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ABSTRACT

Today’s Internet Protocol (IP), the Internet’s network-layer protocol, provides
a best-effort service to all users without any guaranteed bandwidth. However,
for certain applications that have stringent network performance requirements
in terms of bandwidth, it is significantly important to provide Quality of Ser-
vice (QoS) guarantees in IP networks. The end-to-end available bandwidth of a
network path, i.e., the residual capacity that is left over by other traffic, is deter-
mined by its tight link, that is the link that has the minimal available bandwidth.
The tight link may differ from the bottleneck link, i.e., the link with the minimal
capacity.

Passive and active measurements are the two fundamental approaches used
to estimate the available bandwidth in IP networks. Unlike passive measure-
ment tools that are based on the non-intrusive monitoring of traffic, active tools
are based on the concept of self-induced congestion. The dispersion, which
arises when packets traverse a network, carries information that can reveal rele-
vant network characteristics. Using a fluid-flow probe gap model of a tight link
with First-in, First-out (FIFO) multiplexing, accepted probing tools measure the
packet dispersion to estimate the available bandwidth. Difficulties arise, how-
ever, if the dispersion is distorted compared to the model, e.g., by non-fluid
traffic, multiple tight links, clustering of packets due to interrupt coalescing
and inaccurate time-stamping in general. It is recognized that modeling these
effects is cumbersome if not intractable.

To alleviate the variability of noise-afflicted packet gaps, the state-of-the-art
bandwidth estimation techniques use post-processing of the measurement re-
sults, e.g., averaging over several packet pairs or packet trains, linear regression,
or a Kalman filter. These techniques, however, do not overcome the basic as-
sumptions of the deterministic fluid model. While packet trains and statistical
post-processing help to reduce the variability of available bandwidth estimates,
these cannot resolve systematic deviations such as the underestimation bias
in case of random cross traffic and multiple tight links. The limitations of the
state-of-the-art methods motivate us to explore the use of machine learning in
end-to-end active and passive available bandwidth estimation.

We investigate how to benefit from machine learning while using stan-
dard packet train probes for active available bandwidth estimation. To reduce
the amount of required training data, we propose a regression-based scale-
invariant method that is applicable without prior calibration to networks of
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arbitrary capacity. To reduce the amount of probe traffic further, we implement
a neural network that acts as a recommender and can effectively select the
probe rates that reduce the estimation error most quickly. We also evaluate our
method with other regression-based supervised machine learning techniques.

Furthermore, we propose two different multi-class classification-based meth-
ods for available bandwidth estimation. The first method employs reinforce-
ment learning that learns through the network path’s observations without
having a training phase. We formulate the available bandwidth estimation as a
single-state Markov Decision Process (MDP) multi-armed bandit problem and
implement the e-greedy algorithm to find the available bandwidth, where ¢ is
a parameter that controls the exploration vs. exploitation trade-off.

We propose another supervised learning-based classification method to ob-
tain reliable available bandwidth estimates with a reduced amount of network
overhead in networks, where available bandwidth changes very frequently. In
such networks, reinforcement learning-based method may take longer to con-
verge as it has no training phase and learns in an online manner. We also eval-
uate our method with different classification-based supervised machine learn-
ing techniques. Furthermore, considering the correlated changes in a network’s
traffic through time, we apply filtering techniques on the estimation results in
order to track the available bandwidth changes.

Active probing techniques provide flexibility in designing the input struc-
ture. In contrast, the vast majority of Internet traffic is Transmission Control
Protocol (TCP) flows that exhibit a rather chaotic traffic pattern. We investigate
how the theory of active probing can be used to extract relevant information
from passive TCP measurements. We extend our method to perform the estima-
tion using only sender-side measurements of TCP data and acknowledgment
packets. However, non-fluid cross traffic, multiple tight links, and packet loss
in the reverse path may alter the spacing of acknowledgments and hence in-
crease the measurement noise. To obtain reliable available bandwidth estimates
from noise-afflicted acknowledgment gaps we propose a neural network-based
method.

We conduct a comprehensive measurement study in a controlled network
testbed at Leibniz University Hannover. We evaluate our proposed methods
under a variety of notoriously difficult network conditions that have not been
included in the training such as randomly generated networks with multiple
tight links, heavy cross traffic burstiness, delays, and packet loss. Our testing
results reveal that our proposed machine learning-based techniques are able to
identify the available bandwidth with high precision from active and passive

measurements. Furthermore, our reinforcement learning-based method with-



out any training phase shows accurate and fast convergence to available band-
width estimates.

Keywords: Available Bandwidth Estimation, Active and Passive Measure-
ments, Machine Learning, Support Vector Machines, k-Nearest Neighbors, Bag-
ging, AdaBoost, Neural Network, Reinforcement Learning.



ZUSAMMENFASSUNG

Das heutige Internet Protocol (IP), das Netzwerkprotokoll des Internets, bietet al-
len Benutzern einen sogenannten best effort-Service ohne garantierte Bandbreite.
Fiir bestimmte Anwendungen mit hohen Anforderungen an die Netzwerkper-
formanz in Bezug auf Bandbreite ist es jedoch von entscheidender Bedeutung,
in IP-basierten Netzwerken Garantien fiir Dienstgtite (Quality of Service) bereit-
zustellen. Die verfiigbare Ende-zu-Ende-Bandbreite eines Netzwerkpfads, d. h.
die Restkapazitit, die durch anderen Datenverkehr nicht genutzt wird, wird
durch seinen sogenannten tight link determiniert, d. h. die Verbindung mit der
minimal verfiigbaren Bandbreite. Der tight link kann sich allerdinger von dem
bottleneck link unterscheiden, d. h. der Verbindung mit der minimalen Kapazi-
tat.

Passive und aktive Messungen sind die beiden grundlegenden Ansitze zur
Schitzung der verfiigbaren Bandbreite in IP-Netzwerken. Im Gegensatz zu pas-
siven Messwerkzeugen, die auf der stérungsfreien Uberwachung des Verkehrs
basieren, beruhen aktive Werkzeuge auf dem Konzept der selbst-induzierten
Uberlastung. Die Streuung, die entsteht, wenn Pakete ein Netzwerk durchlau-
ten, enthilt Informationen, die relevante Netzwerkmerkmale aufdecken kon-
nen. Unter Verwendung eines Fluid-Flow-Probe-Gap-Modells eines tight link
mit FIFO-Multiplexing (First-in, First-out) messen Testtools die Paketdispersi-
on und schitzen damit die verfiigbare Bandbreite ab. Schwierigkeiten entstehen
jedoch, wenn die Dispersion im Vergleich zum Modell verzerrt ist, z. B. durch
stockenden Datenverkehr, mehrere tight links, Clusterbildung von Paketen auf-
grund von Interrupt-Koaleszenz und, allgemein, ungenauer Zeitstempelung. Es
ist bekannt, dass eine Modellierung dieser Effekte schwierig oder gar unmog-
lich ist.

Um die Variabilitit von Rausch-behafteten Paketliicken zu verringern, wer-
den die Messergebnisse durch Bandbreitenschdatzungsmethoden nach dem
Stand der Technik zusitzlich, z. B. durch Mittelwertbildung iiber mehrere Pa-
ketpaare oder Paketziige, lineare Regression oder Kalman-Filter nachbearbeitet.
Diese Techniken tiberwinden jedoch nicht die Grundannahmen des determinis-
tischen Fluid-Modells. Auch wenn die Verwendung von Paketziigen und die
statistische Nachbearbeitung der Messergebnisse dabei helfen, die Variabilitdt
in den Schitzungen der verfiigbaren Bandbreite zu verringern, konnen diese
keine systematischen Abweichungen, wie z. B. zu niedrige Schitzungen bei zu-

falligem Querverkehr und mehreren tight links beseitigen. Die Einschrankungen
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moderner Methoden motivieren uns, den Einsatz von maschinellem Lernen bei
der aktiven und passiven Schitzung der verfiigbaren Ende-zu-Ende Bandbreite
zu explorieren.

Wir untersuchen, wie man von maschinellem Lernen profitieren kann, wenn
man normale Paketzug-Messungen fiir die aktive Schdtzung der verfiigbaren
Bandbreite verwendet. Um die Menge der erforderlichen Trainingsdaten zu
reduzieren, schlagen wir eine auf Regression basierende skalierungsinvariante
Methode vor, die ohne vorherige Kalibrierung auf Netzwerke mit beliebiger Ka-
pazitdt anwendbar ist. Um den fiir Messungen notigen Datenverkehr weiter zu
reduzieren, implementieren wir ein neuronales Netzwerk, das als Empfehlungs-
system fiir Testdatenraten die schnelle Reduzierung der Schitzfehler erzielen.
Wir vergleichen unsere Methode auch mit anderen, auf Regression basierenden,
iiberwachten Techniken des maschinellen Lernens.

Dartiber hinaus schlagen wir zwei verschiedene klassifikationsbasierte Mehr-
klassenmethoden fiir die Schdtzung der verfiigbaren Bandbreite vor. Bei der ers-
ten Methode wird ein bestarkendes Lernen (reinforcement learning) verwendet,
das durch die Beobachtung des Netzwerkpfads lernt, ohne eine Trainingspha-
se zu haben. Wir formulieren die Schitzung der verfiigbaren Bandbreite als
ein Single-State Markov-Entscheidungsprozess (MDP) Mehrarmige Banditen-
Problems und implementieren den e-greedy-Algorithmus, um die verfiigbare
Bandbreite zu ermitteln, wobei ¢ ein Parameter ist, der fortwihrend die Balance
zwischen Erkundung und Verwertung halt.

Wir schlagen eine weitere lernbasierte Klassifizierungsmethode vor, um zu-
verldssige Schdtzungen der verfligbaren Bandbreite mit einem reduzierten
Overhead in Netzwerken, in denen sich die verfiigbare Bandbreite sehr hdu-
tig @ndert, zu erhalten. In solchen Netzwerken kénnen Methoden, die auf ver-
starktem Lernen basieren, mehr Zeit zum Konvergieren benétigen, da sie keine
Trainingsphase haben und im Betrieb fortlaufend lernen. Wir vergleichen un-
sere Methode auch mit verschiedenen klassifikationsbasierten Techniken des
iiberwachten maschinellen Lernens. Unter Beriicksichtigung der korrelierten
Anderungen des Netzwerkverkehrs iiber die Zeit wenden wir Filtertechniken
auf die Schatzergebnisse an, um die verfiigbaren Bandbreitendnderungen zu
verfolgen.

Aktive Messmethoden bieten Flexibilitdt beim Entwurf der Eingabestruk-
tur. Im Gegensatz dazu besteht die iiberwiegende Mehrheit des Internetver-
kehrs aus Transmission Control Protocol (TCP)-Fliissen, die ein chaotisches Ver-
kehrsmuster aufweisen. Wir untersuchen, wie die Theorie der aktiven Messun-
gen dazu verwendet werden kann, relevante Informationen aus passiven TCP-
Messungen zu extrahieren. Wir erweitern unsere Methode, sodass die Schit-
zung lediglich mithilfe von senderseitigen Messungen von TCP-Daten und Be-
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statigungspaketen durchgefiihrt wird. Stockender Querverkehr, mehrere tight
links und Paketverlust auf dem umgekehrten Pfad konnen jedoch den Abstand
zwischen den Bestdtigungspaketen dndern, sodass das Messrauschen erhoht
wird. Um zuverldssige Schitzungen der verfiigbaren Bandbreite aus den von
Rauschen betroffenen Liicken zwischen den Bestdtigungspaketen zu erhalten,
schlagen wir ein Verfahren auf Basis von neuronalen Netzwerken vor.

Wir fithren eine umfassende Messstudie in einer kontrollierten Netzwerk-
Testumgebung an der Leibniz Universitdt Hannover durch. Wir evaluieren un-
sere vorgeschlagenen Methoden unter einer Vielzahl von schwierigen Netz-
werkbedingungen, die nicht in das Training einbezogen wurden, wie zufillig
generierte Netzwerke mit mehreren tight links, hohe Burstartigkeit des Daten-
verkehrs, Verzogerungen und Paketverlust. Unsere Testergebnisse zeigen, dass
unsere vorgeschlagenen maschinellen Lerntechniken die verfiigbare Bandbrei-
te mit hoher Prédzision mit aktiven und passiven Messungen ermittelen kon-
nen. Unsere reinforcement learning-basierte Methode erreicht dariiberhinaus

genaue Ergebnisse und schnelle Konvergenz ohne Trainingphase.

Schlagworter: Schiatzung verfiigbarer Bandbreite, Aktive und Passive Mes-
sungen, maschinelles Lernen, Support Vector Machines, k-Nearest-Neighbors,
Bagging, AdaBoost, neuronales Netz, bestirkendes Lernen.
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INTRODUCTION

With the inception of the computer age, the Internet has become a super-
network worldwide. Since its origin as Advanced Research Projects Agency
Network (ARPANET) in 1969, it has evolved in terms of network technologies,
e.g., from dial-up to the optical fibers and from classic text-based to audio and
video applications. It has become a significant medium that connects a bil-
lion of users across the world primarily through World Wide Web (WWW) and
provides services, for example, e-mail, web browsing, Voice over Internet Pro-
tocol (VoIP), video streaming. For the majority of the end-users with limited
knowledge about network performance, the Internet is only a black box that
receives and forwards packets between end-hosts.

The motivation behind bandwidth estimation is the potential benefits that
users can gain from the knowledge of bandwidth characteristics of a network
path. For example, the information about the state and behavior of the net-
works can significantly improve the Quality of Service (QoS) guarantees that
the users may receive from the network. Furthermore, Internet traffic engi-
neering can be used to control and manage Internet traffic [1]. The congestion
control algorithms and rate-adaptive applications may use the bandwidth esti-
mates to transfer the highest possible quality over the Internet while avoiding
network congestion [2, 3]. In Peer-to-Peer (P2P) networks, accurate information
about the available bandwidth can help in load balancing [4]. Call Admission
Control (CAC) can take advantage of available bandwidth information to en-
sure enough bandwidth for authorized flows in VoIP networks [5]. Dynamic
overlay routing can enhance the reliability and performance of Internet Proto-
col (IP) networks by selecting the paths based on available bandwidth measure-
ments [6].

The remainder of this chapter is structured as follows: In Sec. 1.1, we define
the term available bandwidth in the context of packet-switched networks. We
address the key issues in available bandwidth estimation in Sec. 1.2. In Sec. 1.3,
we discuss the main contributions of this thesis in estimating the end-to-end
available bandwidth in packet-switched communication networks. We provide

thesis outline in Sec. 1.4.



INTRODUCTION

1.1 AVAILABLE BANDWIDTH IN PACKET-SWITCHED NETWORKS

Today’s Internet is a quintessential packet-switched network where data is
transmitted between the sender and the receiver in the form of small chunks
called packets. These packets are forwarded by intermediary network devices,
such as routers and switches, depending upon the maximum available band-
width of the most limiting link of an end-to-end path. In the context of data
networks such as the Internet, an end-to-end path refers to a sequence of succes-
sive hops H € Z™ or links. The capacity C € R of a link refers to the maximum
possible rate that the IP layer can deliver by transferring Maximum Transmis-
sion Unit (MTU)-sized IP packets of 1500 B [7]. In other words, it establishes
an upper bound on the maximum achievable bandwidth in a link. For an end-
to-end path, the capacity of a network path consisting of H hops is determined
by the bottleneck link, i.e., the link with the minimal capacity as

C=mini—1 n(Cy), (1.1)

where C; is the capacity of the i'™ link. The term available bandwidth refers
to the residual capacity of a link or a network path that is left over after the
existing traffic, also referred to as cross traffic, is served. Formally, given a link
with capacity C and cross traffic with long-term average rate A, where A € [0, C],
the available bandwidth of a network path A € [0, C] is defined as A = C—A [8].
The end-to-end available bandwidth of a network path consisting of H hops is
determined by its tight link, i.e., the link with the minimal available bandwidth

as

A =mini—1 n(Ai), (1.2)

where A; € [0, C;] is the available bandwidth of the it" link and C; € R is the
capacity of the same link. The tight link may differ from the bottleneck link.

1.2 KEY ISSUES IN AVAILABLE BANDWIDTH ESTIMATION

Since estimating the available bandwidth is crucial to the effective deployment
of QoS guarantees in a network, there has been much work done throughout
the years on developing the tools for estimating the capacity and available band-
width of network paths. These tools are passive, i.e., based on non-intrusive
monitoring of real traffic, or active, i.e., based on injecting artificial probe traffic
into the network. Despite five decades of intensive development of the band-
width estimation techniques, an accurate estimation of available bandwidth is



1.2 KEY ISSUES IN AVAILABLE BANDWIDTH ESTIMATION

still considered a challenging task because of its dynamics, especially in the
Internet’s environment. Some key issues involved in the bandwidth estimation
are as follows:

* Measurement bias: There exist a number of measurement tools that are
based on injecting artificial probe traffic with a well-defined input gap
gin into the network. As these probe packets traverse through the net-
work, they get dispersed due to cross traffic. At the receiver, the output
gap of the received probe go ¢ is measured to deduce the available band-
width. The existing measurement tools are based on the assumptions of a
single-hop, lossless network that is modeled as a First-In, First-Out (FIFO)
multiplexer of probe and cross traffic. It is assumed that cross traffic has
a constant rate A and behaves like fluid, i.e., it is infinitely divisible. How-
ever, when there occur deviations from the assumptions of the fluid-flow
model, the estimation tools based on the above-mentioned assumptions
produce measurement bias. Following are some examples of such scenar-
ios:

— Random cross traffic: The burstiness of the cross traffic violates the
Constant Bit Rate (CBR) assumption of the model and can cause
queueing at the tight link even if the probe rate is below the average
available bandwidth. The result is an increase in the variability as
well as underestimation of available bandwidth estimates [8, 9].

— Packet interference: Non-conformance with the fluid model arises due
to the interaction of probe traffic with discrete packets of the cross
traffic. The non-fluid cross traffic affects the relation of output gaps
Jout and input gaps gin that is used to infer the available band-
width [8, 9].

— Multiple tight links: If cross traffic is non-fluid, the repeated packet
interaction at each of the links distorts the probe gaps. Further, in
the case of random cross traffic, there may not be a single tight link,
but the tight link may vary randomly. The consequence is an un-
derestimation of the available bandwidth [9, 10] which is analyzed

in [11, 12].

— End-to-end pathologies: The term pathology in the context of networks
refers to unusual or unexpected network behavior. The unusual be-
havior includes packet loss, i.e., the network is unable to deliver all
the transmitted packets, out-of-order delivery, i.e., packets arrive at
the receiver in a different order than that in which they were sent,
packet replication, i.e., the network delivers multiple copies of the
same packet, and packet corruption, i.e., the network delivers an im-



6

INTRODUCTION

perfect packet which differs from the originally sent packet. It is
difficult to estimate available bandwidth in the presence of such net-
work pathologies. For example, out-of-order delivery or lost packets
distort the output gaps for packet pairs [13].

Queueing behavior: The existing bandwidth estimation tools are based
on the assumption that all links apply FIFO queues. This assump-
tion is violated by the existing intermediary routers which have di-
verse queueing behavior. For example, to avoid network congestion
a number of routers use Active Queue Management (AQM) algo-
rithms, e.g., Controlled Delay (CoDel) [14] to drop the packets inside
a buffer associated with a Network Interface Controller (NIC) [15].

* Measurement inaccuracies: It is difficult to tailor the bandwidth estima-
tion methods to specific hardware implementations that influence the
measurement accuracy. Most of the state-of-the-art bandwidth estima-
tion tools use packet capture libraries, for example, libpcap, where each
packet is given a timestamp representing the sending and receiving time.

There are several reasons which cause measurement inaccuracies such as:

— Resolution of the system timer: The resolution of a timer depends

on the underlying operating system and hardware of the end-host.
Most platforms support a resolution of 1 ms. This resolution is
too coarse for estimation tools that require accurate timing [15, 16].
Furthermore, for the end-hosts with multi-core processors, packets
timestamped by different cores might not have consistent time stamps
if the multi-cores are not running at the same speed, or their time

counters are not synchronized.

Context switching: A context switch is the act of switching of the
Central Processing Unit (CPU) from one process to another, i.e., the
execution of one thread is suspended in favor of another [17]. In
the case of multiple processes sharing a single CPU, the inter-packet
spacing can be affected if the estimation process is paused by OS
kernel abruptly and system resources are released to another pro-
cess. For example, while estimating the available bandwidth from
Transmission Control Protocol (TCP) measurements for long distances,
where Round Trip Time (RTT) is greater than the context switch time,

at least every alternative measurement is interrupted [16].

Clock synchronization and resolution: In real-time systems, two clocks
on sender and receiver are rarely perfectly synchronized. The clocks
may have different values and may run at different speeds. The
relative difference of time as reported by two clocks is called offset,
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and the relative difference of their frequencies is called skew. Due
to offset and skew, the timestamps of input and output probe traffic

become inaccurate leading to bias in estimation [18].

— Interrupt Coalescing (IC) is a feature implemented in the hardware of
many high-performance NICs to avoid flooding the hosts with too
many interrupts. Instead of generating an interrupt at the arrival
of each packet, multiple packets are grouped and served in a single
interrupt. Though IC technique can improve the performance of
high-speed NICs, an incoming packet which is possibly delayed by
NIC is no longer able to get an accurate timestamp from the OS

kernel [19, 20].

— System call provides the means through which bandwidth estima-
tion tools running in the user space programs can access kernel ser-
vices. The system calls that are frequently invoked by estimation
tools are gettimeofday() to obtain the timestamps of packets, and
read()/write() function, e.g., to read/write these packets from the
NIC buffer to the memory in kernel space. For most Linux-based op-
erating systems, delay added by gettimeofday(), and read()/write()
is up to 1 ps and 30 us respectively [15, 16].

* End-host throughput: To estimate the available bandwidth, both end-
hosts must be able to send probes at rates higher than the available band-
width, otherwise, only the maximum throughput of the slower end-host
can be measured. In recent years, network bandwidth has become faster
than end-host throughput making it harder to estimate the capacity and
the available bandwidth [15, 16].

1.3 THESIS CONTRIBUTION

In this work, while tackling the above-mentioned challenges in available band-

width estimation, we make the following contributions:

* Active available bandwidth estimation: To alleviate the variability of
noise-afflicted packet gaps, we use standard packet train probes, which
are reported to be more robust to random fluctuations. Although packet
trains help to reduce the variability in available bandwidth estimations,
they do not take care of the systematic deviations from the deterministic
fluid-flow model that cause biased estimates [8, 11, 21]. Therefore, to re-
duce the bias in bandwidth estimates, we investigate how to benefit from
machine learning techniques while using standard packet train probes
for available bandwidth estimation. We propose three methods for active
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available bandwidth estimation; the first method is based on regression
and the other two methods are based on multi-class classification.

— Regression-based method: We implement a regression-based super-
vised learning technique for bandwidth estimation. Because this is
a scale-invariant approach, we are able to apply the method to net-
works with arbitrarily changing capacity without extra training. Un-
like the binary search performed in [20], our method chooses the
probe rate that is expected to improve the bandwidth estimate the
most, and hence, can effectively control the estimation procedure in
an iterative implementation. In addition to the regression-based es-
timator, we also implement a binary classifier. Unlike the classifier
in [20] that takes only one probe rate as input to determine whether
the current probe rate is above or below the available bandwidth, our
classifier uses information of all previous probe rates to classify the
probe rates into two groups, i.e., the rates above and below the avail-
able bandwidth, which leads to more accurate estimates. We also
evaluate our method with other supervised machine learning tech-
niques such as Support Vector Regression (SVR), Gaussian Process
Regression (GPR) and Bootstrap Aggregation (Bagging).

— Multi-class classification-based method: We formulate available band-
width estimation as a multi-class classification problem and estimate
the available bandwidth class to which an instantaneous available
bandwidth value belongs. We propose the following classification-
based methods:

+ Reinforcement learning-based: We employ a reinforcement learning-
based multi-class estimation algorithm that does not require a
training phase, unlike supervised learning-based techniques. We
formulate available bandwidth estimation as a single-state Markov
Decision Process (MDP) multi-armed bandit problem. We con-
sider a set of input rates as a set of actions and define a re-
ward metric as a function of input and output rates. We imple-
ment the e-greedy algorithm, which reports the available band-
width as the input rate that maximizes a reward metric after an
exploration-exploitation mechanism is employed. Compared to
a model-based direct probing technique that employs a Kalman
filter, our method shows more accurate estimates and faster con-

vergence and does not require measurement-noise statistics.

