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Metrics for Aggregating the Climate Effect of Different 
Emissions: A Unifying Framework 

 
 
1. Introduction 
 

Human activity puts many substances in the atmosphere that can force climate change. 

They have widely varying characteristics. Some species stay in the atmosphere for a few 

days, some for tens of thousands of years. Some exert a forcing globally, while others 

cause a forcing in limited regions. Some species are emitted in large amounts, others in 

tiny quantities. Some species have a powerful warming effect per gram, others a much 

smaller effect, and yet other species cool the atmosphere. Some species influence the 

climate directly, while others have primarily an indirect effect by affecting the 

concentrations of other species. And emissions of some species have multiple impacts 

which themselves have widely varying characteristics. Different as these emissions may 

be, it is important that their climate effects be added up in order to answer questions 

about the various contributions of countries and sectors to climate change, and about the 

priorities in emission reduction. Climate scientists and economists have proposed four 

classes of “equivalences” between climate changing species, and there are occasionally 

heated debates about which “metric” is the better one (1-31). The classes are: 

 

• Global Warming Potential (32, 33); 

• Global Damage Potential (7); 

• Global Cost Potential (21); and 

• Global Temperature change Potential (27, 29). 

 

Here we show that these “exchange rates” are special cases of a single, unifying 

framework. This clarifies the relationships between them. The paper shows that some 

metrics require more knowledge than others while others make more stringent 

assumptions than some. It also argues that some metrics are appropriate in certain 

contexts but not in others. 
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Adding together the climate impact of species that have different characteristics is a bit 

like adding apples and oranges. There is no single unique way that this can be done. 

However, sometimes one just has to. If one transports things, then one would add apples 

and oranges by their weight or volume. This is not because “weight” is the only attribute 

that makes an apple an apple and an orange an orange. Rather, this is because weight is 

the main thing that matters in transport. Similarly, a nutritionist would add apples and 

oranges by their nutrient content. A grocer might add apples and oranges by their selling 

prices. To put it abstractly, the metric of aggregation depends on the purpose of 

aggregation. 

 

This may be unsettling. There is no universal way of aggregation. There is no best 

method. There are multiple truths, or rather: there are multiple perspectives on the same 

reality. Transporters and nutritionists have different viewpoints. As apples are rich in 

vitamin A, and oranges in vitamin C, nutritionists would differ too – or rather, a 

nutritionist would give different recommendations to clients with different problems. 

Adding emissions is like adding apples and oranges: different problems require different 

solutions. And there are pragmatic considerations too. A transporter would not weigh 

every single box of apples and oranges, but rather use an average weight. The same holds 

for aggregating different emissions. The theoretically preferred option may be 

impractical. 

 

One may argue for a metric that averages across several properties. However, the average 

of weight, vitamin C content, and selling price is meaningless to the transporter, the 

nutritionist and the grocer. Trying to serve different purposes at once in fact may mean 

that no purpose is served. Adding the climate impact of emissions is similar. Different 

stakeholders and different policies will require different metrics. There is no one size that 

fits all and the average size might fit no one. 

 

In the context of climate change it is the very different time and spatial scales of both 

removal of the different forcing agents and the potential damages of warming that cause 

the problems. Thus a climate policy designed to mitigate long term sea level rise would 
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put more emphasis on mitigation of long lived forcing agents, than a policy that considers 

short term rate-of -change impacts (e.g. ability of biological systems to adapt) as the main 

potential damage. The decision regarding what constitutes a “dangerous anthropogenic 

interference with the climate system” involves value judgements and thus cannot be 

solved by scientists alone. However, once this has been determined (e.g. the EU’s goal of 

restricting global temperature increase to 2°C above pre-industrial levels), metrics can be 

designed based on objective, scientific methods. 

 

In the next section, we start with a cost-benefit framework for assigning the appropriate 

weights to different emissions. These ratios are called Global Damage Potentials. We 

show that with three additional assumptions, the Global Damage Potential is equivalent 

to the Global Warming Potential as used in the implementation of the Kyoto Protocol. 

We argue that these assumptions are simplistic, but also that more realistic assumptions 

are uncertain and even controversial. 

 

In Section 3, we show that the more commonly used cost-effectiveness framework is a 

special case of cost-benefit analysis, although it reflects a completely different policy 

perspective. We derive the appropriate metric for comparing emissions in a cost-

effectiveness analysis (Global Cost Potentials), and show under what circumstances this 

is equivalent to the purely physical concept of Global Temperature change Potentials. 

We do this for targets on the level of climate change. Section 4 concludes the paper. 

