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Kurzzusammenfassung

Ein Arrangement von Hyperebenen (kurz Arrangement) ist eine endliche Menge linearer
Unterräume der Kodimension eins in einem endlichdimensionalen Vektorraum.

Die Klasse der Spiegelungsarrangements nimmt in der Theorie eine zentrale Rolle ein. Eine
weitere wichtige Klasse sind freie Arrangements, die zuerst von Terao in den 1980er Jahren
untersucht wurden. Nach seinem bedeutenden Satz sind alle Spiegelungsarrangements frei.
Teraos Vermutung besagt, dass die algebraische Eigenschaft der Freiheit über einem fest
gewählten Körper in Wirklichkeit eine kombinatorische Eigenschaft ist. Mit Hilfe stärkerer
Freiheitsbegriffe lassen sich Klassen von Arrangements definieren, die Teraos Vermutung
erfüllen oder wahrscheinlich erfüllen. Daher ist es naheliegend, Spiegelungsarrangements
im Zusammenhang mit Teraos Vermutung zu untersuchen, d. h. Spiegelungsarrangements zu
klassifizieren, die einer dieser Klassen kombinatorisch freier oder fast kombinatorisch freier
Arrangements angehören.

Das erste Hauptresultat dieser Arbeit ist die Klassifikation rekursiv freier Spiegelungsarrange-
ments. Mit Hilfe dieser Klassifikation können wir eine Vermutung von Abe über die von ihm
eingeführte Klasse der divisionell freien Arrangements bestätigen.

Nahe verwandt mit reellen Spiegelungsarrangements, auch Coxeterarrangements genannt,
ist die Klasse der simplizialen Arrangements. Insbesondere in höheren Rängen ist nicht
viel über diese Klasse bekannt. Zumindest in Rang 3 gibt es eine vermutlich vollständige
Liste von Grünbaum, (geringfügig erweitert von Cuntz). Wie sich zeigt, besitzen fast alle
der bekannten simplizialen Arrangements die stärkste kombinatorische Freiheitseigenschaft:
Sie sind überauflösbar. Überauflösbare Arrangements haben besonders schöne algebraische,
geometrische, topologische und kombinatorische Eigenschaften.

Das zweite Hauptresultat ist eine vollständige Klassifikation überauflösbarer simplizialer Ar-
rangements in allen Rängen. Dies erklärt Teraos Vermutung für eine große Teilklasse der
bekannten simplizialen Arrangements. Erstaunlicherweise impliziert die Klassifikation die
starke Ganzzahligkeitseigenschaft kristallographisch zu sein für irreduzible überauflösbare
simpliziale Arrangements vom Rang größer 3. Um unser Klassifikationsresultat zu zeigen,
führen wir das kombinatorische Werkzeug der Coxetergraphen für simpliziale Arrangements
ein, eine Verallgemeinerung von Coxetergraphen für (endliche) Coxetergruppen. Weiterhin
beweisen wir einige hilfreiche allgemeine Resultate zur Kombinatorik von simplizialen Ar-
rangements.

Schlagworte: Arrangements von Hyperebenen, Spiegelungsarrangements, freie Arrange-

ments, Teraos Vermutung, rekursiv freie Arrangements, simpliziale Arrangements, überauf-

lösbare Arrangements, Coxetergraphen





Abstract

An arrangement of hyperplanes (or just arrangement) is a finite set of codimension one linear
subspaces in a finite dimensional vector space.

The class of reflection arrangements plays a pivotal role in the theory. Another important
class are the free arrangements first studied by Terao in the 1980s. By his famous theorem
all reflection arrangements are free. Terao’s conjecture claims that the algebraic property of
freeness over a fixed field is actually a combinatorial property. There are stronger notions of
freeness giving rise to classes of arrangements in which Terao’s conjecture holds or might hold.
So it is natural to investigate Terao’s conjecture in connection with reflections arrangements,
i.e. classify the reflection arrangements which belong to one of these classes of combinatorially
free or almost combinatorially free arrangements.

The first main result of this thesis is the classification of recursively free reflection arrange-
ments. With this classification we can confirm a conjecture by Abe about the class of divi-
sionally free arrangements he introduced.

Closely connected to real reflection arrangements, also called Coxeter arrangements, is the
class of simplicial arrangements. In particular in higher ranks not much about this class is
known. At least in rank 3 there is a list by Grünbaum (slightly updated by Cuntz) conjec-
tured to be complete. One observes that almost all known simplicial arrangements satisfy the
strongest combinatorially freeness property: they are supersolvable. Supersolvable arrange-
ments have particularly nice algebraic, geometric, topological and combinatorial properties.

The second main result is a complete classification of supersolvable simplicial arrangements
in all ranks. This clarifies Terao’s conjecture for a large subclass of the known simplicial
arrangements. Surprisingly the classification implies the strong integrality property of being
crystallographic for irreducible supersolvable simplicial arrangements of rank greater than 3.
To prove this classification result we introduce the combinatorial tool of Coxeter graphs for
simplicial arrangements, a generalization of Coxeter graphs for (finite) Coxeter groups. Fur-
thermore, we prove some helpful results about the combinatorics of simplicial arrangements
in general.

Keywords: Hyperplane arrangements, reflection arrangements, free arrangements, Terao’s

conjecture, recursively free arrangements, simplicial arrangements, supersolvable arrange-

ments, Coxeter graph
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1 Introduction

An arrangement of hyperplanes (or just arrangement) is a finite set of codimension one
linear subspaces in a finite dimensional vector space. Their study is interesting from
several points of view involving discrete and algebraic geometry, algebra, topology,
group theory and combinatorics.

One of the central questions in the theory of hyperplane arrangements is to what extent
the (discrete) geometrical, algebraic, or topological structure of a given arrangement
A is controlled by its combinatorial structure, i.e. its intersection lattice L(A). This
thesis is concerned with the discrete geometrical and algebraic properties governed by
the combinatorics of an arrangement.

The class of reflection arrangements, i.e. arrangements consisting of the reflecting hy-
perplanes of a finite complex reflection group plays a pivotal role in the theory and gives
rise to important examples or counterexamples. Contained in the class of all reflection
arrangements are the subclasses of Weyl and Coxeter arrangements, i.e. the (real)
reflection arrangements associated to a Weyl group or a finite Coxeter group. Many
questions about a reflection group can be formulated in terms of the reflection arrange-
ments attached to it. This provides a very useful geometric point of view. In particular
the special properties of Weyl groups and Coxeter groups are deeply intertwined with
the combinatorial structure of their associated arrangements.

A further important class are the free arrangements (denoted by F). The algebraic
property of freeness was first studied by Terao [Ter80a] in the 1980s. It turns out that
all reflection arrangements are free. This was shown by Terao [Ter80b] (earlier work
of Arnold [Arn79] and Saito [Sai80] implied the freeness of Coxeter arrangements).
The concept of free arrangements has proved itself to be very useful, in particular in
connection with the class of reflection arrangements. A recent remarkable example is
a new classification free proof of the celebrated Shapiro-Steinberg-Kostant-Macdonald
formula for the exponents of a Weyl group by Abe, Barakat, Cuntz, Hoge, and Terao
[ABC+16].

But what characterizes free arrangements in general is still a mystery and a driving
force of ongoing research. The fundamental open problem regarding free arrangements
is Terao’s conjecture:

Conjecture I ([OT92, Conj. 4.138]). The freeness of an arrangement A over a fixed
field only depends on its intersection lattice L(A), i.e. its combinatorics.

Ziegler demonstrated that the field of definition in fact should be fixed, [Zie90].



2 1 Introduction

Motivated by this conjecture there are the stronger notions of inductive freeness (we
denote the corresponding class by IF), first introduced by Terao in [Ter80a], recur-
sive freeness (we denote the corresponding class by RF) which was introduced by
Ziegler in [Zie87], and divisional freeness (the class is denoted by DF) recently intro-
duced by Abe [Abe16]. The first two notions are based on the applicability of Terao’s
Addition-Deletion Theorem (see Theorem 3.1.5). Divisional freeness is similarly based
on Abe’s Division Theorem (Theorem 3.1.8), [Abe16]. Terao’s conjecture is true for
the subclasses IF and DF , i.e. freeness of arrangements in these classes can be derived
combinatorially. Whether recursive freeness is combinatorial is still an open problem.
In particular we have the following relation between the different freeness classes:

IF ( 1DF ( 2F ,

IF ( 3RF ( 4F ,
and DF 6= RF (see Theorem 4.1 and Section 4.2). Since reflection arrangements are
free, this raises the question of whether Terao’s conjecture holds for them. This in turn
suggests investigating the stronger freeness properties for reflection arrangements.

In [BC12] Barakat and Cuntz proved that all Coxeter arrangements are inductively
free and in [HR15] Hoge and Röhrle completed the classification of inductively free
reflection arrangements (see Theorem 4.2) by inspecting the remaining complex cases
(see also the table below). They gave an easy characterization for all the cases but
one, namely if the complex reflection group W admits an irreducible factor isomorphic
to G31 (Shephard-Todd numbering [ST54]) and handling this case also turns out to be
the most difficult part of their paper. That the group G31 in connection with the class
of free arrangements plays a special role among the exceptional groups will become
clearer in Subsection 4.1.4.

In [CH15b] Cuntz and Hoge gave first examples for free but not recursively free arrange-
ments. One of them is the reflection arrangement of the exceptional complex reflection
group G27. Then Abe, Cuntz, Kawanoue, and Nozawa [ACKN16] found smaller exam-
ples (with 13 hyperplanes, being the smallest possible, and with 15 hyperplanes) for
free but not recursively free arrangements in characteristic 0.

Nevertheless, free but not recursively free arrangements seem to be rare. Furthermore,
recursive freeness is in general much harder to prove or disprove since in contrast to in-
ductive freeness one might also have to add several new hyperplanes to the arrangement
or show that this is not possible while preserving freeness.

A natural question is which other reflection arrangements are free but not recursively
free. We answer the question and complete the picture for reflection arrangements by
showing which of the not inductively free reflection arrangements are recursively free
and which are free but not recursively free. Our first main theorem gives a complete
classification of all recursively free reflection arrangements:

1First examples are in [Abe16], and [Müc17]
2See also [Abe16]
3See [OT92, Ex. 4.59]
4A first example appeared in [CH15b], see also Chapter 4
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Theorem I. For W a finite complex reflection group, the reflection arrangement A(W )
of W is recursively free if and only if W does not admit an irreducible factor isomorphic
to one of the exceptional reflection groups G27, G29, G31, G33 and G34.

If we restrict our view to real reflection arrangements (also called Coxeter arrange-
ments) we observe that they all possess the geometric property of being simplicial, i.e.
they cut simplicial cones out of the ambient space. This leads to consider the class of all
real arrangements with this property called simplicial arrangements as a generalization
of Coxeter arrangements.

Simplicial arrangements were first investigated by Melchior [Mel41] in 1941 by the
means of triangulations of the real projective plane by a finite set of projective lines.
Their study became popular again in the 1970s after Deligne [Del72] proved that the
complement of a complexified simplicial arrangements is a K(π, 1) space. In [Grü09]
Grünbaum gives an extensive list of rank 3 irreducible simplicial arrangements, the
slightly extended list by Cuntz [Cun12] is conjectured to be complete. But not much is
known about simplicial arrangements of higher rank. In a series of papers Cuntz and
Heckenberger investigated a class of objects called finite Weyl groupoids, a generaliza-
tion of Weyl groups. Their work resulted in a complete classification of these objects,
[CH15a]. Since Weyl groupoids are in one to one correspondence with crystallographic
arrangements [Cun11a], and these constitute a large subclass of the known simplicial
arrangements, this explains a large subset of the arrangements in Grünbaum’s list. But
there are still many non crystallographic simplicial arrangements lacking a satisfactory
explanation.

The list given by Grünbaum contains two infinite series of irreducible simplicial ar-
rangements of rank three parametrized by positive integers. They are denoted R(1) =
{A(2n, 1) | n ≥ 3} and R(2) = {A(4m + 1, 1) | m ≥ 3} (see Definition 6.1.6). The
irreducible simplicial rank 3 arrangements which do not belong to one of these infinite
classes are called sporadic. One observes that each of the 94 sporadic arrangements in
[Cun12] consists of no more than 37 hyperplanes. So the following is conjectured:

Conjecture IIa (cf. [CG15, Conj. 1.6]). Let A be an irreducible simplicial arrangement
of rank three. If |A| > 37 then A ∈ R(1) ∪R(2).

Geis and Cuntz observed that simpliciality is a purely combinatorial property of the
intersection lattice of an arrangement [CG15]. This combinatorial characterization
suggests a connection of the class of simplicial arrangements with other classes of
arrangements which can be defined combinatorially, e.g. combinatorially free arrange-
ments. In fact, many of the known simplicial arrangements belong to the class of free
arrangements or even the class of inductively free arrangements, c.f. [Ter80a, Table 1].
This suggests a connection of simpliciality with (inductive) freeness.

Supersolvable arrangements (we denote this class by SS) were first considered by
R. Stanley [Sta72]. They are now a well studied class of arrangements. Supersolv-
able arrangements possess nice algebraic, geometric, topological, and combinatorial
properties, cf. [OT92, Theorems 2.63, 3.81, 4.58, 5.113]. In particular all supersolvable
arrangements are inductively free. Hence in this class Terao’s conjecture holds. One
might even say that supersolvable arrangements are “the most combinatorially free”
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class of arrangements. Looking at the list of all known simplicial arrangements (in-
cluding the known higher rank cases) one further observes that in fact for each fixed
rank almost all of them belong to the class of supersolvable arrangements.

As the list (at least for rank 3) is conjectured to be complete but a conceptional
approach towards a general classification is still missing, one might ask if there is
an approach for a subclass with additional properties, e.g. supersolvable simplicial
arrangements. This approach is chosen in this thesis resulting in our second main
theorem (obtained in joint work with M. Cuntz, [CM17]), a complete classification of
(irreducible) supersolvable simplicial arrangements:

Theorem II. Let A be an irreducible supersolvable simplicial ℓ-arrangement, (ℓ ≥ 3).
Then either

(1) ℓ = 3 and A is L-equivalent to an arrangement in R(1) ∪R(2), or

(2) ℓ ≥ 4 and A is isomorphic to one of the reflection arrangements A(Aℓ),A(Bℓ),
or isomorphic to Aℓ−1

ℓ = A(Bℓ)\{{x1 = 0}}. In particular A is crystallographic.

As a result of Part (1) of Theorem II we can reformulate Conjecture IIa in the following
way:

Conjecture IIb. Let A be an irreducible simplicial 3-arrangement. If |A| > 37 then
A is supersolvable.

Surprisingly, Part (2) of Theorem II implies a strong integrality property for irredu-
cible supersolvable simplicial arrangements of rank greater than 3: they are crystallo-
graphic.

Furthermore, inspired by the work of Cuntz and Heckenberger on finite Weyl groupoids,
we introduce Coxeter graphs for simplicial arrangements generalizing the notion of the
Coxeter graph for a (finite) Coxeter group respectively Coxeter arrangement. These
serve as our main tool of investigation to prove Theorem II.

In sum, the question of combinatorial freeness of reflection arrangements and related
classes is an active field of ongoing research with many contributions by a number of
people which is displayed in Table 2.1. The inclusion symbol displayed in a certain
cell means, that all arrangements in the class of this row are already contained in one
of the smaller freeness classes to the left. For example all Coxeter arrangements are
inductively free by [BC12], there is no recursively free but not inductively free Coxeter
arrangement, and hence in this row there is a “⊆” in the column labeled RF . A
question mark (only appearing in the row “simplicial arrangements”) means that it is
still an open problem which arrangements in this column belong to which freeness class
(since there is no classification for simplicial arrangements in general yet).

In this thesis we fill several gaps in Table 2.1 and provide new data on the interplay of
combinatorial freeness with the different classes of arrangements all related to reflection
groups.
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SS IF DF RF F

Weyl arrangements [HR14] [BC12] ⊆ ⊆ ⊆

Coxeter arrangements [HR14] [BC12] ⊆ ⊆
⊆
[Arn79],
[Sai80]

(complex) reflection
arrangements

[HR14] [HR15]
[HR15],
[Abe16],
Ch. 4

Ch. 4 [Ter80b]

crystallographic
arrangements

[AHR14b],
[BC12]

[BC12] ⊆ ⊆ ⊆

simplicial
arrangements

Ch. 6 ? ? ? ?

restrictions of
(complex) reflection
arrangements

[AHR14b] [AHR14a]
Ch. 4,
[Röh15]

Ch. 4
[OS82],
[HR13],
[Dou99]

Table 2.1: Combinatorial freeness for the different classes related to reflection arrange-
ments.

The thesis is organized as follows: In Chapter 2 we list all needed notions and some
elementary results from the theory of hyperplane arrangements. In Chapter 3 we in-
troduce the different classes of arrangements which play the central role in this thesis.
Furthermore, in Section 3.3 we prove some new results about the geometry and com-
binatorics of simplicial arrangements. In Chapter 4 we prove our first main result, the
classification of recursively free reflection arrangements given by Theorem I. In Chapter
5 we introduce the combinatorial tool of Coxeter graphs for simplicial arrangements.
This is a direct generalization of Coxeter graphs for finite Coxeter groups respectively
Coxeter arrangements to simplicial arrangements. We also derive the main properties
of these combinatorial data attached to a simplicial arrangement. Finally, Chapter 6
gives the proof of Theorem II, i.e. the classification of supersolvable simplicial arrange-
ments. The proof highly depends on the tool of Coxeter graphs and their properties
introduced in Chapter 5.

The results of Chapter 4 are found in [Müc17]. The results of Section 3.3, Chapter 5,
and Chapter 6 are joint work with M. Cuntz, and are found in [CM17].





2 Preliminaries

In this chapter we collect the basic notions and definitions from the theory of hyperplane
arrangements needed throughout this thesis. They can all be found in the book by
P. Orlik and H. Terao, [OT92] which also serves as a nice introduction to the theory
of hyperplane arrangements. Furthermore, at the end of this chapter we list some
general combinatorial results for arrangements respectively real arrangements needed
later on.

Let K be a field. An arrangement of hyperplanes (or just arrangement) is a pair (A, V ),
where A is a finite set of hyperplanes (codimension 1 subspaces) in a finite dimensional
vector space V over K. If the vector space V is unambiguous for (A, V ) we simply
write A. If dim(V ) = ℓ then A is called an ℓ-arrangement. In this thesis K is either R
or C. We denote the empty ℓ-arrangement by Φℓ.

If α ∈ V ∗ is a linear form, we write α⊥ = ker(α) and interpret α as a normal vector
for the hyperplane H = α⊥. Suppose we have chosen a basis x1, . . . , xℓ for V

∗. Then
if α =

∑ℓ

i=1 aixi ∈ V ∗ we occasionally write it as a row vector (a1, . . . , aℓ). Let

A = {H1, . . . , Hn} be an arrangement in V . If αj =
∑ℓ

i=1 aijxi ∈ V ∗ such thatHj = α⊥
j

then the hole arrangement A is given explicitly by the matrix (aij)1≤i≤ℓ,1≤j≤n ∈ Kℓ×n.

We can visualize a real 3-arrangement A by drawing a projective picture. We chose
an affine hyperplane H0 ∈ R3 which does not contain the origin and consider all the
intersections of hyperplanes from A with H0. If there is a hyperplane H̃ ∈ A which
is parallel to H0 then in our picture H̃ becomes the line at infinity in the projective
plane.

Example 2.1. Let x, y, z be a basis of (R3)∗, and let A be the arrangement in R3

containing the following hyperplanes

A ={ker(x), ker(y), ker(z), ker(x+ z), ker(y + z), ker(x− y)}
={(1, 0, 0)⊥, (0, 1, 0)⊥, (0, 0, 1)⊥, (1, 0, 1)⊥, (0, 1, 1)⊥, (1,−1, 0)⊥}.

The arrangement A might also be defined by the matrix





1 0 0 1 0 1
0 1 0 0 1 −1
0 0 1 1 1 0



 ,

with normal vectors of the hyperplanes as columns.

By taking H0 = ker(z − 1) we obtain the projective picture of A displayed in Figure
2.1. In particular ker(z) ∈ A (the third column of the matrix) is parallel to H0; in our
picture it corresponds to the line at infinity drawn as an arc in the upper right corner.
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∞

Figure 2.1: A projective picture of A.

The central combinatorial object attached to an arrangement A is the intersection
lattice L(A). It is the set of all subspaces X of V of the form X = H1 ∩ . . . ∩Hr with
{H1, . . . , Hr} ⊆ A, partially ordered by reverse inclusion:

X ≤ Y ⇐⇒ Y ⊆ X, for X,Y ∈ L(A).

The bottom element of the intersection lattice is the hole space V as the intersection
of the empty set of hyperplanes. The top element is the intersection of all hyperplanes
contained in A; it is denoted by T (A) = ∩H∈AH and called the center of A. For
X ∈ L(A) the rank r(X) of X is defined as r(X) := ℓ − dimX, and the rank of the
arrangement A is defined as r(A) := r(T (A)). An ℓ-arrangement A is called essential
if r(A) = ℓ. For X ∈ L(A) we define the localization

AX := {H ∈ A | X ⊆ H}
of A at X, and the restriction (AX , X) of A to X by

AX := {X ∩H | H ∈ A \ AX}.
For, 0 ≤ q ≤ ℓ we write Lq(A) := {X ∈ L(A) | r(X) = q}. If X is a subspace of V and
X ⊆ H for all H ∈ A, i.e. X ⊆ T (A), then H/X is a hyperplane in V/X for all H ∈ A
and we can define the quotient arrangement (A/X, V/X) by A/X := {H/X | H ∈ A}.
If (A, V ) is not essential, i.e. dim(T (A)) > 0, we sometimes identify it with the essential
r(A)-arrangement (A/T (A), V/T (A)).