+ Supervised learning-based using reduced probe traffic: Since there
is no training phase in the reinforcement learning-based method

and the system learns the network in an online manner, the con-
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vergence time may be longer in certain network scenarios, e.g.,
when available bandwidth values change very frequently. There-
fore, we propose another classification-based method employing
supervised learning that is designed to obtain reliable available
bandwidth estimates in randomly varying network conditions
using fewer probe packets. We divide a entire possible range of
available bandwidth, e.g., from zero bits/second to the capacity
of a network, into small subranges and assign a class to each sub-
range. We design a classifier that takes an input feature vector of
probe rates and results in the class that the available bandwidth
belongs to. We evaluate our classification-based method em-
ploying supervised learning techniques such as Support Vector
Machine (SVM), k-Nearest Neighbor (k-NN), Bagging, Adaptive
Boosting (AdaBoost) and Neural Network (NN). We show that
our method performs better than the fluid-flow model-based di-
rect probing technique that employs a Kalman filter. Further-
more, considering the correlated changes in a network’s traffic
through time, we apply filtering techniques on the estimation
results in order to track the available bandwidth changes.

* Passive available bandwidth estimation: We estimate the available band-
width from existing passive TCP measurements without injecting any ar-
tificial probe traffic into the network. We identify the chaotic, non-packet
train pattern of short TCP flows, and define a criterion to select traffic
samples that bear relevant information. We use a regression technique
to obtain robust bandwidth estimates from the passive measurements of
packet gaps. The accuracy of the method is evaluated for a variety of
relevant parameter settings. We propose a method that can take multiple
gaps as well as acknowledgment gaps as input. This extension enables
bandwidth estimation using only sender-side measurements of TCP data
and acknowledgment packets. However, the acknowledgment gaps get
altered due to random cross traffic, multiple bottleneck links, and packet
loss, which increase the measurement noise resulting in the underestima-
tion of the available bandwidth [8, 9]. We propose a neural network-based
method that can deal with distorted acknowledgment gaps to obtain re-
liable available bandwidth estimates using sender-side TCP passive mea-
surements.

* Providing data sets for performance evaluation: We generate different
data sets for training and testing using a controlled network testbed at
Leibniz University Hannover, which can be downloaded from [22]. We
present a broad evaluation of our methods using a wide range of ran-
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domly generated topologies with largely varying capacities, cross traffic
intensities, and burstiness. We specifically target the network scenarios
that are known to be hard in bandwidth estimation, i.e., where the as-
sumptions of the deterministic fluid-flow model are not satisfied such as
bursty cross traffic, packet loss, and multiple tight links. Furthermore, we
present a deeper investigation of multi-hop networks. We specifically con-
sider cases where tight link differs from the bottleneck link and show how
the order in which these occur in a network path affects the input-output
gap relation that is used for available bandwidth estimation.

1.4 THESIS OUTLINE

The remainder of this thesis is structured as follows:

In chapter 2, we introduce the basic Probe Gap Model (PGM), respectively,
Probe Rate Model (PRM) of a FIFO multiplexer that is used in bandwidth esti-
mation. Further, we discuss state-of-the-art bandwidth estimation methods.

In chapter 3, we formulate the research problems addressed in this thesis.
It focuses on the current limitations of the state-of-the-art available bandwidth
estimation methods and provides us the motivation to investigate them.

In chapter 4, we propose a regression-based supervised learning method that
is motivated by the characteristic rate response curve of a network. We investi-
gate how to benefit from machine learning, specifically neural networks while
using standard packet train probes for available bandwidth estimation.

In chapter 5, we investigate how reinforcement learning can be utilized in
available bandwidth estimation. We propose a method that runs e-greedy al-
gorithm to find the available bandwidth by maximizing the designated reward
function. To obtain reliable estimates with minimal probe-traffic overhead in
network scenarios where the channel characteristics such as capacity and cross
traffic intensity change over time randomly, we propose another classification
method based on supervised learning. We further investigate the use of filter-
ing techniques to smooth the variations in the available bandwidth estimates.

In chapter 6, motivated by the shortcomings of TCP throughput as available
bandwidth estimator, we investigate how techniques from active probing can
benefit TCP passive bandwidth estimation. We extend the proposed method
to estimate the bandwidth from sender-side measurements using input and
acknowledgment gaps. Furthermore, to deal with noise-afflicted packet gaps,
we propose a neural network-based method for estimating the available band-
width.

Finally, in chapter 7 we conclude the thesis and propose a perspective for
future work.
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Owing to the intensive development of access technologies and network appli-
cations, monitoring the network performance through the estimation of end-to-
end path properties such as available bandwidth has been the focus of many
important research activities. Throughout the years, several measurement tools
based on active and passive measurements have been developed and evalu-
ated. The former injects artificial probe traffic into the network while the latter
non-intrusively monitors the real traffic. In this chapter, we provide a brief
introduction to both these measurements techniques.

2.1 PASSIVE MEASUREMENTS

Passive measurement tools are based on the non-intrusive monitoring of traf-
tic. These techniques involve capturing and analyzing live network traffic at
a point of interest in the network and require direct access to the router or to
any node in the network path where measurements are to be taken. To obtain
the more holistic view of the network’s performance, one is reliant upon suffi-
cient traffic flowing through the measurement point. It requires incorporating
some additional intelligence into network devices to enable them to identify,
filter, and record the traffic characteristics. Unlike active probing techniques,
passive monitors don’t strain the network by injecting probe traffic into the
network. Therefore, it is favorable if the available bandwidth can be estimated
from passive measurements of existing network traffic. However, the difficulty
of passive measurements is that the input rate cannot be controlled so that it
is hard to extract the desired information [23]. Additional challenges include
the capturing speed during the actual measurement session, storage capacities
for longer traces and processing power for off-line analysis of data traces [24].
Furthermore, to employ passive measurements for monitoring real traffic, one
needs to access the complete information about all packets on the network,
which might involve privacy or security issues about how to access/protect the

gathered traces. Since it is a non-trivial task to obtain network information from

11
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passive measurements, therefore most of the measurement tools are based on

active probing.

2.2 ACTIVE PROBING MEASUREMENTS

The active probing techniques use a sender that actively injects artificial probe
traffic into the network with a defined packet size 1 and inter-packet gap re-
ferred to as input gap gin as shown in Fig. 2.1. As these probe traffic traverse
through the network path, they interact with the cross traffic and reach the re-
ceiver with a new packet gap referred to as the output gap gout. The packet pair
dispersion A = gout — gin that arises due to the interaction between the probe
traffic and cross traffic packets is analyzed to deduce the available bandwidth.
The dispersion is positive, when cross traffic packets get inserted between the
probing packets, i.e., gout > gin. The dispersion is zero when gout = gin,
which implies that the link is not saturated. However, in practical scenarios, in
the presence of discrete random cross traffic or measurement inaccuracies, the
dispersion may become negative, i.e., gout < gin. The negative dispersion is,
however, considered infeasible and hence discarded by bandwidth estimation
tools.

Unlike passive measurements, the active probing tools provide flexibility in
the design of probe streams with particular properties to match measurement
requirements. For example, probes are typically sent either as packet pairs [25]
with a defined spacing referred to as input gap gin, as packet trains [13, 26]
with a fixed input rate v, or as packet chirps [27] that are packet trains with
an increasing rate. But the vast majority of the Internet traffic is TCP flows
that exhibit a rather chaotic non-packet train traffic pattern. For certain appli-
cations, the intrusive active probing may decrease their performance and hence
the satisfaction level of the users. For example, they can affect the response
time of TCP connections [28]. Furthermore, on detecting congestion due to in-
trusive probing, TCP adjusts its Congestion Window (CWND), which affects
its performance adversely in scenarios with long RTT. In the worst case, due to
high-intensity probing significant delays, or even packet loss may occur which
are modeled as infinite delays in [12] producing estimation bias. Therefore, in
certain network conditions, it is favorable if the available bandwidth can be
estimated from passive measurements of existing network traffic.

In the following subsection, we introduce the basic PGM, respectively, PRM
of a FIFO multiplexer that is used in bandwidth estimation to derive its charac-
teristic response curve. Also, we discuss the state-of-the-art bandwidth estima-

tion methods.
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Figure 2.1: Active network measurement in a single tight link.

2.2.1  Probe Gap Model

A common assumption in bandwidth estimation is that the available band-
width, respectively, the rate of the cross traffic does not change during a probe.
Further, to simplify modeling, cross traffic is assumed to behave like a fluid, i.e.,
effects that are due to the packet granularity of the cross traffic are neglected.
Modeling a single tight link as a lossless FIFO multiplexer of probe and cross

traffic, the relation of gout and gin is followed by an intuitive argument [8] as

GinA + l} ) (2.1)

Jout =IMax { Jin, C

The reasoning is that during gin an amount of ginA of the fluid cross traffic is
inserted between any two packets of the probe traffic, so that the probe packets
may be spaced further apart as shown in Fig 2.2. Reordering Eq. (2.1) gives the
characteristic gap response curve

1
M: 1 if Jin SC=A (2.2)
I et d it >c-n

The utility of Eq. (2.2) is that it shows a clear bend at A=C — A, that enables
estimating the available bandwidth using different techniques based on PGM.
We note that the quotient of packet size and gap is frequently viewed as the data
rate of the probe. For example, consider a tight link with capacity C=100 Mbps
and cross traffic with an average rate of A = 62.5 Mbps. The packet size is
Ll = 1514 B, resulting in a transmission time 1/C of about 120 ps. Given an
input gap gin =270 ps, the output gap follows from Eq. (2.1) as gout =290 ps.
Now, assume for a moment that C is known but A is unknown. An active
probing tool can send probes with, e.g., gin =270 ps to measure gout. Noting
that gout/gin > 1, Eq. (2.2) reveals the unknown A=(goutC —1)/gin =62.5 Mbps.

13
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Figure 2.3: Gap response curve. The bend marks the available bandwidth.

In practice, the observations of gout are distorted for various reasons as dis-
cussed in Sec. 1.2. For example, we recorded a measurement trace of 50 pairs
of gin and gout in the network testbed in Fig. 4.1 with a single tight link and the
above parameters C, A, and 1, where 1 is the maximal size of Ethernet packets
including the header. The results are shown in Fig. 2.4. Neglecting the cases
where gout < gin that are not possible in the model and ignoring large outliers,
a range of samples gout of about 360 ps remains that suggests concluding A ~ 90

instead of 62.5 Mbps erroneously.

2.2.1.1  Distortions of output gap gout

We have discussed the challenges involved in estimating the available band-
width in Sec. 1.2. In this section, we discuss the relevant reasons for the dis-
tortions in measurements of gout shown in Fig. 2.4. These reasons include de-
viations from the assumptions of the model, i.e., a lossless FIFO multiplexer
with constant, fluid cross traffic as well as measurement inaccuracies, such as

imprecise timestamping:

* Random cross traffic: Eq. (2.2) is deterministic and hence it does not define
how to deal with the randomness of gou: that is caused by variable bit
rate cross traffic. It is shown in [8] that the problem cannot be easily fixed
by using the expected value E[goyt] instead. In brief, this is due to the
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Figure 2.4: Measurements of gi, and gout compared to the fluid model. The network
has a single tight link with capacity C =100 Mbps and exponential cross
traffic with rate A=62.5 Mbps. The packet size is 1=1514 B.

nonlinearity of Eq. (2.2) and the fact that the location of the turning point
C — A fluctuates if the rate of the cross traffic A is variable. The result is a
deviation that is maximal at 1/g;; = C — A and causes underestimation of
the available bandwidth [8, 9].

* Packet interference: Non-conformance with the fluid model arises due to
the interaction of probes with packets of the cross traffic. In Fig. 2.4,
two relevant examples are identified by frequent samples of goyt in the
range of 240 and 360 us, respectively. In contrast, the gyt of 290 us that
is predicted by the fluid model, is observed rarely. To understand this
effect, consider two probe packets with gin = 270 us and note that the
transmission time of a packet is 120 pus. The case gout = 360 ps occurs
if two cross traffic packets are inserted between the two probe packets.
Instead, if one of the two cross traffic packets is inserted in front of the
probe, it delays the first probe packet, resulting in gout =240 ps.

* Multiple tight links: An extension of Eq. (2.1) for multiple links is derived
in [29]. Yet, if cross traffic is non-fluid, the repeated packet interaction at
each of the links distorts the probe gaps. Moreover, in the case of random
cross traffic, there may not be a single tight link, but the tight link may
vary randomly. The consequence is an underestimation of the available
bandwidth [9, 10] that is analyzed in [11, 12].

® Measurement inaccuracies: Besides, there exist limitations of the accuracy
due to the hardware of the hosts where measurements are taken. A pos-
sible clock offset between sender and receiver is dealt with by the use of
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probe gaps. A problem in high-speed networks is, however, interrupt co-
alescing [19, 20]. This technique avoids flooding a host with too many in-
terrupts by grouping packets received in a short time together in a single
interrupt, which distorts gout. In Fig. 2.4, these are identified by samples
of gout >> 290 us.

2.2.2  Probe Rate Model

In order to alleviate the observed variability of the samples of gout, the state-
of-the-art bandwidth estimation methods perform averaging of several output
gap samples gout. The samples can be collected by repeatedly sending packet
pairs [25], or packet trains [13, 26], which consist of n consecutive packets and
hence n — 1 input gaps. At the receiver, the consecutive output gaps are for-
mulated as gz)ut = tg';J — téut for j=1...n—1, where tg,ut is the time when the
jth packet arrives at the receiver. Then, the output rate of a packet train with n

packets is given as

. (m—1)1 (23)
out— T .1 - .
t(T)Lut — tout
Since we define g];)ut :tif;lt — t);,ut, we can re-write Eq. (2.3) as
l
Tout = 1 (24)

n—1 3 -
n—1 ij] Jout

Notice that the denominator in Eq.(2.4) converges to the mean of the output
gaps with the increasing packet train size. Herein, assuming a deterministic

fluid-flow model, i.e., qut =(gout for Vj, we can see that

l l l

(2.5)

Tout = 1

3 = Th_ = .
Zn gg)ut (n—1)gout Jout

n—1 j=1 n—1

Similarly, defining the input rate as 1, =1/gin, and inserting i, =1/gin and

Tout =1/gout into Eq. (2.1) and Eq. (2.2), we obtain 14y as

. Tin
= in, =~ C 7 6
Tout =Min {Tm Y } (2.6)
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Figure 2.5: Rate response curve. The bend marks the available bandwidth.
and the equivalent representation of the rate response curve as

1 if Tin < C— 7\,
= (2.7)

Tout T A .
fn'i‘f if i > C—A,

Tin

which mathematically describes the clear bend in the rate response curve at
Tin =A as shown in Fig. 2.5.

Active techniques for estimation of the available bandwidth can be classi-
fied to be either iterative or direct. We use the rate response curve shown in
Fig. 2.5 to illustrate the difference. The same conclusions can be made if the
gap response curve is used.

Iterative probing techniques basically search for the turning point of the rate
response curve by sending repeated probes at increasing rates, as long as
Tin/Tout = 1. When 1, reaches C —A, the available bandwidth is saturated and in-
creasing the probe rate further results in 7in/Tout > 1. As a consequence, a queue
builds up at the multiplexer. This causes an increase in OWD that can be de-
tected by the receiver. Established iterative probing tools are, e.g., Pathload [30]
and Initial Gap Increasing/Packet Transmission Rate (IGI/PTR) [31]. Pathload
adaptively varies the rates of successive packet trains rj, in a binary search un-
til rin, converges to the available bandwidth. It uses feedback from the receiver
that reports whether rj, exceeds the available bandwidth or not. The decision
is made based on two statistical tests that detect increasing trends of the OWD.
In comparison to Pathload, IGI/PTR tests whether (rin — Tout)/Tin > At where
the threshold value A'™" is set to 0.1 to detect whether the probe rate exceeds
the available bandwidth. Regarding the variability of the available bandwidth,
Pathload reports an available bandwidth range that is determined by the largest
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Figure 2.6: Rate response curves of a single tight link in presence of exponential cross
traffic. The sharp bend around 1i;, = C — A that marks the available band-
width is not clearly apparent.

probe rate that did not cause self-induced congestion and the smallest rate that
did cause congestion, respectively.

Direct probing techniques estimate the upward line segment of the rate re-
sponse curve for 1i, > C — A instead of searching for the turning point of the
rate response curve. The line is determined by C and A. If C is known, a
single probe 1j, = C yields a measurement of 1oy that is sufficient to estimate
A =C(C/rout — 1) from Eq. (2.7). Spruce [32] implements this approach. If C
is also unknown, a minimum of two different probing rates ri, > C — A is suf-
ficient to estimate the two unknown parameters of the line. This approach is
taken, e.g., by TOPP [29], DietTOPP [33], and BART [34].

The tools based on the PRM are able to alleviate the g, distortions by
averaging several output gap samples gout, however, the curve deviates from
its fluid-flow model-based prediction in the presence of random, discrete cross
traffic and multiple tight links leading to biased estimates. For instance, looking
at the experimental results® for exponential traffic with moderate burstiness in
Fig. 2.6, we can see that, unlike the deterministic fluid-flow model in Fig. 2.5,
the sharp bend around rj, = C — A, that marks the available bandwidth is not
clearly apparent. A detailed analysis of the impact of random cross traffic on
the properties of rate and gap response curves is provided by [8, 11]. The main
finding is an elastic deviation from the fluid-flow model that may cause biased

We obtained the results in Fig. 2.6 from the testbed shown in Fig. 4.1. The network is set with
a single tight link of capacity C =100 Mbps and access links are of capacity C =1 Gbps. The
cross traffic is discrete with a packet length of 1 = 1514 B. We further set the cross traffic to
moderate burstiness with exponentially distributed packet inter-arrival times and the average
rate of A=>50 Mbps. Particularly, we run the experiment 1000 times and average the results for
smoothness in the presentation.
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estimates. The bias is significant in the middle part of the probing range around
Tin =C — A, where it blurs the characteristic bend of the curve. For intuition, the
bend of the curve at C — A can be thought of as fluctuating along the x-axis if
the intensity of cross traffic A is random. Further, [8, 11] connect the concept of
rate and gap response curves with known bandwidth estimation tools.
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PROBLEM STATEMENT

In the previous chapters, we have introduced the state-of-the-art model-based
bandwidth estimation techniques. In this chapter, we describe and summarize
the research problems addressed in this thesis.

In the light of potential benefits that users can gain from the knowledge
of network path characteristics and significance of bandwidth estimation to
improve the QoS guarantees, the area of performance measurement is still a
focus of ongoing research activities. Throughout the years, several available-
bandwidth measurement tools based on passive [30, 35, 36] and active [8, 11, 12,
23, 26, 27, 20-34, 37] measurements have been developed. As discussed in pre-
vious chapters, these methods are based on the assumptions of the fluid-flow
model. However, in practical scenarios, the methods for bandwidth estima-
tion have to deal with noisy measurement data. For example, the observations
of output gaps gout are distorted for various reasons, e.g., due to inaccurate
time-stamping, non-fluid traffic, multiple bottlenecks.

To alleviate the observed variability of the samples of gout, state-of-the-art
bandwidth estimation methods perform averaging of several gou: samples by
sending packet pairs [25], or by packet trains [13, 26]. A common approach is the
use of constant rate packet trains, which are less susceptible to random fluctu-
ations. To improve the estimates further, different post-processing techniques
are used. A typical approach is to repeat measurements several times to com-
pute average values, as done by Pathchirp [27] and Spruce [32], or to perform a
majority decision, as in the case of Pathload [30] that also reports an undecided
bandwidth region. Furthermore, BART [34] uses a Kalman filter to estimate the
available bandwidth from repeated measurements and to track changes of the
available bandwidth online. TOPP [29] and DietTOPP [33] use linear regres-
sion. These techniques, however, do not overcome the basic assumptions of the
deterministic fluid model in Eq. (2.1).

While packet trains and statistical post-processing help to reduce the variabil-
ity of available bandwidth estimates, these cannot resolve systematic deviations
such as the underestimation bias in case of random cross traffic and multiple
tight links [8, 11, 12]. Hence, the fundamental limitations of the state-of-the-art
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bandwidth estimation techniques motivated us to investigate in-depth:

The estimation of the available bandwidth using a reduced amount of probe traf-
fic without negatively impacting the accuracy in the practical network scenarios that
fail to comply with the assumptions of the fluid-flow model.

The injection of probe traffic as done in active probing, however, adds to the
load of the network. As a consequence, network congestion occurs that affects
the performance of existing flows [28]. Hence, it is favorable if the available
bandwidth can be estimated from passive measurements of existing network
traffic. But estimating the bandwidth from passive measurements comes with
its own challenges. The difficulty of passive measurements is that the input
rate cannot be controlled, e.g., TCP chaotic traffic pattern, which makes it hard
to extract the desired information [23]. Hence, another issue that we investigate
in this thesis is:

The estimation of the available bandwidth from chaotic, non-packet train pattern
of TCP passive measurements, where it is hard to extract the desired information.

Furthermore, employing passive measurements requires direct access to the
point of interest to monitor the flowing traffic. This might involve privacy or
security issues about how to access/protect the gathered traces. Therefore, to-
wards the end of this thesis we phrase another research challenge:

The estimation of the available bandwidth from TCP sender-side measurements us-
ing input and acknowledgment gaps.



REGRESSION-BASED ACTIVE AVAILABLE BANDWIDTH
ESTIMATION

In this chapter, we investigate how to benefit from machine learning, specifi-
cally neural networks, while using standard packet train probes for available
bandwidth estimation. Compared to packet chirps, that are favored in the re-
lated works [20, 38, 39], packet trains have been reported to be more robust
to random fluctuations. In fact, the implementation of a chirp as a multi-rate
probe [20], that concatenates several packet trains with increasing rates, also
benefits from this. Different from multi-rate probes, packet trains are typically
used in an iterative procedure that takes advantage of feedback to adapt the
rate of the next packet train. Such a procedure is also proposed in [20], where
machine learning is used to classify individual packet trains to control a binary
search. The goal is to adapt the probe rate until it approaches the available
bandwidth. In contrast, we use a feature vector that iteratively includes each
additional packet train probe. This additional information enables estimating
the available bandwidth directly, without the necessity that the probe rate con-
verges to the available bandwidth. Instead of a binary search, our method
chooses the next probe rate that is expected to improve the bandwidth estimate
the most.

We evaluate our method in controlled experiments in a network testbed. We
specifically target topologies where the assumptions of the deterministic fluid
model in Eq. 2.1 are not satisfied such as bursty cross traffic and multiple tight
links. For a reference, we implement three state-of-the-art methods, two model-
based and one machine learning-based, to use the same data set as our neural
network-based approach.

We present a broader evaluation of our method using a wide range of ran-
domly generated topologies with largely varying capacities and cross traffic in-
tensities and burstiness. The results confirm that our method is scale-invariant,
i.e., it is applicable without prior calibration to networks of arbitrary capacity.
We also train our method for multiple tight links to reduce the bias and variance
in estimates. Further, we present a deeper investigation of multi-hop networks.
We specifically consider cases where the tight link differs from the bottleneck
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link and show how the order in which these occur in a network path affects the
input-output relation Eq. (2.1) that is used for available bandwidth estimation.

To compare with state-of-the-art machine learning technique [20], we formu-
late the task of available bandwidth estimation as a classification problem. We
implement two different classifiers named individual classifier and full classi-
fier. The individual classifier represents state-of-the-art and uses the informa-
tion of a single probe rate to classify whether the current probe rate is above or
below the available bandwidth. Depending upon the result, the next probe rate
is chosen iteratively until the probe rate converges to the available bandwidth.
In contrast, the full classifier, which is implemented by our method, uses a
p-dimensional feature vector that includes the information of all the previous
probe rates to improve the classification whether the probe rates are above or
below the available bandwidth.

Further, we evaluate our proposed method with three other supervised ma-
chine learning techniques: SVR, GPR and Bagging. We show that the ability
of the neural networks to generalize non-locally makes them favorable for the
available bandwidth estimation in arbitrary topologies where the network pa-
rameters differ significantly from the training data. We provide data sets gen-
erated in a controlled network testbed located at Leibniz University Hannover
for training and testing of our proposed method. The work in this chapter is
based on joint work with Markus Fidler and Bodo Rosenhahn [40, 41].

The remainder of this chapter is structured as follows: In Sec. 4.1, we discuss
the related work on available bandwidth estimation using machine learning. In
Sec. 4.2, we introduce the reference implementation of model-based estimation
techniques. We present our neural network-based method, describe the train-
ing and show testing results in Sec. 4.3. In Sec. 4.4, we consider the estimation
of available bandwidth and capacity for randomly generated networks with
different tight link capacities, and networks with multiple tight links. Our iter-
ative neural network-based method that selects the probe rates itself as well as
a comparison with other machine learning techniques are presented in Sec. 4.5.