 

2. Cost-Benefit Analysis: Global Warming Potentials and Global Damage Potentials 

Consider a decision-maker who wants to minimize the net losses due to climate change 

and climate policy. If emissions of only one component contribute to climate change, the 

problem to be solved is1 

 

(1) 
0

( , )min
(1 )

t t
tR t

L R D
ρ

∞

= +∑  

                                                 
1 The derivations assume that policy and time progress in discrete steps of equal length. This assumption is 
not necessary, but it greatly reduces the complexity of the exposition. 
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where L is the net loss function, say in monetary units, which depends on emission 

reduction R and damages D, with ∂L/∂R>0 and ∂L/∂D>0; ρ is the discount rate. Damages 

depend on climate change; let’s use global-average surface temperature T as an indicator. 

Similarly, we use the total costs of emission reduction and the total impacts of climate 

change as high level indicators, abstracting from distributional issues of costs and 

impacts. The global mean temperature T depends on the full history of the emissions. The 

complex interactions and the various time scales of the climate system imply that a 

simulation with a comprehensive 3-D global climate model is required to estimate the full 

effect on T over time. This is certainly not feasible for a metric that is intended for policy 

use. To simplify the evaluation, radiative forcing F is often used to give a first-order 

estimate of the impacts of different emissions (33). Radiative forcing F, in turn depends 

on concentration C, and hence on a scenario of assumed emissions E and possible 

emission reductions R, so that the actual emissions are given by E-R. Although a system 

of difference equations is the most convenient way of computing Equation (1), it can also 

be expressed as: 

 

(1) ∑
∞

=

−

+0

01

)1(
))),...,,((,(

min
t

t
ttttt

R

FFFTDRL
ρ

 

 

where the radiative forcing at any given time is a function of concentrations at that time, 

which in turn are a function of the history of reference emissions and reductions (E and 

R), that is: 

 

(2) . )),...,,,...,(( 00 RREECfF tttt =

The first order conditions are 

(3a) (1 ) (1 )t ss s

s tt s s t

D TL L t
R D T R

ρ ρ
∞

− −

=

∂ ∂∂ ∂
+ = − + ∀

∂ ∂ ∂ ∂∑  
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This means that, in the optimum, the marginal costs of emission reduction are equal to 

the future stream of damages of climate change avoided by that emission reduction. The 

right hand side of (3) is typically referred to as the marginal damages cost of greenhouse 

gas emissions, the Pigou tax, or the social cost of carbon (34, 35). 

 

Now suppose that there are J different emissions (i.e. different gases and aerosols) that 

affect the climate. The aim is then to solve 

 

(4) 
1 2

1 2

, ,..., 0

( , ,..., , )min
(1 )J

J
t t t t

tR R R t

L R R R D
ρ

∞

= +∑ . 

 

Following standard methods for optimization (e.g., Sundaram, 1996), the first-order 

conditions are 

 

(5) (1 ) (1 ) ,t ss s
j j

s tt s s t

D TL L t j
R D T R

ρ ρ
∞

− −

=

∂ ∂∂ ∂
+ = − + ∀

∂ ∂ ∂ ∂∑ . 

 

That is, the discounted marginal abatement cost for emission j should equal the marginal 

damage cost of emission j. The marginal cost of damage given by (5) is per mass unit of 

emission. Due to large difference in the physical properties of different climate agents 

(e.g. lifetimes and radiative efficiencies) the marginal costs of damage will be very 

different. 

 

A global climate policy based on (5) demands full knowledge about damages as well as 

mitigation costs. If these were known this framework would give global reductions for 

each component as a function of time. The optimal mitigation could be achieved either by 

giving out quotas for each component to each single emitter according to their known 

mitigation costs, or by assigning emission metrics to each component and letting each 

emitter decide how best to achieve their total emission constraint. To assign the 

appropriate weights for different emissions, we normalize with respect to emissions of 

CR, a reference gas (usually carbon dioxide). We can then rewrite Equation (5) to 
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(6) 
(1 )

,
(1 )R R

ss s
j j

s tt s s t

ss s
C C

s t s st t

D TL L
R D T R t jL D TL

D TR R

ρ

ρ

∞
−

=
∞

−

=

∂ ∂∂ ∂
+

∂ ∂ ∂ ∂
= ∀

∂ ∂ ∂∂
+

∂ ∂∂ ∂

∑

∑
. 

