+1 +
hloc

n,n+1]. We consider two cases in particular: First, a nontrivial
hloc leads to a locally nonuniform ground state, which can
be found using imaginary time evolution via our algorithm.
Second, given a purely uniform Hamiltonian (hloc = 0) and an
initial state that differs only locally (in a region [1,N ]) from
an eigenstate of H uni, our algorithm can be used to simulate
the resulting locally nontrivial dynamics.

To capture a locally nonuniform state using MPS, we define
a class of “sandwich” states (sMPSs), based on uniform MPSs,
using two d × D × D tensors AL and AR describing the
(asymptotic) state on either side of the nonuniform region
[1,N ], which is parametrized by N further tensors. An sMPS
can be written as

|�[A]〉 =
d∑

{s}=1

v
†
L

[
0∏

i=−∞
A

si

L

]

×A
s1
1 · · ·AsN

N

⎡
⎣ ∞∏

j=N+1

A
sj

R

⎤
⎦ vR |s〉 ,

where |s〉 = |· · · s1 · · · sN · · ·〉 and As
X ∈ MD(C) (where X =

L,R,[1,N ]). Taking AL = A1 = · · · = AN = AR gives a
completely uniform state. The vectors vL/R are, as with
uniform MPSs,9 generically irrelevant to the TDVP algorithm
and are not further specified. In principle, the dimensions of
As

X are subject only to the constraints of the matrix product,
which can become important when maximizing numerical
efficiency. However, for reasons of notational simplicity, we
assume uniform dimensions here.

AL/R represent the left and right asymptotic states: The
reduced density matrix ρ[n,m](AL,AR,A1···N ) of a piece of
the lattice in the left or right region n,m < 1 or n,m > N

tends to that of the uniform MPS ρ[n,m](AL/R) as the distance
from the nonuniform region increases. Since AL/R represent
infinite “bulk” regions of the lattice, their dynamics should
not be affected by nonuniformities in the [1,N ] region,
which spread at a finite speed. Furthermore, if the left and
right asymptotic states are eigenstates of H uni, they are left
completely unchanged by time evolution. Assuming this, we
restrict the variational parameters to the tensors A1 · · · AN and
treat AL/R as boundary conditions. AL/R can be obtained for
the ground state of H uni using the existing TDVP algorithm
for uniform MPSs.9 To accurately capture states with a
nonuniform region [1,N ] in this way, N should be sufficiently
large so that the asymptotic states are already reached at the
left and right boundaries with the bulk.

The tensor network formed by the matrices A can be
visualized as

AL AL A1 A2 A3 AN AR AR

with the nonuniform region marked in the center and the
physical indices pointing upwards. Expectation values of local
operators can be calculated efficiently in terms of operators
EA

B ≡ ∑d
s As ⊗ B

s
, with the “transfer operators” En ≡ E

An

An
.

For example, the expectation value of an operator h that acts
nontrivially on a pair of neighboring sites can be written as

〈hn,n+1〉 = 〈vL|
[

n−1∏
k=−∞

En

]
Eh

n

[ ∞∏
k=n+2

En

]
|vR〉 , (1)

with 〈vL| = v
†
L ⊗ v

†
L and |vR〉 = vR ⊗ vR as well

as En<1 ≡ EL and En>N ≡ ER and where Eh
n =∑d

s,t,u,v 〈s,t |h|u,v〉 Au
nA

v
n+1 ⊗ As

nA
t
n+1.

AL AL A1 A2 A3 AN AR AR

AL AL A1 A2 A3 AN AR AR

h

EL Eh
0,1 E2 E3 EN ER ER

Expressions for expectation values and for the norm of the state
contain parts “〈vL| (EL)∞” and “(ER)∞ |vR〉” that need not be
well defined, depending on the properties of EL and ER . To
make these quantities finite, we must require that EL/R have
a spectral radius equal to 1. To ensure that vL and vR remain
irrelevant in calculations of bulk properties, we further demand
that there is a single, nondegenerate (so that As

L/R are not
block diagonalizable) eigenvalue of largest magnitude that is
equal to 1, with all other eigenvalues having magnitude strictly
less that 1.14 The left and right eigenvectors corresponding to
this eigenvalue, which are thus the unique left and right fixed
points of EL/R , we name 〈lL/R| and |rL/R〉, normalizing them
such that 〈lL/R|rL/R〉 = 1. We can then write 〈x| (EL)∞ ∝ 〈lL|
and (ER)∞ |x〉 ∝ |rR〉, where |x〉 is some vector that is not
orthogonal to 〈lL| or |rR〉.