4.1 RELATED WORK

We have discussed the model-based state-of-the-art bandwidth estimation tech-
niques in chapter 2. In this section, we will discuss the related work in band-
width estimation employing machine learning.

The machine learning approach has been considered earlier in [38, 42, 43]
and receives increasing attention in recent research [20, 39]. The works differ
from each other with respect to their application: [42] considers the prediction
of the available bandwidth from packet data traces that have been obtained
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in passive measurements. In contrast, [20, 38, 39, 43] use active probes to es-
timate the available bandwidth in Network Simulator (NS)-2 simulations [38],
the European Traffic Observatory Measurement InfrastruCture (ETOMIC) net-
work [43], ultra-high speed 10 Gbps networks [20] and operational Long-Term
Evolution (LTE) networks [39], respectively.

Common to these active probing methods [20, 38, 39, 43] is the use of packet
chirps [27] that are probes of several packets sent at an increasing data rate.
The rate increase is achieved either by a (geometric) reduction of the input
gap [38, 43], by concatenating several packet trains with increasing rates to a
multi-rate probe [20], or by a linear increase of the packet size [39]. Chirps per-
mit detecting the turning point of Eq. (2.2), which coincides with the available
bandwidth, using a single probe. They are, however, susceptible to random
fluctuations [23].

Other than chirps, [38] evaluates packet bursts that are probes of back-to-
back packets and concludes that bursts are not adequate to estimate the avail-
able bandwidth. Also, [20] considers constant rate packet trains for an iterative
search for the available bandwidth. Here, machine learning solves a classifica-
tion problem to estimate whether the rate of a packet train exceeds the avail-
able bandwidth or not. Depending on the result, the rate of the next packet
train is reduced or increased in a binary search as in [30] until the probe rate
approaches the available bandwidth. The authors of [20] give, however, prefer-
ence to chirp probes.

The feature vectors that are used for machine learning are generally measure-
ments of gout [38, 39, 43] with the exception that [20] uses the Fourier transform
of vectors of gin and gout. Supervised learning is used and [20, 39] take advan-
tage of today’s availability of different software packages to compare the utility
of state-of-the-art machine learning techniques in bandwidth estimation.

4.2 MODEL-BASED REFERENCE IMPLEMENTATIONS

As discussed in chapter 2, the methods for available bandwidth estimation that
are based on the fluid model of Eq. (2.1) essentially fall into two different cat-
egories: iterative probing and direct probing. For each of the two categories, we
implement a bandwidth estimation technique that is representative of state-
of-the-art. While available bandwidth estimation tools differ significantly re-
garding the selection and the amount of probe traffic, our implementations are
tailored to use the same database so that they provide a reference for the neural
network-based method.
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4.2.1 Iterative probing

To implement the iterative probing technique, we use a data set of equidistantly
spaced i, and the corresponding oy in our experiments. We process these
entries iteratively in increasing order of 7, and apply the threshold test of
IGI/PTR [31] (Tin — Tout)/Tin > A", where the threshold value A" is set to 0.1,
to determine whether Tj, exceeds the available bandwidth. We denote ril* the
largest rate before the test detects that the available bandwidth is exceeded for

the first time and report ril* as the available bandwidth estimate. We note that

th

there may, however, exist i, > 17",

where the test fails again. This may occur,
for example, due to the burstiness of the cross traffic that causes fluctuations of
the available bandwidth.

4.2.2  Direct probing

To implement the direct probing technique, we combine it with a threshold test
to select relevant probe rates. Direct probing techniques require that rj, > C—A
where C and A are unknown. We adapt a criterion from DietTOPP [33] to
determine a minimum threshold " that satisfies ™" > C — A and use only
the probe rates Tj, > Thin,

min
m

The procedure to find rji™ is as follows: We use the maximal input rate in

max
m

rate T If 0 > 3, it can be seen from Eq. (2.7) that both vh™ > C —A as

the measurement data denoted by r'®* and extract the corresponding output

well as 172X > C — A. Hence, we use Ti" =103 a5 a threshold to filter out all

Tin < TN,

If the assumptions of the fluid model do not hold, e.g., in the case of ran-
dom cross traffic, the regression technique may occasionally fail. We filter out
bandwidth estimates that can be classified as infeasible. This is the case if the
slope of the regression line is so small that the intersection with 1 is on the
negative 1, axis in Fig. 2.5, implying the contradiction A < 0, or if the slope of

the regression line is negative, implying C < 0.

4.3 NEURAL NETWORK-BASED METHOD

In this section, we present our neural network-based implementation of band-
width estimation, describe the training data sets, and show a comparison of

available bandwidth estimates for a range of different network parameters.



4.3 NEURAL NETWORK-BASED METHOD

4.3.1  Scale-invariant Implementation

We use a neural network that takes a p-dimensional vector of values ri,/Tout
as input. The corresponding rj, are equidistantly spaced with an increment 6,.
Hence, 1y is in [0r,20+,...,pd,] that is fully defined by the parameters p and
5, that determine the measurement resolution. Since the actual values of r;, do
not provide additional information, they are not input to the neural network.
Instead, the neural network refers to values of rin/Tout Only by their index i €
[1,p]. The output of the neural network is the tuple of bottleneck capacity
and available bandwidth that are also normalized with respect to 5., i.e., we
use C/6, and A/d,, respectively. While C/d, and A/8, are not necessarily
integers, they can be thought of as the index ic and ia where ri, saturates
the bottleneck capacity or the available bandwidth, respectively. To obtain the
actual capacity and the available bandwidth, the output of the neural network
has to be multiplied by 6.

Since the capacity of the network is a priori unknown, an adequate measure-
ment resolution &, has to be estimated first. For this purpose, we use a packet

train probe consisting of n packets that are sent as a burst, i.e., at the maximum
8

possible rate denoted as 3, and measure the corresponding output rate 15
at the receiver. Sending the packet train as a burst ensures that 5 > C—A

so that we have 13, =15 C/(r3 +A) from Eq. (2.7). Further, 13, € [C —A,C]

1 5
in out

if 12 — C—A or 18 — oo, respectively. Hence, 13, provides a useful esti-
mate of the probing range for bandwidth estimation. Since our feature vector
is p-dimensional, we divide &, =15,,/p to determine the set of probing rates
Tin € [8+,20r,...,p0:]. In practice, we use a smoothed estimate fgut that is
obtained as the average output rate of a number of repeated probes.

The normalization by 6, achieves a neural network that is scale-invariant,
since the division by &, replaces the units, e.g., Mbps or Gbps, by indices. Con-
sidering the fluid model in Eq. (2.7), the normalization of all quantities Tin, Tout,

C, and A by 6, results in

|1 ifi<ic —1in,
= (4'1)

Tout [ P . .
v if i >1ic —1ia.

where we used the indices i = 1i,/0+, ic = C/b;, ix =A/0y, and ip = A/, =
ic —1ix. Eq. (4.1) confirms that the shape of Tin/Tout is independent of the scale,
e.g., sampling a 100 Mbps network in increments of 5, =10 Mbps or a 1 Gbps
network in increments of 6, = 0.1 Gbps reveals the same characteristic shape.
The advantage of the scale-invariant representation is that the neural network

requires less training and is applicable to networks of arbitrary capacity. We
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Figure 4.1: Dumbbell topology set up using the Emulab and MoonGen software. A
varying number of tight links with single hop-persistent cross traffic are
configured. Probe-traffic is path-persistent to estimate the end-to-end avail-
able bandwidth from measurements at points A and B.

note that the identity Eq. (4.1) is derived under the assumptions of the fluid
model and does not consider effects that are not scale-invariant such as the
impact of the packet size or interrupt coalescing.

For implementation, we use a p = 20-dimensional input vector of equidis-
tantly sampled values of Tin/Tout. We decided for a shallow neural network
consisting of one hidden layer with 40 neurons. Thus, the network comprises a
20-dimensional input vector, 40 hidden neurons and two output neurons. The

output neutrons encode C/6, and A/d,.

4.3.2  Training Data: Exponential Cross Traffic, Single Tight Link

We generate different data sets for training and evaluation using a controlled
network testbed. The testbed is located at Leibniz University Hannover and
comprises about 80 machines that are each connected by a minimum of 4
Ethernet links of 1 Gbps and 10 Gbps capacity via Virtual Local Area Net-
work (VLAN) switches. The testbed is managed by the Emulab software [44]
that configures the machines as hosts and routers, and connects them using
VLANSs to implement the desired topology. We use a dumbbell topology with
multiple tight links as shown in Fig. 4.1. To emulate the characteristics of the
links, such as capacity, delay, and packet loss, additional machines are em-
ployed by Emulab. We use the MoonGen software [45] for emulation of link
capacities that differ from the native Ethernet capacity. To achieve an accurate
spacing of packets that matches the emulated capacity, MoonGen fills the gaps
between packets by dummy frames that are discarded at the output of the link.
We use the forward rate Lua script for the MoonGen API to achieve the desired
forwarding rate for the transmission and reception ports of MoonGen. Cross
traffic of different types and intensities is generated using Distributed Internet
Traffic Generator (D-ITG) [46]. The cross traffic is single hop-persistent, i.e., at
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each link, fresh cross traffic is multiplexed. The probe traffic is path-persistent,
i.e., it travels along the entire network path, to estimate the end-to-end avail-
able bandwidth. We use Real-time UDP Data Emitter (RUDE) & Collector for
RUDE (CRUDE) [47] to generate User Datagram Protocol (UDP) probe streams.
A probe stream consists of a series of p packet trains of n packets each. The p
packet trains correspond to p different probe rates with a constant rate incre-
ment of o, between successive trains. The packet size of the probe traffic and
the cross traffic is 1=1514 B including the Ethernet header.

Packet timestamps at the probe sender and receiver are generated at points
A and B, respectively, using libpcap at the hosts. We also use a specific Endace
Data Acquisition and Generation (DAG) measurement card to obtain accurate
reference timestamps. The timestamps are used to compute Ty, and 1oyt for
each packet train.

We generate two training data sets for a single tight link with exponential
cross traffic. In data set (i) the capacity of the tight link is C = 100 Mbps.
Exponential cross traffic with an average rate A =25, 50 and 75 Mbps is used
to generate different available bandwidths. In data set (ii) the capacity of the
tight link is set to C=50 Mbps and the exponential cross traffic has an average
rate of A =12.5, 25 and 37.5 Mbps, respectively. In both cases, the capacity of
the access links is C =1 Gbps. The probe streams comprise packet trains of
n =100 packets sent at p =20 different rates with rate increment 8., where &,
is determined as described in Sec. 4.3.1. For each configuration, 100 repeated
experiments are performed.

For training of the neural network, we first implement an autoencoder for
each layer separately and then fine-tune the network using Scaled Conjugate
Gradient (SCG). Given a regression network, we optimize the [2-error requir-
ing approximately 1000 epochs until convergence is achieved. Training of the
network (using Matlab) takes approximately 30 s. Due to the limited amount
of training data (600 experiments overall in both training data sets), the shallow
network with a small number of hidden neurons allows training without much

over-fitting.

4.3.3 Evaluation: Exponential Cross Traffic, Single Tight Link

We train the neural network using the two training data sets and generate ad-
ditional data sets for testing. The test data is generated for the same network
configuration as the (i) training data set, i.e., using exponential cross traffic of
25,50 and 75 Mbps at a single tight link of 100 Mbps capacity. We also consider
other cross traffic rates of 12.5, 37.5, 62.5 and 87.5 Mbps that have not been
included in the (i) training data set to see how well the neural network interpo-
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lates and extrapolates. We repeat each experiment 100 times so that we obtain
100 bandwidth estimates for each configuration. We compare the performance
of the neural network-based method with the two model-based reference imple-
mentations of an iterative and a direct estimation method. All three methods

generate available bandwidth estimates from the same measurement data.

4.3.3.1 Testing

The testing results of the neural network-based method are summarized in
Fig. 4.2a compared to the results of the direct and the iterative method. We
show the average of the available bandwidth estimates with error bars that
depict the Standard Deviation (SD) of the estimates. The variability of the
available bandwidth estimates is due to a number of reasons, as discussed in
chapter 1. Particularly, the exponential cross traffic deviates from the fluid
model and causes random fluctuations of the measurements of T,yt.

The variability of the available bandwidth estimates of the direct method
is comparably large, and the average underestimates the true available band-
width. The iterative method shows less variability but tends to overestimate
the available bandwidth. This is a consequence of the threshold test, where
a lower threshold increases the responsiveness of the test but makes it more
sensitive to random fluctuations. The neural network-based method improves
bandwidth estimates significantly. The average matches the true available band-
width and the variability is low. The good performance of the neural network
is not unexpected as it has been trained for the same network parameters.

4.3.3.2 Interpolation

Next, we consider cross traffic of the same type, i.e., exponential, however,
with a different rate that has not been included in the training data. First, we
consider cross traffic rates of 37.5 and 62.5 Mbps that fall into the range of rates
25, 50 and 75 Mbps that have been used for training, hence the neural network
has to interpolate. The results in Fig. 4.2b show that the available bandwidth

estimates of the neural network-based method are consistent in this case too.

4.3.3.3 Extrapolation

Fig. 4.2c depicts available bandwidth estimates for cross traffic rates of 12.5 and
87.5 Mbps. These rates fall outside the range of rates that have been included
in the training data set so that the neural network has to extrapolate. The
results of the neural network-based method are nevertheless highly accurate,
with a noticeable underestimation of 5 Mbps on average only in the case of a
true available bandwidth of 87.5 Mbps. A reason for the lower accuracy that is
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Figure 4.2: Bandwidth estimates for different cross traffic rates that have been included
in the training data set (testing), that fall into the range of the training
data set (interpolation), and that fall outside the range of the training data
set (extrapolation). The neural network-based method provides available
bandwidth estimates that exhibit little variation and have an average that
matches the true available bandwidth.
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observed when the available bandwidth approaches the capacity is that fewer
measurements are on the characteristic upward line segment, see Fig. 2.5 that
is also used for estimation by the direct method. The higher intensity of the
cross traffic increases the variation in the available bandwidth estimates as can
be seen in the case of a true available bandwidth of 12.5 Mbps.

4.3.4 Network Parameter Variation Beyond the Training Data

We investigate the sensitivity of the neural network with respect to a varia-
tion of network parameters that differ substantially from the training data set.
Specifically, we consider two cases that are known to be hard in bandwidth
estimation. These are cross traffic with high burstiness, and networks with
multiple tight links. In this section, we evaluate the variability of cross traffic.
Multiple tight links are discussed in the following section.

4.3.4.1 Burstiness of Cross Traffic

To evaluate how the neural network-based method performs in the presence of
cross traffic with an unknown burstiness, we consider three different types of
cross traffic: CBR that has no burstiness as assumed by the probe rate model,
moderate burstiness due to exponential packet inter-arrival times, and heavy
burstiness due to Pareto inter-arrival times with infinite variance caused by a
shape parameter of a; =1.5. The average rate of cross traffic is A=>50 Mbps in
all cases. As before, the tight link capacity is C=100 Mbps and the access links
capacity is C=1 Gbps.

The burstiness of the cross traffic can cause queueing at the tight link even
if the probe rate is below the average available bandwidth, i.e., if i, < C—A.
This effect is not captured by the fluid model. It causes a deviation from the
ideal rate response curve as depicted in Fig. 2.5 that is maximal at C — A and
blurs the bend that marks the available bandwidth. The result is an increase in
the variability of available bandwidth estimates as well as an underestimation
bias in both direct and iterative bandwidth estimation techniques [8, 9]. Fig. 4.3
shows the mean and the SD of 100 repeated experiments using the direct and
iterative probing techniques and the neural network-based method. The av-
erage of the estimates shows a slight underestimation bias compared to the
true available bandwidth if the cross traffic burstiness is increased. More pro-
nounced is the effect of the cross traffic burstiness on the SD of the bandwidth
estimates. While for CBR cross traffic, the estimates are close to deterministic,
the variability of the estimates increases significantly if the cross traffic is bursty.
The neural network, that has been trained for exponential cross traffic only, per-
forms almost perfectly in the case of CBR cross traffic and shows good results
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Figure 4.3: Bandwidth estimates for different types of cross traffic burstiness. An in-
crease of the burstiness causes a higher variability of the bandwidth esti-
mates as well as an underestimation bias.

with less variability compared to the direct and iterative techniques also for the
case of Pareto cross traffic.

4.4 VARIATION OF THE TIGHT LINK CAPACITY AND MULTIPLE TIGHT LINKS

In this section, we evaluate the performance of our neural network-based method
for a wide range of different network scenarios. For example, the capacity of
the network may be small, e.g., in access networks, or large, e.g., in backbone
networks. Further, these networks may have a high cross traffic intensity with
an unknown burstiness and possibly multiple tight links. Hence, the test data
may differ substantially from the training data. For the purpose of training,
we use data sets (i) and (ii) generated for a single-hop network with tight link
capacity C=>50 Mbps and C =100 Mbps, respectively, in the presence of expo-
nential cross traffic, i.e., moderate burstiness. For testing, we use data sets that
have much more variation than the training data. The testing data is obtained
using randomly generated networks that cover a wide range of capacities and
cross traffic intensities with unknown burstiness. We also address the known
underestimation bias in the case of multiple tight links and include networks
where the tight link does not coincide with the bottleneck link in our evaluation.

4.4.1  Random Networks

Since our implementation of the neural network-based method is scale-invariant
(within the limits of the fluid model), we expect that the method can perform
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bandwidth estimation in arbitrary networks. To investigate the sensitivity of
our method with respect to different network parameters, we set up a number
of topologies where the tight link capacity and the cross traffic intensity are
chosen randomly. The capacity is a random number in the interval [10 Mbps,
1 Gbps] with exponential distribution, i.e., C =10401.3] Mbps where U[1, 3] is a
uniform random variable in the interval [1, 3]. The cross traffic intensity is cho-
sen relative to the tight link capacity as A=UI[0, 1] - C Mbps. The link and traffic
characteristics are emulated as described in Sec. 4.3.2. The access link capacity
for all networks is C=1 Gbps. Since the capacity is unknown to the estimation
method, the probing increment 6, is chosen after sending initial packet train

probes as a burst as described in Sec. 4.3.1.

4.4.1.1 Awvailable Bandwidth Estimates

We perform a number of experiments using randomly generated networks with
a wide variety in the tight link capacity, cross traffic intensity, and cross traffic
burstiness. We consider small, moderate, and large values of these network
parameters to evaluate the performance of our proposed method. First, we con-
sider different intensities of exponential cross traffic and second, different cross
traffic burstiness: CBR (least or without), exponential (moderate) and Pareto
(heavy) in random networks.

We show some selected results which are representative of the performance
of our approach. Fig. 4.4a, Fig. 4.4b and Fig. 4.4c show the results for random
networks with a tight link capacity of C = 22 Mbps (small), C = 385 Mbps
(medium), and C =831 Mbps (large). Further, corresponding to each tight link
capacity, the cross traffic intensities also vary from low to high. For example,
Fig. 4.4a shows the results for the data obtained for a network with a tight
link capacity C = 22 Mbps in the presence of exponential cross traffic with
intensity A =7 Mbps (low), A =11 Mbps (medium), and A = 17 Mbps (high).
Similarly, for Fig. 4.4b and Fig. 4.4c the data is obtained for networks with
capacity C =385 Mbps and C =831 Mbps, and the corresponding exponential
cross traffic of intensities 98, 192, 294 Mbps and 250, 439, 621 Mbps, respectively.

Fig. 4.5a, Fig. 4.5b and Fig. 4.5¢ show results in the presence of cross traffic
with different types of burstiness for different randomly generated networks.
The data is obtained for networks with a tight link capacity of C =61 Mbps
(small), C =276 Mbps (medium), and C =1 Gbps (large) with an average rate
of the cross traffic of 46, 131, and 493 Mbps, respectively.

The results confirm that our method is able to estimate the available band-
width in networks with arbitrary capacities and in the presence of different
intensities and unknown burstiness of the cross traffic. The average of the avail-
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Figure 4.6: Tight link capacity estimates for random networks in the presence of expo-
nential cross traffic with an average intensity of 4, 60, and 98 Mbps.

able bandwidth estimates corresponds to the true available bandwidth, though
the variation increases with higher burstiness and intensity of the cross traffic.

4.4.1.2  Capacity Estimates

The output of our neural network-based approach is the tuple of bottleneck
capacity and available bandwidth estimates. We evaluate our method to esti-
mate the tight link capacity of networks. The measurement data is obtained for
random networks with a true tight link capacity of C=26 Mbps, C=225 Mbps,
and C=387 Mbps in the presence of exponential cross traffic of intensity 14, 60,
and 98 Mbps, respectively.

Fig. 4.6 depicts the capacity estimates obtained by the direct method and the
neural network, respectively. Both methods perform well for small capacities.
However, in higher capacity networks, the variation of the estimates increases.
This is due to the fact that the inter-packet gaps are highly susceptible to noise
introduced by bursty cross traffic in these networks. The difficulty to attain
precise smaller input gaps gin makes the input data noisy. As described in
Sec. 4.2.2, the direct method estimates the capacity from the slope of the up-
ward segment of a rate response curve shown in Fig. 2.5. In the presence of
random cross traffic, the slope gets altered. This leads to underestimation and
variability in the estimates of the direct method. However, the neural network,
that is trained only for small capacities of 50 Mbps and 100 Mbps, is able to per-
form well even in higher capacity networks. The estimates are accurate with a
mean value matching the true capacity value, though the variation of the esti-
mates increases with increasing capacity due to noisy test data. Thus, with our
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proposed method, we are able to accurately estimate the available bandwidth

as well as the capacity.

4.4.2  Multiple Tight Links

We now address networks with multiple tight links. These networks pose a
well-known challenge in available bandwidth estimation. In the case of multi-
ple tight links, the probe stream has a constant rate ri, with a defined input gap
gin only at the first link. For the following links, the input gaps have a random
structure as they are the output gaps of the preceding links. At each additional
link, the probe stream interacts with new, bursty cross traffic. This causes lower
probe output rates and results in underestimation of the available bandwidth
in multi-hop networks [8-10, 12].

To test the neural network with multiple tight links, we extend our net-
work from single-hop to multi-hop as shown in Fig. 4.1. The path-persistent
probe streams experience single hop-persistent exponential cross traffic with
the average rate A =50 Mbps while traversing multiple tight links of capacity
C=100 Mbps. The capacity of the access links is T Gbps.

In Fig. 4.7a, we show the results from 100 repeated measurements for net-
works with 1 up to 4 tight links. The model-based methods, both direct and
iterative, as well as the neural network-based method underestimate the avail-
able bandwidth with an increasing number of tight links. The reason for un-
derestimation in the case of model-based techniques is the cross traffic bursti-
ness which potentially reduces the output probe rate at each of the tight links.
Though the estimates of our neural network show the least variability, the neu-
ral network underestimates the available bandwidth. This is not surprising, as

it is trained only for a single tight link.

4.4.2.1  Training for Multiple Tight Links

Since the neural network that is trained only for a single tight link, underesti-
mates the available bandwidth in the case of multiple tight links, we consider
training the neural network for the latter. A neural network has also been
trained for multiple tight links in [43], using, however, packet chirp probes. We
extend the single tight link network up to four tight links as shown in Fig. 4.1.
To generate the training data, a probe stream consisting of p packet trains is
sent through a network with two, three, and four tight links, respectively, each
with exponential cross traffic with an average rate A=50 Mbps. In all networks,
the probe stream is path persistent and the cross traffic is single hop-persistent.
The capacity of the access links is 1 Gbps and that of the tight links is 100 Mbps.
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(a) All methods tend to underestimate the available bandwidth in the case
of multiple tight links. (b) The training of the neural network for multiple
tight links improves the bandwidth estimates significantly.

The neural network is trained with this additional (iii) training set for multiple
tight links along with training sets (i) and (ii) for a single tight link.

Fig. 4.7b compares the results of direct and iterative methods with the neural
network. As can be seen clearly, the results have improved significantly with the
neural network after it has been trained for multiple tight links. The mean value
matches the true available bandwidth and the estimates have less variability.

