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We show how to construct renormalization group (RG) flows of quantum field theories in real space, as

opposed to the usual Wilsonian approach in momentum space. This is achieved by generalizing the

multiscale entanglement renormalization ansatz to continuum theories. The variational class of wave

functions arising from this RG flow are translation invariant and exhibits an entropy-area law. We illustrate

the construction for a free nonrelativistic boson model, and argue that the full power of the construction

should emerge in the case of interacting theories.
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Classical statistical mechanics, quantum many-body
systems, and relativistic quantum field theories all involve
an extremely large number of degrees of freedom living at
different length scales. The interactions between these
degrees of freedom are the source of notorious difficulties
in their study. However, much insight has been gained from
the renormalization group (RG), which has proven to be
the natural tool to deal with the different length scales in
such systems [1]. In its original development, the RG acts
as a fixed operation at the level of the classical partition
function (or related quantities such as the effective action).
This operation is typically formulated in momentum space
and is usually only exactly implementable for free theories.
Perturbative expansions in a small parameter are required
for interacting theories. In addition, this formulation of
the RG is only applicable to quantum systems using the
quantum-to-classical mapping, which is known to fail in
some cases [2]. (See, e.g., Ref. [3], however, for important
nonperturbative approaches overcoming these limitations.)
Importantly, in its original incarnation, the RG is not a
variational method.

One exception is Wilson’s numerical renormalization
group [1], which can be interpreted as an implementation
of the RG directly at the level of the quantum wave func-
tion. Together with White’s more powerful density matrix
renormalization group [4], these methods are now under-
stood as a variational optimization over the class of
matrix product states [5]. Based on the observation of
an entropy-area law [6] in locally interacting quantum
lattices, quantum-information-theoretical considerations
have resulted in the development of other sophisticated
variational classes for quantum lattice systems. These are
generally known as tensor network states and can be asso-
ciated with RG schemes, allowing the classification of
gapped phases of matter [7]. Unlike Wilson’s fixed RG
scheme, these are variable RG schemes that can be varia-
tionally optimized. They are formulated in real-space and

deal equally well with free and interacting systems. One
specific scheme, called entanglement renormalization [8],
can also be applied to study critical phases and can be used
to compute, e.g., scaling exponents [9]. The corresponding
variational class, the multiscale entanglement renormaliza-
tion ansatz (MERA) [10], is set apart by its unique proper-
ties, including, the ability to support algebraically decaying
correlations and logarithmic corrections to the entropy-area
law in 1þ 1 dimensions. This class has been successfully
applied to study the physics of a wide variety of strongly
interacting systems in low dimensions, including the study
of real-time evolution, and fermionic and anyonic systems
which are inaccessible by Monte Carlo methods [10–13].
Most of these developments have been restricted to the

lattice setting. While they do allow the study of continuous
quantum systems via discretization, it is often desirable to
work directly in the continuum. Examples in condensed
matter physics include strongly interacting ultracold atomic
gases [14] and impurity problems [1,15], whereas the fer-
mion doubling problem [16] clearly motivates a continuum
treatment of relativistic theories. Recently it was under-
stood how to define matrix product states and its higher-
dimensional analog for continuous systems [17]. This class
has already been successfully applied to study both non-
relativistic and relativistic quantum field theories [18]. It is
the objective of this Letter to define a generalization of
MERA directly in the continuum. The area law for entan-
glement entropy—with logarithmic violations for critical
theories in 1þ 1 dimensions—has also been observed in
the continuum in the context of black hole physics [19]
and conformal field theories [20], and thus validates the
potential usefulness of our approach. Additionally, the
entanglement content of our continuum ansatz confirms
holographic proposals for entanglement entropy [21].
The MERA class.—The MERA construction, introduced