We now have a slightly simpler form for (1): 〈hn,n+1〉 =
〈lL|[∏n−1

k=1 En]Eh
n [

∏N
k=n+2 En]|rR〉. To further improve the no-

tation, we define 〈ln�1| = 〈ln−1| En and |rn<N 〉 = En+1 |rn+1〉,
identifying 〈ln<1| ≡ 〈lL| and |rn�N 〉 ≡ |rR〉 (we will also
use An>N ≡ AR and An<1 ≡ AL). We then have 〈hn,n+1〉 =
〈ln−1| Eh

n |rn+1〉:
EL Eh

0,1 E2 E3 EN ER ER

= lL Eh
0,1 E2 E3 EN rR

= lL Eh
0,1 r1 .

Note that we are free to scale 〈lL|, |rR〉 and the tensors An

of the nonuniform region such that 〈�|�〉 = 〈ln|rn〉 = 1,∀n.
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For reasons of efficiency, when constructing numerical
algorithms we work in the isomorphic setting where transfer
operators are replaced by maps and vectors by matrices using
the Choi-Jamiolkowski isomorphism. Here a D2 × D2 transfer
operator acting on a vector En |x〉 becomes

∑d
s As

nxAs
n
† with

x a D × D matrix, so that expectation values can be computed
using O(D3) scalar multiplication operations:

AL A1

lL Eh
0,1 r1 = lL r1

AL A1

h

We now determine the dimension of the submanifold
MsMPS ⊂ H of Hilbert space defined by the sMPS variational
class. Naively, this is the number of complex entries of the
parameter tensors A1···N , which is NdD2. However, an sMPS
is invariant under gauge transformations

As
L → g0A

s
Lg−1

0 ,

As
1�n�N → gn−1A

s
ng

−1
n , (2)

As
R → gNAs

Rg−1
N ,

with gn ∈ MD(C). Since AL/R are fixed, we restrict to g0 =
gN = I leaving (N − 1)D2 nonphysical degrees of freedom
corresponding to the gauge-transformation matrices g1···(N−1),
as well as a further one corresponding to the norm and phase.
The dimension of the sMPS variational manifold is thus
dim(MsMPS) = [N (d − 1) + 1]D2 − 1. The redundancy in
the sMPS representation is familiar from other MPS variational
classes9 and is less inconvenient than it may appear, since the
gauge freedom in the representation of tangent vectors allows
for significant simplification of the TDVP flow equations.

To implement the TDVP (see boxout), we must project
exact infinitesimal time steps −iH |�[A]〉 onto the tangent
plane T|�[A]〉 to MsMPS at the point |�[A]〉. The tangent plane
is spanned by tangent vectors

|�[B]〉

=
N∑

n=1

dD2∑
i=1

Bn,i |∂n,i�[A]〉 ,

=
N

n=1

. . . . . .

AL A1 An−1 Bn An+1 AN AR

Ψ
,

(3)

with |∂n,i�[A]〉 = ∂/∂An,i |�[A]〉 and the index i running
over all dD2 entries of each tensor An or Bn. The projection
is achieved by finding a |�[B]〉 that satisfies

|�[B]〉 = arg min
|�[B ′]〉

‖iH |�[A(t)]〉 + |�[B ′]〉 ‖2. (4)

Expanding the right-hand side leaves terms 〈�[B]|�[B]〉 and
〈�[B]|H |�[A]〉 + H.c., where the remaining H 2 term is a
constant that can be ignored. The metric term 〈�[B]|�[B]〉
is at first glance very complicated, since it couples the tensors