4.4.2.2 Tight Link differs from the Bottleneck Link

The problem of available bandwidth estimation in multi-hop networks becomes
more difficult if the tight link of a network path differs from the bottleneck
link. As shown in Fig. 4.8, link i is the bottleneck link, i.e., the link with the
minimum capacity, and link i+ 1 represents the tight link, i.e., the link that has
the minimum available bandwidth [37]. The existence of separate tight and
bottleneck links has an impact on the shape of the rate response curve. The
rate response curve in Fig. 2.5 is derived under the assumption that there is a
single tight link that matches the bottleneck link. If this assumption does not
hold, available bandwidth estimation by direct methods becomes more difficult.
We investigate the impact further by considering two different scenarios. In the
first scenario, i.e., scenario I, the bottleneck link appears in front of the tight
link. In the second, i.e., scenario II, it is vice versa. In both the scenarios as seen
in Fig. 4.8 only the input rate t at the first link i has the desired input gap.
As the packet train traverses through the first link with capacity C', it interacts
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link (i): min (C) link (i+1): min (A)

Bottleneck
Link

Alzcl_il Ai+1zci+l_ii+1

Figure 4.8: A two-hop network where the tight link differs from the bottleneck link.

with the cross traffic with average rate A' and the resulting output rate i, is

obtained by rearranging Eq. (2.7) as

i e d i i

¢ T if v, <C =AY,
Tout = +ict . . . (4'2)

in o | i_ i

BN if rj, > Ct— A%

For the next link i+ 1, the input has a different rate as it is fed from the
it+1 it1

first link 1, i.e,, i7" =7} . The output rate r}!' from hop i+ 1 is obtained by

recursive insertion of Eq. (4.2) as

T if i <AWT, 2l CAY,

T CHY o T i

AT ifr;,, >A T, <AY

i+1_
Tout = o o (43)

r;’ncl T‘iLnCL i+1 i i

ri4+At if ri4At A ; Tin > A
ﬁciﬂ o

il .o TiCt i i i
in in i+1 1 1
e lfr;+;\1>A , Ty > AN
in = 4 A1+ in

Ti1n+?\1

where C' and C™! are the link capacities, At and A*! are the single hop-
persistent cross traffic intensities, and At =Cy—A; and AMT = Ci1 — A
are the corresponding available bandwidths for link i and i+ 1, respectively.
Eq. (4.3) represents the two scenarios defined above. In the case of scenario I,
where link i+ 1 is the tight link, lines 1, 2 and 4 of Eq. (4.3) apply. Conversely,
in the scenario II, where link 1 is the tight link, lines 1, 3 and 4 apply.

Fig. 4.9 shows the rate response curves for the two scenarios obtained using
Eq. (4.3). The curves are piece-wise linear. The two bends indicate the presence
of two congestible links. For both scenarios, the tight link capacity is C =
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Figure 4.9: Rate response curves of a two-hop network representing scenarios I and II
where the tight link occurs behind and in front of the bottleneck link, respec-
tively. The presence of two bends indicates that two links are congested.

100 Mbps and the bottleneck capacity is Cy, =50 Mbps. The cross traffic is CBR
with an average rate A=75 Mbps and Ay, =12.5 Mbps, traversing the tight link
and the bottleneck link, respectively.
Considering Fig. 4.9, we have r.! =r1 until the probe rate reaches the first
bend at 25 Mbps, where the available bandwidth of the tight link is saturated.
In the scenario I, when we increase the probe rate further, we reach a second
bend at 37.5 Mbps where the available bandwidth of the bottleneck link, i.e.,
link i, is also saturated. However, if the order of the two-hop network is re-
versed, i.e., the bottleneck link succeeds the tight link, the rate response curve
differs as represented by scenario II. The reason is that the output of the tight
link, i.e., link 1 in this scenario, is shaped so that rci,ut exceeds 37.5 Mbps, that is
the available bandwidth of the bottleneck link, i.e., link i+ 1, only if r}n exceeds
45 Mbps.

In both scenarios, the second linear segment of the rate response curve can
cause overestimation of the available bandwidth if a direct probing method is
used. This issue is addressed in [29] by performing a linear regression to each
of the linear segments under the assumption that the tight link precedes the
bottleneck link in the network. In practical scenarios, however, the order of
tight and bottleneck links is a priori unknown. Iterative probing techniques, on
the other hand, can still estimate the available bandwidth, even if the tight link
and the bottleneck link differ by searching for the first turning point of the rate
response curve, i.e., by sending repeated probes at increasing rates, as long as

i+1 _
out —

To test the performance of our neural network-based method, we extend our
network to a two-hop network, where the tight link and the bottleneck link do

i
T L
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Figure 4.10: Estimates from the neural network trained for a single tight link: (a) avail-
able bandwidth and (b) capacity estimates of a two-hop network, where
the tight link follows the bottleneck link and, (c) available bandwidth and
(d) capacity estimates, where the tight link precedes the latter. In both
scenarios, the tight link capacity is C =100 Mbps and the bottleneck ca-
pacity is Cp = 50 Mbps with cross traffic intensity of A = 75 Mbps and
Ap =12.5 Mbps respectively.
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Figure 4.11: Estimates from the neural network trained for different tight link and
bottleneck link: (a) available bandwidth and (b) capacity estimates of a
two-hop network, where the tight link follows the bottleneck link and, (c)
available bandwidth and (d) capacity estimates, where the tight link pre-
cedes the latter. In both scenarios, the tight link capacity is C =100 Mbps
and the bottleneck capacity is Cy, =50 Mbps with cross traffic intensity of
A=75 Mbps and Ay, =12.5 Mbps, respectively.
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not coincide. The access link capacity is C=1 Gbps. We generate test data for
the two scenarios described above. Further, we also consider bursty cross traffic
along with CBR.

Fig. 4.10a and Fig. 4.10c show the available bandwidth and Fig. 4.10b and
Fig. 4.10d the bottleneck capacity estimates in the scenarios I and II, respectively.
The neural network is trained for a single tight link only, using the training data
set (i) and (ii). The results obtained from the neural network are more consistent
as compared to direct and iterative probing methods. However, a bias can
be noticed in the available bandwidth and the bottleneck capacity estimates,
specifically for scenario II in Fig. 4.10c and Fig. 4.10d, i.e., where the tight link
precedes the bottleneck link. This can be explained by the deviation of the
output rate vt} as obtained from Eq. (4.3) compared to Eq. (4.2) which affects
the input feature vector of Tin/Tout Of the neural network.

To reduce the bias in the estimation, we consider training the neural network
for networks where the tight link is different from the bottleneck link. An
additional training set (iv) is generated in a two-hop network for both scenarios:
I and II, where the tight link follows the bottleneck link and precedes the latter,
respectively.

Fig. 4.11 shows the available bandwidth and the bottleneck capacity estimates
that are obtained after additional training for the scenarios I and II. As can be
seen in Fig. 4.10d, the bias of the capacity estimates is reduced significantly.

4.5 ITERATIVE NEURAL NETWORK-BASED METHOD

State-of-the-art iterative probing methods perform a search for the available
bandwidth by varying the probe rate rj, until 1, converges to the available
bandwidth. Pathload [30] uses statistical tests to determine whether 1, ex-
ceeds the available bandwidth or not and performs a binary search to adapt ri,
iteratively. The recent method [20] adopts Pathload’s binary search algorithm
but uses machine learning instead of statistical tests to determine whether i,
exceeds the available bandwidth or not. Our proposed iterative neural network-
based method differs from [20] in several respects.

We propose an iterative neural network-based method that (a) determines
the next probe rate by a neural network, that is trained to select the probe
rate that improves the bandwidth estimate most, instead of using the binary
search algorithm, and (b) it includes the information of all previous probe rates
to estimate the available bandwidth instead of considering only the current
probe rate. Our implementation comprises two parts. First, we train the neural
network to cope up with input vectors that are not fully populated. Second,
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we create another neural network that recommends the most beneficial probe
rates.

4.5.1  Partly Populated Input Vectors

An iterative method will only use a limited set of probe rates. Correspondingly,
we mark the entries of the input vector that have not been measured as invalid
by setting 1in/Tout =0. To obtain a neural network that can deal with such partly
populated input vectors, we perform training using the training data sets (i) and
(ii), where we repeatedly erase a random number of entries at random positions.
While testing the neural network, we erase entries in the same way.

In Fig. 4.12, we show the absolute error of the available bandwidth estimates
that are obtained by the neural network if m € [1, p] randomly selected entries
of the p-dimensional input vector are given. The bars show the average error
and the SD of the error. The data set used for testing is the same as the one
used for Fig. 4.2a previously, i.e., C=100 Mbps and A € {25,50,75} Mbps. We
show the combined results for all values of A.

The average error shows a clear improvement with increasing m. For m=1,
the information is not sufficient to identify the two unknown parameters capac-
ity and available bandwidth. Hence, the neural network first reports conserva-
tive estimates in the middle range. For comparison, by guessing 50 Mbps in all
cases the average error is 16.6 Mbps for the given test data set. With increasing
m, the neural network starts to distinguish the range of A € {25,50,75} Mbps
but tends to frequent misclassifications that can cause large errors. These mis-
classifications are mostly resolved when increasing m further.

We observe the same trend also for the error of the capacity estimates that
shows a high correlation with the error of the available bandwidth estimates.

Hence, we omit to show the results.

4.5.2 Recommender Network for Probe Rate Selection

When adding entries to the partly populated input vector of the neural net-
work, the average estimation error improves. The amount of the improvement
depends, however, on the position of the a priori unknown entry that is added,
as well as on the m entries that are already given, i.e., their position and value.
We use a second neural network that learns this interrelation. Using this knowl-
edge, the neural network acts as a recommender that given a partly populated
input vector selects the next probe rate, i.e., the next entry that is expected to
improve the accuracy of the bandwidth estimate the most. The recommender
network takes the p=20-dimensional input vector of values 7in/Tout, has 40 hid-
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Figure 4.12: Error in the available bandwidth estimates obtained for a set of m ran-
domly selected probe rates.

den neurons, and generates a p-dimensional output vector of estimation errors
that apply if the entry rin/Tout is added at the respective position. Given the
output vector, the rate i, that minimizes the estimation error is selected for
probing next.

Fig. 4.13 shows how the recommender network improves the error in the
bandwidth estimates compared to the random selection of probe rates shown in
Fig. 4.12. Starting at 5 selected probe rates, the average estimation error, as well
as the SD of the error, are small, and adding further probe rates improves the
estimate only marginally. The reason is that certain probe rates, e.g., those on
the horizontal line at i, /Tout =1 in Fig. 2.5, provide little additional information.
We conclude that the recommender can effectively control the selection of probe
rates to avoid those rates that contribute little. In this way, the recommender
can save a considerable amount of probe traffic.

4.5.3 Neural Network as Available Bandwidth Classifier

Our iterative neural network-based approach, as proposed in Sec. 4.5.2 differs
from state-of-the-art machine learning techniques for bandwidth estimation in
several respects. For comparison, we formulate available bandwidth estimation
as a classification problem. Specifically, to compare our approach with state-of-
the-art technique [20], we implement two different classifiers: an individual
classifier which represents state-of-the-art and uses the information only from
the current probe rate to determine whether the current probe rate is above
or below the available bandwidth, and a full classifier which is based on our
proposed method and uses a p-dimensional feature vector with information of
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Figure 4.13: Error in the available bandwidth estimates obtained for a set of m recom-
mended probe rates.

all previous probe rates to classify the probe rates. We test both classifiers with
the measurement data generated in the presence of bursty cross traffic with
an average rate of 50 Mbps. The tight link and the access link capacities are
100 Mbps and 1 Gbps, respectively, as before.

4.5.3.1 Individual Classifier

The individual classifier represents the state-of-the-art and uses the information
of a single probe rate to classify whether the current rate is above or below the
available bandwidth. The goal is to increment the probe rates iteratively by 6.
until the available bandwidth is saturated. For our reference implementation,
we decided for a shallow neural network consisting of one hidden layer with
40 neurons. The input feature vector is the ratio of the current probe rate at
the sender and at the receiver, i.e., Tin/Tout- The neural network has one output
neuron that represents two different categories: current probe rate below or
above the available bandwidth. Depending upon the result, the next probe
rate is increased by &, iteratively until the probe rate 1j, exceeds the available
bandwidth.

Fig. 4.14a shows the results of the individual classifier for 100 experiments
in the form of a classification map in the probe range [25,...,75] Mbps. The
true available bandwidth is 50 Mbps. The probe rates which are classified as
being above the available bandwidth are shown by blue pixels, and those which
are classified as below the available bandwidth are represented by white pixels.
However, due to the burstiness of the cross traffic, there exist false positive
errors, i.e., certain rates below the available bandwidth are misclassified as

above. These misclassifications can be seen by the occurrence of blue pixels
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Figure 4.14: The classification map shows the results of (a) the individual, and (b) the
full classifier. The tight link capacity is C = 100 Mbps. In the presence
of exponential cross traffic with an average rate A = 50 Mbps, the true
available bandwidth is 50 Mbps. The blue pixels indicate the probe rates
that are classified as above the available bandwidth and the white pixels
indicate the vice versa.

below 50 Mbps. The precision value is 0.97. Similarly, there are false negatives,
i.e., certain rates above the available bandwidth are misclassified as below. This
can be seen by white pixels re-occurring above the true available bandwidth
of 50 Mbps. This leads to an inconsistency in the classification with the recall
value of 0.87. It is not clear from the classification map, which exact probing
rate saturates the available bandwidth. This is why Pathload does not report a

single available bandwidth estimate but an available bandwidth region [30].

4.5.3.2  Full Classifier

To compare with state-of-the-art and motivated by the limitations of the indi-
vidual classifier, we use our proposed method to implement a full classifier.
The full classifier uses a p-dimensional vector of values ti,/Tout as input, i.e., it
does not operate iteratively on individual values of i, /Tout but uses all p values
of Tin/Tout at once. The classifier is implemented by a shallow neural network
consisting of one hidden layer with 40 neurons. The output of the neural net-
work is a p-dimensional vector consisting of binary values that classify whether
the respective probe rate is above or below the available bandwidth.

Fig. 4.14b shows the classification map results for the full classifier. The
results are highly accurate without any misclassification with precision and
recall values of 1.0, respectively. This can be seen by the occurrence of only blue
pixels at probe rates which exceed the true available bandwidth of 50 Mbps.
The results confirm the stability of our proposed method in comparison to the
individual classifier. The consistency of results comes from the fact that instead
of using only the current probe rate, the information of all the previous probe
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rates is included. The ability to classify the probe rates directly, instead of
doing the binary search as done in [20], increases the computational speed of
estimation.

4.5.4 Evaluation of other Machine Learning Techniques

Regarding the parameters of our neural network, we also explored the use of
deeper networks with more hidden layers, convlayers, and residual networks.
However, in our setting different variants of networks did not improve the
quality of our experiments. We believe that the main reason is over-fitting,
which is caused by the sparse amount of data used for training.

To evaluate our proposed method with other supervised machine learning
techniques, we consider three machine learning algorithms that can do a linear
regression to estimate the available bandwidth. Two of the chosen techniques
are kernel-based 1) SVR 2) GPR, whereas the third one is ensemble-based 3)
Bagging. We provide an overview of these techniques and justify their selection
for available bandwidth estimation in the section below. Our data set consists
of 600 observations: training set (i) and (ii). In order to evaluate our machine
learning algorithms, i.e., how accurately they are able to estimate the available
bandwidth for unseen test data, we use the K-Fold cross-validation technique.
In K-Fold cross-validation technique, the entire data set is split into K subsets
or folds, where each subset is used for testing and the remaining K — 1 subsets
are used for training. As more partitions lead to a smaller bias but a higher
variance, we set K=>5 to have a balanced bias-variance trade-off. We used paral-
lel computing in Matlab R2017b on a quad-core Linux-machine, with processor
base frequency of 3.20 GHz running Ubuntu 14.04 LTS and kernel of version
4.4.0 — 130-generic.

4.5.4.1  Support Vector Regression

SVR is a non-parametric kernel-based machine learning technique that per-
forms linear regression for nonlinear functions in the high-dimension feature
space using e-insensitive loss. We use the Gaussian Radial Basis Function (GRBF)
kernel and set epsilon € = 0.55 using the interquartile range of the response
variable. In e-SV regression, the goal is to find a function f(x) that has at most
a deviation of e from the actually obtained targets for all the training data. The
e-insensitive loss function optimizes the generalization bounds given for regres-
sion, ignoring the errors as long as they are situated within a certain distance
of the true value. We selected SVM as it has a regularization parameter that
avoids over-fitting of data and has excellent generalization capability with high
prediction accuracy. The computational complexity of SVR does not depend on
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the dimensionality of the input space. The training time is approximately 30 s,
with the prediction speed of 7900 obs/s.

4.5.4.2 Gaussian Process Regression

GPR is a non-parametric kernel-based probabilistic machine learning technique.
We are interested in making inferences about the relationship between inputs
and targets, i.e., the conditional distribution of the targets given the input. In
Gaussian processes, the covariance function, which expresses the similarity be-
tween the two inputs plays a crucial role [48]. GPR seeks to determine the
optimal values of the hyper-parameters governing the covariance function. We
use an exponential kernel to define the covariance matrix. A prior over functions
is defined which is converted into a posterior over functions once we have ob-
servation data. The observation data causes the resulting posterior Gaussian
Process (GP) samples to be constrained to pass near the observed data points.
For example, we have a p-dimensional training feature vector x for which we
have observed the function f that estimates the available bandwidth. Now,
given a new p-dimensional test vector x., we estimate the new function f,
which follows the probability distribution P(f./x.,x, f) where f and f, have a
joint Gaussian distribution. As compared to SVR, GPR provides a probabilis-
tic prediction and an estimate of the uncertainty in the prediction. With GPR
using an exponential kernel function, the prediction speed is 11000 obs/s and
training time is approximately 38 s.

4.5.4.3 Bootstrap Aggregation

Bagging is an ensemble machine learning approach used for regression, in
which weak learners collaborate to form strong learners. Bootstrap Aggregation,
as suggested by its name, uses a bootstrapping technique to sample the input
data randomly with replacement to create multiple subsets of data. A set of
models is then trained on each of these subsets, and their predictions are aggre-
gated to make the final combined prediction using averaging. The averaging of
multiple decision trees reduces variance and bias and avoids over-fitting. The
performance of the ensemble technique depends on the setting of the ensemble
and of the weak learners. A higher number of trees in the bagging algorithm
increases the performance and makes the predictions more stable, but it also
slows down the computation, making it ineffective for real-time bandwidth pre-
dictions. We chose the hyper-parameters to have a trade-off between the pre-
dictive power and the computational speed and chose the number of ensemble
learning cycles to be 30. It took approximately 31 s to train with the predict-
ing speed of 2700 obs/s. To minimize the generalization error, the minimum
number of leafs that are required to split an internal node is set to 8.
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Figure 4.15: Available bandwidth estimates (a) in the presence of bursty cross traffic
with the average rate A =50 Mbps and C =100 Mbps, (b) in the random
network with the moderate capacity C =89 Mbps, and (c) higher capacity
C =417 Mbps in the presence of a wide range of exponential cross traffic.
The results for neural networks reduce bias and variance even at higher
capacities.
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4.5.4.4 Evaluation

To evaluate our method, we use the measurement data obtained from the
network in the presence of cross traffic of unknown burstiness with inten-
sity A = 50 Mbps, and from random networks. The bottleneck capacity is
C =100 Mbps in the former network, whereas the capacity and cross traffic
are chosen randomly in the latter. The access link capacity for all the networks
is C=1 Gbps. As can be seen in Fig. 4.15a, and Fig. 4.15b, our proposed method
works using supervised machine learning techniques as well. These techniques
are based on the assumption that if two training feature vectors are close, then
their corresponding output prediction functions should also be close. With
the local generalization principle, they are able to interpolate locally. However,
this principle has its limitations. Fig. 4.15c shows the results where these tech-
niques reduce the variance, but a slight bias is visible in bandwidth estimation
as compared to the neural network. This is due to the fact that the test data
has higher variations as compared to the training data. The measurement data
is obtained for a random network with a higher capacity C =417 Mbps where
it is difficult to achieve a precise inter-packet gap gin. These distortions in in-
put gaps result in noisy data, i.e., higher variations which are not covered in
the training data obtained for a network with bottleneck capacity C =50 Mbps
and C =100 Mbps, respectively. However, with the neural networks the mean
of 100 iterations matches the true available bandwidth and the estimates have
low variability. The neural network can generalize non-locally which kernel or
ensemble machines with standard generic kernels are not able to do. It has the
ability to recognize complicated functions, even in the presence of noise and
variability. We are able to reduce the bias and variance in available bandwidth
estimates, even using a shallow neural network. For these reasons, we have
chosen the neural network for bandwidth estimation.



MULTI-CLASS CLASSIFICATION-BASED ACTIVE
AVAILABLE BANDWIDTH ESTIMATION

In this chapter, we propose two different multi-class classification-based meth-
ods for online available bandwidth estimation. The first method is based on
reinforcement learning and can be used to estimate the available bandwidth in
the networks where it is not feasible to create such training data sets that can
represent the dynamics of networks completely. Since there is no training phase
and the system learns by observing the network path online, the method may
take longer to converge in certain network scenarios where capacity and the
cross traffic intensity vary substantially. Therefore, we propose a second multi-
class classification-based method that is based on supervised learning and can
provide available bandwidth estimates accurately and fast using fewer probe
packets.

We show that both of our methods perform better than the fluid-flow model-
based direct probing technique that employs a Kalman filter [34] in network sce-
narios where the deterministic fluid-flow model assumptions fail due to bursty
cross traffic nature and multiple tight links. We show that both methods con-
verge faster and their estimates have less variations around the actual available
bandwidth values. We further compare our supervised learning-based classifi-
cation method with its regression-based counterpart. In addition, we evaluate
the performance of our supervised learning-based method in network scenar-
ios where the tight link capacity and the cross traffic intensity vary over time
randomly and show that our method generates better results. We finally show
that we can employ filtering techniques to the bandwidth estimates and de-
crease the estimation errors assuming that the changes in available bandwidth
over time are correlated.

We provide data sets generated in a controlled network testbed located at
Leibniz University Hannover. For reinforcement learning based-method, which
does not require training, we provide only testing data set and for super-
vised learning-based method, we provide both training as well as testing data
sets [22]. Both the proposed multi-class classification methods are based on
joint work with Sami Akin [21, 49].

53



54

MULTI-CLASS CLASSIFICATION-BASED ACTIVE AVAILABLE BANDWIDTH ESTIMATION

The remainder of this chapter is organized as follows. We introduce the ref-
erence implementation of the state-of-the-art model-based direct probing tech-
nique in Sec. 5.1. We present our reinforcement learning-based approach in
Sec. 5.2 and show test results in Sec. 5.3. We describe our supervised learning-
based method in Sec. 5.4 and evaluate our proposed method under different

scenarios in Sec. 5.5.

5.1 MODEL-BASED REFERENCE IMPLEMENTATION

In order to understand how much performance gain our multi-class classification-
based methods realize, we compare the performance of reinforcement learning-
based as well as supervised learning-based methods with a piece-wise lin-
ear model-based direct probing technique that employs a Kalman filter [34].
Although available bandwidth estimation tools significantly differ in the se-
lection and amount of probe traffics in experimental testbeds, we tailor our
classification-based techniques and the direct probing method to work on the
same database in order to provide a fairground for comparison. Hence, in the
following, we initially describe the direct probing technique and describe our

multi-class classification-based techniques in the next sections.

5.1.1 Direct probing

For the direct probing technique, we implement a Kalman filter to estimate the
available bandwidth. Furthermore, to increase the convergence speed of the
filter, we use a multi-rate probe stream to probe the network path over several
input rates in each experiment. Our probe stream consists of a series of p packet
trains of n packets each. The p packet trains correspond to p different probe
rates with a constant rate increment of &, between successive trains. We define

the inter-packet strain as [34]

E)=—" 1 forry > C(t) —A(t), (5.1)
Tout
and &(t) =0, otherwise, where t is the discrete time index. Now, inserting &(t)
into Eq. (2.7) when ri, > C(t) —A(t), we obtain
1 A(t) — C(t)

E»(t):rin C(t) + C(t) . (52)




5.1 MODEL-BASED REFERENCE IMPLEMENTATION

Subsequently, we define x(t) = ﬁ and B(t) = %, and obtain the inter-
packet strain parameter as
0, if i < C(t) —A(L),
E(t) = o (53)

x(t)rin +B(t),  if rin > C(t) —A(1).