 

This is unity for j=CR. The ratio of marginal abatement costs should equal the ratio of 

marginal damage costs. In principle, the marginal abatement cost should equal the tax on 

greenhouse gas emissions, or the price of tradable permits. Therefore, Equation (6) 

specifies how much higher the tax on j should be relative to the tax on CR. Alternatively, 

Equation (6) specifies how many (climate) equivalent tonnes of emissions of CR there are 

in a tonne of emissions of j. That is, Equation (6) establishes equivalence between 

emissions of different climate species. The right-hand side of Equation (6) is the Global 

Damage Potential.2 Note that the equivalence established by Equation (6) is valid for a 

pulse emission reduction at time t and as such will be different for emission reductions at 

different points in time. 

 

One may argue that discounting is unethical, or that choosing an appropriate discount rate 

is too controversial and set ρ=0 and at the same time capping the time horizon at H by the 

argument that the far future is very uncertain.3 One may argue that climate change 

damage estimates are controversial and uncertain, and instead use the temperature as an 

indicator of climate impacts – or assume that impacts are proportional to temperature. 

Then (6) reduces to 

 

(7) ,
R R R

H H s
s s

j j j
s t s t tt t t
H RH s

s s
C RC C

s t s t tt t t

T T F CL
R R F C R t jL T T F C
R F CR R

τ τ

τ τ τ

τ τ

τ τ τ

= = =

= = =

∂ ∂ ∂ ∂∂
∂ ∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂

∑ ∑∑

∑ ∑∑
∀

                                                

. 

 

A further simplification is to assume that the climate change damage is linear in radiative 

forcing (rather than in temperature), or alternatively to assume that the temperature 

 
2 Eckaus (1992) first suggested this. Kandlikar (1995) coined the term. 
3 Note that a finite time horizon is equivalent to an infinite discount rate at the final year of analysis. 
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change is linear in radiative forcing4. Either of these assumptions lead (directly from 

Equation (6) or via Equation (7)) to 

 

(8) ,
R R

H
s s

j j
s tt s t

RH
s s

C R C
s tt s t

F dCL
R C dR t jL F dC
R C dR

=

=

∂∂
∂ ∂

= ∀
∂ ∂
∂ ∂

∑

∑
. 

 

The right-hand side of Equation (8) is the (pulse) Global Warming Potential as defined 

by the IPCC (32) and applied in the Kyoto Protocol where the (absolute) Global 

Warming Potential (the numerator of Equation (8)) for emission j and a time horizon of 

H is defined by 

 

(9)  ∫=
H

O jjj dttcaHAGWP )()( .

 

Here aj is the specific radiative forcing (e.g. in units of Wm-2kg-1) and so is equivalent to 

the ∂Fs/∂Cs term in Equation (8), while cj(t) is the concentration at time t due to a unit 

pulse emission at time t=0 and is equivalent to the ∂Cs/∂Rt term in Equation (8). 

Obviously, Equation (8) is a discrete sum in time-steps of one year, while Equation (9) 

uses infinitesimally small times steps and is thus written as an integral. Note that in 

standard IPCC usage of the Global Warming Potential, the background concentrations of 

all gases other than j are taken to be constant, thereby ignoring radiative saturation effects 

(CO2, CH4 and N2O) and adjustment time changes (CO2 and CH4) in the case of 

increasing background concentrations. 

 

Hence, the Global Warming Potential can be viewed as a special case of the Global 

Damage Potential in Equation (6), and consequently can be viewed, subject to the 

validity of the assumptions leading to its derivation, as a cost-benefit analysis tool. The 

                                                 
4 The assumption of linearity between forcing and temperature is with respect to magnitude of forcing, time 
development of forcing and forcing mechanism. This assumption implicitly makes the metric independent 
of uncertainty in the climate sensitivity. 
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Global Warming Potential was designed as a purely physical indicator of the relative 

climate impact of different emissions, and so this interpretation may seem surprising to 

some. However, this has been known amongst economics; it was noted by Fankhauser 

(1994). Nevertheless, given the difficulties in defining damage functions and the 

difficulties in reaching consensus over whether, or to what extent, discounting should be 

applied, the Global Warming Potential is arguably a robust and transparent version of the 

Global Damage Potential.  

 

3. Cost-Effectiveness Analysis: Global Temperature change Potentials and Global 
Cost Potentials 
 

In Section 2, we approached climate policy through cost-benefit analysis. Cost-benefit 

analysis is controversial for issues such as climate change because costs of both 

mitigation and adaptation are difficult and controversial to quantify. Instead one may 

define a target for emissions, concentrations, or temperatures and try to meet that target at 

the least cost. Indeed, the United Nations Framework Convention on Climate Change is 

phrased in such terms, commonly referred to as cost-effectiveness analysis. Article 2 

states that policies and measures to address a human-induced climate change shall 

stabilise atmospheric concentrations of greenhouse gases “at a level that would prevent 

dangerous anthropogenic interference with the climate system”, and that the measures 

should be “comprehensive” and “cost-effective” (Article 3.3). 