in Ref. [10], may be described either via an active renor-
malization process applied to a strongly correlated quantum
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state or, dually, as the result of a special quantum circuit
applied to a simple fiducial state. This reverse description is
not in violation with the irreversibility of the RG, since it
only applies to the ground state, not to the whole Hilbert
space and the Hamiltonian acting upon it. At stage 0 of the
MERA construction, the degrees of freedom (distinguish-
able quantum spins in this case) are arranged in a regular
lattice and initialized in some convenient initial state, e.g.,
the ‘‘all 0s’’ state j0i. At stage 1 the degrees of freedom are
subjected to a local interaction U1 for some constant time,
resulting in a correlated quantum state U1j0i of the lattice.
The precise details of U1—while playing a key role in
applications of the variational principle—are not required
to establish the general properties of a MERA. At the next
stage the lattice is subjected to a scale transformation and
the lattice spacing is doubled. At this point, in order to
renormalize the lattice (i.e., restore the lattice spacing),
new degrees of freedom are introduced: one adds a
quantum spin initialized in the state j0i between each pair
of the old lattice sites. Wewrite this renormalization step as
R. The resulting stateRU1j0i is then again subjected to a
local interactionU2 for some constant time followed by the
renormalization stepR, producing the stateRU2RU1j0i.
This process is then iterated as many times as desired
or required. A physical interpretation of the MERA con-
struction is straightforward. Every layer k begins with a
dilation of the state living in the previous layer to a lattice
doubled in size, by applying R. The operation of Uk

then adds short-range (e.g., over two sites) fluctuations or
entanglement on top of this state, corresponding to fluctua-
tions over 2m�k sites in the final state if m layers
are applied. However, the resulting state j�MERAi ¼
UmRUm�1R . . .RU1j0i generally breaks translation in-
variance unless the Uj are carefully fine tuned.

The passage to the continuum.—For simplicity we spe-
cialize to the case of a single bosonic species in one
dimension. (The generalization to higher dimensions and
to fermions or Bose-Fermi mixtures is entirely straightfor-
ward.) We write c ðxÞ and c yðxÞ, x 2 R, for the bare field
annihilation and creation operators which obey the canoni-
cal commutation relations ½c ðxÞ; c yðyÞ� ¼ �ðx� yÞ. The
following constructions can also be described in terms
of any set of operators that define the theory, such as the
Hermitian field operator� and its conjugate momentum �
for relativistic boson theories.

The generalization of the 0th stage of the MERA con-
struction is clear: one should choose for the initial state a
factorized reference state j�i. The transition to a continu-
ous space x 2 R enables the introduction of a continuous
scale parameter s that labels the layers of the MERA
construction. In every layer, new fluctuations are created
by the action of a unitary evolutionUðsÞ ¼ expð� i�KðsÞÞ
with time step � and local interaction KðsÞ given by

KðsÞ ¼
Z

kðx; sÞdx; (1)

where kðx; sÞ is a local combination of the field operators
c ðxÞ, their adjoints, and their derivatives. Since the con-
tinuum lacks a shortest distance, we need to introduce a
characteristic length scale � below which KðsÞ does not
create entanglement. This is possible in a variety of ways:
one strategy is to build kðxÞ from smoothed field operators
~c �ðxÞ ¼

R
��ðx� yÞc ðyÞdy, where ��ðxÞ is some smooth

envelope function which is nonzero outside a region of
width � around x ¼ 0. Another strategy is to simply
impose a cutoff on K when it is expressed in terms of
momentum variables. The cutoff � � ��1 ensures that the
only degrees of freedom which are nontrivially affected are
those with momenta k & �.
The third ingredient of the MERA construction is the

renormalization step where the scale is changed and new
uncorrelated degrees of freedom are introduced. Here the
continuum analog is not entirely clear, but we argue that
the following replacement naturally achieves the same
objective: we simply effect a small change of scale via
W ¼ expð�i�LÞ, where the generator L is given by

L ¼ � i

2

Z
c yðxÞx dc ðxÞ

dx
� x

dc yðxÞ
dx

c ðxÞdx: (2)