Given two arrangements (A1, V1) and (A2, V2) (over the same field K) we can form
their product A = (A1 ×A2, V1 ⊕ V2) which is defined by

A := A1 ×A2 = {H1 ⊕ V2 | H1 ∈ A1} ∪ {V1 ⊕H2 | H2 ∈ A2},
see [OT92, Def. 2.13]. In particular |A| = |A1| + |A2|. If an arrangement A can be
written as a non-trivial product A = A1 × A2, (where “non-trivial” means Ai 6= Φ0),
then A is called reducible, otherwise irreducible.
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Lemma 2.2 ([OT92, Prop. 2.14]). Let A = A1 × A2 be a product. Define a partial
order on L(A1)× L(A2) by

(X1, X2) ≤ (Y1, Y2) ⇐⇒ X1 ≤ Y1 and X2 ≤ Y2,

for (X1, X2), (Y1, Y2) ∈ L(A1)× L(A2). Then there is an isomorphism of lattices

π : L(A1)× L(A2) → L(A1 ×A2)

(X1, X2) 7→ X1 ⊕X2.

Corollary 2.3. Let A = A1 × A2 be a product and X = X1 ⊕X2 ∈ L(A). Then we
have

AX = (A1)X1
× (A2)X2

and AX = (A1)
X1 × (A2)

X2 .

Let A and B be two arrangements in V with L(A) ∼= L(B) as lattices. Then A and
B are called lattice equivalent or L-equivalent and we write A ∼L B. If A and B are
arrangements in V such that there is a ϕ ∈ GL(V ) with B = ϕ(A) = {ϕ(H) | H ∈
A} then we say that A is (linearly) isomorphic to B. Suppose A and B are booth
arrangements in a K-vector space V and we have chosen a basis of V ∗ such that A and
B are given by matrices A,B ∈ Kℓ×n respectively. Then A and B are isomorphic if
and only if there exists a non-singular matrix C ∈ Kℓ×ℓ and a non-singular monomial
matrix M ∈ Kn×n such that B = CAM .

For an arrangement A the Möbius function µ : L(A) → Z is defined by:

µ(X) =

{

1 if X = V ,
−∑V⊇Y )X µ(Y ) if X 6= V .

We denote by χA(t) the characteristic polynomial of A which is defined by:

χA(t) =
∑

X∈L(A)

µ(X)tdim(X).

Remark 2.4. If A is a 3-arrangement then the characteristic polynomial is given by

χA(t) = t3 + µ1t
2 + µ2t+ µ3,

with

µ1 = −|A|, µ2 =
∑

X∈L(A)

(|AX | − 1), µ3 = 1− µ1 − µ2.

The characteristic polynomial behaves well with respect to the product construction:

Lemma 2.5 ([OT92, Lem. 2.50]). Let A = A1×A2 be a product of two arrangements.
Then

χA(t) = χA1
(t)χA2

(t).

We state the following geometric theorem generalizing the well known Silverster-Gallai
theorem for real arrangements in its dual version for arrangements. It was first proved
by Motzkin [Mot51] for ℓ = 4 and later by Hansen [Han65] for all ℓ.
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Theorem 2.6 (Hansen-Motzkin). Let A be a real ℓ-arrangement, ℓ ≥ 2. Then there
is an X ∈ Lℓ−1(A) and an H ∈ A such that X = H ∩ Y for a Y ∈ Lℓ−2(A), and
AX = AY ∪ {H}. In particular AX/X is reducible with AX/X ∼= AY /Y × {{0}}.

This theorem will be an important ingredient for the proof of one of our main results
in Chapter 6.



3 Different classes of arrangements

In this chapter we list the different classes of arrangements that play the main role in
this thesis.

The first section recalls the class of free arrangements and their several subclasses
including Abe’s recently introduced class of divisionally free arrangements.

In Section 3.2 we recall the notion of reflection arrangement given by a finite complex
reflection group and their main properties.

In Section 3.3 we consider simplicial arrangements. They are classical objects in discrete
geometry and may be seen as a generalization of real reflection arrangements (also called
Coxeter arrangements). This will become clearer in Chapter 5, where we generalize
the notion of a Coxeter graph for a (finite) Coxeter group to simplicial arrangements.
Furthermore, Section 3.3 contains some new results on simplicial arrangements which
we will apply in Chapter 5 and Chapter 6.

In Section 3.4 we look at supersolvable arrangements which are now a well studied class
of arrangements. They possess particularly nice geometric, algebraic and combinatorial
properties as becomes apparent.

3.1 Free arrangements

Let V be an ℓ-dimensional vector space over C and let S = S(V ) be the symmetric
algebra of the dual space V ∗ of V . If x1, . . . , xℓ is a basis of V ∗, then we identify S
with the polynomial ring C[x1, . . . , xℓ] in ℓ variables. The algebra S has a natural Z-
grading: Let Sp denote the C-subspace of S of the homogeneous polynomials of degree
p (p ∈ N≥0), then S =

⊕

p∈Z Sp, where Sp = 0 for p < 0.

Let Der(S) be the S-module of C-derivations of S. It is a free S-module with ba-
sis D1, . . . , Dℓ where Di is the partial derivation ∂/∂xi. We say that θ ∈ Der(S) is
homogeneous of polynomial degree p provided θ =

∑ℓ

i=1 fiDi, with fi ∈ Sp for each
1 ≤ i ≤ ℓ. In this case we write pdeg θ = p. With this definition we get a Z-grading
for the S-module Der(S): Let Der(S)p be the C-subspace of Der(S) consisting of all
homogeneous derivations of polynomial degree p, then Der(S) =

⊕

p∈Z Der(S)p.

Definition 3.1.1. Let A be an arrangement of hyperplanes in V . Then for H ∈ A
we fix αH ∈ V ∗ with H = ker(αH). A defining polynomial Q(A) is given by Q(A) :=
∏

H∈A αH ∈ S.

The module of A-derivations of A is defined by

D(A) := D(Q(A)) := {θ ∈ Der(S) | θ(Q(A)) ∈ Q(A)S}.
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We say that A is free if the module of A-derivations is a free S-module.

If A is an arrangement over a subfield K ≤ C then we say A is free provided the
complex arrangement A⊗K C is free.

Example 3.1.2. All 2-arrangements are free, c.f. [OT92, Ex. 4.20].

If A is a free arrangement, let {θ1, . . . , θℓ} be a homogeneous basis for D(A). Then
the polynomial degrees of the θi, i ∈ {1, . . . , ℓ}, are called the exponents of A. We
write exp(A) := {{pdeg θ1, . . . , pdeg θℓ}}, where the notation {{∗}} emphasizes the
fact, that exp(A) is a multiset in general. The multiset exp(A) is uniquely determined
by A, see also [OT92, Def. 4.25].

If A is free with exponents exp(A) = {{b1, . . . , bℓ}}, then by [OT92, Thm. 4.23]:

ℓ
∑

i=1

bi = |A|. (3.1.3)

The following proposition shows that the product construction mentioned before is
compatible with the notion of freeness:

Proposition 3.1.4 ([OT92, Prop. 4.28]). Let (A1, V1) and (A2, V2) be two arrange-
ments. The product arrangement (A1 ×A2, V1 ⊕ V2) is free if and only if both (A1, V1)
and (A2, V2) are free. In this case

exp(A1 ×A2) = exp(A1) ∪ exp(A2).

The following theorem provides a useful tool to prove the freeness of arragnements.

Theorem 3.1.5 (Addition-Deletion [OT92, Thm. 4.51]). Let A be a hyperplane ar-
rangement and A 6= Φℓ. Let (A,A′,A′′) be a triple. Any two of the following statements
imply the third:

A is free with exp(A) = {{b1, . . . , bl−1, bl}},
A′ is free with exp(A′) = {{b1, . . . , bl−1, bl − 1}},
A′′ is free with exp(A′′) = {{b1, . . . , bl−1}}.

Choose a hyperplane H0 = kerα0 ∈ A. Let S̄ = S/α0S. If θ ∈ D(A), then θ(α0S) ⊆
α0S. Thus we may define θ̄ : S̄ → S̄ by θ̄(f + α0S) = θ(f) + α0S. Then θ̄ ∈ D(A′′),
[OT92, Def. 4.43, Prop. 4.44].

Theorem 3.1.6 ([OT92, Thm. 4.46]). Suppose A and A′ are free arrangements with
A′ := A \ {H0}, H0 := kerα0. Then there is a basis {θ1, . . . , θℓ} for D(A′) such that

(1) {θ1, . . . , θi−1, α0θi, θi+1, . . . , θℓ} is a basis for D(A),

(2) {θ̄1, . . . , θ̄i−1, θ̄i+1, . . . , θ̄ℓ} is a basis for D(A′′).
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One of the most important results about free arrangements in general is Terao’s Fac-
torization theorem:

Theorem 3.1.7 (Factorization [OT92, Thm. 4.137]). If A is a free arrangement with
exp(A) = {{b1, . . . , bℓ}}, then

χA(t) =
ℓ
∏

i=1

(t− bi).

A very recent and remarkable result is due to Abe which connects the division of
characteristic polynomials with freeness:

Theorem 3.1.8 (Division theorem [Abe16, Thm. 1.1]). Let A be a hyperplane ar-
rangement and A 6= Φℓ. Assume that there is a hyperplane H ∈ A such that χAH (t)
divides χA(t) and AH is free. Then A is free.

3.1.1 Inductively, recursively and divisionally free arrangements

Theorem 3.1.5 motivates the following two definitions of classes of free arrangements.

Definition 3.1.9 ([OT92, Def. 4.53]). The class IF of inductively free arrangements
is the smallest class of arrangements which satisfies

(1) The empty arrangement Φℓ of rank ℓ is in IF for ℓ ≥ 0,

(2) if there exists a hyperplane H0 ∈ A such that A′′ ∈ IF , A′ ∈ IF , and exp(A′′) ⊂
exp(A′), then A also belongs to IF .

Example 3.1.10. All supersolvable arrangements (see Section 3.4) are inductively free
by [OT92, Thm. 4.58].

Definition 3.1.11 ([OT92, Def. 4.60]). The class RF of recursively free arrangements
is the smallest class of arrangements which satisfies

(1) The empty arrangement Φℓ of rank ℓ is in RF for ℓ ≥ 0,

(2) if there exists a hyperplane H0 ∈ A such that A′′ ∈ RF , A′ ∈ RF , and
exp(A′′) ⊂ exp(A′), then A also belongs to RF ,

(3) if there exists a hyperplaneH0 ∈ A such thatA′′ ∈ RF , A ∈ RF , and exp(A′′) ⊂
exp(A), then A′ also belongs to RF .

Note that we have:
IF ( RF ( { free arrangements },

where the properness of the last inclusion was established by Cuntz and Hoge in
[CH15b].

Furthermore, similarly to the class IF of inductively free arrangements, Theorem 3.1.8
motivates the following class of free arrangements:
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Definition 3.1.12 ([Abe16, Def. 4.3]). The class DF of divisionally free arrangements
is the smallest class of arrangements which satisfies

(1) If A is an ℓ-arrangement, ℓ ≤ 2, or A = Φℓ, ℓ ≥ 3, then A belongs to DF ,

(2) if there exists a hyperplane H0 ∈ A such that A′′ ∈ DF and χAH0 (t) | χA(t),
then A also belongs to DF .

Abe showed that the new class of divisionally free arrangements properly contains the
class of inductively free arrangements:

IF ( DF ,

by [Abe16, Thm. 1.6]. He conjectured that there are arrangements which are divi-
sionally free but not recursively free. Our classification of recursively free reflection
arrangements in this paper provides examples to confirm his conjecture (see Theorem
4.1 and Section 4.2).

The next easy lemma will be useful to disprove the recursive freeness of a given ar-
rangement:

Lemma 3.1.13. Let A and A′ = A \ {H} be free arrangements and L := L(A′). Let
PH := {X ∈ L2 | X ⊆ H} = A′′ ∩ L2, then

∑

X∈PH
(|A′

X | − 1) ∈ exp(A′), and if A′ is
irreducible then

∑

X∈PH
(|A′

X | − 1) 6= 1.

Proof. By Theorem 3.1.6 and (3.1.3) there is a b ∈ exp(A′), such that |AH | = |A′| − b
and if A′ is irreducible, then b 6= 1. Since |AH | = |A′| −∑X∈PH

(|A′
X | − 1), the claim

directly follows.

The next two results are due to Hoge, Röhrle, and Schauenburg, [HRS15].

Proposition 3.1.14 ([HRS15, Thm. 1.1]). Let A be a recursively free arrangement
and X ∈ L(A). Then AX is recursively free.

Hoge and Röhrle have shown in [HR15, Prop. 2.10] that the product construction is
compatible with the notion of inductively free arrangements.

The following refines the statement for recursively free arrangements:

Proposition 3.1.15 ([HRS15, Thm. 1.2]). Let (A1, V1), (A2, V2) be two arrangements.
Then A = (A1×A2, V1⊕V2) is recursively free if and only if both (A1, V1) and (A2, V2)
are recursively free and in that case the multiset of exponents of A is given by exp(A) =
exp(A1) ∪ exp(A2).
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3.2 Reflection arrangements

Let V = Cℓ be a finite dimensional complex vector space. An element s ∈ GL(V ) of
finite order with fixed point set V s = {x ∈ V | sx = x} = Hs a hyperplane in V is
called a reflection. A finite subgroup W ≤ GL(V ) which is generated by reflections is
called a finite complex reflection group.

The (irreducible) finite complex reflection groups were classified by Shephard and Todd,
[ST54]. There is one infinite series G(r, e, ℓ), parametrized by positive integers r, e, ℓ ∈
N with e | r. The series G(r, e, ℓ) includes the Coxeter groups of type A, BC, and D,
i.e. Aℓ = G(1, 1, ℓ + 1), BCℓ = G(2, 1, ℓ) and Dℓ = G(2, 2, ℓ). Furthermore, there are
34 “exceptional” groups G4, . . . , G37.

Let W ≤ GL(V ) be a finite complex reflection group acting on the vector space V .
The reflection arrangement (A(W ), V ) is the arrangement of hyperplanes consisting of
all the reflecting hyperplanes of reflections of W .

Terao [Ter80b, Thm. 2] has shown that each reflection arrangement is free, see also
[OT92, Prop. 6.59].

The complex reflection group W is called reducible if V = V1 ⊕ V2 where Vi are stable
under W . Then the restriction Wi of W to Vi is a reflection group in Vi. In this case
the reflection arrangement (A(W ), V ) is the product of the two reflection arrangements
(A(W1), V1) and (A(W2), V2). The complex reflection group W is called irreducible if
it is not reducible, and then the reflection arrangement A(W ) is irreducible.

For later purposes, we now look at the action of a finite complex reflection group
W on its associated reflection arrangement A(W ) and (reflection) subarrangements
A(W ′) ⊆ A(W ) corresponding to reflection subgroups W ′ ≤ W .

Let W be a finite complex reflection group and A := A(W ). Then W acts on the set
A := {B | B ⊆ A} of subarrangements of A by w.B = {w.H | H ∈ B} for B ∈ A .
The (setwise) stabilizer SB of B in W is defined by SB = {w ∈ W | w.B = B}. We
denote by W.B = {w.B | w ∈ W} ⊆ A the orbit of B under W .

The following lemma is similar to a statement from [OT92, Lem. 6.88].

Lemma 3.2.1. Let W be a finite complex reflection group, A := A(W ), and A = {B |
B ⊆ A}. Let B := A(W ′) ∈ A be a reflection subarrangement for a reflection subgroup
W ′ ≤ W . Then SB = NW (W ′) and |W.B| = |W : SB| = |W : NW (W ′)|.

Proof. LetW ,W ′, A, and B be as above. Let SB be the stabilizer of B inW . It is clear
by the Orbit-Stabilizer-Theorem that |W.B| = |W : SB|. Let Hr ∈ B for a reflection
r ∈ W ′, then w.Hr = Hw−1rw. So we have

SB = {w ∈ W | w.Hr ∈ B for all reflections r ∈ W ′}
= {w ∈ W | w−1rw ∈ W ′ for all reflections r ∈ W ′}
= NW (W ′).

The last equality is because W ′ is by definition generated by the reflections it contains
and the group normalizing all generators of W ′ is the normalizer of W ′.
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If W ≤ GL(V ) with V a real vector space is a finite real reflection group, i.e. W is
a finite Coxeter group, then we call (A(W ), V ) a Coxeter arrangement. Similarly if
W is a Weyl group, i.e. a crystallographic Coxexter group, A(W ) is called a Weyl
arrangement. Finite Coxeter groups are completely classified by their Coxeter graphs,
a combinatorial datum attached to each such group, see [Hum90]. In Chapter 5 we
will generalize this notion to all simplicial arrangements.

3.3 Simplicial arrangements

Many of the notions in this section were introduced in the more general setting of
simplicial arrangements on convex cones and Tits arrangements in [CMW16].

We firstly recall the definition of a simplicial arrangement.

Definition 3.3.1. Let A be an arrangement in a finite dimensional real vector space
V . Then A is called simplicial if every connected component of V \⋃H∈AH is an open
simplicial cone. We denote by K(A) the set of connected components of V \⋃H∈AH;
a K ∈ K(A) is called a chamber.

Note that the only simplicial 1-arrangement is the arrangement A = {{0}}, i.e. the
non empty one, and that every real 2-arrangement with more than one hyperplane is
simplicial.

There are the following classical examples for simplicial arrangements.

Example 3.3.2. Let W ≤ GL(V ) be a finite real reflection group acting on the real
vector space V , i.e. a finite Coxeter group (see Section 3.2). Suppose that W has full
rank, i.e. rk(W ) = dim(V ). Then the reflection arrangement (A(W ), V ), (also called
Coxeter arrangement) is simplicial.

We will frequently consider examples of simplicial 3-arrangements from Grünbaum’s
list, in particular in Chapter 5 and Chapter 6. We then use his notation and numbering
where an arrangement is denoted by A(n, k) (c.f. Definition 6.1.6) where n is the
number of hyperplanes and k some natural number, see [Grü09].

Example 3.3.3. For 0 ≤ k ≤ ℓ let Ak
ℓ be the ℓ-arrangement defined as follows

Ak
ℓ := {ker(xi − xj) | 1 ≤ i < j ≤ ℓ}

∪ {ker(xi) | 1 ≤ i ≤ k}.

The arrangements Ak
ℓ are simplicial, cf. [CH15a]. In particular A0

ℓ = A(Dℓ) and
Aℓ

ℓ = A(Bℓ) are the reflection arrangements of the finite reflection groups of type Dℓ

and Bℓ respectively. Figure 3.1 displays A0
3 = A(6, 1) up to A3

3 = A(9, 1).

We recall the following combinatorial characterization of simplicial 3-arrangements.
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A0
3 A1

3

A2
3 A3

3 = A(B3)

Figure 3.1: Projective pictures of A0
3, A1

3, A2
3, and A3

3 = A(B3).

Lemma 3.3.4. [CG15, Cor. 2.7] Let A be a 3-arrangement. Then A is simplicial if
and only if

µ2 :=
∑

X∈L2(A)

(|AX | − 1) = 2|L2(A)| − 3.

More generally real simplicial ℓ-arrangements are characterized by the next combina-
torial property.

Lemma 3.3.5. [CG15, Cor. 2.4] Let A be an ℓ-arrangement. Then A is simplicial if
and only if

ℓ|χA(−1)| − 2
∑

H∈A

|χAH (−1)| = 0.

Definition 3.3.6. Let K be any field and A an arrangement in V ∼= Kℓ. Define

s(A) := ℓ|χA(−1)| − 2
∑

H∈A

|χAH (−1)|.

If A satisfies s(A) = 0 then A is called combinatorially simplicial, see [CG15].
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Simpliciality, at least geometrically for real arrangements, is compatible with taking lo-
calizations and restrictions, compare with the more general statements in [CMW16].

Lemma 3.3.7. Let A be a simplicial arrangement over R and X ∈ L(A). Then we
have

(1) (AX/X, V/X) is simplicial,

(2) (AX , X) is simplicial.

Proof. The walls H1, . . . , Hr(X) of a chamber KX in AX are a subset of the walls of a
chamber K ∈ K(A) so by Remark 3.3.14 we obtain the first statement. If α1, . . . , αr(X)

are corresponding normals of these walls pointing to the inside of K and also KX then
they are linearly independent, henceKX/X is a simplicial cone and AX/X is simplicial.

Since every face of a simplicial cone is a simplicial cone, Statement (2) follows directly.

Example 3.3.8. LetA = A(W ) be the Coxeter arrangement of the finite real reflection
group W in V and let X ∈ L(A). Then AX/X is a reflection arrangement, namely
the Coxeter arrangement of a parabolic subgroup of W . The arrangement AX/X is
simplicial in accordance with Lemma 3.3.7(1).

In the next example we see that the bigger class of combinatorially simplicial arrange-
ments defined over arbitrary fields is neither closed under taking localizations nor closed
under taking restrictions.