Bn for different lattice sites in terms such as

n<m

An An+1 Am−1 Bm

ln−1 rm

Bn An+1 Am−1 Am

, (5)

precluding a splitting of the problem into N separate parts
(one for each Bn). Fortunately, these site-mixing terms can be
eliminated by fixing the gauge freedom in the tangent vector
representation. If we impose the left gauge-fixing conditions
(GFCs)

〈ln−1| EBn

An
= 0 =

d∑
s

As
n
†
ln−1B

s
n

(6)

ln−1 EBn

An
= 0 =

An

ln−1

Bn

for sites 1 � n < nc and the right gauge-fixing conditions

E
Bn

An
|rn〉 = 0 =

d∑
s

Bs
nrnA

s
n
†

(7)

EBn

An
rn = 0 =

An

rn

Bn

for sites nc < n � N , we eliminate all site-mixing terms like
(5) such that 〈�[B]|�[B]〉 = ∑N

n=1 〈ln−1| EBn

Bn
|rn〉. Note that,

for some site nc in the nonuniform region, the tangent vector
parameters Bnc

are not constrained. For reasons of symmetry,
we choose nc to be in the middle so that 2(nc − 1) + 1 = N

with odd N .
To see that the conditions (6) and (7) fix exactly the

gauge degrees of freedom, we consider the one-parameter
gauge transformation gn(η) = I + ηxn ∀n ∈ [0 · · · N ] with
x0 = xN = 0. Writing the transformed state as |�[A′(η)]〉,
the infinitesimal transformation has the form (3) of a tangent
vector

d

dη
|�[A′(η)]〉 |η=0 = |�[N [x]]〉 = 0,

with N s
n [x] = xn−1A

s
n − As

nxn. Tangent vector parameters of
this form thus capture exactly the gauge freedom so that
an arbitrary tangent vector fulfills |�[B]〉 = |�[B + N [x]]〉.
Using this freedom, we can always transform arbitrary B ′

n

as Bn = B ′
n + Nn[x] so that Bn satisfies the gauge-fixing

conditions (6) and (7). To see this, we insert B ′
n + Nn[x] into

(7) to obtain

xn−1rn−1 =
d∑
s

(
As

nxn − B ′
n

s)
rnA

s
n
† ∀n > nc,

which we can solve to fully determine xn−1 given that rn−1 has
full rank and that xn is known. Starting at n = N with xN = 0,
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this fixes all xn down to n = nc. We can perform the same trick
with (6) to get

lnxn =
d∑
s

As
n
†
ln−1

(
xn−1A

s
n + B ′

n

s) ∀n < nc,

which determines the remaining xn (up to n = nc − 1) given
that x0 = 0 and that ln has full rank.

We can construct Bn such that they automatically fulfill the
GFCs (6) and (7). For nc < n � N we define the (d − 1)D ×
dD matrix V

†
n to contain an orthonormal basis for the null

space of [Rn](α,s);β = [r1/2
n As

n
†]α,β and set

Bs
n(xn) = l

−1/2
n−1 xnV

s
n r−1/2

n ∀n ∈ [nc + 1,N ], (8)

with parameters xn. For 1 � n < nc we define the dD × (d −
1)D matrix Wn to contain an orthonormal basis for the null
space of [Ln]α;(s,β) = [As

n
†l1/2

n−1]α,β and set

Bs
n(xn) = l

−1/2
n−1 Ws

nxnr
−1/2
n ∀n ∈ [1,nc − 1]. (9)

It is easy to check by insertion that (9) and (8), respectively,
satisfy the GFCs (6) and (7). Note again that Bnc

remains
unconstrained. Using the parametrizations, we obtain

〈�[B]|�[B]〉 =
∑
n�=nc

tr[x†
nxn] + 〈lnc−1|EBnc

Bnc
|rnc

〉 . (10)

Having fixed the gauge, one nonphysical degree of freedom
remains, since 〈�[A]|�[B]〉 = 〈lnc−1|EBnc

Anc
|rnc

〉 �= 0, imply-
ing that the tangent plane contains infinitesimal changes to the
norm and phase. We must thus explicitly eliminate norm and
phase changes when implementing the TDVP, which can be
done by replacing H with H̃ ≡ H − 〈�|H |�〉 in the TDVP
flow equations, effectively projecting out the corresponding
component of H |�〉.9