 

Note that cost-effectiveness analysis is a special case of cost-benefit analysis. For 

convenience, let us assume that the target is formulated as a temperature threshold, TH. If 

Dt=∞ for Tt>TH and Dt=0 for Tt≤TH, then (4) becomes 

 

(10)  
1 2

1 2

1 1 1 0
, ,..., 0

( , ,..., )min  s.t. ( , ( ( , , ,..., )))
(1 )J

J
t t t

t t t t t t t HtR R R t

L R R R T T F C C R R R T
ρ

∞

− − −
=

≤
+∑ . 

The first-order conditions are 

(11) (1 ) (1 ) ,t ss
sj j

s tt t

TL t j
R R

ρ λ ρ
∞

− −

=

∂∂
+ = + ∀

∂ ∂∑  
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where λt is the LaGrange multiplier (or shadow price in economic jargon) of the 

temperature constraint at time t. If the constraint does not bite, λt=0. This is obviously the 

case for the earlier years. One may argue that the dynamics of the carbon cycle, the 

energy system and climate policy are such that the temperature is likely to touch the 

threshold and then fall (slightly) below it. Atmospheric stabilisation would require the 

commercialisation of carbon-neutral or even carbon-negative energy technology, and 

once that is achieved, CO2 emissions would fall to a level at which concentrations would 

decline. Even if carbon-neutral energy requires taxes or subsidies, there would be lobby 

in place (either treasury or industry) to keep them even after the target will be met.5 If 

that is the case, λt=0 in later years too. Left with a single period t=b in which the 

constraint bites, (11) simplifies to 

 

(12) (1 ) (1 ) ,t bb
bj j

t t

TL t j
R R

ρ λ ρ− −∂∂
+ = + ∀

∂ ∂
. 

 

Normalising this with emissions CR, this becomes 

(13) ,
R R

b
j j

t t

b
C C
t t

TL
R R t jL T
R R

∂∂
∂ ∂

= ∀
∂ ∂
∂ ∂

. 

 

The right-hand side is again an equivalence. It is the ratio of the shadow prices; that is, 

the relative force with which the different gases would break the constraint. Note again 

that the metric value for gas j relative to the reference gas CR as established by the ratio 

on the right hand side of Equation 13 (as for equation 6) is valid for a pulse emission 

reduction at time t, and as such will change over time. Interestingly, the penalty of 

breaking the constraint, λb, drops out of Equation (12). That implies that the shadow price 

ratio is a purely physical concept (albeit grounded in economics).6 It in fact equals the 

(pulse) Global Temperature change Potential (27, 29). A key uncertainty in climate 

                                                 
5 Note that such reasoning would not hold if Equation (10) had a constraint on the rate of warming, rather 
than its level. 
6 When the constraint does not bind, the ratio of marginal costs in the least cost solution can be expressed 
as a purely physical ratio (36). 
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research is the limited knowledge about the sensitivity of the climate system, i.e. the 

temperature response to a given radiative forcing (33). It may appear from Equation (13) 

to be of less importance since the right hand side of Equation (13) is the ratio of the 

temperature changes, and thus the climate sensitivity apparently cancels – but only if 

forcing efficacy is the same (27). Furthermore, the time until the constraint bites (t=b) 

will be shorter the higher the climate sensitivity. Thus the metric value for short-lived 

species increases with increasing climate sensitivity (29). 

 

The ratio of shadow prices and the Global Temperature change Potential coincide, but 

only under the assumption that there is no capital stock turnover or technological effects 

in abatement. Power generation is an example. If one decides to build a gas-fired power 

plant rather than a coal-fired one, the plant is still there several decades later. If one 

invests in R&D to reduce the costs of photovoltaic power, it will be cheaper forever.  

 

If we add that current abatement costs depend on past abatement, (10) becomes 

(14) 
1 2

1 2 1 2 1 2
1 1 1 0 0 0

, ,..., 0

( , ,..., , , ,..., ,..., , ,..., )min  s.t. 
(1 )J

J J J
t t t t t t t

t HtR R R t

L R R R R R R R R R T T
ρ

∞
− − −

=

≤
+∑ . 