This has the same physical outcome as the original MERA
renormalization step because initially uncorrelated degrees
of freedom at length scales below � are now introduced at
the new length scale. Thus, our proposal for the continuous
MERA (cMERA) is as follows: evolve some initial state
j�i according to K for an infinitesimal time �, which
correlates real-space degrees of freedom at scales of
Oð�Þ. Then introduce new degrees of freedom from the
higher momenta or shorter length scales by dilating the
state via evolution according to L for a time �. The last
layer s ¼ s� creates fluctuations at length scale �. No
fluctuations at a shorter range exist in the final state. The
fluctuations created by layer s live at length scale
� expðs� � sÞ in the final state. If this process is to correctly
produce the long-range entanglement in a state with corre-
lation length � the first layer should be defined at s ¼ s�
with s� � s� ¼ Oð logð�=�ÞÞ. By taking the limit � ! 0
we obtain our final expression

j�i � T e
�i
R

s�
s�

KðsÞþLdsj�i � Uðs�; s�Þj�i; (3)

where T is the time-ordering operation. We refer to the
unitary operation preparing a cMERA as Uðs�; s�Þ. Note
that a UV cutoff � ¼ ��1 and an IR cutoff ��1 are
explicitly built into the cMERA definition. For critical
systems or relativistic theories with an infinite range of
fluctuations it is necessary for s� � s� ! 1.

The biggest difference between the cMERA and MERA
definitions arises from the flexibility we have in imposing
the UV cutoff. In the MERA case the UV cutoff is dictated
by the lattice spacing. This, in turn, essentially forces the
form of the subsequent scaling transformation (i.e., an
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integral number of spins must be introduced in the scaling
step). The freedom, arising from the continuum, to choose
a smooth UV cutoff allows the scaling transformation to be
applied continuously and for the resulting state to be easily
chosen to be translation invariant.

The set of all cMERA forms a variational class: the
variational parameters are the coefficients of interactions
involved in K; these coefficients may depend on both x
and the integration parameter s. When the coefficients do
not depend on position x a generic cMERA is manifestly
translation invariant (this is established by noting that
application of the unitary ei�L to a translation-invariant
state results in a translation invariant state). This is in
contradistinction to the generic situation with lattice
MERA.

Comparison with Wilsonian renormalization.—The
cMERA has been constructed using the quantum circuit
interpretation, but can now be interpreted as an active
renormalization process and compared to Wilson’s
momentum-shell renormalization group (RG) [1]. The lat-
ter works by iteratively integrating out all the modes living

in a small momentum shell �� d�< j ~kj<�. A rescal-
ing step brings modes at �� d� back to �. In the end �
can be sent to infinity, but we need to start with a finite� in
order to define the process. The renormalization process
defined by the cMERA proposal is a variational real-space
implementation of Wilsonian renormalization in a
Hamiltonian framework: rather than integrating out high-
frequency modes around the cutoff � from the partition
function—which is a fixed operation—the operator K first
disentangles these modes from the wave function in such a
way that they can be isometrically projected onto a refer-
ence vacuum j�i. Then a scale transformation is per-
formed to send the disentangled modes beyond the cutoff
(where they no longer interact via K) and new entangled
modes are brought to �. These modes are then disen-
tangled in the subsequent step. This immediately clarifies
the need for a finite cutoff� in our construction (which can
also be sent to infinity at the end of the process).

So what are the differences between the renormalization
process defined by the cMERA and Wilson’s momentum-
shell RG? First, whereas Wilson’s RG is a fixed operation,
the cMERA renormalization process is governed by KðsÞ
which can be variationally optimized. Second, while KðsÞ
can be formulated in momentum space (e.g., to implement
the cutoff), its defining property is real-space locality,
which has proven to be a correct assumption for both
free and interacting theories in countless examples with
MERA and related variational classes and is a result of the
locality of physical interactions.