With gauge fixing, 〈�[B]|H̃ |�[A]〉 simplifies, but still
contains terms mixing Bn and h̃m,m+1 ≡ hm,m+1 − 〈hm,m+1〉
for m,m + 1 �= n. Each Bn term contains a sum over h̃m,m+1

extending into the left (n < nc) or right (n > nc) bulk or into
both (n = nc). This is understood by defining the right and left
effective Hamiltonians

|Kn+1〉 =
∞∑

m=n+1

(
m−1∏

k=n+1

Ek

)
Eh̃

m |rm+1〉 ,

〈Jn−1| =
n−2∑

m=−∞
〈lm−1| Eh̃

m

(
n−1∏

k=m+2

Ek

)
,

which also obey

|Kn〉 = En |Kn+1〉 + Eh̃
n |rn+1〉 ,

〈Jn| = 〈Jn−1| En + 〈ln−2| Eh̃
n−1,

where Eh̃
n = ∑d

s,t=1 Cs,t
n ⊗ As

nA
t
n+1 and Cs,t

n =∑d
u,v=1 〈s,t |h̃n,n+1|u,v〉 Au

nA
v
n+1. For example, the terms

containing Bn with n > nc are

nc<n<m

Bn An+1 Am Am+1

ln−1 rm+1

An An+1 Am Am+1

h̃

=
nc<n

Bn

ln−1 Kn+1

An

.

The sums over the uniform bulk |KR〉 ≡ |KN+1〉 =∑∞
n=0(ER)nEh̃

R |rR〉 and 〈JL| ≡ 〈J0| = ∑∞
n=0 〈lL| Eh̃

L(EL)n

can be computed by exploiting the assumption that EL/R have
a unique largest (in magnitude) eigenvalue equal to 1, which
allows us to rewrite the sum as a pseudoinverse. For the right-
hand bulk this gives |KR〉 = (I − ER)PEh̃

R |rR〉 or, equiva-
lently, [I − (ER − |rR〉 〈lR|)] |KR〉 = Eh̃

R |rR〉, which can then
be solved for KR in the matrix representation using O(D3) op-
erations per iteration. 〈JL| can be computed analogously. Note
that the energy difference due to the nonuniformity is 
E =
〈JL|r0〉 + 〈lN |KR〉 + ∑N

n=0 〈hn,n+1〉 − (N + 1) 〈h〉uni, where
〈h〉uni is the energy per site of the uniform bulk state.

We now have the ingredients needed to compute the
Hamiltonian term efficiently as

〈�[B]|H̃ |�[A]〉

=
∑
n�=nc

tr[x†
nFn] +

d∑
s=1

tr
[
lnc−1G

s
nc

rnc
Bs

nc

†]
, (11)

with

Fn>nc
≡

d∑
s,t

l
1/2
n−1C

s,t
n rn+1A

t
n+1

†
r−1/2
n V s

n
†

+
d∑
s,t

l
−1/2
n−1 At

n−1
†
ln−2C

t,s
n r1/2

n V s
n
†

+
d∑
s

l
1/2
n−1A

s
nKn+1r

−1/2
n V s

n
†
,

Fn<nc
≡

d∑
s,t

W s
n
†
l
1/2
n−1C

s,t
n rn+1A

t
n+1

†
r−1/2
n

+
d∑
s,t

W s
n
†
l
−1/2
n−1 At

n−1
†
ln−2C

t,s
n−1r

1/2
n

+
d∑
s

Ws
n
†
l
−1/2
n−1 Jn−1A

s
nr

1/2
n ,

Gs
nc

≡ As
nc

Knc+1r
−1
nc

+ l−1
nc−1Jnc−1A

s
nc

+
d∑
t

[
Cs,t

nc
rnc+1A

t
nc+1

†
r−1
nc

+ l−1
nc−1A

t
nc−1

†
lnc−2C

t,s
nc−1

]
,
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where n ∈ [1,N ] and Jn is the conjugate matrix representation
of 〈Jn| so that, for some vector |y〉, 〈Jn|y〉 = tr[Jny].