Example 3.3.9. Let V = C4, ζ = −1
2
(1−

√
3i) be a primitive third root of unity and

(A, V ) the complex 4-arrangement containing 18 hyperplanes and defined by

(

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 −ζ −ζ2 −1 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 −ζ −ζ2 −1 0 0 0 −ζ −ζ2 −1 0 0 0 1 1
1 0 0 0 0 0 0 −ζ −ζ2 −1 0 0 0 −ζ −ζ2 −1 −ζ −ζ2

)

.

Note that A is a subarrangement of the reflection arrangement of the complex reflection
group G(3, 1, 4), see [OT92, Ch. 6.4] for a definition of these reflection arrangements.
This is to say if

B := A(G(3, 1, 4))

= {ker(xi − ζkxj) | 1 ≤ i < j ≤ 4, 0 ≤ k ≤ 2}
∪{ker(xi) | 1 ≤ i ≤ 4},

then we obtain A by removing 4 hyperplanes,

A = B \ {ker(x1), ker(x2), ker(x3), ker(x3 − x4)}.

A quick calculation shows that A satisfies s(A) = 0 so it is combinatorially simplicial.
While for the reflection arrangement B all localizations and restrictions are again com-
binatorially simplicial, localizingA at the rank 3 intersectionX = H1∩H2∩H3 ∈ L(A),
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where the hyperplane Hi corresponds to the i-th column of the defining matrix above,
yields the 3-arrangement C = AX/X. It contains 10 hyperplanes and is given by





0 1 1 1 1 1 1 0 0 0
0 −ζ −ζ2 −1 0 0 0 1 1 1
1 0 0 0 −ζ −ζ2 −1 −ζ −ζ2 −1



 .

For C we have s(C) = 4, so it is not combinatorially simplicial.

Now let H = H8 = (1, 0, 0,−ζ)⊥ ∈ A. Then D := AH contains 10 hyperplanes and
may be defined by





1 ζ 1 0 0 0 0 −1 ζ 1
0 0 0 1 ζ 1 0 ζ −1 −1
0 1 −1 0 1 −1 1 1 1 0



 .

For D we have s(D) = 4, thus it is also not combinatorially simplicial.

The product construction described above is compatible with simpliciality.

Proposition 3.3.10. Let A1, A2 be combinatorially simplicial arrangements in Kℓ1

and Kℓ2 respectively. Then the product A = A1 ×A2 is combinatorially simplicial.

Proof. Let A1 and A2 be combinatorially simplicial. Then by Lemma 3.3.5 we have

ℓ1|χA1
(−1)| − 2

∑

H∈A1

|χAH
1
(−1)| = 0,

and
ℓ2|χA1

(−1)| − 2
∑

H∈A2

|χAH
2
(−1)| = 0.

By Lemma 2.5 we have χA(t) = χA1
(t)χA2

(t). By Corollary 2.3 we get

ℓ|χA(−1)| − 2
∑

H∈A

|χAH (−1)| = (ℓ1 + ℓ2)|χA1
(−1)χA2

(−1)|

− 2
∑

H∈A1

|χA2
(−1)χAH

1
(−1)| − 2

∑

H∈A2

|χA1
(−1)χAH

2
(−1)|

= |χA2
(−1)|(ℓ1|χA1

(−1)| − 2
∑

H∈A1

|χAH
1
(−1)|)

+ |χA1
(−1)|(ℓ2|χA2

(−1)| − 2
∑

H∈A2

|χAH
2
(−1)|)

= 0 + 0 = 0.

Hence A is combinatorially simplicial.

Proposition 3.3.11. Let A1 be an arrangement in Rℓ1 and let A2 be an arrangement
in Rℓ2. Then the product A = A1 ×A2 is simplicial if and only if A1 and A2 are both
simplicial.
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Proof. If A1 and A2 are simplicial, then A = A1 × A2 is simplicial by Proposition
3.3.10.

Conversely, let A = A1 × A2 be simplicial. Then Ai is isomorphic to AXi
/Xi for

i = 1, 2 as r(Xi)-arrangements in V/Xi where Xi = {0} ⊕ V3−i. But these localizations
regarded as essential arrangements in quotient spaces are simplicial by Lemma 3.3.7.

Combinatorial simpliciality of A1 × A2 does not imply combinatorial simpliciality of
A1 and A2 in general:

Example 3.3.12. Let ζ, A and D be as in Example 3.3.9. Let A1 = D and A2 = AH

where H = H5 = (1, 0,−ζ, 0)⊥ as in Example 3.3.9. Define ω := 1
3
(1− ζ). Then A2 is

given by




1 0 ω ω ω ω ω ω 0 0
0 0 1 ζ ζ2 0 0 0 ζ 1
0 1 0 0 0 −ζ −ζ2 −1 1 1



 .

Recall that for the non combinatorially simplicial arrangement A1 we have s(A1) = 4.
Furthermore, χA1

(t) = (t−1)(t−4)(t−5) = χA2
(t), and s(A2) = −4. So A2 is neither

combinatorially simplicial. But, similar to the proof of Proposition 3.3.11, for A1×A2

we have

s(A1 ×A2) = |χA2
(−1)|s(A1) + |χA1

(−1)|s(A2)

= |χA1
(−1)|s(A1) + |χA1

(−1)|s(A2)

= |χA1
(−1)|(s(A1) + s(A2))

= |χA1
(−1)|(4− 4)

= 0.

So the product A1 ×A2 is combinatorially simplicial.

Now, we introduce some further technical notions.

Definition 3.3.13. For α ∈ V ∗ we write α+ = α−1(R>0) and α− = (−α)+ for the
positive respectively negative open half-space defined by α.

For K ∈ K(A) define the walls of K as

WK := {H ∈ A | dim(H ∩K) = ℓ− 1}.

If R ⊆ V ∗ is a finite set such that A = {α⊥ | α ∈ R} and Rα∩R = {±α} for all α ∈ R
then R is called a (reduced) root system for A.

If BK ⊆ V ∗ such that |BK | = |WK |, WK = {α⊥ | α ∈ BK} and K = ∩α∈BKα+ then
BK is called a basis for K.

If R is a root system for A we obtain a basis for K as

BK
R := {α ∈ R | α⊥ ∈ WK and α+ ∩K = K}.

Furthermore, for γ ∈ BK let Kγ be the unique adjacent chamber in K(A), such that
〈K ∩Kγ〉 = γ⊥. If there is a chosen numbering of BK = {α1, . . . , αℓ} then we simply
write Ki = Kαi.
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Remark 3.3.14. The notions WK , R and BK make also sense for a not necessarily
simplicial real arrangement A. Since the normals of the facets of a cone constitute a
basis if and only if the cone is simplicial, we observe that BK is indeed a basis of V ∗

for all K ∈ K(A) if and only if A is simplicial.

The following notion was first introduced in [Cun11a, Def. 2.3].

Definition 3.3.15. Let A be a simplicial arrangement. If there exists a root system
R ⊆ V ∗ for A such that for all K ∈ K(A) we have

R ⊆
∑

α∈BK
R

Zα,

then A is called crystallographic and in this case we call R a crystallographic root
system for A.

Example 3.3.16. Let W be a Weyl group, i.e. a crystallographic finite real reflection
group with (reduced) root system Φ(W ). Then the Weyl arrangement A(W ) = {α⊥ |
α ∈ Φ(W )} is a crystallographic arrangement with crystallographic root system R =
Φ(W ).

A complete classification of crystallographic arrangements by finite Weyl groupoids
was obtained in [CH15a], see also [Cun11a]. It is worth mentioning that the class of
crystallographic arrangements is much bigger than the class of Weyl arrangements with
many more (74) sporadic cases. However, it turns out that irreducible crystallographic
arrangements of rank greater or equal to 4 are all restrictions of (irreducible) Weyl
arrangements (see for example [CL17, Thm. 3.7]):

Theorem 3.3.17. Let A be an irreducible simplicial ℓ-arrangement with ℓ ≥ 4. Then
it is crystallographic if and only if it is isomorphic to a restriction of some (irreducible)
Weyl arrangement.

Investigating the geometry of adjacent chambers we firstly obtain the following lemma.

Lemma 3.3.18. Let A be a simplicial ℓ-arrangement and K ∈ K(A) with basis BK =
{α1, . . . , αℓ}. Then for 1 ≤ i, j ≤ ℓ there are cKij ∈ R such that

{βi
j = αj − cKijαi | j = 1, . . . , ℓ}

is a basis for Ki. If i 6= j then cKij ≤ 0 and cKij is uniquely determined by BK. If i = j
then cKij > 0.

Proof. Since BK is a basis for V ∗, the uniqueness of the cKij for i 6= j directly follows.
By [Cun11a, Lem. 2.2] we have βi

j ∈ ±∑α∈BK R≥0α. Hence cKij ≤ 0 for i 6= j and
cKii > 0.
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Definition 3.3.19. Let A be a simplicial ℓ-arrangement, K ∈ K(A) with basis BK =
{α1, . . . , αℓ} for K. For i 6= j let cKij be the uniquely determined coefficients from
Lemma 3.3.18. For 1 ≤ i ≤ ℓ we set cKii = 2 and define the linear map σK

αi
:= σK

i by

σK
i (αj) := αj − cKijαi

for 1 ≤ j ≤ ℓ. With respect to the basis BK this map is represented by the matrix

SK
i :=























1 0
0 1

. . .

−cKi1 · · · −cKi(i−1) −1 −cKi(i+1) · · · −cKiℓ
. . .

1 0
0 1























.

Remark 3.3.20. We observe that σK
i is a reflection at the hyperplane α⊥

i . In particular
det(SK

i ) = −1. From the preceding definition we observe that cKij 6= 0 if and only if
cKji 6= 0 (cf. [Cun11a]).

Definition 3.3.21. Let A be an arrangement with chambers K(A). A sequence
(K0, K1, . . . , Kn−1, Kn) of distinct chambers in K(A) is called a gallery if for all
1 ≤ i ≤ n we have 〈Ki−1 ∩ Ki〉 = H ∈ A, i.e. if Ki and Ki−1 are adjacent with
common wall H. We denote by G(A) the set of all galleries of A.

We say that G ∈ G(A) has length n if it is a sequence of n + 1 chambers. For G =
(K0, . . . , Kn) ∈ G(A) we denote by b(G) = K0 the first chamber and by e(G) = Kn

the last chamber in G.

Definition 3.3.22. Let A be a simplicial ℓ-arrangement. We fix a chamber K0 ∈
K(A). Let G(K0,A) = {G ∈ G(A) | b(G) = K0} be the set of galleries starting with
K0.

Let BK0

= {α0
1, . . . , α

0
ℓ} be a basis for K0. For (K0, . . . , Kn) = G ∈ G(K0,A) we

denote by BKn

G = BG the basis for Kn induced by G and BK0

, i.e. such that

BKi+1

= σKi

µi
(BKi

) = {αi+1
j = σKi

µi
(αi

j) = αi
j − cK

i

µij
αi
µi

| 1 ≤ j ≤ ℓ},

where Ki+1 = Ki
µi
, µi ∈ {1, . . . , ℓ}, and 0 ≤ i ≤ n− 1.

Definition 3.3.23. Let A be a simplicial ℓ-arrangement, K ∈ K(A). We call a basis
BK = {α1, . . . , αℓ} locally crystallographic if the cKij are all integers.

If BK is a locally crystallographic basis then we call the matrix CK = (cKij )i,j=1,...,ℓ the
Cartan matrix of BK .

Example 3.3.24. Let A = Ak
ℓ . Then A is crystallographic with crystallographic root

system R. In particular for K ∈ K(A) the basis BK
R is a locally crystallographic basis

for K and the corresponding Cartan matrix is (up to simultaneous permutation of
columns and rows) one of the matrices displayed in Table 3.1, see [CH15a, Prop. 3.8].
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CK Γ(K)

Aℓ :



















2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
. . . . . .

...
0 0 · · · 2 −1
0 0 · · · −1 2



















. . .
1 2 3 ℓ− 1 ℓ

Cℓ :



















2 −1 0 0 · · · 0
−2 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 2



















. . .4

1 2 3 ℓ− 1 ℓ

Dℓ :























2 0 −1 0 0 · · · 0
0 2 −1 0 0 · · · 0
−1 −1 2 −1 0 · · · 0
0 0 −1 2 −1 · · · 0
...

...
...

. . . . . . . . .
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2























. . .

1

2

3 4 ℓ− 1 ℓ

D′
ℓ :























2 −1 −1 0 0 · · · 0
−1 2 −1 0 0 · · · 0
−1 −1 2 −1 0 · · · 0
0 0 −1 2 −1 · · · 0
...

...
...

. . . . . . . . .
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2























. . .

1

2

3 4 ℓ− 1 ℓ

Table 3.1: Cartan matrices and Coxeter graphs.
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Definition 3.3.25. Let BK be a locally crystallographic basis with Cartan matrix
CK . If (up to simultaneous permutation of columns and rows) CK is one of the ma-
trices shown in the left column of Table 3.1 then we say CK is of type A,C,D, or D′

respectively.

If BK is a locally crystallographic basis with Cartan Matrix of type A,C,D, or D′ then
the corresponding Coxeter graph Γ(K) (see Section 5) is displayed in the right column
of Table 3.1.

Lemma 3.3.26. Let A be a simplicial ℓ-arrangement, K ∈ K(A) with basis BK =
{α1, . . . , αℓ}, and Ki an adjacent chamber. Then for all 1 ≤ j ≤ ℓ we have cKi

ij = cKij
and in particular σK

i ◦ σKi

i = σKi

i ◦ σK
i = id.

Proof. We have σK
i (αj)

⊥
= βi

j

⊥
= (αj − cKijαi)

⊥ ∈ WKi but similarly σKi

i (βi
j)

⊥ = α⊥
j =

(βi
j − cKi

ij β
i
i)

⊥ = (αj − cKijαi − cKi

ij (−αi))
⊥ ∈ WK . Thus cKij = cKi

ij .

Similarly to the crystallographic case we have the following.

Lemma 3.3.27 (cf. [CH09, Lem. 4.5]). Let A be a simplicial ℓ-arrangement, K, BK,
and Ki as before. Let i 6= j and suppose cKij = 0. Then cKi

jk = cKjk for all k ∈ {1, . . . , ℓ}.

Proof. The proof is the same as in [CH09].

If k = i then by Lemma 3.3.26 cKjk = cKkj = 0 = cKi

kj = cKi

jk . And if k = j then all

the coefficients are equal to 2. So let k ∈ {1, . . . , ℓ} \ {i, j}. Since cKij = 0 we have

|Aα⊥
i ∩α⊥

j
| = 2. So application of σKi

j ◦ σK
i and σ

Kj

i ◦ σK
j on αk should yield a normal of

the same wall of the chamber Kαiσ
K
i (αj) = Kαjσ

K
j (αi). Now

σKi

j (σK
i (αk)) = σK

i (αk)− cKi

jk σ
K
i (αj)

= αk − cKikαi − cKi

jk (αj − cKijαi)

= αk − cKikαi − cKi

jk αj,

and similarly

σ
Kj

i (σK
j (αk)) = αk − cKjkαj − c

Kj

ik αi.

Since i, j, k are pairwise different and {α1 . . . , αℓ} are linearly independent, comparing
the coefficients of αj in both terms gives cKi

jk = cKjk.

We will continue the investigation of the combinatorial and geometric properties of
simplicial arrangements in Chapter 5.
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⊆

Figure 3.2: A non-supersolvable arrangement and the supersolvable (reflection) ar-
rangement A(B3).

3.4 Supersolvable arrangements

An element X ∈ L(A) is called modular if X + Y ∈ L(A) for all Y ∈ L(A). An
arrangement A with r(A) = ℓ is called supersolvable if the intersection lattice L(A) is
supersolvable, i.e. there is a maximal chain of modular elements

V = X0 < X1 < . . . < Xℓ = T (A),

Xi ∈ L(A) modular.

Example 3.4.1. The hyperplanes itself, T (A), and V are always modular elements in
L(A). Hence all 1-arrangements and 2-arrangements are supersolvable.

Example 3.4.2. Let A be an essential 3-arrangement. Then A is supersolvable if
there exists an X ∈ L2(A) which is connected to all other Y ∈ L2(A) by a suitable
hyperplane H ∈ A, i.e. X + Y ∈ A.

Consider Figure 3.2 displaying a projective picture of a supersolvable arrangement
and a non-supersolvable subarrangement. The three red points are modular. The
arrangement on the right-hand side is actually a reflection arrangement (see 3.2).

Supersolvability is preserved by taking localizations and restrictions, see [AHR14b,
Lem. 2.6], and [Sta72, Prop. 3.2]:

Lemma 3.4.3. Let A be an arrangement , X ∈ L(A) and Y ∈ L(A) a modular element
with X ⊆ Y . Then Y is modular in L(AX). In particular if A is supersolvable, so is
AX for all X ∈ L(A).

Lemma 3.4.4. Let A be an arrangement , X ∈ L(A) and Y ∈ L(A) a modular
element. Then Y ∩ X is modular in L(AX). In particular if A is supersolvable so is
AX for all X ∈ L(A).

Combining the previous two lemmas with Lemma 3.3.7 we obtain the following.
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Lemma 3.4.5. Let A be a supersolvable simplicial arrangement and X ∈ L(A). Then
we have

(1) (AX/X, V/X) is supersolvable and simplicial,

(2) (AX , X) is supersolvable and simplicial.

Furthermore, supersolvability is compatible with products.

Lemma 3.4.6 ([HR14, Prop. 2.5]). Let A = A1 ×A2 be a product. Then A is super-
solvable if and only if A1 and A2 are both supersolvable.

So together with Proposition 3.3.11 we get the following.

Proposition 3.4.7. Let A = A1 × A2 be a product. Then A is supersolvable and
simplicial if and only if A1 and A2 are both supersolvable and simplicial.

Because of the previous proposition, to classify supersolvable and simplicial arrange-
ments, it suffices to classify the irreducible ones.

The following property of the characteristic polynomial of a supersolvable arrangement
is due to Stanly [Sta72], see also [OT92, Thm. 2.63].

Theorem 3.4.8. Let A be a supersolvable ℓ-arrangement with

V = X0 < X1 < . . . < Xℓ = T (A)

a maximal chain of modular elements. Let bi := |AXi
\ AXi−1

| for 1 ≤ i ≤ ℓ. Then

χA(t) =
ℓ
∏

i=1

(t− bi).

Theorem 3.4.9 ([OT92, Thm. 4.58]). Let A be a supersolvable ℓ-arrangement with

V = X0 < X1 < . . . < Xℓ = T (A)

a maximal chain of modular elements. Let bi := |AXi
\ AXi−1

| for 1 ≤ i ≤ ℓ. Then A
is inductively free with exponents

exp(A) = {{b1, . . . , bℓ}}.

A helpful result is due to Amend, Hoge and Röhrle who classified the supersolvable
restrictions of irreducible reflection arrangements, [AHR14b, Thm. 1.3]. Here we only
need the following weaker version for real reflection arrangements of rank greater or
equal to 4.

Theorem 3.4.10. Let A = A(W ) be an irreducible real reflection arrangement of rank
ℓ ≥ 4 associated to the finite reflection group W and X ∈ L(A) with m := dim(X) ≥ 4.
Then AX is supersolvable if and only if one of the following holds:

(1) W = Aℓ and then AX = A(Am)
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(2) AX = Ak
m with k ∈ {m,m− 1}.

Together with Theorem 3.3.17 this gives us the following classification of irreducible
supersolvable crystallographic arrangements of rank ≥ 4.

Theorem 3.4.11. Let A be an irreducible supersolvable crystallographic ℓ-arrangement
with ℓ ≥ 4. Then A is isomorphic to one of the reflection arrangements A(Aℓ), A(Bℓ)
or isomorphic to Aℓ−1

ℓ = A(Bℓ) \ {{x1 = 0}}.

We will continue the investigation of supersolvable simplicial arrangements in the last
chapter.





4 Recursively free reflection

arrangements

In this chapter we prove Theorem I giving a classification of recursively free reflection
arrangements.

For the special caseW ∼= G31, we obtain a (with respect to “Addition” and “Deletion”)
isolated cluster of free but not recursively free subarrangements of A(W ) in dimension
4.

In Section 4.2 equipped with Theorem I and results from the previous section, we are
able to positively settle a conjecture by Abe [Abe16, Conj. 5.11] about his new class
of divisionally free arrangements, which we state as the next theorem.

Theorem 4.1. There is an arrangement A such that A ∈ DF and A /∈ RF .

In the last section we will comment on the situation of a restriction of a reflection
arrangement.

In order to compute the different intersection lattices of the reflection arrangements in
question, to obtain the respective invariants, and to recheck our results we used the
functionality of the GAP computer algebra system, [GAP14].

The following theorem proved by Barakat, Cuntz, Hoge and Röhrle, which provides
a classification of all inductively free reflection arrangements, is our starting point for
inspecting the recursive freeness of reflection arrangements:

Theorem 4.2 ([HR15, Thm. 1.1], [BC12, Thm. 5.14]). For W a finite complex reflec-
tion group, the reflection arrangement A(W ) is inductively free if and only if W does
not admit an irreducible factor isomorphic to a monomial group G(r, r, ℓ) for r, ℓ ≥ 3,
G24, G27, G29, G31, G33, or G34.

Thus, to prove Theorem I, we only have to check the non-inductively free cases from
Theorem 4.2 since inductive freeness implies recursive freeness.