 

The first-order conditions are 

(15) 
0

(1 ) (1 ) ,t s bt s b
bj j

s t t

L T t j
R R

ρ λ ρ
∞

− − −+

=

∂ ∂
+ = + ∀

∂ ∂∑  

 

where s is time after t.7 Rearranging and normalising, this yields 

(16) 1

1

(1 )
,

(1 )R R R

t st b t s
bj j j

st t t

t st b t s
bC C C

st t t

L T L
R R R t jL T L
R R R

λ ρ

λ ρ

∞
− −+

=
∞

− −+

=

∂ ∂ ∂
− +

∂ ∂ ∂
= ∀

∂ ∂ ∂
− +

∂ ∂ ∂

∑

∑
. 

 

                                                 
7 Note that the left-hand side sums to infinite on the assumption that climate policy will have to be 
maintained forever. If climate policy can be abandoned after a certain date, the partial derivatives are zero 
after then. 
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Equation (13) is clearly a special case of Equation (16). While the right hand side of 

Equation (13) is purely physical, the right hand side of Equation (16) combines physics 

and economics, by including terms that account for future economic gains from emission 

reduction. 

 

Capital stock turnover is probably the most important reason why emission reduction 

costs are not independent between periods. In Reference (21), it is the only dynamic 

effect. This implies that Equation (13) and (16) are close if the temperature constraint is 

relatively far in the future. Power plants have a lifetime of some forty years, so Equation 

(13) can be used to approximate Equation (16) if the temperature threshold is not 

expected to be reached in the next forty years. If the target is closer, the purely physical 

metric of Equation (13) is insufficient, and one would need to use Equation (16), which 

can be computed using existing detailed models of energy infrastructure. 

 

4. Discussion and conclusion 
 

We derive a series of alternative metric concepts to quantify the trade-offs between 

reducing different climate-changing emissions. Each alternative metric establishes 

equivalence between emissions, or an exchange rate. We show that the alternative metrics 

proposed in the literature are special cases of the Global Damage Potential, the metric 

based on cost-benefit analysis. The Global Damage Potential is equal to the ratio of the 

marginal damage costs of emissions. If one assumes that climate impacts are proportional 

to radiative forcing, assumes a finite horizon and a zero discount rate, the Global Damage 

Potential becomes the Global Warming Potential, the metric currently used in 

international climate policy. However, none of these ifs is valid. 

 

Cost-effectiveness analysis is a special case of cost-benefit analysis (although again 

under incredible assumptions), but it is more usually seen as an alternative. In a cost-

benefit analysis, the policy target and least-cost trajectory to meet that target are 

simultaneously derived. In a cost-effectiveness analysis, the policy target is based on a 

political process, and only the least-cost trajectory is derived. We show that, in a cost-
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effectiveness analysis, the appropriate metric is the ratio of the shadow prices of the 

constraint on total radiative forcing, the Global Cost Potential. The shadow price consists 

of two components: (1) the effect of emission reduction in one period on emission 

reduction costs in a later period; and (2) the contribution to temperature increase with 

which the constraint is broken. If the first were zero (it is not), the Global Cost Potential 

is a purely physical concept and, if the constraint is binding for a short time only, 

coincides with the Global Temperature change Potential, that is, the ratio of the marginal 

effects on global warming at the time of the constraint. 

 

We hope that establishing the relationships between the different concepts for 

equivalences will allow for a more constructive discussion between the proponents of the 

different metrics. We also identify the crucial parameters that drive the different 

estimates of the numerical values between and within metrics. The above framework can 

readily be replicated for alternative indicators (e.g., impacts driven by precipitation) or 

alternative thresholds (e.g., the rate of warming), or indeed, given its generality, for 

impacts beyond climate change. Also in these cases, there is a physico-economic metric 

that can be approximated with a purely physical metric – and that approximation can be 

more or less accurate. As policy makers seem to prefer purely physical metrics,8 

estimates of the approximation accuracy are desirable, although perhaps impractical to 

provide. 

 

There is one immediate policy implication. The UN Framework Convention on Climate 

Change is phrased in terms of cost-effectiveness analysis – there is a target (i.e., avoiding 

dangerous climate change) that is to be met at minimum cost. Yet, the Kyoto Protocol, 

the first step towards meeting the long-term target, uses Global Warming Potentials, a 

cost-benefit concept, as the tool for implementation of a multi-gas approach. This is 

inconsistent. If a target-based policy is technologically and politically feasible and if it 

can be taken for granted that it will be possible to stay below the target after the target 

year, changing the metric of equivalence between emissions could be a way of resolving 

this inconsistency between the adopted regime and adopted tool. This needs further 

                                                 
8 One can also argue that the IPCC has not granted policy makers the option of choice. 
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considerations and dialog between policymakers and scientist from several disciplines is 

required (37). 
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