Having fixed the gauge, inserting (10) and (11) into the
TDVP minimization problem (4) and minimizing over the
parameters xn�=nc

and Bnc
gives us N − 1 + d independent

matrix equations,

Bs
nc

= −iGs
nc

(s ∈ [1,d]) and xn = −iFn (n �= nc),

representing the optimal time evolution for the variational
parameters

Ȧs
nc

= −iGs
nc

(A) and Ȧs
n�=nc

= Bs
n[−iFn(A)], (12)

where we use the appropriate parametrization (8) or (9) for
Bn depending on the value of n. With gauge fixing, the
independent terms to be minimized in (4), one for each Bn,
can be summarized diagrammatically as

Bn

ln−1 rn

Bn

=

Bn An+1

ln−1 rn+1

An An+1

h̃ +

An−1 Bn

ln−2 rn

An−1 An

h̃ +

Bn

ln−1 Kn+1

An

only for n≥nc

+

Bn

Jn−1 rn

An

only for n≤nc

,

where the equations for xn are obtained again by replacing Bn

with (8) or (9) for n �= nc as appropriate. The flow equations
(12) can be integrated numerically, for example with the
following simple algorithm implementing the Euler method.

(1) Calculate Fn,G
s
nc

.
(2) Take a step by setting An(t + dt) = An(t) + dtBn.
(3) Restore a canonical form using a gauge transformation

(2) and normalize the state by rescaling Anc
.

(4) Compute desired quantities, such as the energy expec-
tation value, and adjust the step size dt as required.

(5) If needed, expand the nonuniform region to the left
and/or right.
Normalization is necessary because the norm is only preserved
to first order in dt . Maintaining a canonical form (for example,
see Appendix A) can simplify some parts of the TDVP
calculations and improve the conditioning of the matrices
involved. The last step allows for a small initial nonuniform
region, which can be grown if the dynamics warrant changing
the state significantly outside of it. This is done by “absorbing”
sites from the uniform region(s) into the nonuniform region,
copying the AL and AR matrices as needed.

Whether it is necessary to grow the nonuniform region
can be heuristically determined by observing the per-site
contributions ηn =

√
〈ln−1|EBn

Bn
|rn〉 to the norm η = ∑

n ηn

of the TDVP tangent vector |�[B]〉. If η1 and ηN become
significantly larger than the norm ηuni of the uniform MPS
TDVP tangent vector of the bulk state then the nonuniform
region should be expanded until this is no longer the
case.

Note also that the above algorithm is not well suited
to simulating real-time dynamics because errors due to the
simple integration method used are cumulative. Instead,
more sophisticated integrators such as the commonly used
fourth-order explicit Runge-Kutta method (see Appendix B)
are preferable. The Euler method is, however, still useful
for finding ground states because imaginary time evolution
is “self-correcting”—it will always take you towards the
ground state, given that the starting point is not orthogonal
to it.

To test our algorithm, we use the antiferromagnetic spin-1
Heisenberg model huni

n,n+1 = hAFH
n,n+1, with

hAFH
n,n+1 =

∑
i=x,y,z

Si
nS

i
n+1. (13)

The uniform ground state respects the SU(2) symmetry of the
Hamiltonian. Having found a uniform MPS approximation
for the ground state, we use imaginary time evolution to
find the ground state of a nonuniform model where one of
the coupling terms has its sign flipped via the addition of
hloc

0,1 = −2hAFH
0,1 , with all other hloc

n�=0,n+1 = 0, thus creating a
ferromagnetic impurity. Impurities have been studied in this
model before,15 however, to the best of our knowledge the
case of a ferromagnetic bond has not yet been investigated.
It appears to lead to localized SU(2) symmetry breaking, as
can be seen in the relative distribution of the spin expectation
values at each site, which we plot in Fig. 1. This is expected,
since the ground states of the uniform ferromagnetic model
also break the symmetry. In this case, −∑