Following the assumptions of the fluid-flow model, we can see that the &(t) is
zero in the absence of congestion, and it grows proportional to the probe traffic
rate i, when the probing rate exceeds the available bandwidth. As can be
seen in Eq. (5.3), the model is piece-wise linear due to the sharp bend at ri,, =
C(t) — A(t), which inhibits the direct application of the Kalman filter. In order
to overcome the problem, we feed only those measurements that satisfy rin >
A(t—1) to the filter, where A(t — 1) is the available bandwidth estimate by the
direct probing technique in the (t —1)*" time frame. Since, the direct probing
technique seeks to estimate the upward line segment of the rate response curve
which is determined by two parameters C(t) and A(t), we can express the state
of the system with a state vector containing two unknown parameters as

x(t) = [“(t)] . (5.4)

Assuming that the network statistics remain constant over a long period of time
compared to the time period t, we set the state transition matrix of Kalman filter
to the identity matrix. Hence, we define the state transition process as [34]

x(t)=x(t—1) +w(t), (5.5)

where w(t) is the process noise vector, which is zero-mean and Gaussian-
distributed with 2 x 2 covariance matrix Q. Subsequently, we define the mea-
surement model as

z(t) = H{t)x(t) + v(t), (5.6)

where z(t) and v(t) are the p x 1-dimensional vectors of measured strain and
measurement noise, respectively. Recall that in each measurement, we send
packets at p different input rates, rin, and hence, we have the p x 1-dimensional
observation vector. Herein, v(t) is zero-mean and Gaussian distributed with
p X p covariance matrix R. Moreover, the observation matrix, H(t) is a p x 2

matrix and is given as
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P (t) 1

where r}n(t) forie{l,---,p}is a function of time because we choose the input
rates at t such that the input rates are greater than the available bandwidth
estimate att—1, i.e., r}n(t) >At—1).

The authors in [34] define Q as a parameter that indicates the deviation of the
system from the fluid-flow model, and use it as a tuning parameter to increase
the estimation quality. Q, being a symmetric matrix, provides three degrees of
freedom for tuning; however, we use it in a simple form as Q =nl, where I
is the 2 x 2 identity matrix. We set = 10~2, in our settings because it allows

faster convergence and less variations in available bandwidth estimates.

5.2 REINFORCEMENT LEARNING-BASED METHOD

In this section, we present our reinforcement learning-based method for avail-
able bandwidth estimation where we consider a set of input rates as a set of
actions, and define a reward metric as a function of input and output rates. Our
method employs the exploration-exploitation mechanism to find the input rate
which maximizes a cumulative reward function and reports this input rate as
available bandwidth. In the sequel, we start with the e-greedy search algorithm,
and then discuss the reward function mechanism and the convergence speed

of our method.

5.2.1 ¢e-greedy Algorithm

Let us consider a finite-state MDP with an agent and an environment as shown
in Fig. 5.1. Let us further consider that there are a set of states, §, a set of actions,
A, and a set of rewards, R. Here, we assume that there exists a bijective function
between the sets of actions and states, and the set of rewards. Particularly,
there exists a one-to-one correspondence between the action-state pairs and the
rewards. At time t, the agent in state sy € § chooses an action a; € A(sy),
and the environment returns a reward, pty1 € R C R, and changes the agent’s
state to s¢;1 € 8. Here, A(s¢) refers to the set of actions that the agent chooses
when it is in state s{. Particularly, A(s{) is a subset of A. In a stochastic
environment, the reward values following an action in one state can be samples

from a distribution with a mean and variance. In this case, the reward of the
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Figure 5.1: An agent-environment interaction [50].

action in that state can be the average of rewards received until the last time the
action is chosen and the agent is in that state. Under these conditions, given that
the agent is in state s, the e-greedy algorithm chooses with probability 1 — ¢
the action a¢ € A(s¢) that performs the best with respect to reward returns
and selects uniformly one action among the others with probability e. Here,
¢ indicates how greedy the agent is, and the optimal value of ¢ is important
for the agent to decide whether to exploit or explore more in order to find the
action that performs the best on average. When ¢ is small, the agent converges
to a reward value slowly and stabilizes on an action. Although it is more stable
in the long run, yet there is a risk that the reward value is not the maximum
reward the agent could have. On the other hand, when ¢ is large, it takes short
to converge to a reward value, but there are too much variations in the long-run
even if the measurements are not very noisy [50].

In our experiments, we consider that the network is stationary, i.e., the net-
work statistics remain constant for the time interval during which we make
our measurements and estimate the average available bandwidth. Therefore,
we treat available bandwidth estimation as a single-state MDP. Furthermore,
we consider a probe stream consisting of a series of p packet trains that cor-
responds to p different probe rates. Herein, the set of input probe rates, i.e.,
Tin € {0r,20+,...,pd:} corresponds to the set of actions, A. Hence, we de-
fine available bandwidth estimation as a multi-armed bandit problem with a
single state. We further define a reward parameter (as a function of ri;, and
Tout) that reaches the maximum when the input probe rate ri,, is equal to the
available bandwidth in the network. Following the selection of one probe rate
among p input rates, its associated reward is received. As the reward values are
perturbed due to noisy measurements, we rely on the corresponding average
rewards after a probing rate is selected. Particularly, we calculate the action-
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value function Q¢(rin) that estimates the value for choosing ri, at time step t

by calculating the average rewards received up to time t — 1 as

Y pyij(rin)
—1. ’
th:1 j(rin)

Qi(rin) = (5.7)

where i;(rin) is the indicator function which is set to 1T whenever the input rate
Tin is chosen up to time t — 1 and is 0 otherwise. Here, the e-greedy algorithm
at time t chooses the input probe rate that has the maximum average reward
up to time t — 1 with probability 1 — ¢. Specifically, the algorithm sets the input

rate at time t, i.e., Ti, as

Tin, =arg max {Qi(rin ]},
otherwise, the algorithm uniformly chooses any rate among others with proba-
bility € and sets the input rate.

5.2.2  Choice of Reward Function

In real-time available bandwidth estimation, the major challenge is to define
a function that produces a credible reward even in the presence of noisy mea-
surements due to non-fluid traffic, multiple bottlenecks and inaccurate time
stamping. Motivated by the characteristic rate response curve of a network, the
goal is to define reward metric p that reaches the maximum when the input
probe rate iy, is equal to the available bandwidth as shown in Fig. 5.2. Hence,

we define the reward function as

p:Tout(rin)viu (58)

where v is the convergence parameter that has to satisfy 0 <y < 1— 2 for
the reward function to be maximum at ri, = C —A. We set the exploration
rate ¢ =0.1 and show the measured reward function for convergence parameter
v € [0.2,0.3,0.4] as a function of ri, averaged over 1000 repeated measurements
in Fig. 5.3a. The network has a single tight link of capacity C =100 Mbps and
access links are of capacity 1 Gbps. The cross traffic is exponential with an
average rate A=50 Mbps. The packet size of cross traffic and probe traffic is 1=
1514 B. A probe stream comprises p =100 packet trains of n =100 packets sent at
p =100 different probe rates with a constant rate increment &, =2 Mbps between
successive trains. The error bars depict the SD from the average reward values
which increases when the probing rate reaches beyond available bandwidth, i.e.,
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Figure 5.2: Reward metric as a function of ri, and rou¢. The reward function reaches

the maximum when the input probe rate ri,, is equal to the available band-
width.

Tin > C—A due to building up of queues at the multiplexer. As seen in Fig. 5.3a,
the reward function is maximized when ri, is equal to the available bandwidth
which is 50 Mbps. We also note that with decreasing vy, the reward function
also decreases which leads to slower convergence because the impact of noise
is more belligerent with decreasing reward function when differentiating the

maximum reward from others.

5.2.3 Convergence Speed

Our proposed reinforcement learning-based method is a continuous process.
Once the convergence is reached, it produces a stable value of available band-
width estimate. However, the speed at which it converges depends upon the
choice of two parameters, i.e., y and «.

5.2.3.1  Choice of v

In a network with unknown C and A, it is not trivial to determine y, which
depends on these unknowns by definition. To analyze the effects of vy on the
convergence speed, we plot the average available bandwidth estimates of 1000
repeated experiments over 1000 steps for y € [0.2,0.3,0.4] as shown in Fig. 5.3b.
At each step, our method chooses one of the input rates among p input rates
following the e-greedy algorithm and provides a single available bandwidth
estimate. As the number of steps increases, every input rate is sampled enough

number of times leading to the convergence of the input rate with maximum
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Figure 5.3: (a) Reward distribution with average measured rewards and error bars de-
picting their SD, and (b) & (c) average available bandwidth estimates and
their SD for different values of v and ¢, the two parameters that affect the
convergence speed of reinforcement learning-based method.
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reward value to the available bandwidth. Furthermore, we use SD as a metric
to measure the precision of the bandwidth estimates:

K,

SD=4I¢ ]_1 D (Ai—A?, (5.9)
’ i=l

where A and A are the estimated and the average true values of the avail-
able bandwidth, respectively and K, is the number of repeated experiments
over which we obtain the average available bandwidth estimates and their SD
around the true available bandwidth. We set K, =1000 and the exploration rate
to e=0.1 unless otherwise stated. As seen in Fig. 5.3b, the convergence is faster
when vy =0.3, i.e., the method detects the available bandwidth after 200 steps.
On the other hand, it takes more than 1000 steps on average for the method
to converge to the available bandwidth when y = 0.2 and vy = 0.4. It takes
longer to converge when vy = 0.2 because the reward function decreases with
decrease in y as can be seen in Fig. 5.3a. The impact of noise becomes more
hostile with decreasing reward function and the method has to explore more
in order to differentiate the best input rate, which returns the maximum cumu-
lative reward, from others. On the other hand, when v is set to 0.4, possibly
significant deviations due to random cross traffic cause y to exceed the upper
limit of the aforementioned range 0 <y < 1— 2 at certain steps, and therefore
the method takes longer to converge. We plot the graphs until 1000 steps for
clarity in the comparison of different y values. One can run the experiment for
more steps and can easily observe that as long as the convergence parameter
satisfies 0 < vy < 1— %, the method will converge. However, the convergence

speed depends not only on y but on the ¢ as well.

5.2.3.2 Choice of €

The choice of ¢ dictates the exploration-exploitation trade-off in reinforcement
learning-based methods. Hence, in order to understand the impact of ¢, we
plot the average available bandwidth estimates and their SD for ¢ € [0.01,0.1]
with the convergence parameter set to y=0.3 as shown in Fig. 5.3c. The larger
exploration rate ¢ = 0.1 leads the method to explore more and find the avail-
able bandwidth faster when compared to the smaller exploration rate ¢ =0.01.
Although the method converges more quickly with a larger ¢, yet it performs
better with a smaller ¢ eventually when noise variance is low. This is because
with a larger ¢, the method tests other values very often, which leads to more
variations in the available bandwidth estimation in the long-run. However, in
our experiments we set a large value of ¢ = 0.1 so that we can increase the

convergence speed of our proposed method. Furthermore, to alleviate the vari-
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ations in the available bandwidth estimates, we average over K, =1000 repeated

experiments.

5.3 EXPERIMENTAL EVALUATION

We compare the performance of our reinforcement learning-based proposed
method with the direct probing technique in a controlled network testbed de-
scribed in Chapter 4.

In Fig. 5.4a, Fig. 5.4b, Fig. 5.4c, we show available bandwidth estimates ob-
tained from direct probing and reinforcement learning-based method over 1000
steps in the presence of exponential cross traffic of an average rate A = 50 Mbps.
The tigh link and access link capacities are 100 Mbps and 1 Gbps, respectively.
The packet size of cross traffic and probe traffic is 1 = 1514 B including the
Ethernet header. A probe stream comprises p packet trains sent at 100 differ-
ent probe rates with a constant rate increment 6, =2 Mbps between successive
trains. Each packet train consists of n = 100 packets. The convergence param-
eter v and the exploration rate ¢ are set to 0.3 and 0.1, respectively. We use
these setting for the rest of the section unless otherwise stated. It can be seen
from the results that our method outperforms the other method. However, in
order to have a better view from a statistical perspective, we perform K, =1000
experiments and compare the average estimation performances and their SD

around the available bandwidth values in the sequel.

5.3.1 Cross Traffic Burstiness

In order to evaluate how our method performs in the presence of cross traffic
with an unknown burstiness, we consider three types of cross traffic as consid-

ered previously in Sec. 4.3.4.1.
1. No burstiness with constant bit rate,
2. Moderate burstiness due to exponential packet inter-arrival times,

3. Heavy burstiness due to Pareto inter-arrival times with infinite variance

defined by a shape parameter & =1.5.

The average rate of cross traffic is A = 50 Mbps in all cases. As before, the tight
link and access links capacities are C = 100 Mbps and C = 1 Gbps, respectively.
As can be seen in Fig. 5.5a, Fig. 5.5b and Fig. 5.5¢, the bandwidth estimates
of the reinforcement learning-based method are more accurate with low SD
when compared to the direct probing technique. We can see the significant

improvement in the convergence speed when we employ the reinforcement
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learning-based method irrespective of the cross traffic burstiness. Particularly,
the reinforcement learning-based method is robust to the deviations from the
fluid-flow model. In the case of direct method, an increase in the variability of
available bandwidth estimates as well as an underestimation bias can be seen

due to burstiness of the cross traffic.

5.3.2  Cross Traffic Intensity

To evaluate the impacts of cross traffic intensity on available bandwidth estima-
tion, we deploy exponential cross traffic with average rates A € {25,50, 75} Mbps
and depict the average of the available bandwidth estimates and their SD
around the true available bandwidth in Fig. 5.6a, Fig. 5.6b and Fig. 5.6c, respec-
tively. While the SD increase in the direct probing technique with the increasing
cross traffic, the SD in the reinforcement learning-based method remain almost
unchanged in all the cases. Moreover, the reinforcement learning-based method
converges to the available bandwidth faster than the direct probing technique

does.

5.3.3 Multiple Tight Links

We extend our testbed from the single-hop network to the multi-hop network
as shown in Fig. 4.1 in order to test the reinforcement learning-based method
in multiple tight links. While traversing the entire network path with the tight
link capacity C = 100 Mbps and the access links with capacity 1 Gbps, the
path-persistent probe streams experience single hop-persistent cross traffic with
exponential packet inter-arrival times and average rate A=50 Mbps. We show in
Fig. 5.7 that the reinforcement learning-based method provides more accurate
available bandwidth estimates, whereas the other method fails to converge to
the available bandwidth. As explained in chapter 4, this is due to the fact
that in the case of multiple tight links, the probe stream has a constant rate
Tin, wWith a defined input gap gin, only at the first link. In the following links,
the input gaps have a random structure as they are the output gaps from the
preceding links [8, 9, 12]. For the direct method, the inter-packet strain & does
not grow linearly with the cross traffic in multi-hop networks [51] which causes
the underestimation of the available bandwidth.

5.3.4 Tight Link differs from Bottleneck Link

The available bandwidth estimation in multi-hop networks becomes more dif-
ficult if the tight link of a network path is not same as its bottleneck link. We
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Figure 5.7: Average available bandwidth estimates and their SD for multiple tight links
with capacity C =100 Mbps in the presence of single hop-persistent expo-
nential cross traffic with an average rate A=50 Mbps.
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succeeding and (b) preceding the bottleneck link.

investigate the available bandwidth estimation by considering two different sce-
narios that we described in chapter 4.

In scenario I, the bottleneck link appears before the tight link. In scenario
II, the bottleneck link comes after the tight link. We set the tight link capacity
to C=100 Mbps and the bottleneck capacity to Cy, =50 Mbps in both the sce-
narios. The cross traffic is exponential with an average rate A =75 Mbps and
Ap = 12.5 Mbps, traversing the tight link and the bottleneck link, respectively.
We show the available bandwidth estimates and the corresponding SD in the
scenarios I and II in Fig. 5.8a and Fig. 5.8b, respectively. The reinforcement
learning-based method results in more accurate and faster estimates than the
direct probing technique does. However, we observe an estimation bias in the
available bandwidth estimates of the direct probing technique in both scenar-
ios. The estimation bias can be explained by the fact that in the case of network
that has two congested links, the slope of rate response curve is determined by
the combination of two linear segments. The congestion measure &, which oth-
erwise would have grown linearly according to Eq. (5.3) for the input probing
rates higher than the available bandwidth in a single tight link, grows faster
when congestion occurs at both the tight and bottleneck links [34].

5.4 SUPERVISED LEARNING-BASED METHOD

In this section, we present our supervised learning-based approach, where we
address the available bandwidth estimation as a multiclass classification prob-
lem. We initially discuss how available bandwidth classes are formed and
define a feature vector for the classifier. Then, we present the implemented
supervised learning techniques.
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Figure 5.9: (a) Available bandwidth classification between zero Mbps to Cmax and (b)
its projection onto the rate response curve of a single tight link of capacity
C =100 Mbps in the presence of exponential cross traffic with average rate
A=50.

5.4.1 Auvailable Bandwidth Classes

Let us consider a network path with capacity C(t) and cross traffic rate A(t)
that changes over time as shown in Fig. 5.9a, where C(t) € [Cinin, Cmax] and
A(t) € [0,C(t)]. One can think of a path where the channel capacity varies
over time due to environmental conditions, for instance, in wireless networks.
Therefore, the available bandwidth is not constant, i.e., A(t) = C(t) —A(t). Here,
we divide the entire possible range’ [0, Crnax] into N subranges, where each
subrange is denoted by one class A, for ¢ € {1,2,...N.}, and each subrange
covers a distance of 2i. units. For instance, the centers of classes A7 and A>
are 2i. units apart from each other as can be seen in Fig. 5.9a. Basically, given
a feature vector, our classification-based estimator returns the class that the
available bandwidth belongs to and sets the estimate to the class center. For
instance, if the classification-based estimator returns A. as the estimated class,
then the available bandwidth estimate is (2c — 1)i. units. Here, one can ob-
serve that the smaller the subrange a class refers to, the more classes we need
to assign to cover the entire possible range from 0 to Cqx. Particularly, there
is a trade-off between the number of classes and the subrange a class encom-
passes; the training process takes longer with more classes, and we need to
obtain more experimental data for training, but the deviation around the avail-
able bandwidth decreases. In order to understand the aforementioned tech-
nique, let us consider the experimentally obtained rate response curve shown
in Fig. 5.9b as an example, where C,qx =200 Mbps. The entire possible range,

One can define a range with borders from a non-zero value to another value that is greater than

Cmax .
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i.e., [0,200] Mbps is divided into 10 subranges and the centers of each class are
21, =200/10=20 Mbps apart from each other.

We define an input to the classifier as a p-dimensional feature vector, where
each instance is the ratio of input rate at the sender and corresponding output
rate at the receiver ri,/Tout. Here, 1y values are spaced equidistantly with
increment 8,, and hence we have a vector of input rates rin, = [rgn...rfn], where
r}n =10, fori € {1, ..., p}. Considering the case Cqax =200 Mbps as an example,
one can set 6, =25 Mbps and can use p =8 packet trains*. Subsequently, a probe
stream comprising p probe trains is sent to the network with defined p input
rates, and the corresponding output rates are obtained. Hence, a feature vector,

1 P
f= [ Tin ;}“ }, is provided as an input to the classification-based estimator.

Tout out

If the classification-based estimator returns A3 as the estimated class, then the
available bandwidth estimate (2c — 1)i. is 50 Mbps.

5.4.2 Training Data

To investigate the sensitivity of our method with respect to different network
parameters, we set up a number of topologies, where the tight link capacity
and the cross traffic intensity are chosen randomly. The capacity is chosen as a
random number in the interval [10, 200] Mbps, with the cross traffic intensity
chosen relative to the tight link capacity as A = U0, 1] - C Mbps where U denotes
uniform distribution. The access link capacity for all networks is C =1 Gbps.
The link and traffic characteristics are emulated as described in chapter 4.

A probe stream consists of a series of p packet trains, each having n pack-
ets. These p different packet trains respectively correspond to p different probe
rates that successively increase with an increment rate .. In order to reduce
the amount of probe traffic injected into network path, we set p = 6, and to re-
duce the impact of noise-afflicted output gaps, we compute 14+ over n = 100
packets. The packet trains are sent at 6 different rates with a rate increment
dr = 25 Mbps unless otherwise stated. For each of random network configura-
tion 100 repeated experiments are performed. Particularly, having more than
100 different network configurations, we run more than 10000 experiments to
generate different data sets for training and testing.

Notice that here the maximum input rate pd, is not limited by the maximum capacity, Cmax-
However, in order to prevent any congestion, it is better to limit the maximum input rate to a
value smaller than Cpax.
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5.4.3 Machine Learning Techniques

To evaluate our machine learning-based approach for bandwidth classification,
we consider the following supervised machine learning techniques.

5.4.3.1 Support Vector Machines

SVMs are supervised learning algorithms, which can be used as Support Vec-
tor Classification (SVC) for classification-based and as SVR for regression-based
problems. SVM enables plugging to project an input feature vector to a higher
dimensional space and find a hyper-plane that separates two given classes. In
this work, we use the GRBF. However, one can use polynomial kernel functions
as well. We observe that in our experimental settings, even the polynomial
function with degree 2 performs well but the performance of GRBF is better
than polynomial function in general when data becomes more noisy. As SVM
is originally designed for binary classification [52], Error-Correcting Output
Codes (ECOC) [53] are used to reduce a multi-class problem to a set of multi-
ple binary classification problems. As described in [53], the output coding for
multiclass problems is composed of two stages. In the training stage, multiple
independent binary classifiers are constructed, where each classifier is trained
to distinguish between two disjoint subsets of the bandwidth estimation labels.
In the second stage, i.e., the classification part, the predictions of trained binary
classifiers are combined to test instances, and a voting scheme is used to decide
the available bandwidth class.

5.4.3.2 k-Nearest Neighbor

k-NN algorithm is a non-parametric lazy supervised machine learning algo-
rithm that can solve both classification and regression problems. The principle
behind k-NN classification is the majority voting rule applied over k nearest
neighbors, where the test data is assigned the available bandwidth class that is
chosen by the majority vote of its k nearest neighbors. k-NN mainly involves
two hyper-parameters, i.e., the number of neighbors involved in the decision,
k, and the distance function denoting how far neighbors are from each other.
Small k provides a flexible fit, which has low bias but high variance. On the
other hand, large k averages more voters in each prediction and hence is more
resilient to outliers, which means lower variance but increased bias. Regard-
ing a bias-variance trade-off, we use weighted k-NN, where we set the nearest
neighbor k = 10. Further, each nearest neighbor is given a weight of 1/d?,
where d is set as the Euclidean distance metric. We choose k-NN for the band-
width classification problem because it is non-parametric, and therefore, we can
avoid mismodeling the underlying distribution of the data. In real bandwidth
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estimation problems, which deviate from the fluid-flow model assumptions, it
is difficult to find the underlying data distribution that matches the theoretical
distributions. For example, choosing a learning model that assumes a Gaus-
sian distribution for non-Gaussian distributed data will cause the algorithm to
make poor predictions. In contrast to SVM, k-NN is instance-based, and hence,
does not explicitly learn a model. Instead, it chooses to memorize the training
instances, which are subsequently used as knowledge in the prediction phase.
The minimal training phase of k-NN results in memory cost as we have to store
possibly a huge data set. Moreover, it causes computational cost in the testing
phase as well because classifying a given feature vector requires a run-down of
the whole data set.

5.4.3.3 Bootstrap Aggregation

The main causes of error in learning models are noise, bias, and variance.
However, for certain bandwidth applications, an accurate and reliable available
bandwidth estimation with less bias and variance is of utmost importance, e.g.,
to minimize the adverse effects of quality variance and video freezing on view-
ers in rate-adaptive applications, such as Dynamic Adaptive Streaming over
HTTP (DASH). In order to obtain better predictive performance, we consider
ensemble learning methods for classification such as bagging and boosting to
decrease the model’s variance and bias, respectively. Bagging uses a bootstrap-
ping technique to randomly sample the input data with replacement to create
multiple subsets of data. Then, a set of models is trained on each of these
subsets, and their predictions are aggregated to make the final combined pre-
diction using averaging. The averaging of multiple decision trees reduces the
variance and avoids over-fitting. The performance of the ensemble technique
depends on the setting of both the ensemble and that of the weak learners. A
large number of trees increase the performance and make the predictions more
stable, but having many trees slows down the computation, which is not de-
sired for real-time bandwidth predictions. We choose the hyper-parameters to
have a trade-off between the predictive power and the computational speed,

therefore, set the number of ensemble learning cycles to be 30.

5.4.3.4 Adaptive Boosting

To reduce bias in the estimation, we consider another ensemble-based algo-
rithm: AdaBoost. Instead of training parallel models as in Bagging, AdaBoost
is an iterative technique because it uses multiple iterations to generate a single
composite strong learner. AdaBoost fits a classifier on the original data set. If
an observation is misclassified, it tries to increase the weight of this observation.

The subsequent classifier acknowledges the updated weights and attempts to
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reduce the classification error of its predecessor. The procedure is repeated over
and over again until the required accuracy is achieved. To achieve the balance
between speed and accuracy, we set the learning rate to 0.1 and the number of

ensemble members to 30.