4.1 Proof of Theorem I

Thanks to Proposition 3.1.15, the proof of Theorem I reduces to the case when A(W )
respectivelyW are irreducible. We consider the different irreducible reflection arrange-
ments provided by Theorem 4.2 which are not inductively free in turn.



30 4 Recursively free reflection arrangements

4.1.1 The reflection arrangements A(G(r, r, ℓ)), r, ℓ ≥ 3

For an integer r ≥ 2 let θ = exp (2πi/r), and C(r) the cyclic group generated by θ.
The reflection arrangement A(W ) with W = G(r, r, ℓ) contains the hyperplanes

Hi,j(ζ) := ker(xi − ζxj),

with i, j ≤ ℓ and i 6= j, ζ ∈ C(r), and if W is the full monomial group G(r, 1, ℓ), then
A(G(r, 1, ℓ) additionally contains the coordinate hyperplanes Ei := ker(xi), [OT92,
Ch. 6.4].

To show that the reflection arrangements A(G(r, r, ℓ)) for r, ℓ ≥ 3 are recursively
free, we need the intermediate arrangements Ak

ℓ (r) with A(G(r, r, ℓ)) ⊆ Ak
ℓ (r) ⊆

A(G(r, 1, ℓ)). They are defined as follows:

Ak
ℓ (r) := A(G(r, r, ℓ))∪̇{E1, . . . , Ek},

and their defining polynomial is given by

Q(Ak
ℓ (r)) = x1 · · · xk

∏

1≤i<j≤ℓ
0≤n<r

(xi − ζnxj).

The following result by Amend, Hoge and Röhrle immediately implies the recursive
freeness of A(G(r, r, ℓ)), for r, ℓ ≥ 3.

Theorem 4.1.1 ([AHR14a, Thm. 3.6]). Suppose r ≥ 2, ℓ ≥ 3 and 0 ≤ k ≤ ℓ. Then
Ak

ℓ (r) is recursively free.

Corollary 4.1.2. Let W be the finite complex reflection group W = G(r, r, ℓ). Then
the reflection arrangement A := A(W ) is recursively free.

Proof. We have A ∼= A0
ℓ(r) and by Theorem 4.1.1, A0

ℓ(r) is recursively free.

4.1.2 The reflection arrangement A(G24)

We show that the reflection arrangement of the finite complex reflection group G24 is
recursively free by constructing a so called supersolvable resolution for the arrange-
ment, (see also [Zie87, Ch. 3.6], and making sure that in each addition-step of a new
hyperplane the resulting arrangements and restrictions are free with suitable expo-
nents. As a supersolvable arrangement is always inductively free (Example 3.1.10), it
follows that A(G24) is recursively free.

Lemma 4.1.3. Let W be the complex reflection group W = G24. Then the reflection
arrangement A = A(W ) is recursively free.
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j exp(Aj) exp(AHj

j )

1 1,10,11 1,11
2 1,11,11 1,11
3 1,11,12 1,11
4 1,11,13 1,11
5 1,12,13 1,13
6 1,13,13 1,13
7 1,13,14 1,13
8 1,13,15 1,13
9 1,14,15 1,15
10 1,15,15 1,15
11 1,15,16 1,15
12 1,15,17 1,15

Table 4.1: The exponents of the free arrangements Aj and AHj

j .

Proof. Let ω := −1
2
(1 + i

√
7), then the reflecting hyperplanes of A can be defined by

the following linear forms (see also [LT09, Ch. 7, 6.2]):

A = { (1, 0, 0)⊥, (0, 1, 0)⊥, (0, 0, 1)⊥, (1, 1, 0)⊥, (−1, 1, 0)⊥,

(1, 0, 1)⊥, (−1, 0, 1)⊥, (0, 1, 1)⊥, (0,−1, 1)⊥, (ω, ω, 2)⊥,

(−ω, ω, 2)⊥, (ω,−ω, 2)⊥, (−ω,−ω, 2)⊥, (ω, 2, ω)⊥,
(−ω, 2, ω)⊥, (ω, 2,−ω)⊥, (−ω, 2,−ω)⊥, (2, ω, ω)⊥,
(2,−ω, ω)⊥, (2, ω,−ω)⊥, (2,−ω,−ω)⊥ }.

The exponents of A are exp(A) = {{1, 9, 11}}.
If we define

{H1, . . . , H12} := { (ω2, ω, 0)⊥, (−ω2, ω, 0)⊥, (ω, ω2, 0)⊥

(−ω, ω2, 0)⊥, (2− ω, ω, 0)⊥, (−2 + ω, ω, 0)⊥,

(ω, 2− ω, 0)⊥, (−ω, 2− ω, 0)⊥, (ω, 2, 0)⊥,

(−ω, 2, 0)⊥, (2, ω, 0)⊥, (−2, ω, 0)⊥ },

and the arrangements Aj := A∪̇{H1, . . . , Hj} for 1 ≤ j ≤ 12, then

X = (1, 0, 0)⊥ ∩ (0, 1, 0)⊥ ∩ (1, 1, 0)⊥ ∩ (−1, 1, 0)⊥ ∩12
j=1 Hj ∈ L(A12)

is a rank 2 modular element, and A12 is supersolvable. In each step, Aj is free, AHj

j

is inductively free (since AHj

j is a 2-arrangement), and exp(AHj

j ) ⊆ exp(Aj). The

exponents of the arrangements Aj and AHj

j are listed in Table 4.1.

Since by Example 3.1.10 a supersolvable arrangement is inductively free, A is recur-
sively free.
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We found the set of hyperplanes {H1, . . . , H12} by “connecting” a suitable X ∈ L2(A)
to other Y ∈ L2(A) via addition of new hyperplanes such that X becomes a mod-
ular element in the resulting intersection lattice, subject to each addition of a new
hyperplane results in a free arrangement, (compare with [OT92, Ex. 4.59]).

4.1.3 The reflection arrangement A(G27)

In [CH15b, Remark 3.7] Cuntz and Hoge have shown that the reflection arrangement
A(G27) is not recursively free. In particular they have shown that there is no hyperplane
which can be added or removed from A(G27) resulting in a free arrangement.

4.1.4 The reflection arrangements A(G29) and A(G31)

In [HR15, Lemma 3.5] Hoge and Röhrle settled the case that the reflection arrangement
A(G31) of the exceptional finite complex reflection group G31 is not inductively free by
testing several cases with the computer.

In this part we will see, that the reflection arrangement A(G31) is additionally not
recursively free and as a consequence the closely related reflection subarrangement
A(G29) is also not recursively free. Furthermore, we obtain a new computer-free proof,
that A(G31) is not inductively free.

Theorem 4.1.4. Let A = A(W ) be the reflection arrangement with W isomorphic to
one of the finite complex reflection groups G29, G31. Then A is not recursively free.

We will prove the theorem in two parts.

In the first part, we will characterize certain free subarrangements of A(G31) which we
can obtain from A(G31) by successive deletion of hyperplanes such that all the arrange-
ments in between are also free. We call such arrangements free filtration subarrange-
ments. Then we will investigate the relation between the two reflection arrangements
A(G29) and A(G31), and obtain that A(G29) is the smallest of these free filtration
subarrangements of A(G31). This yields a new proof, that A(G31) is not inductively
free (since inductive freeness implies that the empty arrangement is a free filtration
subarrangement).

In the second part, we will show that if Ã is a free filtration subarrangement of A(G31),
there is no possible way to obtain a free arrangement out of Ã by adding a new
hyperplane which is not already contained in A(G31).

This will conclude the proof of Theorem 4.1.4.

Definition 4.1.5. Let i =
√
−1. The arrangement A(G31) can be defined as the union

of the following collections of hyperplanes:

A(G31) := {ker(xp − ikxq) | 0 ≤ k ≤ 3, 1 ≤ p < q ≤ 4} ∪̇
{α⊥ | α ∈ G(4, 4, 4).(1, 1, 1, 1)} ∪̇
{(1, 0, 0, 0)⊥, (0, 1, 0, 0)⊥, (0, 0, 1, 0)⊥, (0, 0, 0, 1)⊥} ∪̇
{α⊥ | α ∈ G(4, 4, 4).(−1, 1, 1, 1)}.

(4.1.6)
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The first set contains the hyperplanes of the reflection arrangement A(G(4, 4, 4)). The
second and the last set contain the hyperplanes defined by the linear forms in orbits of
the group G(4, 4, 4). The union of the first and the second set gives the 40 hyperplanes
of the reflection arrangement A(G29). In particular, A(G29) ⊆ A(G31), compare with
[LT09, Ch. 7, 6.2].

The free filtration subarrangements of A(G31)

In this subsection we characterize certain free subarrangements of A(G31) which we
can obtain by successively removing hyperplanes from A(G31), the so called free filtra-
tion subarrangements. We will use this characterization in Subsection 4.1.4 to prove
Theorem 4.1.4. Furthermore, along the way, we obtain another (computer-free) proof
that the arrangement A(G31) cannot be inductively free (recall Definition 3.1.9) with-
out checking all the cases for a possible inductive chain but rather by examining the
intersection lattices of certain subarrangements and using the fact, that A(G29) plays
a “special” role among the free filtration subarrangements of A(G31).

Definition 4.1.7. Let A be a free ℓ-arrangement and Ã ⊆ A a free subarrangement.
A strictly decreasing sequence of free arrangements

A = A0 ) A1 ) . . . ) An−1 ) An = Ã

is called a (finite) free filtration from A to Ã if |Ai| = |A|− i for each i. If there exists
a (finite) free filtration from A to Ã, we call Ã a free filtration subarrangement.

The notion of free filtration was first introduced by Abe and Terao in [AT16].

Note that, since all the subarrangements Ai in the definition are free, with Theorem
3.1.6 the restrictions AHi

i−1 are free and we automatically have exp(AHi

i−1) ⊆ exp(Ai−1)

and exp(AHi

i−1) ⊆ exp(Ai).

If A is an inductively free ℓ-arrangement, then Φℓ is a free filtration subarrangement.

The main result of this subsection is the following proposition which we will prove in
several steps divided into some lemmas.

Proposition 4.1.8. Let A := A(G31) be the reflection arrangement of the finite com-
plex reflection group G31. Let Ã be a smallest (w.r.t. the number of hyperplanes) free
filtration subarrangement. Then Ã ∼= A(G29). In particular A, A(G29) and all other
free filtration subarrangements Ã ⊆ A are not inductively free.

To prove Proposition 4.1.8, we will characterize all free filtration subarrangements of
A(G31) by certain combinatorial properties of their intersection lattices.

The next lemma gives a sufficient condition for Ã ⊆ A(G31) being a free filtration sub-
arrangement. With an additional assumption on |Ã|, this condition is also necessary.
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Lemma 4.1.9. Let N ⊆ A := A(G31) be a subcollection of hyperplanes and Ã :=
A \ N . If N satisfies

⋃

X∈ L2(N )

X ⊆
⋃

H∈Ã

H, (∗)

then Ã ⊆ A is a free filtration subarrangement, with exponents exp(Ã) = {{1, 13, 17,
29− |N |}}.

If furthermore |N | ≤ 13, then Ã ⊆ A is a free filtration subarrangement if and only if
N satisfies (∗).

Proof. We proceed by induction on |N |.
We use the fact, that G31 acts transitively on the hyperplanes of A. In particular, all
the 3-arrangements AH for H ∈ A are isomorphic and furthermore, they are free with
exponents exp(AH) = {{1, 13, 17}} (see [OT92, App. C and App. D]).

First let N = {H} consist of only a single hyperplane. Since A is free with exponents
exp(A) = {{1, 13, 17, 29}}, the arrangement Ã = A′ is just a deletion with respect
to H, hence free by Theorem 3.1.5, and Ã is a free filtration subarrangement with
exp(Ã) = {{1, 13, 17, 28}}.
With N , each subcollection N ′ = N \{K}, for a K ∈ N , fulfills the assumption of the
lemma. By the induction hypotheses B = A \ N ′ is a free filtration subarrangement
with exp(B) = {{1, 13, 17, 29− |N ′|}} = {{1, 13, 17, 29− |N |+1}}. Now condition (∗)
just means that |BK | = 31, so BK ∼= AH for any H ∈ A and is free with exp(BK) =
{{1, 13, 17}}. Hence, again by Theorem 3.1.5, the deletion B′ = B \ {K} is free and
thus Ã = A\N = B′ is a free filtration subarrangement with exp(Ã) = {{1, 13, 17, 29−
|N |}}.
Finally, let Ã = A \ N be a free filtration subarrangement with |N | ≤ 13. For an
associated free filtration A = A0 ) . . . ) An = Ã with say Ai = A′

i−1 = Ai−1 \ {Hi}
for 1 ≤ i ≤ n, we have |AHi

i−1| = 31. So Hi ∩Hj ⊆ K, j < i, for a K ∈ Ai and for i = n
this is condition (∗).

Before we continue with the characterization of the free filtration subarrangements, we
give a helpful partition of the reflection arrangement A(G31):

Lemma 4.1.10. Let A = A(G31). There are exactly 6 subcollections M1, . . . ,M6 ⊆ A,
such that A\Mi

∼= A(G29), Mi∩Mj
∼= A(A4

1) and Mi∩Mj∩Mk = ∅ for 1 ≤ i < j < k ≤
6. Thus we get a partition of A into 15 disjoint subsets {Mi∩Mj | 1 ≤ i < j ≤ 6} =: F
on which G31 acts transitively.

Proof. Let W := G31 and W ′ := G29 ≤ W . Then NW (W ′) = W ′ and |W : W ′| = 6,
so with Lemma 3.2.1 there are exactly 6 subarrangements, say B1, . . . ,B6 with Bi

∼=
A(W ′) ⊆ A, (respectively 6 conjugate reflection subgroups of W isomorphic to W ′).
Now we get the Mi as Mi = A\Bi and in particular the corresponding action of W on
the subcollections is transitive.
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M1 ∩M2 M1 ∩M3 M1 ∩M4 M1 ∩M5 M1 ∩M6

M2 ∩M3 M2 ∩M4 M2 ∩M5 M2 ∩M6

M3 ∩M4 M3 ∩M5 M3 ∩M6

M4 ∩M5 M4 ∩M6

M5 ∩M6

M2

M4

Figure 4.1: The partition of A into 15 disjoint subsets F = {Mi ∩Mj, 1 ≤ i < j ≤ 6},
each consisting of 4 hyperplanes.

To see the claim about their intersections we look at the different orbits of reflection
subgroups of W on A acting on hyperplanes. First W ′ has 2 orbits O1 = A(W ′), and
O2 = A\A(W ′) =Mi for an i ∈ {1, . . . , 6}. Similarly a subgroup W̃ ′ = g−1W ′g 6= W ′

conjugate to W ′ has also 2 orbits Õ1 = A(W̃ ′), and Õ2 = A \ A(W̃ ′) = Mj and
j ∈ {1, . . . , 6} \ {i}. Now the intersection W ′ ∩ W̃ ′ of these two conjugate subgroups
is isomorphic to G(4, 4, 4) ≤ W and G(4, 4, 4) has two orbits O21, O22 on O2 of size 16
and 4, respectively two orbits Õ21, Õ22 on Õ2 of size 16 and 4 (see Definition 4.1.5).
Because of the cardinalities of A(W ′) and A(W̃ ′) we have Mi ∩Mj = O2 ∩ Õ2 6= ∅,
and Mi ∩Mj = O22 = Õ22. Since the collection Mi ∩Mj is stabilized by G(4, 2, 4) ≥
G(4, 4, 4), the lines orthogonal to the hyperplanes in Mi ∩Mj are the unique system of
imprimitivity G(4, 2, 4). Hence we get Mi ∩Mj

∼= A(A4
1) = {ker(xi) | 1 ≤ i ≤ 4}.

Now let W ′ = G(4, 2, 4). Here we also have NW (W ′) = W ′, so |W : W ′| = 15, and
hence again with Lemma 3.2.1 there are 15 distinct subarrangements isomorphic to
A(W ′) ⊆ A. Since each toW ′ conjugate reflection subgroup ofW has a unique system
of imprimitivity consisting of the lines orthogonal to the hyperplanes in Mi ∩Mj for
i, j ∈ {1, . . . , 6}, i 6= j and they are distinct, the Mi ∩Mj are distinct and disjoint.

Finally, each hyperplane in A belongs to a unique intersection Mi ∩ Mj, so they
form a partition F of A. Since W acts transitively on A, and interchanges the sys-
tems of imprimitivity corresponding to the reflection subarrangements isomorphic to
A(G(4, 2, 4)), it acts transitively on F .

The partition F in Lemma 4.1.10 can be visualized in a picture, see Figure 4.1.

In the above proof we used some facts about the actions and orders of complex reflection
(sub)groups from the book by Lehrer and Taylor, [LT09] in particular [LT09, Ch. 8,
10.5]).

Furthermore, it will be helpful to know the distribution of the AX , X ∈ L2(A) with
respect to the partition given by Lemma 4.1.10:
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Lemma 4.1.11. Let H ∈ A, X ∈ AH , and H ∈ Bij := Mi ∩ Mj ∈ F for some
1 ≤ i < j ≤ 6. For AX there are 3 cases:

(1) AX = {H,K1, . . . , K5} ∼= A(G(4, 2, 2)) with K1 ∈ B, {K2, K3} ⊆ Bkm = Mk ∩
Mm, and {K4, K5} ⊆ Bpq =Mp ∩Mq, with {i, j, k,m, p, q} = {1, . . . , 6}.

(2) AX = {H,K1, K2} ∼= A(A2) with K1 ∈ Bik =Mi∩Mk, and K2 ∈ BjK =Mj∩Mk

for some k ∈ {1, . . . , 6} \ {i, j}.

(3) AX = {H,K} ∼= A(A2
1) with K ∈ Bkm = Mk ∩Mm for some k,m ∈ {1, . . . , 6} \

{i, j}.

Proof. This is by explicitly writing down the partition F from Lemma 4.1.10 with
respect to definition 4.1.5 and a simple computation.

The following lemma provides the next step towards a complete characterization of the
free filtration subarrangements of A(G31) .

Lemma 4.1.12. Let M ⊆ A := A(G31) be a subcollection, such that B = A \M ∼=
A(G29). Then for all N ⊆ M, Ã := A \ N is a free filtration subarrangement with
exponents exp(A(N )) = {{1, 13, 17, 29− |N |}}.

Proof. Let M ⊆ A such that B = A \ M ∼= A(G29). We claim that M satisfies
condition (∗), so with Lemma 4.1.9, B is a free filtration subarrangement. Furthermore,
if M satisfies condition (∗), so does every subcollection N ⊆ M and Ã := A \ N is a
free filtration subarrangement with exponents exp(Ã) = {{1, 13, 17, 29− |N |}}.
Now let H ∈ M be an arbitrary hyperplane in M and let X ∈ AH . Then by Proposi-
tion 4.1.11 there are three different cases:

(1) |AX | = 2, AX = {H,K},
(2) |AX | = 3, AX = {H,H ′, K},
(3) |AX | = 6, AX = {H,H ′, K1, . . . , K4},

with H ′ ∈ M andK,Ki ∈ B ∼= A(G29). For arbitrary H,H
′ ∈ M there is a hyperplane

K ∈ B such that H ∩H ′ = X ⊆ K. Hence M satisfies condition (∗) and as mentioned
before with Lemma 4.1.9 Ã is a free filtration subarrangement with exponents exp(Ã) =
{{1, 13, 17, 29− |N |}}.

The next lemma completes the characterization of the free filtration subarrangements
Ã ⊆ A(G31) and enables us to prove Proposition 4.1.8.

Lemma 4.1.13. Let A = A(G31). A subarrangement A \ N = Ã ⊆ A is a free
filtration subarrangement if and only if

(1) A(G29) ⊆ Ã
or

(2) |N | ≤ 13 and N satisfies (∗) from Lemma 4.1.9.

In both cases the exponents of Ã are exp(Ã) = {{1, 13, 17, 29− |N |}}.
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Proof. Let Ã ⊆ A be a subarrangement. If Ã satisfies (1) then by Lemma 4.1.12 it is
a free filtration subarrangement and if Ã satisfies (2) then by Lemma 4.1.9 it is also a
free filtration subarrangement. This gives one direction.

The other direction requires more effort. The main idea is to use the partition F of
A from Lemma 4.1.10, the distribution of the localizations AX with respect to this
parson given by Lemma 4.1.11, and some counting arguments.

So let A \ N ′ = Ã′ ⊆ A be a subarrangement such that A(G29) * Ã′, |N ′| ≥ 14,

and suppose that Ã′ is a free filtration subarrangement. Since Ã′ is a free filtration
subarrangement there has to be another free filtration subarrangement say Ã ⊇ Ã′,
Ã = A \ N such that |N | = 13. By Lemma 4.1.9 we then have

⋃

X∈L2(N )X ⊆
⋃

H∈ÃH and exp(Ã) = {{1, 13, 16, 17}}. We claim that there is no H ∈ Ã such that

|ÃH | ∈ {30, 31}, so by Theorem 3.1.6 contradicting the fact that Ã′ is a free filtration
subarrangement.

If A(G29) ⊆ Ã then by Lemma 4.1.10 there is an 1 ≤ i ≤ 6 such that N ⊆ Mi. With
respect to renumbering the Mi we may assume that N ⊆ M1. Let B1j = M1 ∩Mj,
2 ≤ j ≤ 6 be the blocks of the partition of M1 from Lemma 4.1.10. Since |N | = 13
we have B1j ∩ N 6= ∅, and there is a k such that |B1k ∩ N| ≥ 3. By Ã′ ) A(G29),
we have H /∈ M1. But then, using Lemma 4.1.11, we see that |ÃH | < 30 (because N
completely contains at least two localizations as in Lemma 4.1.11(2), and (3)), so Ã′ is
not free by Theorem 3.1.6 and in particular it is not a free filtration subarrangement
contradicting our assumption.