i S
i
0S

i
1 acts in the
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,

S
z
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FIG. 1. (Color online) Per-site spin expectation values of the
approximate ground state of the spin-1 antiferromagnetic Heisenberg
model with a ferromagnetic impurity. The state was converged up
to η ≈ 3 × 10−8 with D = 64 and a nonuniform region [−100,100].
The initial uniform ground state used for the left and right bulk parts
was converged to η ≈ 10−12.
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FIG. 2. (Color online) Simulated real time evolution (using a
fixed nonuniform region [−100,100] with D = 64 and dt = 0.04)
of the spin-1 antiferromagnetic Heisenberg model with two localized
entangled excitations generated by applying S−

m−j S
+
m+j at m = ±15

with j = ±5. The plots show the expectation value of Sz
n with

the top-right plot showing the excitation bouncing at the right
boundary. For the bottom-right plot, we used a Gaussian optical
potential to suppress this reflection, albeit imperfectly, with εn =
e−(n+90)2/18 + e−(n−90)2/18. The uniform ground state was converged
up to a state tolerance η = 10−8. For the time integration we used a
fourth order explicit Runge-Kutta algorithm.

Hamiltonian to approximately project the pair of sites 0 and 1
onto the spin 2 subspace, whose states are not invariant under
SU(2).

As a test of real-time evolution, we again use huni = hAFH
n,n+1

from (13), but without any local perturbations (hloc
n,n+1 = 0,

∀n). We begin with a uniform ground state approximation
and introduce local excitations by applying the (nonunitary)
operator S−

m−j S
+
m+j with S±

n = Sx ± iSy , which generates an
entangled excitation, to two separated pairs of sites at m = ±k

inside a nonuniform region. By calculating the expectation
value of an observable such as Sz for a set of sites (possibly
extending into the left and right bulk regions) after each step,
the time evolution of the system can be visualized, for example
by plotting the site spin expectation values as in Fig. 2 or the
half-chain entropy for splittings at each site as in Fig. 3. For
the latter we use dynamic expansion of the nonuniform region
to maximize numerical efficiency. Note that the entropy for
a splitting after site 0 appears to tend to an asymptotic value
of approximately 3.5. This suggests that a hybrid method,
whereby uniform matrices are reintroduced between the two
excitations as they become separated, could be used to study
the asymptotics of entangled excitations for large times.

To mitigate nonphysical reflections that can occur when
a traveling excitation meets a boundary with the uniform
region, “optical potential” terms hloc

n,n+1 = −iεnh
uni
n,n+1 can be

locally turned on near to the boundaries. This effectively
carries out imaginary time evolution on a subsystem defined
by the envelope function ε(n), where the magnitude of ε(n)
determines the rate of “cooling” at each site. If ε(n) is a step
function that turns on imaginary time evolution at a constant
rate in a small part of the lattice, that part should (in the absence
of simultaneous real time evolution) converge to the ground
state of a finite chain with open boundary conditions. Since
we are working with gapped systems, the ground state of a
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FIG. 3. (Color online) The time evolution of the block entropy S

of one half of the lattice, split at each site n, for the same simulation
as in Fig. 2, except that dynamic expansion of the nonuniform region
is used, as indicated by the “staircase” pattern—the bulk parts are
shown in white. The inset shows a cross section at site 0.

smaller part should be the same as that of the uniform infinite
system up to boundary effects. We find that choosing ε(n)
to be superposition of two Gaussians, each localized near an
edge of the nonuniform region, avoids significant boundary
effects during evolution of the Heisenberg model (13) while
successfully attenuating boundary reflections, as shown in
Fig. 2. Note that the entanglement present in the excitations
produced for this particular model mean that the boundary
absorption affects the evolution in the central region as well as
at the boundaries themselves. Further tuning of εn may help
to more effectively dissipate the excitations heading out of the
nonuniform region.