5.4.3.5 Neural Network

NNs are complex models composed of simple elements, called neurons, which
try to mimic the way the human brain develops classification rules. We use a
feed-forward Multi Layer Perceptron (MLP) consisting of three different layers
of neurons: an input layer, a hidden layer, and an output layer, with each layer
receiving inputs from previous layers, and passing outputs to further layers.
The neural net iterates for a predetermined number of iterations, called epochs.
After each epoch, the cost function is analyzed to see where the model could be
improved. We decided for a shallow neural network consisting of one hidden
layer with 40 neurons. For training of the neural network, we first implement
an autoencoder for each layer separately and then fine-tune the network using
a SCG. Given a classification network, we optimize the cross-entropy error
function requiring approximately 1000 epochs until the convergence is achieved.
Due to the limited amount of training data, the shallow network with a small
number of hidden neurons allows training without much over-fitting.

5.4.4 Evaluation Metrics

In order to gain a better assessment of the effectiveness of the aforementioned
machine learning models in the testing phase, we use the K-Fold cross-validation
technique. As more partitions lead to a smaller bias but a higher variance, we
set K=5 to have a balanced bias-variance trade-off.

We employ the performance measures described in [54], i.e., accuracy, preci-
sion, and recall, to experimentally substantiate our classification-based available
bandwidth estimation technique. The accuracy of estimates provides the over-
all effectiveness of the method and calculates the ratio of the number of avail-
able bandwidth estimates that are classified correctly to the total number of
available bandwidth estimates. We calculate the average accuracy Accayg over
N available bandwidth classes as follows:

Z N TP.+TN¢

c=1 TP.+FN.+FP.+TN

ACCavg: C+N et et INe .
C

Recalling from Sec. 5.4.1 that A. is the class representing c'" subrange of
the entire possible range of available bandwidth, i.e., [0, Cinax], we have true
positives (TP.) as the number of correct bandwidth estimates classified to A,
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false positives (FP.) as the number of incorrect estimates assigned to A, true
negatives (TN.) as the number of correct estimates not assigned to A., and
false negatives (FN.) as the number of incorrect estimates not assigned to A..
However, the accuracy parameter is not always the best measure to determine
the effectiveness of a classification-based estimator in multi-class classifications
due to the class imbalance problem. The randomly changing capacity and
cross traffic of a network path may cause the number of instances of one class
to exceed than the others. Here, each instance refers to the ratio of input rate at
the sender and the corresponding output rate at the receiver, i.e., 1in/Tout. With
imbalanced data, the test instances belonging to a small class are misclassified
more often as compared to the prevalent classes with more instances. Therefore,
we consider the precision and recall parameters as well.

The precision parameter indicates how precise or correct the estimates are,
i.e., the bandwidth estimates that are correctly classified to the available band-
width class, A, out of all the bandwidth estimates, including the incorrect
ones that are classified to A.. The recall parameter shows the sensitivity of
the classification-based estimator, i.e., how many of all the actual bandwidth
estimates that belong to A. are detected correctly. High scores for both the
precision and recall parameters show that the classification-based estimator re-
turns accurate results as well as a majority of all positive results, respectively.
Herein, since the precision and recall parameters are inversely related to each
other, we compute F-measure by taking their harmonic mean as follows:

2 Precision - Recall

Fi= ) ‘
! Precision + Recall (5.10)

The F-measure score takes a value between zero and one. The higher the
F- measure score of a classification technique is, the better its performance is.
Particularly, when the F-measure score of a classification-based estimator is
one, it separates the classes without error. The over-all F-measure score of the
entire classification problem can be computed by two different averaging tech-
niques, i.e., macro-averaging (M) and micro-averaging (u). In micro-averaging,
Precision,, and Recall,, are obtained by summing over-all individual decisions:

> Ne TP,
> Ne (TP. + FN,)

> Ne TP,
> N (TP, + FP,)

Precision, = and Recall, = . (5.11)
In macro-averaging, Precisiony; and Recally, are obtained for each class A,

and then average is taken:

Ne TP, N. TP,
21 TP, 1P 2 o TiF
ST et Pe  and  Recallp = =1 TPe+EN:

Precisiony =
N N

(5.12)
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Figure 5.10: The maximum error in the case of (a) correct and (b) incorrect bandwidth
classifications.

Now, we can plug Eq. (5.11) and Eq. (5.12) into Eq. (5.10) in order to calculate
the F-measure score.

Furthermore, we calculate the empirical standard deviation (SD) as a metric
to measure the precision of the bandwidth estimates:

(5.13)

where t is the discrete time index and K, is the number of measurements. Here,
we assume that a measurement takes place in a certain time period, and during
one period the available bandwidth stays constant. Therefore, one can con-
sider t as the time frame index. In Eq. (5.13), A(t) is the available bandwidth
value and A, (t) is the bandwidth estimate after the classification is performed.
Technically, Ac(t) is the center of the class to which the bandwidth is assigned.

Notice that even if the classifier makes the correct classification, there will
still be an error because each class defines a range of real numbers. In case of
correct classification, the maximum error will occur when the available band-
width value is at either of the two far edges of the actual class. For instance, let
A1 be the class the available bandwidth value belongs to and assume that the
classifier estimates the class correctly. The maximum error between the avail-
able bandwidth value and the estimated value is i., which occurs when the
available bandwidth value A(t) is either 0 or 2i. and the estimated value is i.
which is center of a subrange of A as seen in Fig. 5.10a.

Furthermore, in case of misclassification, where a wrong class is estimated,
the maximum possible error will be equal to the difference between the center
of estimated class and the far edge of the actual class. For example, let A be
the actual class and A, be the estimated class. As can be seen in Fig. 5.10b, the
maximum error of 3i. occurs, when the estimated available bandwidth value
is center of class A, to which estimated value is assigned, i.e., 3ic and the
available bandwidth value A(t) is at the far edge of actual class A; to A,, i.e.,
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A(t) = 0 Mbps. Therefore, in addition to the SD provided in Eq. (5.13), we
calculate an upper bound on the SD as follows:

K1 , (5.14)

where A (t) is the actual class of the available bandwidth. Eq. (5.14) gives us

the maximum deviation that we may observe at any time in our measurements.

5.5 PERFORMANCE EVALUATION

We evaluate the performance of the proposed available bandwidth estimation
technique in testbed scenarios that capture the nature of practical scenarios
very closely. When creating the training and the test data, we do not assume
an equally likely distribution of instances to investigate the impact of class im-
balance problem on the performance of our classification-based estimator. Fur-
thermore, we employ cross traffic models with the exponential and Pareto dis-
tributions to reflect a moderate and heavy burstiness nature of a real network,
respectively. We further consider multiple tight links with discrete and random
traffic patterns. We generate a training set in the presence of exponentially
distributed cross traffic as discussed in Sec. 5.4.2.

By choosing the capacity and cross traffic intensity values randomly, we gen-
erate available bandwidth values between 10 Mbps to 145 Mbps. We define the
available bandwidth class centers from 1 to 200 Mbps, where each bandwidth
covers a subrange of 1 Mpbs. Particularly, the set of available bandwidth classes
is {1,2,---,200}. For each available bandwidth, we repeat the experiment 100

times.

5.5.1 Evaluation: Exponential Cross Traffic, Mutually Exclusive Classes

For the purpose of testing, an additional data set is generated for the same
network configuration as the (i) training data set in the presence of exponential
traffic. In Table 5.1, we show the averaged accuracy, micro-averaged and macro-
averaged F-measures after employing SVM, k-NN, Bagging, AdaBoost and NN
techniques in the available bandwidth estimation. Notice that precision, recall
and F-measure score are equal when calculating the micro-averaging results.
This is owing to that a false positive with respect to one class will be a false
negative with respect to another class in the case of misclassification. For in-
stance, this can be also seen from the confusion matrix of SVM-based classifier
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Figure 5.11: The confusion matrix obtained after using the SVM-based estimator with
different network capacities and cross traffic intensities during the testing
phase.

shown in Fig. 5.11, where one can show Y ¢, FP. =3 N¢. FN. =30 by counting
all the false instances over all the classes.

Moreover, as can be seen in Table 5.1, while all the classifiers achieve compa-
rable accuracy values, the SVM-based classifier outperforms the rest with 99.7%.
It exceeds the others in other metrics as well. Its better performance is due to
the reason that SVM-based classifier projects the data to a higher dimensional
feature space in order to separate the classes efficiently. Moreover, since we test
all the techniques in the network we train them, looking at the results, we can
say that our estimator neither over-fits nor under-fits; particularly, we are able
to generalize the network model very well.

We compare the performance of the classification-based method with the
model-based reference implementation of the direct probing technique described
in Sec. 5.1. We also compare the classification-based method with its regression-
based counterpart. We use the same testing data set for the direct method and
the regression-based method that we use for the classification-based method
so that both the methods can provide a reference for the classification-based
method.

Fig. 5.12a compares the results obtained from direct probing technique and
SVM-based classifier (SVC). The available bandwidth estimates obtained from
SVM-based classifier are more accurate as compared to the direct method con-
sidering the SD and corresponding upper bound results (SD,,). Since the band-
width values stay constant for a certain period, the direct probing technique can
converge to the actual bandwidth. However, it is not able to track the sudden
changes in the bandwidth. Moreover, as the available bandwidth approaches

maximum capacity, a probe stream comprises only 6 probing rates sent with a
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Table 5.1: Testing performance evaluation in a single tight link in the presence of cross
traffic that has exponentially distributed packet inter-arrival times

Parameters ‘ Algorithms

| svMm k-NN  Bagging AdaBoost NN
AcCayg 0.9970 0.9964 0.9941 0.9922 0.9969
Precision, 0.9700 0.9640 0.9410 0.9220 0.9690
Recall,, 0.9700 0.9640 0.9410 0.9220 0.9690
F1, 0.9700 0.9640 0.9410 0.9220 0.9690
Precisionpm 0.9709 0.9648 0.9433 0.9237 0.9699
Recallpm 0.9711 0.9645 0.9426 0.9240 0.9690
Fim 0.9710 0.9646 0.9429 0.9238 0.9694
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Figure 5.12: Available bandwidth estimates and their SD in the presence of cross traffic
that has exponentially distributed packet inter-arrival times using p = 6
packet trains in a single tight link network.
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constant rate increment 6, =25 Mbps, are not enough to estimate the upward
segment of rate response curve shown in Fig. 2.5. This effect can be seen in
Fig. 5.12a, where the direct method is unable to track available bandwidth of
A(t) =145 Mbps, as it approaches the capacity C(t) =187 Mbps of a network
path, as only one measurement of inter-packet strain (¢) is available from input
probing rate of r11:%* =150 Mbps.

Since the bandwidth values stay constant over a certain time period, we con-
sider the correlation among the bandwidth values over time and implement a
one-dimensional median filter to smooth the estimates. Herein, one can observe
that the classification errors look like the salt-and-pepper noise. Therefore, the
median filter works very well in smoothing the classification errors. We set the
filter order to five because increasing the order more leads to increased delays.
Fig. 5.12b compares the results of estimated classes with filtered classes. The SD
has been significantly reduced after applying a median filter to the estimated
available bandwidth classes.

We further compare the SVM-based and NN-based results, which show the
highest two performances in Table 5.1, with the results of the corresponding
regression-based techniques. In the SVM-based regression (SVR) method, we
set the GRBF as the kernel, and in the NN-based regression (NNR) method,
we use a shallow NN consisting of one hidden layer with 40 neurons. As seen
in Fig. 5.12c and Fig. 5.12d, although the results are comparable for both the
classification and regression-based estimators, the SD values are better when

implementing the classification-based estimators.

5.5.2 Network Parameter Variation beyond the Training Data

We investigate the sensitivity of our proposed method with respect to a varia-
tion of network parameters that differ substantially from the training data set.
We evaluate the variability of cross traffic and multiple tight links.

5.5.2.1 Burstiness of Cross Traffic

In order to evaluate our method in the presence of cross traffic with an un-
known burstiness, we test the aforementioned classification-based estimators
with CBR that has no burstiness as assumed by the probe rate model, and
Pareto traffic that has heavy burstiness with infinite variance defined by a shape
parameter ot =1.5.

In Table 5.2 and Table 5.3, we show the averaged accuracy, and the micro-
averaged and macro-averaged F-measure results in the presence of cross traffic
that has a constant bit rate and Pareto-distributed packet inter-arrival times,
respectively. The classification-based estimator trained for exponential traffic
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performs well when the burstiness in the cross traffic decreases as can be seen in
Table 5.2 for CBR traffic. However, the misclassification increases significantly
when the cross traffic becomes bursty in the case of Pareto traffic as can be
seen in Table 5.3. Notice that the F-measure score decreases. This decrease
in performance of classifiers for Pareto traffic can be explained by the class
overlap problem. The noise introduced by the increased burstiness of cross
traffic causes instances from nearby classes to reside in overlapping regions in
the feature space, which makes it difficult for the classifier to assign instances
to correct classes, hence the misclassification error rate increases.

In Fig. 5.13a, we compare the results obtained by implementing the direct
probing technique and the NN-based classifier (NNC). Recall that the NNC
shows the highest accuracy in Table 5.2. The NNC, which is trained in a
network with cross traffic having exponentially distributed packet inter-arrival
times, performs almost with no misclassification in the case of no burstiness. In
Fig. 5.13b, we see that the SD decreases after applying a median filter to the es-
timates obtained by the NNC. In Fig. 5.13c and Fig. 5.13d, we show the results
for both the classification and regression-based methods using NN and SVM,
respectively. While all of them perform well and provide comparable results,
the NNR technique has the minimum SD.

Furthermore, in Fig. 5.14a, we compare the results obtained from the direct
probing technique with the SVM-based classifier, which shows the highest accu-
racy in Table 5.3 in the case of cross traffic with Pareto-distributed packet inter-
arrival times. Again, the SVM-based classifier, which is trained in a network
with cross traffic having exponentially distributed packet inter-arrival times,
performs better than the direct probing technique. In Fig. 5.14b, we show that
the estimates are improved after applying the median filter to the estimates of
the SVM-based classifier. In Fig. 5.14c and Fig. 5.14d, we compare the classifica-
tion and regression-based methods again using SVM and NN, respectively. In
all techniques, the bias in the estimates increases with the increasing burstiness
while the classification methods have less SD. Here, we can easily conclude
that the NNR technique is better than the other when there is no burstiness in
cross traffic in a network, while utilizing SVM and classification improves the

estimation quality.
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Table 5.2: Testing performance evaluation in a single tight link in the presence of cross
traffic that has a constant bit rate

Parameters ‘ Algorithms

| svMm k-NN  Bagging AdaBoost NN
Accavg 0.9996 0.9996 0.9991 0.9990 0.9998
Precision, 0.9960 0.9960 0.9910 0.9900 0.9980
Recall,, 0.9960 0.9960 0.9910 0.9900 0.9980
F1, 0.9960 0.9960 0.9910 0.9900 0.9980
Precisionp 0.9964 0.9961 0.9926 0.9916 0.9981
Recallpm 0.9962 0.9956 0.9898 0.9888 0.9979
Fim 0.9963 0.9958 0.9912 0.9902 0.9980
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Figure 5.13: Available bandwidth estimates and their SD in the presence of cross traffic
that has a constant bit rate using p =6 packet trains in a single tight link
network.
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Table 5.3: Testing performance evaluation in a single tight link in the presence of cross
traffic that has Pareto-distributed packet inter-arrival times

Parameters ‘ Algorithms

| svMm k-NN  Bagging AdaBoost NN
Accayg 0.9746 0.9724 0.9734 0.9684 0.9735
Precision, 0.7460 0.7240 0.7340 0.6840 0.7350
Recall,, 0.7460 0.7240 0.7340 0.6840 0.7350
F1, 0.7460 0.7240 0.7340 0.6840 0.7350
Precisionpm 0.8018 0.7394 0.7528 0.7051 0.7576
Recallpm 0.7518 0.7238 0.7347 0.6856 0.7323
Fim 0.7760 0.7315 0.7436 0.6952 0.7447

200 200

=== Actual available bandwidth class
——SVC(SD =7.3461/ SDu:7.5798)

Direct (SD =20.9853)

=== Actual available bandwidth class
——SVC (SD =7.3461/ SDu:7.5798)

- - -Median filter (SD =5.2185)

=

a

(=]

=

a

o
T

&

Available Bandwidth Estimates (Mbps)
=
8

Available Bandwidth Estimates (M bps)
B
o
o

) . S —— — o
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time Time
(a) Direct vs SVM-based classification (b) Filtered estimated classes
200 200

=== Actual available bandwidth class
——SVC(SD =7.3461/ SDu:7.5798)

SVR (SD =8.7277)

=== Actual available bandwidth class
——NNC (SD =7.5547/ SDu:7.7846)

NNR (SD =8.302)

=

a

o

=

al

o
T

3

i

Available Bandwidth Estimates (Mbps)
=
8
Available Bandwidth Estimates (Mbps)
=
o
o

"l

oiiﬂr

o, L
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Time Time
(c) SVM-based classification vs regression (d) NN-based classification vs regression

Figure 5.14: Available bandwidth estimates and their SD in the presence of cross traffic
that has Pareto-distributed packet inter-arrival times using p = 6 packet
trains in a single tight link network.
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5.5.2.2  Multiple Tight Links

In this section, we address networks with multiple tight links. These networks
pose a well-known challenge in available bandwidth estimation because the
linear model presented in Fig. 2.5 does not reflect the nature of multiple hop
networks completely. Hence, we extend our testbed from a single tight link
network to a network with four tight links as shown in Fig. 4.1. In order to gen-
erate the (ii) training data set, we send a probe stream consisting of p packet
trains through the network with 1 tight link, 2, 3 and 4 tight links consecu-
tively, where each link is exposed to cross traffic with exponentially distributed
packet inter-arrival times with an average rate A=>50 Mbps. In all the network
settings, we set the probe stream as path-persistent and the cross traffic as sin-
gle hop-persistent. The maximum capacity of each tight link is 100 Mbps. The
classification-based method is trained with this additional (ii) training set for
multiple tight links along with (i) training set for a single tight link.

In Table 5.4, Table 5.5 and Table 5.6 we show the averaged accuracy, and the
micro-averaged and macro-averaged F-measure results for 2-hop, 3-hop and
4-hop network, respectively. Compared to the results of a single tight link in
Table 5.1, we notice that the misclassification error rate has increased with an
increase in the number of tight links. This is because, in the case of multiple
tight links, the probe stream has a constant rate i, with a defined input gap
gin only at the first link. For the following links, the input gaps have a random
structure as they are the output gaps of the preceding links. At each additional
link, the probe stream interacts with new, bursty cross traffic. This introduces
more noise to the i, of the following links and makes the classification difficult.
Particularly, we need more data for the training of the method in order to
capture the randomness of the network with multiple links.

In Fig. 5.15a, Fig. 5.16a and Fig. 5.17a, we compare the results obtained from
the direct probing technique with SVC for 2-hop, 3-hop, and 4-hop network, re-
spectively. Though, for both the methods, the variability in estimates increases
with increase in the number of links, the results obtained from SVC are still
highly accurate as compared to the direct method. Furthermore, after applying
the median filter to the of the estimates of the SVM-based estimator, we filter
out the noise in the estimates as seen in Fig. 5.15b, Fig. 5.16b and Fig. 5.17b.
Fig. 5.15¢, Fig. 5.16c and Fig. 5.17¢ compare SVC and SVR methods, for 2-hop,
3-hop and 4-hop network, respectively. The comparison of NNC and NNR
methods for 2-hop, 3-hop and 4-hop network is shown in Fig. 5.15d, Fig. 5.16d
and Fig. 5.17d, respectively. Noting that the results are comparably closer to
each other, the classification has less SD, and the noise in the estimates increases
with the increasing number of links.
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Table 5.4: Testing performance evaluation in a 2-hop network in the presence of cross
traffic that has exponentially distributed packet inter-arrival times

Parameters ‘ Algorithms

| svMm k-NN  Bagging AdaBoost NN
AcCayg 0.9814 0.9774 0.9811 0.9790 0.9813
Precision, 0.8140 0.7740 0.8110 0.7900 0.8130
Recall,, 0.8140 0.7740 0.8110 0.7900 0.8130
F1, 0.8140 0.7740 0.8110 0.7900 0.8130
Precisionpm 0.8265 0.8019 0.8256 0.8000 0.8356
Recallpm 0.8155 0.7802 0.8179 0.7895 0.8225
Fim 0.8210 0.7909 0.8217 0.7947 0.8290
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Figure 5.15: Available bandwidth estimates and their SD in the presence of cross traffic
that has exponentially distributed packet inter-arrival times using p = 6
packet trains in a 2-hop network.
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traffic that has exponentially distributed packet inter-arrival times.

85

Parameters ‘ Algorithms

| svMm k-NN  Bagging AdaBoost NN
Accavg 0.9749 0.9705 0.9727 0.9652 0.9727
Precision, 0.7490 0.7050 0.7270 0.6520 0.7270
Recall,, 0.7490 0.7050 0.7270 0.6520 0.7270
F1, 0.7490 0.7050 0.7270 0.6520 0.7270
Precisionp 0.7571 0.7117 0.7401 0.6648 0.7339
Recallpm 0.7470 0.7040 0.7264 0.6598 0.7248
Fim 0.7520 0.7078 0.7332 0.6623 0.7293
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Figure 5.16: Available bandwidth estimates and their SD in the presence of cross traffic
that has exponentially distributed packet inter-arrival times using p = 6
packet trains in a 3-hop network.
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Table 5.6: Testing performance evaluation in a 4-hop network in the presence of cross
traffic that has exponentially distributed packet inter-arrival times.

Parameters ‘ Algorithms

| svMm k-NN  Bagging AdaBoost NN
AcCayg 0.9735 0.9700 0.9701 0.9613 0.9704
Precision, 0.7350 0.7000 0.7010 0.6130 0.7040
Recall,, 0.7350 0.7000 0.7010 0.6130 0.7040
F1, 0.7350 0.7000 0.7010 0.6130 0.7040
Precisionpm 0.7639 0.7323 0.7371 0.6457 0.7346
Recallpm 0.7368 0.7001 0.7112 0.6085 0.7086
Fim 0.7501 0.7158 0.7239 0.6265 0.7214
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Figure 5.17: Available bandwidth estimates and their SD in the presence of cross traffic
that has exponentially distributed packet inter-arrival times using p = 6
packet trains in a 4-hop network.
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5.5.3 Effect of Number of Packet Trains

In general, the excessive amount of probe traffic is undesired in networks. In
the previous sections, we use a probe traffic with p = 6 packet trains to esti-
mate the bandwidth thereby reducing the amount of artificial traffic injected to
the network. Now, we investigate how much we can decrease the probe traf-
fic without a significant impact on the performance of the classification-based
method.

As we can interpret from the rate response curve in Fig. 2.5, the probe rates
that are greater than or equal to the available bandwidth, ie., 1 > C(t) —
A(t), provide the relevant information to estimate the available bandwidth, but
meanwhile, cause congestion in the network. Therefore, in order to investigate
the effect of the number of packet trains on the performance and harness the
congestion risk, we exclude the highest probing rates while setting the number
of packet trains to p=>5 and p =4, respectively. Considering again a single link
with cross traffic having exponentially distributed packet inter-arrival times, we
show the results in Table 5.7 and Table 5.8, when the number of packet trains
is five and four, respectively. We can see that the performance decreases with
the decreasing number of packet trains. However, the decrease in accuracy is
negligible, and the misclassification performance is affected slightly. Noting
the trade-off between the amount of injected traffic and the performance loss,
we can still use four packet trains if we need to avoid network congestion.