If A(G29) * Ã we claim that for such a free filtration subarrangement Ã with |N | = 13
there is a H ∈ A, H ∈ B ∈ F (see Lemma 4.1.10), such that

N =
⋃

H′∈B\{H}

AH∩H′ \ {H ′}, (4.1.14)

which enables us to describe ÃK for each K ∈ Ã.

So let Ã = A\N be a free filtration subarrangement with A(G29) * Ã and |N | = 13.
By Lemma 4.1.9 N has to satisfy condition (∗). Let FN := {B ∈ F | N ∩ B 6= ∅}
be the blocks in the partition F of A containing the hyperplanes from N and let
Bab := Ma ∩Mb ∈ F (a 6= b, a, b ∈ {1, . . . , 6}). First we notice that |FN | ≥ 4 because
|N | = 13. Since A(G29) * Ã, by Lemma 4.1.10 we have one of the following cases

(1) there are Bij,Bkl ∈ FN , such that |{i, j, k, l}| = 4,

(2) there are Bij,Bik,Bjk ∈ FN , such that |{i, j, k}| = 3.

But since |FN | ≥ 4, in case (2) there is a Bab ∈ FN with a ∈ {i, k, l} and b /∈ {i, j, k}, so
we are again in case (1), (compare with Figure 4.1). Hence (with possibly renumbering
the Mi) we have B12,B34 ∈ FN . By the distribution of the simply intersecting hyper-
planes in A with respect to F (Lemma 4.1.11(3)) and by condition (∗) we further have
|N ∩ B12| ≤ 2, |N ∩ B34| ≤ 2 resulting in |FN | ≥ 5. Next, suppose for all Bab ∈ F we
have {a, b} ⊆ {1, 2, 3, 4}, so in particular N ⊆ A(G(4, 4, 4)) (see Figure 4.1, Definition
4.1.5 and Lemma 4.1.10). Then because of |N ∩ B12| ≤ 2, |N ∩ B34| ≤ 2, |N | = 13,
and |FN | ≥ 5 we find B1a,B2b ∈ FN , a, b ∈ {3, 4}, such that |(B1a ∪ B2b) ∩ N| ≥ 5.



38 4 Recursively free reflection arrangements

But this contradicts condition (∗) by Lemma 4.1.11(2). So there is a Bab ∈ FN with
{a, b} * {1, 2, 3, 4}. Now for Bab there are again two possible cases

(1) a = 5 and b = 6,

(2) a ∈ {1, 2, 3, 4} and b ∈ {5, 6}.
In the first case, by Lemma 4.1.11(3) and condition (∗), we then have |N ∩ B| ≤ 2 for
all B ∈ FN so |FN | ≥ 7. So in this (after renumbering the Mi once more) we may
assume that we are in the second case. In the second case, again by Lemma 4.1.11(3)
and condition (∗) we then have |Bij ∩ N| ≤ 2 for i 6= a, j 6= a. We may assume that
a = 1 (the other cases are similar), then only |(B13∪B14)∩N| ≤ 4 by Lemma 4.1.11(2)
and condition (∗). So in this case we also have |FN | ≥ 7 and further |B34 ∩N| = 1 by
Lemma 4.1.11(3).

We remark that for a subarrangement C ⊆ A with C ∼= A(G(4, 2, 4)) there is a Bij ∈ F ,
such that C = Bij ∪ (A \ (Mi ∪Mj)) = Bij ∪

⋃

a,b∈{1,...,6}\{i,j} Bab (compare again with

Figure 4.1, Definition 4.1.5 and Lemma 4.1.10). If N is of the claimed form (4.1.14),
by Lemma 4.1.11(1) we have N ⊆ A(G(4, 2, 4)) and furthermore, since |N | = 13
and N has to satisfy condition (∗), with Lemma 4.1.11 one easily sees, that if N ⊆
A(G(4, 2, 4)), it has to be of the form (4.1.14).

To finally prove the claim, we want to show that N ⊆ A(G(4, 2, 4)) (for one possible
realization of A(G(4, 2, 4)) inside A given by F).

So far we have that there are B12,B34,B1b ∈ FN (b ∈ {5, 6}). This can be visualized
in the following picture (Figure 4.2(a), compare also with Figure 4.1), where the boxes
represent the partition F , a double circle represents a hyperplane already fixed in N
by the above considerations, a solid circle a hyperplane which can not belong to N
without violating condition (∗), and a non solid circle a hyperplane which may or may
not belong to N .

(a) (b)

Figure 4.2: Possible choices for hyperplanes in N .

Suppose that there is a Bcd ∈ FN such that {c, d} ∩ {3, 4} 6= ∅. This is the case if and
only if N ⊆ A(G(4, 2, 4)) by our remark before.

Then the hyperplanes left to be chosen for N reduce considerably (see Figure 4.2(b)).

If we proceed in this manner using the same arguments as above we arrive at a con-
tradiction to |N | = 13, condition (∗), and Lemma 4.1.11.

To finish the proof, let Ã = A \ N for an N of the form (4.1.14). Then by Lemma
4.1.11(3) and the distribution of the H ∈ Ã with respect to F we have |ÃH | ≤ 29
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since for H there are at least two hyperplanes in N simply intersecting H and we are
done.

Example 4.1.15. We illustrate the change of the set of hyperplanes which can be
added to N along a free filtration from A to A \ N = Ã with |Ã| = 47, A(G29) * Ã,
by the following sequence of pictures (Figure 4.3). Each circle represents a hyperplane
in the free filtration subarrangement Ai, a solid circle represents a hyperplane which
we can not add to N without violating condition (∗) from Lemma 4.1.9. A non-solid
circle represents a hyperplane, which can be added to N , such that (∗) ist still satisfied.
The different boxes represent the partition F of A into subsets of 4 hyperplanes given
by Lemma 4.1.13:

) )

) ) )

) ) )

) ) )

) )

Figure 4.3: The change of hyperplanes which can be removed along a free filtration
from A to Ã.

Now we can prove Proposition 4.1.8:
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Proof of Proposition 4.1.8. Let Ã be a free filtration subarrangement.

If A(G29) * Ã, then with Lemma 4.1.13, |Ã| ≥ 47.

Now assume that Ã ∼= A(G29). In Lemma 4.1.12 we saw, that Ã is a free filtration
subarrangement.

In [HR15, Remark 2.17] it is shown that one cannot remove a single hyperplane from
A(G29) = B resulting in a free arrangement B′, so there is no smaller free filtration
subarrangement of A.

The reflection arrangements A(G29) and A(G31) are not recursively free

Let A := A(W ) be the reflection arrangement of the complex reflection groupW = G31

and B := A(W ) the reflection arrangement of the complex reflection group W = G29.
As we saw in the previous section B ( A is a free filtration subarrangement.

We use the characterization of all free filtration subarrangements Ã ⊆ A from Lemma
4.1.13 and show that for all these subarrangements there exists no hyperplaneH outside
of A we can add to Ã such that the resulting arrangement Ã∪̇{H} is free.

Firstly we show that it is not possible for Ã = A:

Lemma 4.1.16. There is no way to add a new hyperplane H to A such that the
arrangement Ã := A∪̇{H} is free.

Proof. The exponents of A are exp(A) = {{1, 13, 17, 29}}. Inspection of the intersec-
tion lattice L := L(A) gives the following multisets of invariants:

{{|AX | | X ∈ L2}} = {{2360, 3320, 630}}. (4.1.17)

Now assume that there exists a new hyperplane H which we can add to A such that
Ã := A∪̇{H} is free. Then by Lemma 3.1.13 we have

∑

X∈PH
(|AX | − 1) ∈ exp(A)

where PH = {X ∈ L2 | X ⊆ H}. Hence with (4.1.17) H contains at least 4 different
rank 2 subspaces (e.g. 13 = (6− 1) + (6− 1) + (3− 1) + (2− 1)) from the intersection
lattice.

But up to symmetry there are no more than 5 possibilities to get a hyperplane H with
|{X ∈ L2 | X ⊆ H}| ≥ 3 such that χÃ(t) factors over the integers, but in each case
χÃ(t) = (t− 1)(t− 15)(t− 16)(t− 29), so with Theorem 3.1.6 Ã can not be free.

Now we will prove that for all free filtration subarrangements Ã ⊆ A (see definition
4.1.7) there exists no other hyperplane H /∈ A we can add to Ã such that Ã∪̇{H} is
free.

Lemma 4.1.18. Let Ã ⊆ A be a free filtration subarrangement. Let H be a new
hyperplane such that Ã∪̇{H} is free. Then H ∈ A.
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Proof. In Lemma 4.1.13 we have shown, that Ã is free with exponents exp(Ã) =
{{1, 13, 17, 29 − n}}, n ≤ 20. Let L = L(A) and L̃ = L(Ã) ⊆ L. We once more use
the following multiset of invariants:

{{|AX | | X ∈ L2}} = {{2360, 3320, 630}}.

Thus for X ∈ L̃2 we have 2 ≤ |ÃX | ≤ 6.

Suppose we add a new hyperplane H such that Ã∪̇{H} is free. Then by Lemma 3.1.13
we have

∑

X∈PH
(|ÃX | − 1) ∈ exp(Ã) where PH = {X ∈ L̃2 | X ⊆ H}.

We immediately see that |PH | ≥ 3 and if |PH | ∈ {3, 4} there must be at least two
X ∈ PH with |ÃX | ≥ 4 or |AX | = 6. But for X, Y ∈ L2, X 6= Y , with |AX | = |AY | = 6
we either have X + Y = V or X ⊆ K and Y ⊆ K for a K ∈ A. Hence in this case
H ∈ A.

Now assume that |PH | ≥ 5 and there is at most oneX ∈ PH with |ÃX | ≥ 4 or |AX | = 6.
Then there are either at least three X ∈ PH with |ÃX | = 3 or at least four X ∈ PH

with |ÃX | = 2. But in both cases with the same argument as above we must have
H ∈ A.

This finishes the proof.

We close this section with the following corollary which completes the proof of Theorem
4.1.4.

Corollary 4.1.19. Let Ã ⊆ A be a free filtration subarrangement of A = A(G31).
Then Ã is not recursively free and in particular A(G31) and A(G29) are not recursively
free.

Proof. The statement follows immediately from Lemma 4.1.18 and Proposition 4.1.8.

4.1.5 The reflection arrangement A(G33)

In this section we will see, that the reflection arrangement A(W ) with W isomorphic
to the finite complex reflection group G33 is not recursively free.

Lemma 4.1.20. Let A = A(W ) be the reflection arrangement with W ∼= G33. Then
A is not recursively free.

Proof. With Theorem 4.2 the reflection arrangement A is not inductively free.

In [HR15, Remark 2.17] it is shown that one cannot remove a single hyperplane from
A resulting in a free arrangement A′

Thus to prove the lemma, we have to show, that we also cannot add a new hyperplane
H such that the arrangements Ã := A∪̇{H} and ÃH are free with suitable exponents.

The exponents of A are exp(A) = {{1, 7, 9, 13, 15}}.
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Now suppose that there is a hyperplane H such that Ã is free. Looking at the inter-
section lattice L := L(A) we find the following multiset of invariants:

{{|AX | | X ∈ L2}} = {{2270, 3240}}.

With Lemma 3.1.13 and the same argument as in the proof of Lemma 4.1.16 for H we
must have:

|PH | = |{X ∈ L2 | X ⊆ H}| ≥ 4.

If we look at all the possible cases for an H such that |PH | ≥ 2 (there are only 2 possible
cases up to symmetry) we already see that in none of these cases the characteristic
polynomial of Ã splits into linear factors over Z and by Theorem 3.1.7 Ã is not free.

Hence we cannot add a single hyperplane H to A and obtain a free arrangement
A∪̇{H} = Ã and A is not recursively free.

4.1.6 The reflection arrangement A(G34)

In this part we will see, that the reflection arrangement A(W ) with W isomorphic to
the finite complex reflection group G34 is free but not recursively free.

Lemma 4.1.21. Let A = A(W ) be the reflection arrangement with W ∼= G34. Then
A is not recursively free.

Proof. To prove the lemma, we could follow the same path as in the proof of Lemma
4.1.20.

But since the arrangement of A(G33) is a parabolic subarrangement (localization) AX

of the reflection arrangement A = A(G34) for a suitable X ∈ L(A) (see e.g. [OT92,
Table C.15.] or [LT09, Ch. 7, 6.1]). Since this localization is not recursively free by
Lemma 4.1.20, A cannot be recursively free by Proposition 3.1.14.

This completes the proof of Theorem I.

4.2 Abe’s conjecture

In this section we give the proof of Theorem 4.1, which settles [Abe16, Conj. 5.11].

The following result by Abe gives the divisional freeness of the reflection arrangement
A(G31).

Theorem 4.2.1 ([Abe16, Cor. 4.7]). Let W be a finite irreducible complex reflection
group and A = A(W ) its corresponding reflection arrangement. Then A ∈ IF or
W = G31 if and only if A ∈ DF .

With results from the previous section we can now state the proof of the theorem.
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Proof of Theorem 4.1. Let A = A(G31) be the reflection arrangement of the finite
complex reflection group G31. Then on the one hand by Theorem 4.2.1 we have A ∈
DF , but on the other hand by Theorem 4.1.4 we have A /∈ RF .

Remark 4.2.2. Furthermore, with Corollary 4.1.19, we see that every free filtration
subarrangement Ã ⊆ A(G31) still containing a hyperplane H ∈ Ã such that |ÃH | = 31
is in DF .

4.3 Restrictions

In [AHR14a] Amend, Hoge and Röhrle showed, which restrictions of (irreducible) re-
flection arrangements are inductively free. Despite the free but not inductively free
reflection arrangements them self investigated in this paper, by [AHR14a, Thm. 1.2]
there are four restrictions of reflection arrangements which remain to be inspected,
namely

(1) the 4-dimensional restriction (A(G33), A1),

(2) the 5-dimensional restriction (A(G34), A1),

(3) the 4-dimensional restriction (A(G34), A
2
1), and

(4) the 4-dimensional restriction (A(G34), A2),

which are free but not inductively free (compare with [OT92, App. C.16, C.17]).

Using similar techniques as for the reflection arrangements A(G31), and A(G33), we
can say the following about the remaining cases:

Proposition 4.3.1.

(1) (A(G33, A1) is recursively free,

(2) (A(G34, A1) is not recursively free,

(3) (A(G34), A
2
1) is not recursively free, and

(4) (A(G34), A2) is not recursively free.

Proof. Let A be as in (1). The arrangement may be defined by the following linear
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forms:

A = {(1, 0, 0, 0)⊥, (1, 1, 0, 0)⊥, (1, 1, 1, 0)⊥, (1, 1, 1, 1)⊥, (0, 1, 0, 0)⊥,
(0, 1, 1, 0)⊥, (0, 1, 1, 1)⊥, (0, 0, 1, 0)⊥, (0, 0, 1, 1)⊥, (0, 0, 0, 1)⊥,

(ζ2, 0,−1, ζ2)⊥, (1, 0,−1, ζ2)⊥, (2ζ, 2ζ + ζ2, ζ,−ζ2)⊥,
(−1, ζ + 2ζ2, ζ2,−1)⊥, (ζ, 0,−1, ζ2)⊥, (2,−2ζ − ζ2, 1,−ζ2)⊥,
(ζ, ζ − ζ2, 2ζ, ζ)⊥, (ζ2, ζ − 2ζ2,−1, ζ2)⊥,

(ζ2,−ζ + ζ2, 2ζ2, ζ2)⊥, (ζ2, 0,−ζ, ζ2)⊥, (ζ2, 0,−ζ2, 1)⊥,
(ζ2, 0,−1, ζ)⊥, (2ζ, ζ − ζ2,−2ζ2,−ζ2)⊥, (ζ, 2ζ + ζ2,−1, ζ2)⊥,

(−2ζ2, ζ − ζ2, 2ζ, ζ)⊥, (−1, 2ζ + ζ2, ζ,−ζ2)⊥,
(2ζ, ζ − ζ2, ζ,−ζ2)⊥, (2ζ, 2ζ + ζ2, ζ,−1)⊥}

= {H1, . . . , H28},

where ζ = 1
2
(−1 + i

√
3) is a primitive cube root of unity.

We can successively remove 6 hyperplanes

{H5, H6, H7, H13, H25, H28} =: {K1, . . . , K6} =: N ,

with respect to this order such that A\N = Ã is a free filtration subarrangement with
a free filtration A = A0 ) A1 ) · · · ) A6 = Ã, Ai = A \ {K1, . . . , Ki}. Moreover,
all the restrictions AKi

i−1, (1 ≤ i ≤ 6), are inductively free. Then we can add 2 new
hyperplanes

{I1, I2} := {(−2ζ − 3ζ2, 3, 2, 1)⊥, (ζ, 0, 2, 1)⊥},

such that Ãj := Ã∪{I1, . . . , Ij}, (j = 1, 2) are all free and in particular the arrangement

Ã2 = Ã ∪ {I1, I2} is inductively free. Furthermore, the ÃIj
j are inductively free. Hence

A is recursively free.

The arrangement in (2) is isolated which can be seen similarly as for the arrangement
A(G33).

To show that the restrictions (A(G34), A
2
1), (A(G34, A2) from (3) and (4) are not recur-

sively free, we look at the exponents of their minimal possible free filtration subarrange-
ments computed by Amend, Hoge, and Röhrle in [AHR14a, Lemma 4.2, Tab. 11,12]
and then use Lemma 3.1.13 and a similar argument as in the proof of Lemma 4.1.18.

Let A be as in (3). Then Amend, Hoge, and Röhrle showed that the multiset of
exponents of a minimal possible free filtration subarrangement Ã ⊆ A are exp(Ã) =
{{1, 13, 15, 15}}, (see [AHR14a, Tab. 11]). Now, as in the proof of Lemma 4.1.18,
suppose Ã ⊆ A is a free filtration subarrangement, and there is a hyperplane H, such
that Ã ∪ {H} is free. Then by Lemma 3.1.13 we have

∑

X∈PH
(|ÃX | − 1) ≥ 13, where

PH = {X ∈ L2(Ã) | X ⊆ H}. Now L2(Ã) ⊆ L2(A) and we have the following multiset
if invariants of A:

{{|AX | | X ∈ L2(A)}} = {{2264, 3304, 434, 516}}.
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So in particular we should have
∑

X∈PH
(|AX | − 1) ≥ 13, and |PH | ≥ 4. If |PH | = 4

then there are at least two X, Y ∈ PH with |AX | = |AY | = 5 But for all such X, Y we
either have X + Y = V or X + Y ∈ A. So there is at most one X ∈ PH such that
|AX | = 5. If |PH | = 4 we must have at least X, Y ∈ PH with |AX | = 5, |AY | = 4. But
again for all such X, Y we either have X+Y = V or X+Y ∈ A. Considering the other
cases (giving a number partition of the smallest exponent not equal to 1) similarly we
get that H ∈ A. Hence A is not recursively free.

Finally, let A be as in (4). Then Amend, Hoge, and Röhrle showed that the multiset
of exponents of a minimal possible free filtration subarrangement Ã ⊆ A are exp(Ã) =
{{1, 9, 10, 11}} or exp(Ã) = {{1, 10, 10, 10}}, (see [AHR14a, Tab. 12]). Suppose Ã ⊆ A
is a free filtration subarrangement, and there is a hyperplane H, such that Ã ∪ {H} is
free. Then inspecting the intersection lattice of A analogously to case (3) we again get
H ∈ A. Hence A is not recursively free.

Since the restrictions (A(G34), A
2
1) and (A(G34), A2) behave somehow similar to the

reflection arrangement A(G31), they also give examples for divisionally free but not
recursively free arrangement, (compare with Theorem 4.1 and Section 4.2). For further
details on divisional freeness of restrictions of reflection arrangements see the recent
note by G. Röhrle, [Röh15].





5 Coxeter graphs for simplicial

arrangements

In this chapter arrangements are always assumed to be real.

We introduce Coxeter graphs of chambers of simplicial arrangements and use the results
from Subsection 3.3 to derive their properties.

5.1 Definition and examples

|Aα⊥
1
∩α⊥

2
| = 4

|Aα⊥
2
∩α⊥

3
| = 3

|Aα⊥
1
∩α⊥

3
| = 2

K
α1

α2

α3

Γ(K) =
1 2 3

4

Figure 5.1: The Coxeter graph Γ(K) of a chamber K.

Definition 5.1.1. Let K ∈ K(A) be a chamber of the simplicial ℓ-arrangement A and
BK some basis for K. We define a labeled non directed simple graph Γ(K) = (V , E)
with vertices V = BK and edges E = {{α, β} | |Aα⊥∩β⊥ | ≥ 3}. An edge e = {α, β} ∈ E
is labeled with mK(e) = mK(α, β) = |Aα⊥∩β⊥ |. Since the label m(α, β) = 3 appears
more often we omit it in drawing the graph. We call Γ(K) the Coxeter graph of K. If
we have chosen a numbering BK = {α1, . . . , αℓ} then {αi, αj} ∈ E is simply denoted
by {i, j} and V = {1, . . . , ℓ}, see Figure 5.1.