The cMERA RG flow.—New to our formalism is that we
can define the RG flow for operators in a Hamiltonian
framework: suppose we want to evaluate the expectation
value hOi ¼ h�jOj�i, where j�i is a cMERA of the form
Eq. (3), and O is some local operator, e.g., O ¼ c ð0Þ or

O ¼ c yð0Þc ðxÞ. To do this we define OðsÞ �
Uðs�; sÞyOUðs�; sÞ, where

dOðsÞ
ds

¼ �i½KðsÞ þ L;OðsÞ�: (4)

This ‘‘Heisenberg-like’’ equation of motion is obtained by
differentiating the lower limit of the evolution operator
Uðs�; sÞ. Then hOi may be found by integrating this equa-
tion from s ¼ s� down to s ¼ s�, with the initial condition
Oðs�Þ ¼ O, and evaluating h�jOðs�Þj�i.
Physically, we think of the bare or physical operator

O as being defined at the UV cutoff length scale x� �. As
‘‘time’’ s progresses we think of OðsÞ as being brought
from length scale x� � to length scale x� �es��s. Thus,
OðsÞ is obtained from the bare operatorO by renormalizing
up to scale s (i.e., all degrees of freedom between momen-
tum scales es�s�� and �, where s < s� have been inte-
grated out or disentangled).
For critical theories, KðsÞ is expected to become s

independent away from s�. In accordance with the results
from Ref. [9], we can then assume the existence of opera-
tors O that satisfy �i½K þ L;O� ¼ �O. These are scaling
operators with scaling dimension �. If O is a local scaling
operator, it is necessarily centered around x ¼ 0. A local
scaling operator OðxÞ with scaling dimension � at position
x satisfies

� i½K þ L;O� ¼ xdOðxÞ=dxþ �OðxÞ; (5)

where the commutator with L generates the canonical
scaling dimension and the contribution of K can be under-
stood as generating the anomalous scaling dimension. The
existence of scaling operators makes it easy to prove that
cMERA support algebraically decaying correlations and
are thus well suited to study critical theories. In addition,
we can illustrate that they are able to produce an area law
for the entanglement entropy.
An entropy-area law for cMERA.—We now provide a

heuristic argument that a generic cMERA obeys an
entropy-area law by appealing to results [22] concerning
the dynamics of quantum spin systems: it is known that the
entanglement entropy SAðtÞ ¼ �trð�AðtÞ logð�AðtÞÞ, where
�AðtÞ ¼ trAcðe�itHj�0ih�0jeitHÞ is the reduced density
operator for a region A, under the real-time dynamics
generated by any strongly interacting system grows as

dSAðtÞ=dt � cj@Aj; (6)

where j@Aj denotes the length or area of the boundary of A
and should be measured in terms of the cutoff of H, for
some constant c which depends only on the local interac-
tions and the geometry of A. It is natural to conjecture that
this result holds in the continuum setting. Now, subject to
this assumption, we can deduce the proposed area law: we
track the entropy growth of the time-dependent region
AðsÞ ¼ Aes�s� , i.e., AðsÞ is A scaled down by a factor
es�s� throughout the cMERA preparation. We bound the
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entropy SA by integrating Eq. (6) (compare with
[21,23,24]):

SA � c
Z s�

s��logðL�Þ
ðL�es�s�Þd�1ds

¼
8<
:
c logðL�Þ; d ¼ 1
c

d�1 ðL�Þd�1
�
1� 1

ðL�Þd�1

�
; d > 1;

(7)

where the area j@Aj � ðL�Þd�1; the entanglement of AðsÞ
with the remainder of the system cannot receive further
contributions when jAðsÞj � ðL�Þd < 1. The appearance
of the logarithm of the UV cutoff is familiar from standard
QFT calculations [19,20]. Note that the cMERA might not
describe logarithmic violations of the boundary law in
d > 1, similar to the MERA case.