In Fig. 5.18a and Fig. 5.19a, we compare the results obtained by the direct
probing technique with the ones by SVC-based method when we have p =5
and p = 4, respectively. Despite the noise increase in the estimates with the
decrease in the probe traffic, the results obtained by the SVC-based method are
still more accurate than the ones by the direct probing technique. Moreover,
the direct probing technique has more SD. This is again because when the
available bandwidth approaches the capacity, there is no inter-packet strain
measurement left on the upward segment of the rate response curve due to
omitting the higher probing rates. Furthermore, in Fig. 5.18b and Fig. 5.19b,
we show that after applying the median filter to the estimates of the SVC-based
method, the estimates become less noisy again. Finally, we compare the SVM-
based and NN-based classification and regression techniques in Fig. 5.18c and
Fig. 5.19¢, and in Fig. 5.18d and Fig. 5.19d, respectively. The results are close
to each other. Finally, we note that the noise in the estimates increases with the
less packet trains.
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Table 5.7: Testing performance evaluation in a single tight link in the presence of cross
traffic that has exponentially distributed packet inter-arrival times using p=>5
packet trains

Parameters ‘ Algorithms

| svm k-NN  Bagging AdaBoost NN
Accavg 0.9935 0.9929 0.9934 0.9908 0.9935
Precision, 0.9350 0.9290 0.9340 0.9080 0.9350
Recall,, 0.9350 0.9290 0.9340 0.9080 0.9350
F1, 0.9350 0.9290 0.9340 0.9080 0.9350
Precisionpm 0.9354 0.9309 0.9372 0.9107 0.9364
Recallpm 0.9354 0.9290 0.9349 0.9077 0.9364
Fim 0.9354 0.9299 0.9360 0.9092 0.9364
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Figure 5.18: Available bandwidth estimates and their SD in the presence of cross traffic
that has exponentially distributed packet inter-arrival times using p =5
packet trains in a single tight link network.
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Table 5.8: Testing performance evaluation in a single tight link in the presence of cross
traffic that has exponentially distributed packet inter-arrival times using p=4
packet trains

Parameters ‘ Algorithms

| svMm k-NN  Bagging AdaBoost NN
Accayg 0.9863 0.9853 0.9857 0.9809 0.9853
Precision, 0.8630 0.8530 0.8570 0.8090 0.8530
Recall,, 0.8630 0.8530 0.8570 0.8090 0.8530
F1, 0.8630 0.8530 0.8570 0.8090 0.8530
Precisionpm 0.8611 0.8521 0.8581 0.8153 0.8604
Recallpm 0.8591 0.8498 0.8571 0.8118 0.8521
Fim 0.8601 0.8509 0.8576 0.8135 0.8562
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Figure 5.19: Available bandwidth estimates and their SD in the presence of cross traffic
that has exponentially distributed packet inter-arrival times using p =4
packet trains in a single tight link network.






PASSIVE AVAILABLE BANDWIDTH ESTIMATION

This chapter aims at understanding the information that short-lived TCP flows
provide on the available bandwidth. The results may benefit new TCP ver-
sions such as the recent Hybrid Start (HyStart) algorithm [55] and Bottleneck
Bandwidth and Round-trip propagation time (BBR) [56]. Furthermore, the rate-
adaptive applications like Moving Picture Experts Group (MPEG)-Dynamic
Adaptive Streaming over HTTP (DASH) can be benefited from bandwidth esti-
mation, where it is a common practice to use the throughput of a TCP connec-
tion as an estimator of the available bandwidth.

We find the shortcomings of TCP throughput as available bandwidth esti-
mator, and further investigate how techniques from active probing can benefit
TCP bandwidth estimation. We identify the chaotic, non-packet train pattern
of TCP flows, and define a criterion to select traffic samples that bear relevant
information. This information is encoded in the form of packet gaps that are
explained by the PGM known in bandwidth estimation. We use a regression
technique to obtain robust bandwidth estimates from passive measurements of
these gaps. The accuracy of the method is evaluated for a variety of relevant
parameter settings. We propose a method that can take multiple gaps as well
as acknowledgment gaps as input. This extension enables bandwidth estima-
tion using only sender-side measurements of TCP input and acknowledgment
packets. Furthermore, to deal with the distorted acknowledgment gaps, we ex-
plore the use of machine learning, specifically Neural Network (NN) in passive
bandwidth estimation. We also apply the NN under a variety of notoriously dif-
ficult conditions that have not been included in the training such as randomly
generated networks with the multiple bottleneck links and heavy cross traffic
burstiness. We consider single packet losses and investigate how our proposed
method may benefit the recent congestion control algorithm: BBR [56]. We
provide data sets generated in a controlled network testbed located at Leibniz
University Hannover for training and testing of our proposed method. The
work in this chapter is based on joint work with Markus Fidler [57], and [58].

The remainder of this chapter is structured as follows. In Sec. 6.1 we discuss
the limitations of TCP throughput as available bandwidth estimator. We de-
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scribe our experimental setup in Sec. 6.2. In Sec. 6.3, we introduce a method
to estimate the available bandwidth from passive measurements. We apply the
method to short-lived TCP flows and evaluate the accuracy for a variety of rel-
evant parameters in Sec. 6.4. We also extend the method to use sender-side
measurements of acknowledgment gaps in Sec. 6.5. We introduce a NN-based
method to estimate the available bandwidth from noise afflicted acknowledg-
ment gaps in Sec. 6.6. We evaluate our proposed method in the presence of
packet loss in Sec. 6.8.

6.1 TCP THROUGHPUT AS AVAILABLE BANDWIDTH ESTIMATOR

The Internet relies on congestion control protocols and adaptive applications
that adjust their data rate to achieve good performance while avoiding network
congestion. DASH is one such application that has emerged as an increasingly
popular paradigm for video streaming and is the core technology used by major
Internet video providers such as YouTube and Netflix [59]. In DASH, the media
content is divided into segments or chunks of a certain duration, typically in the
order of a few seconds. The chunks are encoded using multiple profiles, i.e.,
each chunk is available in different quality levels corresponding to different
bandwidth requirements. The encoded chunks are stored on HTTP servers
along with a manifest file which lists the available profiles of the chunks. The
client downloads the chunks one by one using HTTP GET requests, where it
seeks to select the profile that matches the available resources best.

An essential prerequisite for such applications is the estimation of available
network resources. On the one hand, TCP protocol was not originally designed
to deliver video streaming applications and, on the other hand, DASH itself
does not specify the method of how to measure the available bandwidth. A
typical approach is to use the average throughput achieved by TCP during the
transmission of previous chunks as an estimate of the available bandwidth, e.g.,
[59, 60]. Formally, given a chunk of N packets each with length 1, the average
throughput is computed as

(N—1)
Tout = ﬁ, (61)
b=1 Yout
where the output gap is defined as g2, =t%}' —t%,, and t8,, is the time of re-

ception of packet b by the receiver. To support basic insights into the relation of
TCP throughput and available bandwidth, we evaluate the average throughput
of TCP in controlled network experiments. Compared to [9, 37], we use TCP
CUBIC to transfer chunks of limited size. CUBIC is a high-speed TCP variant
aimed at saturating networks with a large bandwidth-delay-product. In conges-
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Figure 6.1: Average TCP throughput. The available bandwidth of 100 Mbps is attained
only if the OWD is small and the chunk size is large.

tion avoidance, it uses a CUBIC function to increase the CWND independent
of the RTT [61].

Fig. 6.1 shows the throughput that is achieved by TCP when transmitting
chunks of a fixed size in the range from 256 kB to 4 MB. The network offers
an available bandwidth of 100 Mbps and the experiments are conducted for a
range of OWD from 1 to 100 ms. Further, details on the network are deferred
to Sec. 6.2. We notice that TCP congestion control limits the throughput sig-
nificantly below the available bandwidth for two reasons: first, the TCP trans-
mission starts in slow start with a small CWND and, even despite the CWND
is increased quickly, this initial phase has a considerable effect on the average
throughput if chunks are small; secondly, when the OWD is non-negligible,
the CWND may never reach the bandwidth-delay-product so that the actual
throughput during the transmission of a finite-sized chunk generally remains
below the available bandwidth.

The above limitations have motivated us to investigate in-depth: “Do obser-
vations of short TCP flows provide sufficient information to infer the available
bandwidth?" And if so, “How can the available bandwidth be estimated, e.g.,
can techniques from active probing be adapted to passive TCP measurements?"

6.2 EXPERIMENTAL SETUP

Before we investigate how to estimate the available bandwidth from passive
TCP measurements, we provide a brief overview of our testbed network that
is used to obtain the experimental results presented in this chapter. The exper-
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Figure 6.2: Dumbbell topology set up in Emulab with multiple tight links of a capacity
of 100 Mbps and a configurable delay and loss rate. Cross traffic in the
downstream and upstream directions is single hop-persistent and used to
load the tight links to enable controlled bandwidth estimation experiments.

iments are conducted in a controlled network at Leibniz University Hannover
that is managed by the Emulab software [44].

We use a dumbbell topology with multiple tight links as shown in Fig. 6.2
and emulate the transmission of DASH video chunks in the presence of down-
stream as well as upstream cross traffic. The downstream cross traffic is used to
load the bottleneck link so that a defined amount of bandwidth remains avail-
able, whereas uplink cross traffic interferes with TCP acknowledgments and
alters their spacing.

For our experimental purposes, we consider the animated movie named Sin-
tel by Blender Foundation. We downloaded the movie from YouTube and ob-
tained the chunk statistics. The modal value of the chunks of about 1 MB is
chosen as a reference. To transmit chunks of data of a defined size via TCP
and UDP, we use the traffic generators iPerf [62] and RUDE & CRUDE [47],
respectively. Cross traffic of different types and intensities is generated using
D-ITG [46].

Since the PCs in our Emulab testbed are connected via physical Ethernet
links of 1T Gbps and 10 Gbps, respectively, we use the token bucket filter [63]
to emulate a 100 Mbps bottleneck link. In addition, a delay node is used at
the bottleneck to emulate a wide area link to investigate the effect of different
OWDs on the bandwidth estimation. The delay node can also be configured to
create packet loss with a defined probability in the downstream and upstream
direction. The access links are configured to have 100 Mbps capacity, too. We
note that the emulation has limited accuracy and hence contributes additional
noise to the measurements.

We disable the segmentation offloading by the NIC using ethtool [64]. Hence,
the TCP/IP stack is responsible for segmenting chunks into datagrams of 1500 B
size, that is the maximum transmission unit carried by the Ethernet links. In-
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cluding Ethernet header and trailer, the packet size is 1514 B. Packet timestamps
at the video sender and receiver are generated at points A and B, respectively,
using libpcap at the hosts. We also use a specific Endace DAG measurement
card to obtain accurate reference timestamps.

63 ESTIMATION FROM PASSIVE MEASUREMENTS

As already discussed in Sec. 6.1, TCP throughput is not generally a good esti-
mator of the available bandwidth. Two reasons that we have investigated are
non-negligible OWDs and short-lived TCP flows, as caused by small to medium
chunk sizes, see Fig. 6.1. Now the following questions arise:

e Is it possible to estimate the available bandwidth in such scenarios where
TCP throughput is limited?

e How can the required information be extracted from the rather chaotic
traffic patterns of TCP?

Before we investigate the specifics of TCP traffic in Sec. 6.4, we first develop
a method for available bandwidth estimation from general passive measure-
ments. We verify the method in controlled experiments.

6.3.1 Model-based Passive Estimation Method

We construct a method that is based on the PGM. It uses techniques from
direct probing together with a threshold test to select relevant packet gaps.
To motivate our design decisions, we start with a discussion of the different
options that arise before we give details on the implementation.

Given passive measurements, we have to deal with non-structured traffic that
cannot be assumed to take certain patterns, like CWND-sized packet trains as
used by HyStart [55]. In order to be able to apply packet train models neverthe-
less, an option is to filter the sender-side measurement data for clusters of back-
to-back packets that exceed a certain threshold. This approach is used in [65],
where the specific requirement is that packet trains span several scheduling pe-
riods of a cellular network. A drawback of the approach is that a potentially
large number of samples that do not pass the threshold test may be discarded.
To avoid dependence on any kind of traffic structure, we will work with indi-
vidual packet gaps. Hence, the PGM applies.

Using the PGM, the task is to estimate the parameters of the gap response
curve from passive measurements of gin and gout. The difficulty is due to the
fact that we cannot assume evenly spaced gin as achievable by active probing.
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For example, we may not have any samples close to the bend of the gap re-
sponse curve at 1/gin = C — A, see Fig. 2.3. Consequently, iterative techniques
that search for the turning point may not apply, as relevant data may be miss-
ing. Further, in the presence of random cross traffic, it has been found that
deviations blur the turning point unless long packet trains are used [8, 11].
Techniques from direct probing, on the other hand, require that gi, < 1/(C —
A) where C and A are unknown. Filtering out all gi, > 1/(C — A) beforehand
may seem to be an easy task, given that gout = gin in this case, see Eq. (2.2). In
practice, gout may, however, be significantly distorted. Important reasons for
this are: inaccurate time-stamping, the packet granularity and the randomness
of non-fluid cross traffic, and the interaction with cross traffic on links other
than the bottleneck link. To determine a threshold gih®* up to which g;, may
safely be used by techniques from direct probing, we adapt a criterion from
DietTOPP [33] to the PGM. We identify the minimal input gap denoted g{;‘in in

min

the passive measurement data and extract the corresponding output gap ggut-
It can be shown that g% < 1/(C —A), so that we can use gl® = gTil as a
threshold to filter out all gij, > gih?*.

To verify that g2t < 1/(C —A), we use Eq. (2.6) to derive the corresponding

gap representation

min __ ggin)\ +1

out — C ’ (62)

where we assume that g{ﬁin < 1/(C —A). The condition is satisfied if there exist
samples gin on the right, upward slope of the gap response curve. Otherwise,
if there are no samples in this region, the measurement data does not provide
sufficient information to estimate the available bandwidth. The intuition be-
hind Eq. (6.2) is that during g™i" an amount of fluid cross traffic of gmiA is
accumulated that is transmitted in FIFO order between the two packets that
span gﬁin. The condition g{‘r}in < 1/(C —A) ensures that the FIFO multiplexer
does not become idle during this interval. By insertion of ggin <1/(C—A) into
Eq. (6.2), it follows that gmit < 1/(C —A).

A lower bound of gMif' can be obtained from Eq. (6.2) if we let g™ — 0.

out

It follows that gt is bounded in the interval 1/C < g < 1/(C —A), i.e.,

out

using the threshold gma = g™iM may filter out usable samples that satisfy gin <

1/(C —A). We ignore these samples since they are close to the middle part of
the gap response curve at 1/g;j, =C — A that has been found to be biased if cross
traffic is random [8, 11].

In practice, we cannot rely on a single sample g™ to determine g™, Instead,
we consider a bin of the x smallest gaps gin and compute the average of the
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min

corresponding gout to obtain a robust estimate of ggyy .

In our experiments, we
min

configure x so that 10% of the gaps are used to estimate gJ¢.

Once we have selected samples that satisfy gin < 1/(C —A), we can apply any
technique from direct probing to estimate the available bandwidth. Here, we
use linear regression to determine the upward segment of the gap response
curve, as this method does not require any specific distribution of the gin.
The available bandwidth estimate is determined from Eq. (2.2) as the x-axis
intercept where the regression line intersects with the horizontal line at 1, see
Fig. 2.3.

6.3.2 Experimental Verification

For the first experimental verification of the estimation method, we use (gin,
Jout) samples that are evenly distributed over the range 5 Mbps < 1/gin <
100 Mbps. The samples are obtained in our experimental testbed using the
tool RUDE & CRUDE that can emit UDP packets with a defined gap. The
packet size is 1 = 1514 B on the Ethernet, and we transmit chunks of 1 MB,
corresponding to 660 packets. A set of (gin, gout) Samples obtained by the
transmission of one chunk is shown in Fig. 6.3. In the experiment, CBR cross
traffic with rate A=50 Mbps is used.

The cross traffic deviates, however, from the fluid-flow assumption as it uses
packets of 1514 B. The effects of the packet granularity become visible as a
vertical spread of the gout/gin points in Fig. 6.3. To illustrate an example, we
consider 1/gin, =50 Mbps that corresponds to gin =0.24 ms. The transmission
time of a packet at C =100 Mbps is 0.12 ms, so that a cross traffic packet can
fit exactly into the gap. This results in gout/gin = 1 as also predicted by the
fluid model. Cross traffic packets can arrive, however, at arbitrary points in
time and if a cross traffic packet arrives right before the first or second packet
that constitute gi,, it delays this packet by 0.12 ms so that gout/gin =0.5 or 1.5,
respectively.

The method for estimation of the available bandwidth from the samples pro-
min

ceeds in two steps. First, it estimates g;

min and the corresponding g™l based

out
max min

on the 10% of the samples with the smallest gi,. Using g™ =gJuf* as a thresh-
old for gin, only the samples with 1/gin > 1/gih™ =70 Mbps, that are marked
blue in Fig. 6.3, are used in the second step to perform the linear regression.
The regression line is shown as a thick blue line. Extending this line until it
intersects with the horizontal line at 1, reveals an available bandwidth estimate
of 50 Mbps. Further, it follows from Eq. (2.2) that the slope of the regression
line provides an estimate of 1/C. In Fig. 6.3, the slope is approximately 0.01

corresponding to C=100 Mbps.
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Figure 6.3: (gin, gout) samples obtained by the transmission of a chunk of 1 MB via
UDP. The sender varies gi, so that the samples are evenly distributed. Sam-
ples that are marked blue are used to determine the regression line. The
intersection of the regression line with the horizontal line at 1 marks the
available bandwidth of 50 Mbps.

We repeated the above experiment with different cross traffic intensities of
A € {0,25,20,75} Mbps. For each case, we conducted 100 repeated measure-
ments. We report the mean value in Fig. 6.4. The available bandwidth estimates
closely match the ground truth that is marked in the figure by a green line. For
comparison, we also include the throughput that is achieved by a TCP sender
and a UDP sender, respectively, that transmit the same amount of data of 1 MB.
Clearly, the TCP throughput underestimates the available bandwidth, as soon
as more than 20 Mbps are available. To understand this effect, we note that
the testbed was configured to have an OWD of 10 ms. As a consequence, the
TCP throughput is limited by the CWND. For further details, see the discus-
sion of Fig. 6.1. The UDP throughput, on the other hand, overestimates the
available bandwidth. This is due to the fact that a greedy UDP sender can pre-
empt the cross traffic at a FIFO multiplexer and monopolize the link. The effect
is expressed by Eq. (2.6). Given UDP traffic is injected at line rate rj, = C, it
achieves a throughput of Tou=C?/(C +A) that equates to {100, 80, 67,57} Mbps
for the given A. Similar values are observed in the measurement results shown
in Fig. 6.4.
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Figure 6.4: Available bandwidth estimates for varying cross traffic rates. The estimates
obtained from UDP (gin, gout) measurements closely match the ground
truth. The TCP throughput underestimates the available bandwidth, mainly
due to the OWD of 10 ms and the limited chunk size of 1 MB. The UDP
throughput overestimates the available bandwidth since a greedy UDP
sender can preempt cross traffic at a FIFO multiplexer.

64 ESTIMATION FROM TCP MEASUREMENTS

In this section, we investigate the (gin, gout) characteristics of passive TCP mea-
surements and evaluate the available bandwidth estimates that can be obtained
thereof. Further, TCP offers a unique opportunity to estimate the available
bandwidth from sender-side measurements only, using the feedback that is
provided by the spacing of the acknowledgments. We extend the estimation
method to include multiple packet gaps as well as acknowledgment gaps. For
these, we also develop a technique that deals with packet loss.

6.4.1 TCP (gin, gout) Characteristics

The (gin, gout) characteristics of TCP traffic are largely affected by TCP conges-
tion control and related parameters such as the OWD. Since the input gap is
not fixed as in the case of active probing, we extend the notation by superscript
b and write g2 =t>™! —t2 whenever we refer to a specific input gap. Above, t2,
is the send timestamp of packet b. In Fig. 6.5, we show two characteristic sets of
(gin, gout) samples obtained from TCP traffic. The OWD is 1 ms in Fig. 6.5a and
10 ms in Fig. 6.5b. The remaining parameters are as in Fig. 6.3. For an OWD
of 1 ms, the values of gi, are spread more or less evenly over a wide range,
similar to Fig. 6.3. If the OWD is increased to 10 ms, we observe, however, a

clustering of the gi, values. Roughly three clusters are formed: in the left part,
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Figure 6.5: (gin, gout) samples obtained from passive TCP measurements and band-
width estimates obtained thereof. The values of g;, are a result of TCP
congestion control and depend on network parameters such as the OWD.
With increasing OWD a clustering of gi, samples is observed and the vari-
ability of bandwidth estimates increases.
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large gin in the range of up to two OWD occur if the sender has to wait for
acknowledgments after transmitting a full CWND; in the middle part, the self-
clocking of TCP by the acknowledgments causes gi, that correspond roughly
to the available bandwidth; and in the right part, back-to-back packets can be
found that are triggered, e.g., by cumulative acknowledgments. Bandwidth
estimates for CBR cross traffic in the range A € {0, 25,20, 75} Mbps are summa-
rized in Fig. 6.5¢, where we show mean and the standard deviation obtained
from 100 repeated measurements each. As before the capacity is C=100 Mbps
and the chunk size 1 MB. We compare the case of TCP measurements with an
OWD of 1 and 10 ms, respectively, with the UDP measurements presented in
Fig. 6.4, before. The results confirm that it is possible to estimate the available
bandwidth from passive TCP measurements using the PGM. Moreover, we
are able to obtain rational available bandwidth estimates in those scenarios of
non-negligible OWDs where TCP throughput as bandwidth estimator is lim-
ited. While in the case of small OWDs, TCP and UDP measurements perform
comparably, the bandwidth estimates show more variability as well as a cer-
tain underestimation if the intensity of the cross traffic is low and the OWD
is increased. In the case of low cross traffic intensity, fewer samples pass the
threshold test and contribute to the regression line.

6.4.2 Parameter Evaluation

We proceed with an evaluation of the effects of relevant parameters, including
the intensity and distribution of cross traffic, the OWD, and the chunk size, on
the quality of bandwidth estimates that are obtained from passive TCP mea-
surements. We use cross traffic of different burstiness: CBR as assumed by
the PGM; a moderate burstiness due to exponential inter-arrival times; and a
strong burstiness due to Pareto inter-arrival times with infinite variance, caused
by a shape parameter of &s =1.5. The packet size is 1=1514 B and the average
rate of the cross traffic is A € {25,50,75} Mbps. The chunk size is 1 MB, the
capacity C =100 Mbps, and the OWD is 1 ms. Fig. 6.6a shows the mean and
the standard deviation of 100 repeated experiments. We notice that the mean
of the estimates corresponds well with the true available bandwidth, regardless
of the type of cross traffic. Effects of the cross traffic can be observed in the
variability of the estimates that increases if the burstiness is increased.

We evaluate the impact of the OWD in a wide range of {1,5,10,50} ms for
exponential cross traffic with average rate A =50 Mbps in Fig. 6.6b. The re-
sults quantify the effects of the OWD on the (gin, gout) characteristics that we
observed already in Fig. 6.5. The quality of the bandwidth estimates obtained
from passive TCP measurements decreases if the OWD is increased. We note
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Figure 6.6: Parameter evaluation. Bandwidth estimates for (a) different types of cross
traffic burstiness, (b) OWDs, and (c) chunk sizes. The quality of the esti-
mates is good for small to medium OWDs and improves with the chunk
size. The burstiness of cross traffic mostly influences the variability of the
estimates.
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that this effect is specific to TCP congestion control. A fixed increase of the
OWD will not alter the (gin, gout) characteristics of UDP traffic.

The impact of the chunk size that determines the number of samples that
are obtained for estimation of the available bandwidth, is evaluated in Fig. 6.6c.
The cross traffic is exponential with A=50 Mbps and the OWD is 1 ms. Clearly,
the quality of the estimates and specifically, the variance of the estimates im-
proves significantly if more samples are available. Moreover, as the chunk size
is increased, the quality of the samples changes, too. This is due to the growth
of the CWND during the course of the transmission that causes less stalling.
Considering the case of a chunk size of 128 kB that corresponds to about 85
packets, we conclude that it is challenging to obtain an estimate of the available
bandwidth already during the slow start phase, as HyStart does.

If the assumptions of the fluid model do not hold, e.g., in the case of random
cross traffic, the regression technique may occasionally fail. We filter out band-
width estimates that can be classified as infeasible. This is the case if the slope
of the regression line is so small that the intersection with 1 is on the negative
1/gin axis in Fig. 2.3, implying the contradiction A < 0, or if the slope of the

regression line is negative, implying C < 0.
6.5 ESTIMATION FROM SENDER-SIDE TCP MEASUREMENTS

TCP offers the option to perform the estimation based only on sender-side mea-
surements of data and acknowledgment packets, i.e., no specific cooperation of
the receiver is required. This feature is used, for example, by TCP HyStart. In
this section, we will advance the PGM to use acknowledgment gaps. Two as-
pects have to be considered: TCP uses delayed acknowledgments and typically
only every other packet is acknowledged, i.e., the acknowledgment process
effectively performs a sub-sampling; and secondly, the cross traffic in the re-
verse path may alter the spacing of acknowledgments and hence increase the
measurement noise. In order to evaluate the impact of the two aspects one
at a time, we first investigate the sub-sampling only in Sec. 6.5.1 followed by
employing the use of a neural network to deal with measurement noise in ac-

knowledgments gaps in Sec. 6.6.