Example 5.1.2. Let A(W ) be the Coxeter arrangement of the Coxeter group W .
Then A is a simplicial arrangement (c.f. Example 3.3.2) and for all K ∈ K(A) the
Coxeter graph Γ(K) is indeed the Coxeter graph of W , see for example [Hum90, Ch.
2]. Figure 5.2 displays projective pictures of the Coxeter arrangements A(B3) and
A(H3).
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K

{Γ(K) | K ∈ K(A(B3))} = { 4 }

K

{Γ(K) | K ∈ K(A(H3))} = { 5 }

Figure 5.2: Coxeter graphs and Coxeter arrangements of the Coxeter groups B3 and
H3.
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{Γ(K) | K ∈ K(A(12, 1))} = { 6 , , }

∞

{Γ(K) | K ∈ K(A(F4)
H)} = { 4 , 4 4 }

Figure 5.3: The simplicial arrangements A(12, 1) and A(F4)
H = A(13, 2) and their sets

of Coxeter graphs.
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Example 5.1.3. In general there is not only one Coxeter graph for all the chambers
of a simplicial arrangement. Figure 5.3 displays two simplicial arrangements and their
corresponding sets of Coxeter graphs.

Now one might ask if a simplicial arrangement is determined by its set of Coxeter
graphs (similar to a finite Coxeter group which is determined by its Coxeter graph).
This is actually not true for simplicial arrangements in general as the list in [CH15a]
shows. But we will see in Chapter 6 that the set of Coxeter graphs suffices to classify
supersolvable simplicial arrangements.

5.2 Properties of Coxeter graphs

Lemma 5.2.1. Let A be a simplicial ℓ-arrangement, K ∈ K(A) with basis BK =
{α1, . . . , αℓ}, Ki an adjacent chamber, and cKij as in Remark 3.3.20. If mK(i, j) = 3
and cKij 6= 0 for i 6= j then cKji = 1/cKij . In particular if cKij = −1 then cKji = cKij .

Proof. This is directly clear from the definition of the cKij since

Aα⊥
i ∩α⊥

j
= {α⊥

i , α
⊥
j , (αj − cKijαi)

⊥}.

Lemma 3.3.27 gives us the following property of the Coxeter graphs of two adjacent
chambers.

Lemma 5.2.2. Let A be a simplicial ℓ-arrangement, K ∈ K(A) a chamber, BK =
{α1, . . . , αℓ}, Γ(K) = (V , E), and Ki an adjacent chamber with BKi = {σK

i (α1), . . . ,
σK
i (αℓ)} and Γ(Ki) = (Vi, Ei). Then if {i, j} /∈ E (i 6= j) but {j, k} ∈ E then {j, k} ∈ Ei

(disregarding the labels).

The next Lemma is a direct generalization of [CH09, Prop. 4.6] from crystallographic
arrangements to general simplicial arrangements. It may be proved completely analo-
gously but here we give a more geometric proof.

Lemma 5.2.3. Let A be a simplicial ℓ-arrangement with chambers K(A). Then the
following are equivalent.

(1) A is an irreducible arrangement.

(2) Γ(K) is connected for all K ∈ K(A).

(3) Γ(K) is connected for some K ∈ K(A).
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Proof. We may assume that ℓ is at least 2 since otherwise the statement of the theorem
is trivial.

The implication (2)⇒(3) is trivial.

(1)⇒(2). Suppose there is a K ∈ K(A) such that Γ(K) = (V , E) is not connected.
Then there is a partition V = BK = ∆1∪̇∆2 such that |Aα⊥∩β⊥ | = 2 for α ∈ ∆1, and
β ∈ ∆2. Without loss of generality let α ∈ ∆1. Then

BKα = {−α}∪̇{α′ + cα′α | α′ ∈ ∆1 \ {α}}∪̇∆2

is a basis for Kα for certain cα′ ≥ 0, c.f. Lemma 3.3.18. Assume that there are
α′ + cα ∈ BKα and β ∈ ∆2 ⊆ BKα with |A(α′+cα)⊥∩β⊥ | ≥ 3. Then there is a b > 0
such that α′ + cα+ bβ ∈ BKαβ. Note that Kαβ(−α) = Kβ since |Aα⊥∩β⊥ | = 2. Then
there is a d ≥ 0 such that α′ + cα + bβ + d(−α) = α′ + (c − d)α + bβ ∈ BKβ. But
BKβ = ∆1∪̇{−β}∪̇{β′ + cβ′β | β′ ∈ ∆2 \ {β}} which gives a contradiction. So for all
α′ + cα′α ∈ BKα and β ∈ ∆1 we have |A(α′+cα)⊥∩β⊥ | = 2. We conclude that for all

γ ∈ BK , for the corresponding adjacent chamberKγ there is a partition BKγ = ∆̃1∪̇∆̃2

with ∆̃i ⊂
∑

λ∈∆i
R≥0λ and |Aα̃⊥∩β̃⊥ | = 2 for all α̃ ∈ ∆̃1, β̃ ∈ ∆̃2. Hence for all H ∈ A

we either have H = (
∑

α∈∆1
cαα)

⊥ with cα ∈ R≥0, or H = (
∑

β∈∆2
cββ)

⊥ with cβ ∈ R≥0

which means that A is reducible.

(3)⇒(1). Suppose that A is reducible. Then there exists a basis {x1, . . . , xr}∪̇{y1, . . . ,
ys} of V ∗ with r, s ≥ 1 such that for H ∈ A and H = γ⊥ for some γ ∈ V ∗ we either have
γ ∈∑r

i=1 Rxi or γ ∈∑s

j=1 Ryj. Let K ∈ K(A) be chamber of A. Then BK = ∆1∪̇∆2

with ∆1 = BK ∩∑i Rxi and ∆2 = BK ∩∑j Ryj. Since A is simplicial, BK is a basis

of V ∗ and we have ∆i 6= ∅ for i = 1, 2. Furthermore, Aα⊥∩β⊥ = {α⊥, β⊥} for α ∈ ∆1,
β ∈ ∆2 and hence Γ(K) is not connected.

Lemma 5.2.4. Let A be a simplicial ℓ-arrangement, K ∈ K(A) with BK = {α1, . . . ,
αℓ} and Γ(K) = (V , E) with vertices V = {1, . . . , ℓ}. Suppose that {i, j} ∈ E with label
mK(i, j) and there is a k ∈ V \ {i, j} such that {k, i} /∈ E and {k, j} /∈ E . Then {i, j}
is an edge in Γ(Kk) with the same label mKk(i, j) = mK(i, j).

Proof. That {i, j} is an edge in Γ(Kk) is simply Lemma 5.2.2. The second statement
holds because σK

k (αi) = αi and σ
K
k (αj) = αj and thus

mKk(i, j) = |AσK
k
(αi)⊥∩σK

k
(αj)⊥ | = |Aα⊥

i ∩α⊥
j
| = mK(i, j).

Lemma 5.2.5. Let A be a simplicial ℓ-arrangement, X ∈ Lq(A) for 1 ≤ q ≤ ℓ,
and KX ∈ K(AX/X) be a chamber of the localization AX/X. Let K ∈ K(A) with
BK = {α1, . . . , αℓ} such that X =

⋂q

j=1 α
⊥
ij

, KX =
⋂q

j=1 α
+
ij
/X, and Γ(K) with corre-

sponding vertices V = {1, . . . , ℓ}. Then Γ(KX) is the induced subgraph on the q vertices
{i1, . . . , iq} ⊆ V of Γ(K) including the labels.

Proof. For q = 1 the statement is trivially true. For q ≥ 2 this is easily seen as the
intersection lattice L(AX) is an interval in the intersection lattice L(A), i.e. L(AX) =
L(A)X = [V,X] = {Z ∈ L(A) | Z ≤ X}.
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With the correspondence from the previous lemma and Lemma 5.2.3 we obtain the
following corollary for irreducible simplicial arrangements.

Corollary 5.2.6. Let A be an irreducible simplicial ℓ-arrangement and K ∈ K(A).
Then there is an X ∈ Lℓ−1(W

K) ⊆ L(A) such that (AX/X, V/X) is an irreducible
simplicial (ℓ− 1)-arrangement.

To describe the connection between restrictions of simplicial arrangements and Coxeter
graphs we need a bit more notation.

Definition 5.2.7. Let A be a simplicial arrangement, K ∈ K(A), α ∈ BK and H =
α⊥ ∈ WK . Then we denote the induced chamber in the restriction AH by

KH = (
⋂

β∈BK\{α}

β+) ∩H,

and a basis for KH is given by

BKH

= {βH | βH := β|H∗ and β ∈ BK \ {α}}.

Let Γ(K) = (V , E) be the Coxeter graph of K and suppose that there is an edge
{α, β} ∈ E connecting the vertices α and β. Define Γαβ := (Vαβ, Eαβ) to be the
(unlabeled) graph with vertices

Vαβ := V \ {α, β} ∪ {αβ},

and edges

Eαβ := {{γ, δ} ∈ E | {γ, δ} ∩ {α, β} = ∅} ∪
{{αβ, γ} | {α, γ} ∈ E or {β, γ} ∈ E},

i.e. the contraction of Γ(K) along the edge {α, β}.

It is convenient to use the following notation: If Γ(K) = (V , E) with V = {1, . . . , ℓ}
corresponding to BK = {α1, . . . , αℓ}, I ⊆ V with I = {i1, . . . , ir} and X = ∩i∈Iα

⊥
i

then for the localization AX at the intersection adjacent to the chamber K we simply
write AK

i1i2···ir , e.g. for Aα⊥
1
∩α⊥

2
∩α⊥

4
we write AK

124.

Lemma 5.2.8. Let A be a simplicial ℓ-arrangement and K ∈ K(A) with Coxeter
graph Γ(K) = (V , E). Suppose {α, β} ∈ E is an edge. Let H ∈ Aα⊥∩β⊥ be the wall
of Kα with H 6= α⊥, i.e. H = σK

α (β)⊥. Then Γαβ is a subgraph of the Coxeter graph
ΓH := Γ((Kα)H) of the chamber (Kα)H .

If {α, γ} ∈ E is labeled with m(α, γ) then for the corresponding label in ΓH we have
mH(αβ, γ) ≥ m(α, γ) (see Figure 5.4(a)).

If {α, β}, {α, γ}, and {β, γ} are edges in E , then for the label of the edge {αβ, γ} in
ΓH we have mH(αβ, γ) ≥ m(α, γ) +m(β, γ)− 2 (see Figure 5.4(b)).
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(a) . . . . . .m
α β γ

. . . . . .
≥ m

αβ γ

(b)

. . .

. . .
. . .

m

m′

β

α

γ
. . . . . .≥ m + m′ − 2

αβ γ

Figure 5.4: Labels and contraction of Coxeter graphs.

1 2 3

Figure 5.5: Coxeter graph of a reducible 3-arrangement.

Proof. It suffices to prove the statements for 3-arrangements (the statements are trivial
for 2-arrangements). The general case then follows by taking localizations, the fact
that (AH)X = (AX)

H , and Lemma 5.2.5. Let BK = {α1, α2, α3} and denote the
corresponding vertices of Γ(K) by {1, 2, 3}.
If Γ(K) is not connected, i.e. A is reducible, then either there is no edge in Γ(K) and
there is nothing to show, or it is the graph of Figure 5.5. In this case, the statement
holds, since for all H ∈ A12 we then have |AH | = 2, so AH is reducible and the Coxeter
graph of every chamber of AH is the graph with 2 vertices which are not connected.

So assume Γ(K) is connected. Without loss of generality let H = σK
1 (α2)

⊥ ∈ A12.
Since (σK

1 (α1)
H)⊥ = (−αH

1 )
⊥ = α⊥

1 ∩ α⊥
2 in AH , (σK

1 (α3)
H)⊥ = σK

1 (α2)
⊥ ∩ σK

1 (α3)
⊥

and so (σK
1 (α1)

H)⊥ ∩ (σK
1 (α3)

H)⊥ = {0}, we have to show that |AH | ≥ (|A13| − 1) +
(|A23| − 1) to obtain both statements. Let B = A13 ∪ A23. Then |AH | ≥ |BH | and
|B| = |A13|+ |A23| − 1 (since A13 ∩A23 = {α⊥

3 }). We now deduce that |BH | = |B| − 1:

We haveWK ⊂ B and |(WK)H | = 2. Now let H1, H2 ∈ B\WK with H1 6= H2. We first
observe that H ∩H1 6= H ∩ H̃ for any H̃ ∈ WK . But we also have H1 ∩H 6= H2 ∩H.
Hence all H ′ ∈ B \WK give different intersections with H. Thus we obtain

|AH | ≥ |BH | = |(WK)H |+ |(B \WK)H |
= 2 + |(B \WK)| = 2 + |B| − 3

= |A13|+ |A23| − 2.

From this inequality by translating back to the corresponding Coxeter graphs all state-
ments from the lemma directly follow.

Lemma 5.2.9. Let A be an irreducible simplicial ℓ-arrangement and X ∈ Lq(A). Then
the restriction AX is an irreducible simplicial (ℓ− q)-arrangement.

Proof. It suffices to show the statement for X = H ∈ A.

Since A is irreducible, there is an X ∈ L2(A) with X ⊆ H and |AX | ≥ 3. So there is
a chamber K ∈ K(A) with Γ(K) = (V , E), {α, β} ∈ E such that X = α⊥ ∩ β⊥, and
H the wall of Kα not equal to α⊥. Since A is irreducible, the Coxeter graph Γ(K)
is connected by Lemma 5.2.3, and by Lemma 5.2.8 the Coxeter graph Γ(KαH) of the
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H

Figure 5.6: An irreducible arrangement A with a reducible restriction AH .

chamber KαH of AH contains a subgraph on ℓ − 1 vertices which is connected (as it
is a contraction). So Γ(KαH) is also connected and hence again by Lemma 5.2.3 the
restriction AH is irreducible.

This is not true for irreducible arrangements in general:

Example 5.2.10. Let A be the 3-arrangement give by the matrix:





1 1 0 0 1
0 0 1 1 −1
−1 1 −1 1 0



 .

Then A is clearly irreducible. But for H = (1,−1, 0)⊥ we have |AH | = 2. Hence AH

is reducible. See Figure 5.6.



6 Supersolvable simplicial

arrangements

In this chapter we prove Theorem II.

In Section 6.1 we prove the first part of the theorem, that is the classification of
supersolvable simplicial 3-arrangements.

In Section 6.2 we derive the second part of the theorem for 4-arrangements. This is
then the key to describe all the remaining cases of higher rank by an induction in
Section 6.3.

In this chapter all arrangements are assumed to be real.

6.1 The rank 3 case

We firstly collect some useful lemmas for supersolvable simplicial 3-arrangements.

Lemma 6.1.1. Let A be a supersolvable 3-arrangement with two modular elements
X, Y ∈ L2(A) and |AX | 6= |AY |. Then for all Z ∈ L2(A) \ {X, Y } we have |AZ | = 2.

Proof. By Theorem 3.4.8 two different roots of χA(t) are given by |AX |−1 and |AY |−1.
So we have

χA(t) = (t− 1)(t− (|AX | − 1))(t− (|AY | − 1)),

and by Remark 2.4 we get

|A| = −µ1 = |AX |+ |AY | − 1 ≤ |AX ∪ AY |.

Hence there is a hyperplane H ∈ A with AH = {X, Y }. For every other Z ∈ L2(A) the
localization AZ may only contain exactly one hyperplane from AX and AY (otherwise
Z would be equal to X or Y ).

Corollary 6.1.2. Let A be a supersolvable simplicial 3-arrangement with two modular
elements X, Y ∈ L2(A) and |AX | 6= |AY |. Then A is reducible.

Proof. For such an arrangement by the previous lemma we can easily find a K ∈ K(A)
such that Γ(K) is not connected and hence by Lemma 5.2.3 it is reducible.

Lemma 6.1.3 ([Toh14, Lemma 2.1]). Let A be a supersolvable 3-arrangement. Then
all elements X ∈ L2(A) with |AX | maximal are modular.
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Combining Corollary 6.1.2 and Lemma 6.1.3 we get the following lemma.

Lemma 6.1.4. Let A be an irreducible supersolvable simplicial 3-arrangement. Then
X ∈ L2(A) is modular if and only if |AX | is maximal under all localizations of elements
of rank two.

Lemma 6.1.5. Let A be an irreducible simplicial 3-arrangement such that χA = (t−
1)(t − a)(t − b) factors over Z. If |A| is even, then exactly one of the numbers a, b is
even. If |A| is odd, then a, b are also odd.

Proof. Compare the coefficient of t, i.e.

ab+ |A| − 1 = ab+ a+ b = µ2 = 2|L2(A)| − 3.

By Lemma 3.3.4 the last equation is equivalent to A being simplicial. Observe that
the expression on the right is odd. Thus ab ≡ |A| (mod 2); the claims now follow from
a+ b+ 1 = |A|.

We now give a definition of the supersolvable simplicial arrangements this section is
concerned with.

Definition 6.1.6. Let n ∈ N and ζ := exp(2πi
2n

) be a primitive 2n-th root of unity. We
write

cn(m) := cos
2πm

2n
=

1

2
(ζm + ζ−m),

and

sn(m) := sin
2πm

2n
=

1

2i
(ζm − ζ−m).

The arrangements A(2n, 1) of the infinite series R(1) from [Grü09] may be defined by





−sn(0) −sn(1) . . . −sn(n− 1) cn(1) cn(3) . . . cn(2n− 1)
cn(0) cn(1) . . . cn(n− 1) sn(1) sn(3) . . . sn(2n− 1)
0 0 . . . 0 1 1 . . . 1





The arrangements A(4n+ 1, 1) of the series R(2) are constructed as

A(4n+ 1, 1) = A(4n, 1) ∪ {(0, 0, 1)⊥}.

Some examples are displayed as projective pictures of the arrangements in Figure 6.1.

Lemma 6.1.7. Let A be an irreducible simplicial 3-arrangement, X ∈ L2(A) a modular
element, n = |AX |, and K ∈ K(A) a chamber with 〈K ∩X〉 = X. Then the Coxeter
graph Γ(K) is the graph of Figure 6.2.

Proof. Let BK = {α1, α2, α3}, and V = {1, 2, 3} the corresponding vertices of Γ(K).
Since A is irreducible by Lemma 5.2.3 the graph Γ(K) is connected. We may assume
that {1, 2}, {2, 3} ∈ E and that m(1, 2) = n.
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∞

∞

Figure 6.1: Projective pictures of A(9, 1), A(12, 1), A(17, 1), and A(18, 1).

1 2 3

n

Figure 6.2: The Coxeter graph of a chamber adjacent to the modular element X
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α1

α2
α3

X

Z

K

Figure 6.3: Proof of Lemma 6.1.7

First suppose that {1, 3} ∈ E and let H = σK
1 (α3)

⊥. Then in particular H ∈ A \ AX

so |AH | = n. But by the last statement of Lemma 5.2.8 we find that |AH | ≥ n + 1
which is absurd.

Now suppose that m(2, 3) ≥ 4. Then (σK
3 (α2))

⊥ (the blue line in Figure 6.3) intersects
(σK1

2 (σK
1 (α3)))

⊥ in Z. But Z must lie in (−α1)
+ ∩ (σK

1 (α2))
+ or α+

1 ∩ α+
2 since other-

wise m(2, 3) ≤ 3, see Figure 6.3. This implies Z + X 6∈ L(A) which contradicts the
modularity of X.

We now prove the main result of this section. Notice that if A is not assumed to be
finite, then one also obtains an infinite arrangement described in [CG17].

Theorem 6.1.8. Let A be an irreducible supersolvable simplicial 3-arrangement. Then
A is lattice equivalent to an arrangement in R(1) ∪R(2).

Proof. The proof is in two steps. First we show that there is a subarrangement B ⊆ A
with B ∼= A(2n, 1). Then we use Lemma 6.1.5 to see that A might only contain 1 more
hyperplane if n is even.

Let X ∈ L2(A) be modular and n := |AX |. Since A is irreducible we have n ≥ 3. We
define the subarrangement

B :=
⋃

K∈K(A),

〈K∩X〉=X

WK .

Then by Lemma 6.1.7 we have |B| = 2n. In the following we consider the projective
picture of A respectively B. Then the n lines H ∈ B \ AX are the edge-lines of
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HH

I

H1

H
′
1

H2

H
′
2

XK

K ′

Figure 6.4: The structure of L(B) yields only one possibility for H ∈ A \ B.

a convex n-gon. By Lemma 6.1.7 all chambers K ∈ K(A) adjacent to X have the
Coxeter graph of Figure 6.2 and for those we have BY = AY for all Y ∈ L2(W

K), i.e.
no line of A \ B intersects the convex n-gon. In particular AX = BX . Furthermore,
we have |{Y ∈ L2(B) | |BY | = 2}| ≥ n, since each edge of the n-gon contains one
such point by the given shape of the Coxeter graphs Γ(K) for 〈K ∩ X〉 = X. The
subarrangement B clearly is supersolvable with modular element X. Since exactly 2
edge-lines of the convex n-gon intersect in a common point we further have |BY | ≤ 3
for all Y ∈ L2(B)\{X}. Suppose there is a Y ∈ L2(B) with |BY | = 2 and Y /∈ L2(W

K)
for any chamber K adjacent to X, i.e. Y is an intersection outside of the n-gon. By the
supersolvability of B we have Y = H1 ∩H2 with H1 ∈ BX and H2 ∈ B \ BX , i.e. H2 is
an edge-line of the n-gon. But then |BH2 | ≥ n + 1 contradicting the supersolvability.
Thus all intersections Y outside the n-gon are of size 3, i.e. BY = {H1, H2, H3} with
H1 ∈ BX , H2, H3 are edge-lines of the n-gon, and we obtain the following multiset of
invariants of the intersection lattice of B:

{{|BY | | Y ∈ L2(B)}} = {{2n, 3|L2(B)|−n−1, n1}}.