Representation of ground states via cMERA.—Let us
now construct a cMERA representation of the ground state
of a simple nonrelativistic bosonic model

H ¼
Z �

dc y

dx

dc

dx
þ	c yc � 
ðc y2 þ c 2Þ

�
dx: (8)

which is well defined if 2
 � 	. For 2
 ¼ 	, the elemen-
tary excitation becomes massless and the model becomes
critical. Using a general strategy discussed in Ref. [25], we
can describe ground states of free theories with a Gaussian
cMERA, where KðsÞ is the quadratic operator

KðsÞ ¼ � i

2

Z
g

�
k

�
; s

�
½ĉ yðkÞĉ yð�kÞ � ĉ ð�kÞĉ ðkÞ�dk;

where ĉ ðkÞ is the Fourier transform of the field operators.
We set gðk=�; sÞ ¼ �ðsÞ�ðjkj=�Þ with �ð�Þ a fixed cutoff
function with cutoff 1. The variational parameters are thus
the function values �ðsÞ. j�i is fixed by c j�i ¼ 0. The
analytic calculations are facilitated using a sharp cutoff
such as �ð�Þ ¼ �ð1� j�jÞ, where �ðxÞ is the Heaviside
function. Although this cutoff function produces a nonlocal
operator K, it is straightforward to see that similar results
are obtained using a smooth cutoff such as �ð�Þ ¼
expð��2Þ which does yield a local K. The exact ground
state ofH can be accurately reproduced [26] if�2 � Oð
Þ
by choosing

�ðsÞ ¼ 2ð
=�2Þ=½ðe2s þ�2=�4e�2sÞ þ 2	=�2�;

where we have set s� ¼ 0 and � ¼ ð	2 � 4
2Þ1=2 repre-
sents the mass gap of the system. For 2
 < 	 or thus
�> 0, the ‘disentangling strength’ �ðsÞ peaks at s ¼
�1=2 logð�2=�Þ and decays to zero for s ! �1.
The integration of the RG flow can be stopped at s� �
�1=2 logð�2=�Þ �Oð	=�2Þ. Figure 1 depicts the
momentum occupation nðpÞ—obtained as Fourier trans-
form of the spectral function hc yðxÞc ðyÞi—for different
values of the integration limit s�. In the critical limit

(2
 ! 	), �ðsÞ reaches a nonzero horizontal asymptote

lims!�1�ðsÞ ¼ 
=	 ¼ 1=2 and we need to integrate all
the way down to s� ¼ �1. According to Eq. (5), the

scaling operators then correspond to �ðxÞ � ðc ðxÞ þ
c yðxÞÞ and �ðxÞ � ðc ðxÞ � c yðxÞÞ. The low-energy
behavior is scale invariant and can be described by the
massless Klein-Gordon equation [25].
This example is a free Gaussian theory; however, inter-

acting theories can also be variationally treated within our
framework. Here one adds interacting terms to K, which
are additional variational parameters, and computes expec-
tation values by solving Eq. (4) variationally using an
expansion of OðsÞ in a power series of local operators
and truncating it optimally. Divergences in the interacting
theory must be dealt with as usual by only computing
operationally defined cutoff independent quantities.
Conclusions.—In this Letter a generalization, cMERA,

of the MERAvariational class to the continuum setting has
been introduced. We have argued that cMERA can be
translation invariant and generically exhibit an entropy-
area law. We have also supplied an analytic argument that
the ground states of a general class of local quadratic
models admits a cMERA description. Much remains to
be done: we expect, by analogy with MERA, that cMERA
will be a useful variational class for strongly interacting
quantum fields, and will allow the description of a variety
of interesting physical phenomena from topological effects
to confinement, and symmetry breaking. Looking further
afield, the cMERA constitutes a realization of the holo-
graphic principle. It is tempting to speculate, building on
[24,27], that cMERA is a natural candidate to establish a
link between entanglement renormalization and the best
known realization of the holographic principle, namely the
AdS/CFT correspondence.

FIG. 1 (color online). The momentum occupation nðpÞ for the
cMERA approximation of the ground state of the Hamiltonian in
Eq. (8) with 	=2
 ¼ 1:1 (�=2
 � 0:46) for different values of
the integration limit s�. Note that the error becomes negligible if

s� is sufficiently larger than �1=2 logð�2=�Þ and that the UV

error (vertical offset between exact and approximate results at
large momentum) is completely invisible even for the moderate
choice of the UV cutoff � ¼ 3
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