6.5.1 Acknowledgment Gaps

In this section, we address the sub-sampling effect introduced by acknowledg-
ments. For this purpose, we define a multi-gap as gg{ﬁ = Z;b] gl =1 — tou
and gibn’C accordingly. Subsequently, we make the transition from multi-gaps

to the corresponding ack-gaps denoted 9:612' Fig. 6.7 illustrates the concepts of
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Figure 6.7: Multi-gap and ack-gap models. The ack-gap enables available bandwidth
estimation using sender-side measurements only.

multi-gap and ack-gap. The packets are numbered by i and Acknowledgment
(ACK) i denotes a cumulative acknowledgment of all packets up to and includ-
ing packet i —1.

We note that combining several gaps to form a multi-gap does not imply
constant rate packet train models, since the individual input gaps from passive
measurements are random. In fact, the derivation of a multi-gap response curve
by repeated application of Eq. (2.2) requires a condition for each individual
input gap. Considering only the relevant, upward segment of the gap response

curve, we use Eq. (2.2) to derive
Goar _ A, (c=b—T)L

gibn,c C Cgb,c

if 1/gl, > C—A for all i € {b,c—1}. The multi-gap response curve shows

the same characteristic slope as the gap response curve with one difference:
the average input gap g:° = g2°/(c —b — 1) and average output gap gos =
92¢ /(c —b—1) take the place of gi, and gou, respectively.

In order to estimate the available bandwidth from the multi-gap response
curve, we use the method defined in Sec. 6.3.1. A slight modification is re-

quired to identify samples that satisfy the condition of Eq. (6.3). Given the

average input gaps gibn’c we find the minimal average input gap g™ and the

corresponding average output gap ghy. We select gm* =gt as a threshold

for g;, to test that g;, < gip®™.

mih js a valid threshold with respect to Eq. (6.3), i.e., ghin <

To verify that gg;
1/(C —A), we apply Eq. (6.2) repeatedly to obtain

—minA +1

—min __ gin
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Figure 6.8: Gap response curve. The acknowledgment process effectively performs a
sub-sampling and the cross traffic in the reverse path may alter the spacing
of acknowledgments as can be seen by g1 /Gin < 1.

where we assumed that all g, , that are part of g™, satisfy g}, < 1/(C—A). By
insertion of gﬁin < 1/(C —A) it follows that gt < 1/(C —A).

The estimation method applies in the same way if acknowledgments are used
to avoid receiver-side measurements. In this case, g}:c’lf takes the place of 2.
Fig. 6.8 shows the estimate obtained from 1 MB chunk size in the presence
of exponential random cross traffic of average rate A = 50 Mbps in the tight
link of capacity C = 100 Mbps using ack-gap measurements. However, ac-
knowledgment process effectively performs a sub-sampling and random cross
traffic in the reverse path distorts the acknowledgment gaps as can be seen by
Jack/TGin < 1.

We present bandwidth estimates obtained from multi-gap and ack-gap mea-
surements compared to the use of individual gaps in Fig. 6.9. The cross traffic
is exponential with average rate A € {25,50,75} Mbps. Cross traffic is generated
both in the downstream and upstream direction. The chunk size is 1 MB, the
capacity C=100 Mbps, and the OWD is 1 ms. The results of 100 repeated mea-
surements are shown. In all cases, the mean of the estimates closely matches the
true available bandwidth. The variability is, however, increased if multi-gaps
or ack-gaps are used. The reason is due to a smaller number of samples that
pass the threshold test. Compared to the multi-gap results, we do not notice a
significant change of accuracy when ack-gaps are used.

We note that the estimation may be enhanced using a weighted regression
that takes the number of individual gaps that are comprised of a multi-gap into
account. We did not use this option since TCP typically acknowledges every
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Figure 6.9: Available bandwidth estimates obtained from individual gaps, multi-gaps,
and ack-gaps, respectively. The use of multi-gaps and ack-gaps results in
increased variability of the estimates. The estimates are reasonable in all
three cases.

other packet so that most of the multi-gaps or ack-gaps are of the same size,
i.e., they comprise two individual gaps.

6.6 NEURAL NETWORK-BASED METHOD

In this section, we consider the second aspect of performing the estimation
using only sender-side measurements of data and acknowledgment packets
that the cross traffic in the reverse path may alter the spacing of acknowledg-
ments and hence increase the measurement noise. To estimate the available
bandwidth from distorted acknowledgment gaps gqck we present our neural
network-based implementation. We describe the training data sets and show a
comparison of available bandwidth estimates for a range of different network
parameters.

6.6.1 Data-binning Implementation

We propose a NN-based method that takes a p-dimensional feature vector of the
relative probability of samples of (Jack, Gin) as input. Since we cannot control
the range of samples of (Jqck, Gin) that depends upon the OWDs, burstiness
and intensity of cross traffic, packet loss and multiple tight links, we use Min-
Max normalization to scale the range of samples to [0, 1]. We further use a data-
binning approach where we partition scaled samples of 1/Gin and Jack/Gin
into bins of equal-width. We set bin width as 1/Ny, where Ny, are number of
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bins. Since the underlying density of input and acknowledgment gaps is usu-
ally unknown, selecting the number of bins is not a trivial task. Therefore, for
our approach to avoid bins with zero samples, we choose the number of bins
following Rice rule [66] as Ny, :2Nl/ 3, where Ny is the total number of sam-
ples of (Gack, Gin). Further to obtain integer number of bins, we apply ceiling
function to Ny, i.e., [Ny |. The total number of samples N, however, also varies
depending upon network scenarios in which TCP measurements are taken, e.g.,
packet loss results in fewer samples of (Gack, Gin) as compared to lossless sys-
tem. Hence, to have consistent number of bins independent of network config-
urations, Ny is chosen according to the smallest number of (§qck, Gin) Samples
obtained from experiments done to generate data sets for NN. We calculate the
relative probability of occurrence of samples in each bin as a ratio of number of
samples in each bin and total number of (§qck, §in) samples. To provide input
to the neural network, we reshape a matrix representing the relative probabili-

ties of samples into a p-dimensional vector.

6.6.2  Training Data: Exponential Cross Traffic, Single Tight Link

We generate different data sets for training and evaluation by setting TCP con-
gestion control protocols as CUBIC and BBR in a controlled network testbed
as explained in Sec. 6.2 and OWD of 1T ms. In data set (i) the capacity of tight
link is C =100 Mbps and TCP protocol is CUBIC. The capacity of the access
links is also configured to have C = 100 Mbps. The exponential cross traffic
with an average rate A € {25,50, 75} Mbps is used to generate different available
bandwidths. The TCP chunk size is 1 MB. For each configuration, 100 repeated
experiments are performed. For training of the neural network, we first imple-
ment an autoencoder for each layer separately and then fine-tune the network
using SCG. Given a regression network, we optimize the [2-error requiring
approximately 1000 epochs until convergence is achieved. Due to the limited
amount of training data (300 experiments overall in the first training data set),
the shallow network with a small number of hidden neurons allows training
without much over-fitting. Both the methods generate available bandwidth es-

timates from the same measurement data.

6.6.3 Evaluation: Exponential Cross Traffic, Single Tight Link

We train the neural network using the (i) training data set and generate ad-
ditional data sets for testing using the same network configuration as the (i)
training data set, i.e., using exponential cross traffic A € {25,50,75} Mbps at a
single tight link of 100 Mbps capacity. The testing results of the neural network-
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Figure 6.10: Available bandwidth estimates obtained from ack-gaps for different expo-
nential cross traffic rates that have been included in the training data set.

based method compared to the results of the direct method are summarized in
Fig. 6.10. We show the average of 100 available bandwidth estimates with error
bars depicting the standard deviation of the estimates.

The variability of the available bandwidth estimates of the direct method
is comparably large, and the average underestimates the true available band-
width. Though variability of estimates could be due to a number of reasons
as explained in the previous chapters, particularly in this case, the exponential
cross traffic deviates from the fluid model and causes random fluctuations of
the measurements of g,.. The neural network-based method improves band-
width estimates significantly. The average matches the true available band-
width, and the variability is low. The good performance of the neural network
is not unexpected as it has been trained for the same network parameters.

6.6.4 Network Parameter Variation beyond the Training Data

We investigate the sensitivity of the neural network with respect to a variation
of network parameters that differ substantially from the training data set. We
consider cross traffic with high burstiness and the networks with multiple tight
links as in chapter 4. In this section, we evaluate the variability of cross traffic.
Multiple tight links are discussed in the following section.

6.6.4.1 Burstiness of Cross Traffic

To evaluate how the neural network-based method performs in the presence of
cross traffic with an unknown burstiness, we consider three different types of
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Figure 6.11: Bandwidth estimates for different types of cross traffic burstiness. An
increase of the burstiness causes a higher variability of the bandwidth
estimates.

cross traffic: CBR that has no burstiness as assumed by the probe rate model,
moderate burstiness due to exponential packet inter-arrival times and heavy
burstiness due to Pareto inter-arrival times with infinite variance caused by a
shape parameter of a; =1.5. The average rate of cross traffic is A=>50 Mbps in
all cases. As before, the tight link and access links capacities are C=100 Mbps.

Fig. 6.11 shows the mean and the standard deviation of 100 repeated exper-
iments using the direct and the neural network-based method. The average of
the estimates shows a slight underestimation bias for direct method due to the
queueing effect caused by bursty traffic at the tight link even if the TCP flow
rate is below the average available bandwidth, i.e., if 1/ginn, < C —A. More pro-
nounced is the effect of the cross traffic burstiness on the standard deviation of
the bandwidth estimates. While for CBR cross traffic, the estimates are close to
deterministic, whereas the variability of the estimates increases significantly if
the cross traffic is bursty. The neural network that has been trained for exponen-
tial cross traffic only, performs almost perfectly in the case of CBR cross traffic
and shows good results with less variability compared to the direct technique
also for the case of Pareto cross traffic.

6.6.4.2 One Way Delays

We evaluate the impact of OWDs in a wide range of {1,5,10} ms on the per-
formance of neural network for exponential cross traffic with average rate A =
50 Mbps. As before, the tight link and access links capacities are C=100 Mbps.

Fig. 6.11 shows the mean and the standard deviation of 100 repeated ex-

periments using the direct and the neural network-based method. The neural
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Figure 6.12: Bandwidth estimates for different OWDs. An increase of the OWD causes
a higher variability of the bandwidth estimates.

network that has been trained for OWD of 1 ms only, performs almost perfectly
in the case of higher OWDs and shows good results with less variability com-
pared to the direct technique. In direct method, due to TCP congestion control,
the quality of the bandwidth estimates obtained from passive sender-side TCP
measurements decreases if the OWD is increased.

67 MULTIPLE TIGHT LINKS

In the case of multiple tight links, the chaotic input gaps gi, of TCP get further
distorted in the following links as they are the output gaps of the preceding
links. At each additional link, the TCP stream interacts with new, bursty cross
traffic and its output rate reduces. This results in underestimation of the avail-
able bandwidth in multi-hop networks [8-10, 12]. To test the neural network
with multiple tight links, we extend our network from single-hop to multi-hop
as shown in Fig. 6.2. The path-persistent TCP flow experiences single hop-
persistent exponential cross traffic with average rate A =50 Mbps in upstream
and downstream while traversing multiple tight links of capacity C=100 Mbps.
The capacity of the access links is 100 Mbps. In Fig. 6.13a, we show the re-
sults from 100 repeated measurements for networks with 1 up to 4 tight links.
The direct as well as the neural network-based methods, underestimate the
available bandwidth with an increasing number of tight links. The reason for
underestimation in the case of model-based techniques is the cross traffic bursti-
ness which potentially reduces the output probe rate at each of the tight links.
Though the estimates of our neural network show the least variability, the neu-
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Figure 6.13: The training of the neural network for multiple tight links improves the
bandwidth estimates significantly.

ral network underestimates the available bandwidth. This is not surprising as
it is trained only for a single tight link.

6.7.0.1 Training for Multiple Tight Links

Since the neural network that is trained only for a single tight link, underesti-
mates the available bandwidth in the case of multiple tight links, we consider
training the neural network for the latter. To generate the training data, a chunk
of 1 MB data is transmitted via TCP through a network with two, three, and
four tight links, respectively, each with single-hop persistent exponential cross
traffic with an average rate A=>50 Mbps in uplink and downlink. The capacity
of the access links and that of the tight links is 100 Mbps. The neural network is
trained with this additional training set (ii) for multiple tight links along with
training set (i) for a single tight link.

Fig. 6.13b compares the results of the direct method with the neural network.
As can be seen clearly, the results have improved significantly with the neural
network after it has been trained for multiple tight links. The mean value

matches the true available bandwidth, and the estimates have less variability.

6.8 EVALUATION OF LOSS

The fluid-flow models that are used in available bandwidth estimation assume
lossless systems and few methods for bandwidth estimation consider loss. The
iterative packet train method Pathload [30] uses loss as an indication that 1j, >
C —A. The authors in [12] model lost packets as incurring an infinite delay.
Further, it is possible to define the output rate roy: of a packet train in the
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Figure 6.14: Use of the ack-gap model in the presence of packet loss. Duplicate ac-
knowledgments are ignored and the ack-gap is closed by the next higher
cumulative acknowledgment. The corresponding input gap has to con-
sider the retransmission that triggered this acknowledgment.

presence of loss, considering only the packets that are received. The output
gap Jout Of a packet pair is, however, void if any of the two packets is lost. This
may cause estimation bias, since the packet pairs that encounter congestion
have a higher loss probability.

If acknowledgment gaps are used, packet loss has to be taken into account
since it causes retransmissions and perturbs the sequence. Fig. 6.14 shows an
example, where a packet is lost, and three duplicate acknowledgments trigger
a fast retransmit. To deal with this case, we define the following procedure:
first, when determining the ack-gaps, duplicate acknowledgments are ignored;
also packets that are retransmitted later are ignored; second, the packets that
triggered the remaining acknowledgments are identified; these are used to com-
pute the corresponding input gaps. In the example in Fig. 6.14, ACK 2 and
ACK 6 remain, resulting in g;éi. The acknowledgments have been triggered by
packet 1 and by the retransmission of packet 2, respectively. Hence, the corre-
sponding g;r{s is determined as the difference of the send timestamps of these
two transmissions.

While the procedure can deal with single packet losses, we note that burst
losses can result in more intricate constellations that may not be resolvable
unambiguously. The loss of acknowledgments, on the other hand, is less of an
issue as it is typically resolved by the next cumulative acknowledgment.

In Fig. 6.15a and Fig. 6.15b, we show the comparative results of the neural
network-based and direct method for exponential cross traffic with an average
rate A =50 Mbps using CUBIC and BBR, respectively. Loss rates of 0%, 0.1%
and 1% are evaluated. For TCP CUBIC in Fig. 6.15a, though the estimates
of the neural network-based method show less variability, both the methods
underestimate the available bandwidth with increasing loss rate. This is due to
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Figure 6.15: Bandwidth estimates for TCP CUBIC and BBR in the presence of loss with
a neural network trained for (a) & (b) lossless network and for (c) & (d)
loss in the network. Training improves the estimates in the presence of
higher loss.

the fact that TCP CUBIC is a loss-based congestion control algorithm and adjust
its congestion window when packet loss occurs which affects the distribution
of input and acknowledgment gaps. Therefore, the neural network trained for
a lossless network does not perform well in the presence of loss. In the case of
the direct method with higher packet loss, few samples remain that pass the
threshold test for the regression step to estimate the upward segment of the
gap response curve.

In contrast to traditional loss-based congestion control algorithms like CU-
BIC, BBR is designed to respond to actual congestion rather than packet loss.
This can be seen from the results of the direct method in Fig. 6.15b which are
better in the case of BBR as compared to CUBIC. In addition to that, though
the variation in estimate increases with increase in loss rate, the neural network
trained for TCP BBR lossless link can estimate the bandwidth reliably in the
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presence of loss. To improve the results for both TCP CUBIC and BBR further,

we consider training the NN for packet loss.

6.8.1  Training for Loss

We generate (iii) training set in the presence of a loss in the uplink and down-
link, and exponential cross traffic with an average rate A=>50 Mbps. The capaci-
ties of the tight link and the access link are set to 100 Mbps. The neural network
is trained with this additional (iii) training set for loss in the link along with
the (i) training set for a lossless single tight link. As can be seen in Fig. 6.15¢
for TCP CUBIC, the results have improved significantly after training of neural
network for loss. The mean value matches the true available bandwidth even
in the higher loss. TCP BBR that is able to perform well in the presence of loss,
however, the training results in reduced variability in estimates as shown in
Fig. 6.15d.



CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

In this thesis, we tackled the challenges that the state-of-the-art bandwidth es-
timation tools face due to non-conformance with the assumptions of the fluid-
flow model such as (i) random cross traffic, (ii) packet interference, (iii) packet
loss, (iv) multiple tight links, (v) tight link differs from bottleneck link, and (vi)
measurement inaccuracies. For these network scenarios, which do not comply
with assumptions of the fluid-flow model, we investigated how to benefit from
machine learning techniques for end-to-end active and passive available band-
width estimation. While using standard packet train probes we proposed three
methods for active available bandwidth estimation; the first method is based on
regression and the other two methods are based on multi-class classification.
To estimate the available bandwidth using regression-based machine learn-
ing techniques, we proposed a method that is motivated by the characteristic
rate response curve of a network. We used ratios of data rates and a suitable
normalization to achieve an implementation that is scale-invariant with respect
to the network capacity. To reduce the amount of probe traffic, we implemented
an iterative method that varies the probe rate adaptively. The selection of probe
rates is performed by a neural network that acts as a recommender. The recom-
mender effectively selects the probe rates that reduce the estimation error most
quickly. To compare with state-of-the-art, we formulated available bandwidth
estimation as a classification problem. We compared our full classifier based
on our proposed method using the information of all previous probe rates with
the state-of-the-art individual classifier based on only the current probe rate.
We evaluated our method with other supervised machine learning techniques.
We formulated available bandwidth estimation as a multi-class classifica-
tion problem and proposed two different classification-based methods. The
first method is based on reinforcement learning which learns through network
path’s observations without having a training phase. We treated available band-
width estimation as a single-state MDP multi-armed bandit problem and de-
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fined a reward parameter as a function of the input and output rates, which is
maximized when the input probe rate is equal to the available bandwidth in
the network. We implemented e-greedy algorithm that followed exploration-
exploitation mechanism to find the input rate that maximized a cumulative
reward function and report it as available bandwidth.

To estimate the available bandwidth in the networks, where capacity and
cross traffic changes over time randomly, we proposed another classification-
based method employing supervised learning. We have shown that using su-
pervised learning-based techniques, we can improve available bandwidth esti-
mates significantly with six packet trains and reduce the overhead in the net-
work caused by active probing. We have found out that although there is a
trade-off between the amount of injected probe traffic and the error rate of an
estimator, we are able to obtain significantly good results even by using four
packet trains. Furthermore, by applying a median filter to estimation results,
we have been able to track the changes in the available bandwidth.

We investigated how techniques from active probing can benefit TCP band-
width estimation. The difficulty is due to the uncontrollable traffic patterns
emitted by TCP that do not match typical active probes such as packet trains.
To solve the issue, we used individual packet gaps and applied a linear regres-
sion technique to estimate the gap response curve. Taking advantage of the
feedback that is provided by TCP acknowledgments, we enhanced the estima-
tion method to use sender-side measurements only. Since the cross traffic in
the reverse path introduces noise in the acknowledgment gaps, we investigated
that how neural networks can be used to estimate available bandwidth from
noise-afflicted acknowledgment gaps.

For all the proposed machine learning-based methods to estimate available
bandwidth using active and passive measurements, we conducted a compre-
hensive measurement study in a controlled network testbed. Our results showed
that machine learning techniques can significantly improve available bandwidth
estimates by reducing bias and variability. This holds true also for network con-
tigurations that have not been included in the training data set such as different
types and intensities of cross traffic and randomly generated networks where
the capacity and cross traffic intensity can vary substantially. We also included
network scenarios with multiple tight links and multi-hop networks where the
tight link differs from the bottleneck link. For the passive measurements, we
evaluated our proposed method in the presence of both data and acknowledg-

ment losses.
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7.2 FUTURE WORK

There are several key issues in the bandwidth estimation which lead to some
open research questions and possible future work directions. A potential re-
search direction lies in improving the measurement infrastructure to improve
the accuracy of estimates.

There exists certain networks which have limited capabilities in term of power
resources, processing and memory, e.g., Wireless Sensor Networks (WSN)s.
The future work is to tailor the proposed machine learning-based bandwidth
estimation techniques for these networks.

A single state MDP that we have proposed can be extended to multi-state
MDP in future work to estimate the available bandwidth in networks such as
vehicular communications, where it is not possible to create training data sets
that can represent the complete dynamics of network conditions and the only
possible solution is to use reinforcement learning but a single state MDP is not
sufficient.

Since the Internet relies on congestion control protocols and adaptive appli-
cations that adjust their data rate to achieve good performance while avoid-
ing network congestion, the scope of future work is to utilize the knowledge
gained from available bandwidth estimation in rate-adaptive applications. Fur-
thermore, the information provided by short-lived TCP flows can be used for
the improvement of recent TCP’s variants such as CUBIC and BBR, and for the
development of new protocols.
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DATA SET

We provide data sets generated in a controlled network testbed located at Leib-
niz University Hannover for training and evaluation purposes of our machine
learning-based proposed methods. The data sets can be downloaded from [22].
In all the data sets, to investigate the effect of packet interference, the packet
size of the cross traffic is | = 1514 B including the Ethernet header. The data
sets are generated considering different network parameters correspond to the
following scenarios known to be difficult in the bandwidth estimation:

1. Cross traffic intensities: The first data set consists of samples for a single
tight link with the capacity C = 100 Mbps and exponential cross traffic
with an average rate of A € {25,50,75} Mbps.

2. Cross traffic burstiness: We consider three different types of cross traffic
for the second data set: CBR, exponential, and Pareto traffic. The average
rate of cross traffic is A = 50 Mbps in all cases.

3. Multiple tight links: The third data set is generated for multiple tight
links. The path-persistent probe streams experience single hop-persistent
exponential cross traffic with the average rate A = 50 Mbps while travers-
ing multiple tight links of capacity C = 100 Mbps. The capacity of the

access links is 1 Gbps.

4. Tight link differs from bottleneck link: We consider two scenarios for
the fourth data set: first, in which the tight link follows the bottleneck
link and second, in which it precedes the latter. In both scenarios, the
tight link capacity is C = 100 Mbps and the bottleneck capacity is Cy, =
50 Mbps with cross traffic intensity of A = 75 Mbps and A, = 12.5 Mbps,

respectively.

REGRESSION-BASED ACTIVE AVAILABLE BANDWIDTH ESTIMATION

For the active available bandwidth estimation method proposed in chapter 4,
we provide benchmark data sets consisting of p-dimensional matrices of ra-
tios of Tin/Tout Which are input to the neural network and rj, to calculate o,
with respect to which the available bandwidth and bottleneck capacity are nor-
malized. The first row of data sets has true bottleneck capacity and available
bandwidth values as output for training the neural network. In addition to
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DATA SET

the above-mentioned data sets, an additional data set is generated for a single
tight link but with the different capacity C = 50 Mbps and the exponential
cross traffic that has an average rate of A € {12.5,25,37.5} Mbps to evaluate the
scale-invariance approach of our proposed method.

CLASSIFICATION-BASED ACTIVE AVAILABLE BANDWIDTH ESTIMATION US-
ING REINFORCEMENT LEARNING

For the first classification-based method employing reinforcement learning pro-
posed in chapter 5, we provide all the above-mentioned four data sets consisting
of 1000 repeated experiments. We provide p-dimensional matrices of input rate

Tin and output rate Toyt.

CLASSIFICATION-BASED ACTIVE AVAILABLE BANDWIDTH ESTIMATION US-

ING SUPERVISED LEARNING

We provide the first three data sets for the second classification-based method
using supervised learning described in chapter 5. In addition to that, we in-
clude data set generated from random networks with arbitrarily chosen capac-
ity and cross traffic intensity. We provide p-dimensional matrices of input rate
Tin and output rate rou. The first row of data sets has true bottleneck capacity
and available bandwidth values as output for training the learning framework.

PASSIVE AVAILABLE BANDWIDTH ESTIMATION

We provide the first three data sets for both TCP variants, i.e., CUBIC and BBR
for passive bandwidth estimation method described in chapter 6. In addition to
that we include data set generated in the presence of data and acknowledgment
packet loss. Loss rates of 0%, 0.1% and 1% are considered. The data sets are
generated from the transmission of DASH video chunks of the size of about
1 MB. We provide matrices of the ratio of input and output gaps, i.e., gin/ Jout
and quotient of packet size and input gap, i.e., l/gin. We note the latter is
in Mbps. The first row of data sets has true bottleneck capacity and available

bandwidth values as output for training the learning framework.
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