Now
∑

X∈L2(B)

(|BX | − 1) = n− 1 + n+ 2(|L2(B)| − n− 1) = 2|L2(B)| − 3,

and by Lemma 3.3.4 the supersolvable arrangement B is simplicial. A projective picture
of the arrangement B is given (after a possible coordinate change) by the edge-lines of
a regular convex n-gon and its lines of reflection symmetry, hence B is L-equivalent to
A(2n, 1). We may assume after an appropiate choice of coordinates that B = A(2n, 1)
and is given as in Definition 6.1.6 (see [Cun11b, Section 3]).

Assume there is an H ∈ A \ B. Then for all H ′ ∈ B \ AX , Y = H ∩ H ′ we have
|BY | = 3 otherwise |AH | ≥ n + 1 contradicting the modularity of X. In particular if
K ∈ K(B) such that K ∩H 6= ∅, WK = {I,H1, H2} (since K ∩X = {0}) with I ∈ BX ,
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Γ1
3

n
Γ2
3

4
Γ3
3

Γ4
3 Γ5

3 4

Figure 6.5: Possible Coxeter graphs for an irreducible supersolvable simplicial 3-
arrangement.

H1, H2 ∈ B \ BX , then H1 ∩H2 ⊆ H. Furthermore, for the adjacent chamber K ′ with
〈K ∩K ′〉 = I, WK′

= {I,H ′
1, H

′
2} we also have H ∩K ′ 6= ∅ so similarly H ′

1 ∩H ′
2 ⊆ H.

Since H1, H2, H
′
1, H

′
2 are pairwise different, H = H1∩H2+H

′
1∩H ′

2, see Figure 6.4. Let
H̃ ∈ A \ B be another hyperplane. Then there exists a chamber K ∈ K(B) such that
H∩K 6= ∅ and H̃∩K 6= ∅ (otherwise there is an H ′ ∈ B\BX such that H̃∩H ′ /∈ L2(B)
which contradicts the modularity of X). Hence H = H̃. So there is only one possibility
for such an H and we obtain |A \ B| ≤ 1.

Now suppose n = |AX | is odd. Since A is supersolvable with modular element X ∈
L2(A) by Lemma 3.4.8 we have

χA(t) = (t− 1)(t− a)(t− b),

with a = n− 1 and b = |A|− n. By Lemma 6.1.5 the first root a is even so b has to be
odd, i.e. |A| is even and hence A = B. If n is even then with a similar argument either
A = B or there is one more hyperplane H ∈ A\B which has to be H = (0, 0, 1)⊥ after
a possible coordinate change and A = A(4n

2
+ 1, 1).

Remark 6.1.9. Let A ∈ R(1) ∪ R(2). Then by [Cun11b, Thm. 3.6] there exists a
minimal subfield L ≤ R such that there is an arrangement B in L3 with L(B) ∼= L(A).
Furthermore, if B′ is another arrangement in L3 which is L-equivalent to B, then there
is a semi-linear map ϕ ∈ ΓL(L3) with B′ = ϕ(B) = {ϕ(H) | H ∈ B}. Hence, by the
fundamental theorem of projective geometry (see e.g. [Art88, Sec. II.9]) there is a field
automorphism µ of L and an ψ ∈ GL(R3) such that ψ(µ(B)⊗L R) = A. So any (real)
arrangement A′ which is L-equivalent to A(2n, 1) or A(4m + 1, 1) is essentially this
arrangement.

From the proof of Theorem 6.1.8 we obtain the following corollaries.

Corollary 6.1.10. Let A be an irreducible supersolvable simplicial 3-arrangement and
X ∈ L2(A) a modular element. Then for all X ′ ∈ L2(A) \ {X} we have |AX′ | ≤ 4.

Corollary 6.1.11. Let A be an irreducible supersolvable simplicial 3-ararrangement,
X ∈ L2(A) modular with n = |AX |, and K ∈ K(A). Then Γ(K) is one of the Coxeter
graphs of Figure 6.5. In particular, if |A| is even or n ≤ 5, then there is no chamber
K ∈ K(A) such that Γ(K) = Γ5

3 and if n > 4 and |A| is even then there is also no
chamber K ∈ K(A) such that Γ(K) = Γ2

3.

Lemma 6.1.12. Let A be an irreducible supersolvable simplicial 3-arrangement and
H ∈ A. Then for all H ∈ A we have

|AH | ≥ ⌈|A|
4

⌉+ 1.
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Proof. Let X ∈ L2(A) be modular, n = |AX |, and H ∈ A. If H ∈ A \ AX then H

is a complement of X in L(A), so AH ∼= AX/X and in particular |AH | = n ≥ |A|
2

≥
⌈ |A|

4
⌉+ 1.

Let tHr := |{X ∈ AH | |AX | = r}|. Then we always have the identity
∑

r≥2(r− 1)tHr =

|A| − 1. By Corollary 6.1.10 for H ∈ AX we see that tHr = 0 for r /∈ {2, 3, 4, n}, and
tHn = 1. Furthermore, by Theorem 6.1.8 we have tH2 ∈ {0, 1, 2} and tH4 = 1 if and only
if |A| = 2n+ 1 and n is even. So we obtain

tH3 =
|A| − 1− tH2 − 3tH4 − (n− 1)tHn

2
=

|A| − n− tH2 − 3tH4
2

,

and hence

|AH | = tH2 + tH3 + tH4 + tHn =
n+ tH2

2
+ 1 ≥ ⌈|A|

4
⌉+ 1.

6.2 The rank 4 case

The following proposition and its immediate corollary are the key for the classification
of irreducible supersolvable simplicial arrangements of rank ℓ ≥ 4.

Proposition 6.2.1. Let A be an irreducible supersolvable simplicial 4-arrangement.
Then for all X ∈ L2(A) we have |AX | ≤ 4.

Proof. The proof is in three steps. First we show that if X ∈ L2(A) with |AX | ≥ 5
then X necessarily has to be the only rank 2 modular element in L(A). From this we
derive that |AX | ≤ 6. Finally by some geometric arguments and using the classification
in dimension 3 we exclude the cases |AX | = 5, 6.

Let X ∈ L2(A) be fixed and suppose |AX | ≥ 5.

First assume that there is a modular X ′ ∈ L2(A) \ {X}. By the irreducibility of A
there is an H ∈ A transversal to X and X ′, i.e. such that X * H, X ′ * H, and also
X ∩ X ′ * H if X ∩ X ′ ∈ L3(A). Let Y = H ∩ X and Y ′ = H ∩ X ′. By Lemma
3.4.4 and Lemma 5.2.9 the restriction AH is an irreducible supersolvable simplicial 3-
arrangement. Furthermore, Y 6= Y ′ and 5 ≤ |AH

Y | ≤ |AH
Y ′ | for the 3-arrangementAH by

Lemma 6.1.4 since Y ′ is a modular element in L2(AH). But this contradicts Corollary
6.1.10, the irreducible supersolvable simplicial 3-arrangement AH cannot have two
distinct rank 2 intersections of size greater or equal to 5, one of them modular. Hence
X is the only modular element in L2(A) and also the one single element in L2(A) with
|AX | ≥ 5.

From now on to the end of the proof let Y ∈ L3(A) be a fixed modular intersection of
rank 3 with Y > X.

Suppose that |AX | ≥ 7. Then since A is irreducible, by Lemma 3.4.3 the localization
AY /Y regarded as an essential 3-arrangement in V/Y is an irreducible supersolvable
simplicial 3-arrangement with modular element X/Y ∈ L2(AY /Y )). So by Theorem
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A(10, 1) A(12, 1) A(13, 1)

∞

Figure 6.6: |AH
Y | = 4, 5, 6 respectively for H ∈ AX .

6.1.8 we have |AY | ≥ 14. Let H ∈ AX . By Lemma 5.2.9 the restriction AH is
irreducible and by Corollary 5.2.6 there is a Y ′ ∈ L2(AH)\{Y } with Y ′ ⊆ X such that
|(AH)Y ′ | ≥ 3. Since AY ′/Y ′ is an irreducible supersolvable simplicial 3-arrangement
with modular element X/Y ′, as for AY we have |AY ′ | ≥ 14. By Lemma 3.4.4 the
rank 3 intersection Y ∩H = Y is modular in L(AH) for H ∈ AX . By Lemma 6.1.12
we further have |(AH)Y | = |(AY )

H | ≥ 5 and similarly |(AH)Y ′ | ≥ 5. Because of the
choice of Y ′ ∈ L2(AH) \ {Y } the irreducible supersolvable simplicial 3-arrangement
AH has two distinct rank 2 intersections of size greater or equal to 5 which contradicts
Corollary 6.1.10. Hence |AX | ≤ 6.

To exclude the cases |AX | ∈ {5, 6} first assume that |AX | = 6. We may assume that
there is an Y ′ ∈ L3(A), Y ′ 6= Y , and Y ′ > X such that AY ′/Y ′ is an irreducible super-
solvable simplicial 3-arrangement. So by Theorem 6.1.8 we have AY ′/Y ′ ∼L A(12, 1)
or AY ′/Y ′ ∼L A(13, 1). But then there is an H ∈ AX such that |AH

Y ′ | ≥ 5 which is
immediately clear by Figure 6.6. Since by Lemma 3.4.4 the Y = Y ∩ H is a rank 2
modular element in L(AH) different from Y ′∩H = Y ′ ∈ L2(AH), with Corollary 6.1.10
we get a contradiction.

Finally, suppose |AX | = 5. Then we have AY /Y ∼L A(10, 1). Again we may assume
that there is an Y ′ ∈ L3(A), Y ′ 6= Y , and Y ′ > X such that AY ′/Y ′ is an irredu-
cible supersolvable simplicial 3-arrangement. So AY ′/Y ′ ∼L A(10, 1). Let H ∈ AX .
Then |AH

Y | = |AH
Y ′ | = 4, see Figure 6.6. Since by Lemma 5.2.9 AH is an irreducible

supersolvable simplicial 3-arrangement with modular element Y by Theorem 6.1.8 we
have AH ∼L A(9, 1) ∼= A(B3). For the other restrictions AH′

with H ′ ∈ A \ AX we
have AH′ ∼L A(10, 1). The arrangement A is supersolvable and by Theorem 3.4.8 the
characteristic polynomial factors as follows over the integers

χA(t) = (t− 1)(t− 4)(t− 5)(t− (|A| − 10)).

Similarly for H ∈ AX by Theorem 3.4.8 we have

χAH (t) = (t− 1)(t− 3)(t− 5),

and for H ∈ A \ AX

χAH (t) = (t− 1)(t− 4)(t− 5).
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1 2

34

Figure 6.7: Forbidden subgraph.

≥ 4 ≥ 4

Figure 6.8: Forbidden subgraph of a chamber in AH by Corollary 6.1.11.

Now we use Lemma 3.3.5 and insert the numbers:

0 = ℓ|χA(−1)| − 2
∑

H∈A

|χAH (−1)|

= ℓ|χA(−1)| − 2(
∑

H∈AX

|χAH (−1)|+
∑

H∈A\AX

|χAH (−1)|)

= (4 · 2 · 5 · 6)(|A| − 9)− 2(5 · 2 · 4 · 6 + (|A| − 5 · 2 · 5 · 6)
= 2|A| − 18− 4− |A|+ 5

= |A| − 17.

Thus |A| = 17. Since |AY ∪ AY ′ | = 15 there are exactly 2 other hyperplanes H1, H2

not contained in either AY or in AY ′ . But then there is a Z ∈ L2(A), Z ⊆ Hi for
an i = 1, 2 such that Z /∈ AHi

Y . This contradicts the modularity of Y and finishes the
proof.

From the previous proposition, by taking localizations and Lemma 5.2.5 we immedi-
ately obtain the following theorem.

Theorem 6.2.2. Let A be an irreducible supersolvable simplicial ℓ-arrangement with
ℓ ≥ 4. Then for all X ∈ L2(A) we have |AX | ≤ 4.

After establishing this strong constraint, in a sequence of lemmas we will decimate
the number of possible Coxeter graphs for irreducible supersolvable simplicial 4-arran-
gements. We will use this to derive the crystallographic property at the end of this
section.

Lemma 6.2.3. Let A be an irreducible supersolvable simplicial 4-arrangement and let
K ∈ K(A) be a chamber. Then Γ(K) has no subgraph of the form shown in Figure
6.7.

Proof. Suppose there exists a chamber K ∈ K(A) with BK = {α1, . . . , α4} such that
Γ(K) has a subgraph of this form. Then by Lemma 5.2.8 for H = σK

1 (α3)
⊥ ∈ A13 and

the chamber KH
1 ∈ K(AH) we find that the graph of figure 6.8 is a subgraph of Γ(KH).

But this is a contradiction since by Lemma 3.4.4 and Lemma 5.2.9 the restricted
arrangement AH is an irreducible supersolvable simplicial 3-arrangement and such a
graph is not contained in the list of Corollary 6.1.11.
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Figure 6.9: No 4-circle.

Lemma 6.2.4. Let A be an irreducible supersolvable simplicial 4-arrangement and let
K ∈ K(A) be a chamber. Then Γ(K) has no subgraph of the form shown in Figure
6.9.

Proof. It is convenient to denote the graph of Figure 6.9 by Γ̃.

Suppose there is a chamber such that Γ̃ is a subgraph of Γ(K) and let K ′ be an
adjacent chamber. By Lemma 6.2.3 the graph Γ(K) cannot have a chord. But then
by Lemma 5.2.2 the Coxeter graph Γ(K ′) of the adjacent chamber also has a subgraph
of the form shown in Figure 6.9 and hence, disregarding the labels, Γ(K ′) is the same
graph as Γ(K). Thus by induction for all chambers K ∈ K(A) the graph Γ̃ is a
subgraph of Γ(K). Now let X ∈ L3(A) and K ∈ K(A) be some chamber adjacent to
X, i.e. X ∈ L3(W

K). Then by Lemma 5.2.5 the Coxeter graph Γ(KX) for a chamber
KX ∈ K(AX/X) contains an induced subgraph on 3 vertices of Γ̃ and thus is connected.
So AX is irreducible for all X ∈ L3(A). This is a contradiction to Theorem 2.6.

To give a complete list of all possible Coxeter graphs of irreducible supersolvable sim-
plicial 4-arrangements we need the explicit description of the change of Coxeter graphs
for adjacent chambers in the three possible irreducible rank 3 localizations given by
the next lemma.

Lemma 6.2.5. Let A be one of the arrangements A(A3), A(B3) or A2
3. Then Figure

6.10 gives a complete description of the change of the Coxeter graphs for adjacent
chambers where an arrow labeled with σi means crossing the i-th wall corresponding to
the i-th vertex of the Coxeter graph.

A(6, 1) ∼= A(A3):
1 2 3

σ1, σ2, σ3

A(9, 1) ∼= A(B3):
1 2 3

4 σ1, σ2, σ3

A(8, 1) ∼= A2
3:

1 2 3

4

σ2, σ3

σ1

1 2 3
σ3

σ2

1

2

3
σ1

σ3

1 3 2
σ2

σ1

1 3 2

4

σ3, σ2

Figure 6.10: Diagrams for the change of Coxeter graphs of adjacent chambers in
A(A3),A(B3), and A2

3 respectively.
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∞

Figure 6.11: The arrangements A(8, 1) and A(9, 1)

Γ1
4

1 2
3
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Γ2
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Γ3 4
1 2

3

4

Γ4

4

1 2
3

4

Γ5
4

1 2 3 4

Figure 6.12: Impossible Coxeter graphs for an irreducible supersolvable simplicial 4-
arrangement.

Proof. The diagrams for A(A3) and A(B3) are obvious since they are reflection ar-
rangements and hence for all chambers the Coxeter graph is the same.

The third diagram can be seen by looking at a projective picture of the arrangement
(see Figure 6.11) or as a special case of [CH15a, Prop. 3.8].

Lemma 6.2.6. Let A be an irreducible supersolvable simplicial 4-arrangement and let
K ∈ K(A) be a chamber. Then Γ(K) is not one of the graphs of Figure 6.12.

Proof. Let BK = {α1, . . . , α4} be a basis for K.

First suppose that there is a K ∈ K(A) such that Γ(K) = Γ1. By Lemma 3.4.5(1)
the arrangements AK

123 := AX/X with X = α⊥
1 ∩ α⊥

2 ∩ α⊥
3 and AK

124 := AX′/X ′ with
X ′ = α⊥

1 ∩ α⊥
2 ∩ α⊥

4 are irreducible supersolvable simplicial arrangements. By Lemma
5.2.5, Lemma 5.2.3 and Corollary 6.1.11 the two arrangements are either A(8, 1) or
A(9, 1). Since |AK

23| = |AK
24| = 3 by Lemma 6.1.4 the intersection Y = α⊥

1 ∩ α⊥
2 is

modular in AX and AX′ . Let H = σK
2 (α1) ∈ AY then by Lemma 5.2.8 the Coxeter

graph of KH
2 ∈ K(AH) contains a subgraph of the form shown in Figure 6.13.

≥ 3 ≥ 3

Figure 6.13: Subgraph of a chamber in AH .
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4

1 2 3 4

σ1

1 2 3 4

σ2

1

2

3 4

σ3

1

2

3 4

σ1

1

2

3 4

4

Figure 6.14: A sequence of graphs of chambers in A starting at K and leading to a
contradiction.

For the arrangements A(8, 1) and A(9, 1) in both cases we have |AH
X | = |AH

X′ | = 4.
So actually both labels of the Coxeter subgraph are equal to 4 and Γ(KH

2 ) contains
a subgraph as in Figure 6.8. This is a contradiction to Corollary 6.1.11 and we can
exclude the graph Γ1 from the list of possible Coxeter graphs of irreducible supersol-
vable simplicial 4-arrangements.

Secondly suppose that Γ(K) = Γ2. Then by Lemma 5.2.8 there is a hyperplaneH ∈ AK
23

and a chamber KH ∈ K(AH) such that the graph shown in figure 6.8 is a subgraph of
Γ(KH) contradicting Corollary 6.1.11 again.

For the graphs Γ3 and Γ4 the localization AK
234 is an irreducible supersolvable simplicial

3-arrangement. By Theorem 6.2.2 it hast rank 2 localizations of size at most 4. By
Lemma 5.2.5 there is a chamber in AK

234 with Coxeter graph the induced subgraph on
the vertices {2, 3, 4}. But this a contradiction to Corollary 6.1.11.

Finally, suppose that there is a K ∈ K(A) such that Γ(K) = Γ5 and let BK =
{α1, . . . , α4}. Let X = α1 ∩ α2 ∩ α3, X

′ = α2 ∩ α3 ∩ α4, A123 = AX/X and A234 =
AX′/X ′. By Lemma 3.4.5(1) these arrangements are supersolvable and simplicial,
and by Lemma 5.2.5, Lemma 5.2.3 and Corollary 6.1.11 the two arrangements are
either A(8, 1) or A(9, 1). If both arrangements are A(9, 1) then for all H ∈ AY with
Y = α2 ∩α3 we have |AH

X | = |AH
X′ | = 4 (see Figure 6.11) and similarly to the first part

of this proof we can find an H ′ and a K ′H′ ∈ K(AH′

) which contains the forbidden
Coxeter subgraph of Figure 6.8. So assume without loss of generality that A123 is equal
to A(8, 1). We use Lemma 5.2.5, Lemma 5.2.2 and Lemma 6.2.5 to get for example the
following sequence of Coxeter graphs for the corresponding sequence of chambers of
Figure 6.14. But the last graph in this sequence is (after renumbering the vertices) the
graph Γ1 which we already excluded. Similarly there are a few other possible sequences
of graphs which we omit here all ending in a Coxeter graph already excluded. Hence
Γ5 is not the Coxeter graph of a chamber of an irreducible supersolvable simplicial
4-arrangement.

Proposition 6.2.7. Let A be an irreducible supersolvable simplicial 4-arrangement
and K ∈ K(A). Then Γ(K) is one of the Coxeter graphs displayed in Figure 6.15.

Proof. By Lemma 6.2.4 no big circles are possible and by Proposition 6.2.1 all labels
are at most 4. Furthermore, with Lemma 5.2.5, Lemma 5.2.8 and Corollary 6.1.11
we see that the graph cannot contain two edges labeled with 4 by looking at the
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Γ1
4 1 2 3 4

Γ2
4

4

1 2 3 4

Γ3
4

1

2

3 4
Γ4
4

1

2

3 4

Figure 6.15: Possible Coxeter graphs for an irreducible supersolvable simplicial 4-
arrangement.

appropriate restriction respectively localization not fitting into the classification of rank
3 arrangements and their Coxeter graphs (see Theorem 6.1.8 and Corollary 6.1.11).
Now by Lemma 6.2.6 the only possible Coxeter graphs left are the ones of Figure
6.15.

Proposition 6.2.8. Let A be an irreducible supersolvable simplicial 4-arrangement
and K ∈ K(A).