As a final test of our approach we simulate the scattering of
localized excitations in φ4 theory on a one-dimensional lattice.
The Hamiltonian is

Hφ4 =
∑

n

(
1

2
π2

n + μ̃2
0

2
φ2

n + λ̃

4!
φ4

n + 1

2
(φn − φn+1)2

)
,

(14)

where [φn(t),πm(t)] = iδnm. The bare mass μ̃0 and coupling
λ̃ are dimensionless lattice parameters related to parameters
with dimension [mass]2 by μ̃2

0 = a2μ2
0, λ̃ = a2λ, where a is

the lattice spacing. We fix a for each set of parameters using
the ground state correlation length in lattice sites ξ̃ , which is
directly obtainable16 from the largest two eigenvalues of the
uniform MPS transfer operator E. Due to renormalization, μ̃0

is not equal to the particle mass and in fact diverges in the
continuum limit. So that our parameters are well defined in
the limit, we separate out the divergent contribution δμ̃2 to
obtain the renormalized mass-squared parameter μ̃2

R = μ̃2
0 −

δμ̃2. For certain values of μ̃2
R,λ̃ the ground state spontaneously

breaks the global Z2 symmetry φn = −φn of (14) such that
〈φn〉 = ±φ0. In Fig. 4 we examine excitations of φ4 theory
within a nonuniform region by applying the field operator to
the ground state and simulating time evolution. We do this
for a sequence of parameters, approaching a continuum limit.
More details about the application of MPSs to real scalar φ4

theory and its critical behavior are available elsewhere.17,18
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FIG. 4. (Color online) Simulation (D = 24, d = 16, dt = 0.02)
of particle scattering in (1 + 1)-dimensional lattice φ4 real scalar
field theory approaching a continuum limit (from left to right), as
determined by the ground-state correlation length in lattice sites
ξ̃ . We created two excitations by applying the field operator φn

at two different sites n = ±[ξ̃ ] to an approximate ground state
in the symmetry-broken phase. The coupling is λ̃ = 0.2 for all
three plots and the parameter ratio λ̃/μ̃2

R varies from left to right
as λ̃/μ̃2

R = 85,80,75. Distance x and time t are scaled with the
correlation length ξ = aξ̃ , where a is the lattice spacing. The field
expectation value 〈φ〉 is left unscaled, although a more comprehensive
treatment would scale it with the field strength renormalization factor,
which can also be computed from the uniform MPS approximate
ground state.

In this paper we have introduced an efficient means of
simulating the dynamics of localized nonuniformities on spin
chains in the thermodynamic limit using the time-dependent
variational principle (TDVP) and a special class of matrix
product states (MPSs). As with the existing algorithms imple-
menting the TDVP for MPSs in other settings,9 this algorithm
approximates exact time evolution optimally given the restric-
tions of the variational class. Our (open source) implementa-
tion evoMPS19 is available as Python (http://www.python.org)
source code, including example simulation scripts.

During completion of this work we learned of other inde-
pendent results20–22 that use time-evolving block decimation to
approximate the time evolution of a nonuniform window on an
otherwise translation-invariant chain. Our approach differs in
that we define a variational class and apply the TDVP to obtain
equations for locally optimal approximate time evolution.
We are then able to apply standard numerical integration
techniques. The idea of not only growing the nonuniform
region, but also of ignoring the evolution of uninteresting parts
of the nonuniformity for reasons of efficiency, say to follow
a wave front,21,22 can also be implemented in our scheme by
restricting the variational parameters to a smaller part of the
nonuniform region and leaving the rest constant (up to gauge
transformations). As mentioned above, another approach to
studying entangled excitations may be to detect when the
central region between two separating wave fronts becomes
translation invariant over a sufficiently large region, taking
this state as a new bulk state for one side of the system and
restricting the nonuniform region to a single wave front.

Helpful discussions with Florian Richter, Fabian Transchel,
and Fabian Furrer are gratefully acknowledged. This work
was supported by the ERC Grants QFTCMPS, QUERG, and
QUEVADIS, the FWF SFB Grants FoQuS and ViCoM, and
the cluster of excellence EXC 201 Quantum Engineering and
Space-Time Research.

APPENDIX A: CANONICAL FORM

A canonical form that fits to the gauge-fixing conditions
(GFCs) (6) and (7) is given by

ln = I ∀n < nc,

ln = diag
(
λ2

n,1 · · · λ2
n,D

) ∀n ∈ [nc,N ],

rn = I ∀n � nc,

rn = diag
(
λ2

n,1 · · · λ2
n,D

) ∀n ∈ [0,nc − 1],

where λn,i for 1 � i � D are the Schmidt coefficients for the
decomposition of the chain into two infinite halves by cutting
between sites n and n + 1. It corresponds to the GFCs in the
sense that changing the parameters as An → An + εBn with
Bn satisfying the GFCs does not alter ln<nc

or rn�nc
, which are

constants in the above canonical form, to first order in ε. In
practice, this means that the canonical form is approximately
maintained when making finite steps in the TDVP algorithm.