(1) There exists a locally crystallographic basis BK for K such that the Cartan matrix
CK with respect to BK is of type A,C,D′ or D.

(2) If BK is a locally crystallographic basis for K with CK of type A,C,D′ or D,
then for 1 ≤ i ≤ 4 the basis BKi = σK

i (BK) = {αj + cKijαi | 1 ≤ j ≤ 4} is a
locally crystallographic basis with Cartan matrix CKi of type A,C,D′ or D.

Proof. Part (1). By Proposition 6.2.7 the Coxeter graph Γ(K) is one of the graphs of
Figure 6.15. Let WK = {H1, . . . , H4}, and Γ(K) = (V , E) with numbering of the walls
corresponding to the numbering of the vertices of the graphs in Figure 6.15.

Firstly suppose that Γ(K) = Γ1
4. By Lemma 3.4.5 and Lemma 5.2.5 the localization

AK
123 adjacent to K is an irreducible supersolvable simplicial 3-arrangement with a

modular rank 2 intersection of size at most 4 by Theorem 6.2.2. Hence by Theorem
6.1.8 and Corollary 6.1.11 it is the arrangement A(6, 1) or A(8, 1) and in particular
crystallographic (see Example 3.3.24). By choosing a crystallographic root system
for AK

123 and taking the corresponding basis for the chamber in the localization by
Example 3.3.24 there are α1, α2, α3 ∈ (R4)∗ such that α⊥

i = Hi, K ⊆ α+
i , (α1 + α2)

⊥ ∈
WK1 ,WK2 , and (α2 + α3)

⊥ ∈ WK2 ,WK3 . Let α̃4 ∈ (R4)∗ such that α̃4
⊥ = H4 and

α̃4
+ ⊇ K. Since {3, 4} ∈ E with label mK(3, 4) = 3 there is a unique λ ∈ R>0 such that

(α3 + λα̃4)
⊥ ∈ WK3 ,WK4 . But then with α4 := λα̃4 we have (α3 + α4)

⊥ ∈ WK3 ,WK4 .
Hence BK := {α1, α2, α3, α4} is a locally crystallographic basis for K with Cartan
matrix CK = (cKij ) of type A.

The same arguments work for the Coxeter graphs Γ3
4 and Γ4

4 since the vertex denoted
as 4 is only connected with the vertex 3 and the localization AK

123 is A(6, 1) or A(8, 1)
by Theorem 6.1.8. So similarly there is a locally crystallographic basis BK for K such
that the Cartan matrix is of type D′ if Γ(K) = Γ3

4, or of type D if Γ(K) = Γ4
4.

Now assume that Γ(K) = Γ2
4. Then AK

123 is A(8, 1) = A2
3 or A(9, 1) = A(B3). Then

there are α1, α2, α3 ∈ (R4)∗ such that α⊥
i = Hi, K ⊆ α+

i , (2α1 + α2)
⊥ ∈ WK2 ,

(α1+α2)
⊥ ∈ WK1 , and (α2+α3)

⊥ ∈ WK2 ,WK3 (by choosing a proper crystallographic
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root system for the localization and taking the corresponding basis for the chamber in
the localization). Again it is clear that we can find an α4 ∈ (R4)∗, K ⊆ α+

4 such that
(α3 + α4)

⊥ ∈ WK3 ,WK4 and hence BK := {α1, α2, α3, α4} is a locally crystallographic
basis for K with Cartan matrix CK = (cKij ) of type C.

Part (2). For the second part we use Proposition 6.2.7, Lemma 3.3.26, Lemma 3.3.27,
Lemma 5.2.1, Lemma 5.2.4, and Lemma 6.2.5 to obtain the Coxeter graphs for the
adjacent chamber Ki and deduce the claimed property of the induced basis BKi and
the coefficients cKij :

We check the cases in turn. First assume that Γ(K) = Γ1
4, B

K is locally crystallographic
and CK is of type A. As we have seen in the proof of Part (1), the localization AK

123 is
the arrangement A(6, 1) or A(8, 1).

Let i = 1. By Proposition 6.2.7 The Coxeter graph Γ(K1) is one of the four graphs
of Figure 6.15 and by Lemma 3.3.27 and Lemma 5.2.4 only Γ1

4 is possible. Thus
Γ(K1) = Γ(K) and by Lemma 3.3.26, Lemma 3.3.27, Lemma 5.2.1, and Lemma 5.2.4
the basis BK1 induced by CK and BK is locally crystallographic with Cartan matrix
CK1 = CK of type A.

Next let i = 2. If the localizations AK
123 and AK

234 are both isomorphic to A(6, 1) then
using the same lemmas from Subsection 3.3 as above, the basis BK2 defined by CK

is locally crystallographic with Cartan matrix CK2 = CK of type A. If AK
123 is the

arrangement A(8, 1) then AK
234 has to be the arrangement A(6, 1) and Γ(K2) = Γ3

4.
Otherwise by Lemma 6.2.5 we would get a forbidden Coxeter graph of Figure 6.12 for
K2. With the lemmas from Subsection 3.3 and Section 5 we again obtain all coefficients
cK2

ij except the ones with {i, j} = {1, 3}. But AK
123 = AK2

123 is the arrangement A(8, 1)
for which we know that with respect to the basis BK

123 = {α1, α2, α3} ⊆ BK we have
(α1 + 2α2 + α3)

⊥ ∈ AK
123 and in particular (α1 + 2α2 + α3)

⊥ = (σK
2 (α1) + σK

2 (α3))
⊥ ∈

W (K2)1 ,W (K2)3 . So cK2

13 = cK2

31 = −1 and BK2 is locally crystallographic with Cartan
matrix CK2 of type D′.

Now let i = 3. If the localizations AK
123 and AK

234 are both isomorphic to A(6, 1) or if
AK

234 is the arrangement A(8, 1) then by symmetry we already handled these cases. So
suppose that AK

123 is the arrangement A(8, 1). Then by Lemma 6.2.5 and the lemmas
from Subsection 3.3 and Section 5 we have Γ(K3) = Γ2

4 of Figure 6.15 and we also
obtain all cK3

ij except cK3

21 . But with respect to the basis BK
123 = {α1, α2, α3} ⊆ BK we

have (2α1 + α2 + α3)
⊥ = (2σK

3 (α1) + σK
3 (α2))

⊥ ∈ AK
123 so cK3

21 = −2 and BK3 is locally
crystallographic with Cartan matrix CK3 of type C.

By symmetry we have also shown the claim for i = 4, for Γ(K) = Γ2
4 and i = 3,

Γ(K) = Γ4
3 and i ∈ {2, 3}. All the other remaining cases can be handled completely

analogously.

Proposition 6.2.8 immediately tells us that an irreducible supersolvable simplicial 4-
arrangement defines a Weyl groupoid and thus a crystallographic arrangement (cf.
[Cun11a, Thm. 1.1]). Since we did not introduce the notion of a Weyl groupoid, we
repeat the argument without this terminology:
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Proposition 6.2.9. Let A be an irreducible supersolvable simplicial 4-arrangement,
and fix a chamber K0 ∈ K(A). Then there exists a basis BK0

for K0 such that

R :=
⋃

G∈G(K0,A)

BG

is a crystallographic root system for A.

Proof. By Proposition 6.2.8(1) for K0 there exists a locally crystallographic basis BK0

with Cartan matrix of type A,C,D′ or D. Such a basis will have the desired property
and from now on we fix it.

First we show that for K ∈ K(A) the basis BK
G does not depend on the chosen G ∈

G(K0,A) with e(G) = K. Let G, G̃ ∈ G(K0,A) with e(G) = e(G̃) = K, say

G = (K0, K1, . . . , Kn−1, Kn = K),

and
G̃ = (K0, K̃1, . . . , K̃m−1, K̃m = K).

Then
BG = (σKn−1

µn−1
◦ . . . ◦ σK0

µ0
)(BK0

),

where the linear map σKn−1

µn−1
◦ . . .◦σK0

µ0
is represented with respect to BK0

by a product
of reflection matrices

SKn−1

µn−1
· · ·SK0

µ0
=: S.

By Proposition 6.2.8(2) and an easy induction over the length n of G all reflection
matrices SKi

µi
are integral matrices with determinant ±1. Hence the product S has

only entries in Z and has determinant ±1. Similarly for G̃ we have

BG̃ = (σK̃m−1

µ̃m−1
◦ . . . ◦ σK0

µ̃0
)(BK0

),

where the linear map is represented with respect to BK0

by a product of integral
reflection matrices

SK̃n−1

µ̃m−1
· · ·SK0

µ̃0
=: S̃,

and S̃ also has only entries in Z and determinant equal to±1. Now SS̃−1 = diag(λ1, . . . ,
λ4) with λi ∈ R>0 but also has determinant 1 and all entries are in Z. Thus SS̃−1 is
the identity matrix and BG = BG̃.

From the above consideration we obtain

BG ⊆
∑

α∈BG′

Zα,

for G,G′ ∈ G(K0,A). Hence for R we have

R ⊆
∑

α∈BK
R

Zα,

for all K ∈ K(A) since BK
R = BG for some G ∈ G(K0,A) with e(G) = K and each

β ∈ R is contained in some BG′ , G′ ∈ G(K0,A).
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i1 i2

i3

i4 i5

Figure 6.16: Forbidden subgraph

It remains to show that R is reduced, i.e. that for β ∈ R we have R ∩Rβ = {±β}. So
suppose that β ∈ R and λβ ∈ R for some λ ∈ R\{0}. Then there are G,G′ ∈ G(K0,A)
such that β ∈ BG and λβ ∈ BG′ . But as above λβ ∈ Zβ and β ∈ Z(λβ). Hence
λ ∈ {±1}.

Theorem 6.2.10. Let A be an irreducible supersolvable simplicial 4-arrangement.
Then A is isomorphic to either one of the reflection arrangements A(A4), A(B4),
or isomorphic to A3

4 = A(B4) \ {{x1 = 0}}. In particular A is crystallographic.

Proof. By Proposition 6.2.9 there exists a crystallographic root system for A, so the
arrangement A is crystallographic. By Theorem 3.4.11 the only irreducible crystal-
lographic 4-arrangements which are supersolvable are the three arrangements A(A4),
A(B4), and A3

4 = A(B4) \ {{x1 = 0}}.

Corollary 6.2.11. Let A be an irreducible supersolvable simplicial 4-arrangement and
K ∈ K(A). Then Γ(K) is not the Coxeter graph Γ4

4 of Figure 6.15.

6.3 The rank ≥ 5 case

Lemma 6.3.1. Let A be an irreducible simplicial supersolvable ℓ-arrangement and let
K ∈ K(A) be a chamber. Then Γ(K) has no circles with more than 3 vertices.

Proof. Suppose there is a chamber K ∈ K(A) such that Γ(K) has a circle with more
than three vertices. Then we localize at the intersection of the walls corresponding to
these vertices and use Lemma 5.2.5 and Lemma 5.2.8 (possibly several times) to arrive
at an 4-arrangement which is irreducible by Lemma 5.2.9, simplicial and supersolvable
by Lemma 3.4.5, and contains a chamberK ′ such that the Coxeter graph Γ(K ′) contains
a subgraph of the form displayed in Figure 6.9. This is a contradiction to Lemma
6.2.4.

Lemma 6.3.2. Let A be an irreducible supersolvable simplicial ℓ-arrangement, ℓ ≥ 5
and let K ∈ K(A) be a chamber. Then the Coxeter graph Γ(K) does not contain a
subgraph of the form shown in Figure 6.16.

Proof. Let BK = {α1, . . . , αℓ}, suppose that Γ(K) has a subgraph of this form contain-
ing the vertices {i1, . . . , i5} ⊆ {1, . . . , ℓ}. By Lemma 5.2.5 and Lemma 5.2.8 localizing
AK

i1···i5 and restricting to H = σK
i2
(αi3)

⊥ gives the irreducible supersolvable simplicial
4-arrangement (AK

i1···i5)
H which contains a chamber with a Coxeter graph not included

in the list of Proposition 6.2.7. Hence Γ(K) could not have such a subgraph in the first
place.
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Γ1
ℓ

. . .
1 2 3 ℓ− 1 ℓ

Γ2
ℓ

. . .4

1 2 3 ℓ− 1 ℓ

Γ3
ℓ

. . .

1

2

3 4 ℓ− 1 ℓ

Figure 6.17: Possible Coxeter graphs for an irreducible supersolvable simplicial ℓ-
arrangement (ℓ ≥ 4).

Proposition 6.3.3. Let A be an irreducible supersolvable simplicial ℓ-arrangement,
ℓ ≥ 4 and let K ∈ K(A) be a chamber. Then Γ(K) is one of the Coxeter graphs of
Figure 6.17.

Proof. By Lemma 6.3.2 the Coxeter graph Γ(K) cannot have a triangle somewhere in
the middle.

The statement then follows by induction on ℓ, Lemma 5.2.5, Proposition 6.2.7, Corol-
lary 6.2.11, and Lemma 6.3.1.

Proposition 6.3.4. Let A be an irreducible supersolvable simplicial ℓ-arrangement,
ℓ ≥ 4 and K ∈ K(A).

(1) There exists a locally crystallographic basis BK for K such that the Cartan matrix
CK is of type A,C or D′.

(2) If BK is a locally crystallographic basis for K with CK of type A,C or D′, then
for 1 ≤ i ≤ ℓ the basis BKi = σK

i (BK) = {αj + cKijαi | 1 ≤ j ≤ ℓ} is a locally
crystallographic basis with Cartan matrix CKi of type A,C or D′.

Proof. We argue by induction on ℓ ≥ 4. For ℓ = 4 this is Proposition 6.2.8. Let ℓ ≥ 5
and assume both statements are true for ℓ−1. By Proposition 6.3.3 the Coxeter graph
Γ(K) is one of the graphs of Figure 6.17. LetWK = {H1, . . . , Hℓ} where the numbering
of the walls corresponds to the numbering of the vertices in Γ1

ℓ ,Γ
2
ℓ ,Γ

3
ℓ respectively.

By the induction hypothesis for the localization AK
12···(ℓ−1) there are {α1, . . . , αℓ−1} ⊆

(Rℓ)∗ which form a locally crystallographic basis for the corresponding chamber in
AK

12···(ℓ−1). Furthermore, α⊥
i = Hi for 1 ≤ i ≤ ℓ− 1, there are cKij ∈ Z, 1 ≤ i, j ≤ ℓ− 1

such that (αj − cKijαi)
⊥ ∈ WKi , and the matrix C ′K = (cKij )1≤i,j≤ℓ−1 is a Cartan matrix

of type A,C, or D′. But in Γ(K) the vertex ℓ is only connected to ℓ − 1 by an edge
with label 3. Hence there is an αℓ ∈ (Rℓ)∗ such that α⊥

ℓ = Hℓ, K ⊆ α+
ℓ , (αℓ−1+αℓ)

⊥ ∈
WKℓ−1 ,WKℓ . This is to say for BK := {α1, . . . , αℓ} we have cK(ℓ−1)ℓ = cKℓ(ℓ−1) = −1,

cKℓj = cKjℓ = 0 for j /∈ {ℓ−1, ℓ}, the other cKij are given by the localization AK
12···(ℓ−1), and

hence BK is a locally crystallographic basis for K with Cartan matrix of type A,C, or
D′ if Γ(K) is Γ1

ℓ ,Γ
2
ℓ , or Γ

3
ℓ respectively.

Now let BK be a locally crystallographic basis with Cartan matrix of type A,C, or D′

and BKi the induced basis for Ki.
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If i = ℓ then in each case Γ(Ki) = Γ(K) by Lemma 5.2.2, Lemma 5.2.4 and Proposition
6.3.3 where the vertex k in Γ(Ki) corresponds to the root σK

ℓ (αk). In all graphs Γk
ℓ

the vertex ℓ is not connected with the vertex j for j ≤ ℓ− 2, and mK(i, j) = 3 for all
i, j ∈ {1, . . . , ℓ} except possibly for {i, j} = {1, 2}. So by Lemma 3.3.26, and Lemma
3.3.27 the induced basis BKℓ is locally crystallographic with Cartan matrix CKi = CK

of type A,C, or D′.

For i ∈ {1, . . . , ℓ−1} we have AK
1···(ℓ−1) = AKi

1···(ℓ−1). So at least C ′Ki = (cKi)1≤i,j≤ℓ−1 is a

Cartan matrix of type A,C, or D′ by the induction hypothesis. If C ′Ki is of type C, or
D then by Proposition 6.3.3 the Coxeter graph Γ(Ki) is Γ

2
ℓ , or Γ

3
ℓ respectively with the

numbering of the vertices corresponding to BKi = {σK
i (α1), . . . , σ

K
i (αℓ)}. If C ′Ki is of

type A we may also assume that Γ(Ki) is the Coxeter graph Γ1
ℓ since otherwise we can

renumber the bases BK and BKi respectively such that C ′Ki is of type C, or D′ and
we actually are in one of the above cases. We observe next that in Γ(Ki) the vertex ℓ
is not connected with the vertex j for j ≤ ℓ− 2. So cKi

ℓj = cKi

jℓ = 0 for 1 ≤ j ≤ ℓ− 2.

If i ∈ {1, . . . , ℓ− 2} we have cKiℓ = 0 and then by Lemma 3.3.27 we get cKi

ℓ(ℓ−1) = cKℓ(ℓ−1).

But mKi(ℓ− 1, ℓ) = 3 and by Lemma 5.2.1 for the last remaining coefficient we obtain
cKi

(ℓ−1)ℓ = −1 and BKi is a locally crystallographic basis with Cartan matrix of type

A,C, or D′.

Finally, for i = ℓ− 1 by Lemma 3.3.26 we also have c
Kℓ−1

(ℓ−1)ℓ = cK(ℓ−1)ℓ = −1. Again since

mKℓ−1(ℓ − 1, ℓ) = 3, by Lemma 5.2.1 for the remaining coefficient we get c
Kℓ−1

(ℓ−1)ℓ = −1

and BKℓ−1 is a locally crystallographic basis with Cartan matrix CKℓ−1 of type A,C,
or D′. This finishes the proof.

Proposition 6.3.5. Let A be an irreducible supersolvable simplicial ℓ-arrangement,
ℓ ≥ 4, and fix a chamber K0 ∈ K(A). Then there exists a basis BK0

for K0 such that

R :=
⋃

G∈G(K0,A)

BG

is a crystallographic root system for A.

Proof. This is exactly the same as the proof of Proposition 6.2.9 using Proposition
6.3.4 instead of Proposition 6.2.8.

Theorem 6.3.6. Let A be an irreducible simplicial supersolvable ℓ-arrangement, ℓ ≥ 4.
Then A is isomorphic to either one of the reflection arrangements A(Aℓ), A(Bℓ), or
isomorphic to Aℓ−1

ℓ = A(Bℓ) \ {{x1 = 0}}. In particular A is crystallographic.

Proof. By Proposition 6.3.5 there exists a crystallographic root system for A, so the
arrangement A is crystallographic. By Theorem 3.4.11 the only irreducible crystallo-
graphic ℓ-arrangements, ℓ ≥ 4 which are supersolvable are the arrangements A(Aℓ),
A(Bℓ), and Aℓ−1

ℓ = A(Bℓ) \ {{x1 = 0}}.
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[AHR14a] N. Amend, T. Hoge, and G. Röhrle, On inductively free restrictions of
reflection arrangements, J. Algebra 418 (2014), 197–212. 5, 30, 43, 44, 45

[AHR14b] N. Amend, T. Hoge, and G. Röhrle, Supersolvable restrictions of reflection
arrangements, J. Combin. Theory Ser. A 127 (2014), 336–352. 5, 25, 26

[Arn79] V. I. Arnold, Indexes of singular points of 1-forms on manifolds with
boundary, convolutions of invariants of groups generated by reflections,
and singular projections of smooth surfaces, Uspekhi Mat. Nauk 34 (1979),
no. 2(206), 3–38. 1, 5

[Art88] E. Artin, Geometric algebra, Wiley Classics Library, John Wiley & Sons,
Inc., New York, 1988, Reprint of the 1957 original, A Wiley-Interscience
Publication. 60

[AT16] T. Abe and H. Terao, Free filtrations of affine Weyl arrangements and the
ideal-Shi arrangements, J. Algebraic Combin. 43 (2016), no. 1, 33–44. 33

[BC12] M. Barakat and M. Cuntz, Coxeter and crystallographic arrangements are
inductively free, Adv. Math. 229 (2012), no. 1, 691–709. 2, 4, 5, 29

[CG15] M. Cuntz and D. Geis, Combinatorial simpliciality of arrangements of hy-
perplanes, Beitr. Algebra Geom. 56 (2015), no. 2, 439–458. 3, 17

[CG17] M. Cuntz and D. Geis, Tits arrangements on cubic curves, ArXiv e-prints
(2017). 58

[CH09] M. Cuntz and I. Heckenberger, Weyl groupoids with at most three objects,
J. Pure Appl. Algebra 213 (2009), no. 6, 1112–1128. 24, 50

[CH15a] , Finite Weyl groupoids, J. Reine Angew. Math. 702 (2015), 77–108.
3, 16, 21, 22, 50, 65

[CH15b] M. Cuntz and T. Hoge, Free but not recursively free arrangements, Proc.
Amer. Math. Soc. 143 (2015), no. 1, 35–40. 2, 13, 32



74 Bibliography

[CL17] M. Cuntz and S. Lentner, A simplicial complex of Nichols algebras, Math.
Z. 285 (2017), no. 3-4, 647–683. 21
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