The above canonical form can be reached via a gauge-
transformation g0···N , where g0 and gN are nontrivial [see
(2)], such that the uniform bulk parameters AL/R are also
transformed. Since the overall state and also the left and right
uniform bulk states are unaffected by these transformations,
performing them does not affect evolution under the TDVP
equations.

APPENDIX B: RUNGE-KUTTA INTEGRATION

For real-time evolution, numerical integration using the
Euler method is inefficient since small step sizes dt are
required to keep the O(dt2) integration errors made with each
finite step small. A well known integration method with more
favorable error scaling is the fourth order Runge-Kutta method
(RK4),23 which makes per-step errors O(dt5) at the cost of
three extra evaluations of the derivative. It builds a final step
by making three smaller steps and weighting the derivatives
obtained at the visited points. Given a differential equation ȧ =
f (t,a), the RK4 method estimates a(t + dt) ≈ a(t) + dtbRK4

with bRK4 ≡ 1
6 (b1 + 2b2 + 2b3 + b4) and

b1 = f [t,a(t)],

b2 = f

[
t + dt

2
,a(t) + dt

2
b1

]
,

b3 = f

[
t + dt

2
,a(t) + dt

2
b2

]
,

b4 = f [t + dt,a(t) + dtb3].

The sMPS TDVP flow equations derived in the main part
of this work provide the derivative function for the nth site
Bn = fn(t,[A]), allowing us to implement the RK4 integrator
without any additional tools. It is worth noting that BRK4,
obtained by adding the tangent vector parameters from the
various substeps, is not gauge fixing. This is because each
individual Bn,i , although it is gauge fixing for the substep point
A′ at which it was obtained, is not generally gauge fixing when
applied at the original point A. Additionally, each substep
changes the gauge choice slightly, since gauge fixing only
holds to first order in the step size. On the other hand, since
the gauge-fixing flow equations do preserve the gauge choice
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when integrated exactly, gauge fixing should improve with the
accuracy of the numerical integration. We should thus expect
the RK4 method to maintain the gauge choice up to errors of
O(dt5) with each step. This is far better than the Euler method,
which incurs O(dt2) errors.

The error can be quantified by the change in the energy
expectation value, which is conserved under exact time
evolution. We confirm the benefits of our RK4 implementation
by comparing it to the Euler method for the Heisenberg model
example described in the main text, which we simulate on a
finite chain with open boundary conditions in order to avoid
errors due to the interface with the bulk. To compare the
efficiency of the two methods, we set the step sizes such that
the computation time per unit simulated time is roughly the
same and examine the overall change in the energy expectation
value after a period of simulated time T . Since a single RK4
step requires roughly four times as much computation as an
Euler step, we choose dtRK4 = 4dtEuler. For dtRK4 = 0.01, the
energy errors after a time T = 10h̄s are εEuler = −1.01 × 10−3

and εRK4 = −9 × 10−6, showing a significant advantage for
the RK4 method for the same computation time. The vast
majority of the RK4 error comes from the first four steps,
whereas the Euler errors are uniformly distributed in time.
Excluding these steps from the RK4 error estimate results in
ε′

RK4 = −3 × 10−9. Both ε′
RK4 and εEuler are in line with the

theoretical global error estimates of O(dt4
RK4) and O(dtEuler),

respectively. The comparatively large errors made by the RK4
method during the first few steps are caused by the presence
of particularly small Schmidt coefficients, indicating that the
bond dimension is higher than necessary. Small Schmidt
coefficients lead to instability because the squares of the
Schmidt coefficients appear in the l and r matrices, which are
inverted in the TDVP algorithm, amplifying errors on small
values greatly. To mitigate this, the bond dimension can be
reduced dynamically (and increased later if necessary), cutting
off Schmidt coefficients that are close to zero. Alternatively,
an integrator that is robust under low-rank conditions could be
used.24
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