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B  cells possess a predominant role in adaptive immune responses via antibody- 
dependent and -independent functions. The microbiome of the gastrointestinal tract is 
currently being intensively investigated due to its profound impact on various immune 
responses, including B cell maturation, activation, and IgA antibody responses. Recent 
findings have demonstrated the interplay between dietary components, gut microbiome, 
and autoantibody production. “Western” dietary patterns, such as high fat and high salt 
diets, can induce alterations in the gut microbiome that in turn affects IgA responses and 
the production of autoantibodies. This could contribute to multiple pathologies including 
autoimmune and inflammatory diseases. Here, we summarize current knowledge on the 
influence of various dietary components on B cell function and (auto)antibody production 
in relation to the gut microbiota, with a particular focus on the gut–brain axis in the 
pathogenesis of multiple sclerosis.

Keywords: B cells, autoantibodies, diet, microbiome, multiple sclerosis, experimental autoimmune ence
phalomyelitis

inTRODUCTiOn

B  cells are involved in humoral and cell-mediated immunity. They secrete antibodies following 
differentiation into plasma cells, produce cytokines, and regulate T cell responses via antigen pres-
entation and costimulation (1–3). B  cells develop in the bone marrow from hematopoietic stem 
cells to immature B cells that further mature in the periphery into transitional and mature naïve 
B cells (4). Following activation, short-lived plasma cells are generated that produce low-affinity 
immunoglobulin (Ig)M antibodies for a few days (4). A fraction of the responding B cells undergoes 
a germinal center response, which results in the generation of memory B cells and long-lived Ig 
class-switched plasma cells that produce high-affinity IgG, IgA, or IgE antibodies.

Autoantibodies can originate from autoreactive B cells that escape tolerance mechanisms fol-
lowing molecular mimicry of infectious antigens with autoantigens, bystander activation, novel 
autoantigen presentation, or recognition of circulating autoantigens. They can clear target cells via 
antibody-dependent cell-mediated cytotoxicity or complement activation (5, 6). In addition, B cells 
are highly effective antigen-presenting cells, effectively activating antigen-specific CD4+ T helper 
(Th) cells (2, 7). Depending on the cytokine profile, B cells can stimulate pro- and anti-inflammatory 
immune responses (8–10).

The humoral immune response in the gastrointestinal tract is mediated by IgA+ memory B cells 
and IgA-producing plasma cells in the gut-associated lymphoid tissue (GALT). The protective and 
nutrient-rich environment of the gastrointestinal tract accommodates an extremely dense and 
diverse bacterial community (11) that in turn provides metabolic advantages and serves as a natural 
defense against colonization with pathogens (12, 13). Commensal bacteria act as critical stimuli, 
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FiGURe 1 | Interrelation among B cells, microbiome, and diet in disease progression. Western type nutritional patterns influence the composition of the intestinal 
microbiome (green line). Alterations of the gut microbiome induced by nutrient components impact homeostasis and the onset of various diseases (red arrow). 
Western diet dietary components influence B cell function and production of autoantibodies (black arrow), which are involved in disease progression (gray arrows). 
The connection between B cells and microbiome is bidirectional (dashed gray arrow). B cell-derived antibodies modulate the intestinal microbiome and vice versa.
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playing an important role for the maturation of the GALT and 
further induce IgA production by B  cells (14). Class switching 
to IgA-producing plasma cells occurs in the Peyer’s patches and 
lamina propria, following T  cell-dependent or -independent 
mechanisms (15). The secreted IgA (SIgA) into the gut provides 
a first-line defense against pathogens mainly by blocking toxins 
and pathogens from adhering to the intestinal epithelium at the 
earliest steps of the infection process (16).

In this review, we describe the interrelation of dietary 
components, microbiome and B  cell function with a focus on 
the production of (auto)antibodies. Special emphasis is placed 
on multiple sclerosis (MS) and its animal model experimental 
autoimmune encephalomyelitis (EAE).

DieTARY inFLUenCeS On B CeLL 
HOMeOSTASiS AnD FUnCTiOn

Modern nutritional patterns, collectively termed “Western-diet,” 
are characterized by high energy density, animal protein, total and 
saturated fats, sugars and salt but low levels of plant-derived fibers. 
This “Western-diet” has a profound influence on the prevalence of 
autoantibodies, although changes in antibody-independent B cell 

functions have been reported as well. Additionally, a “Western-
diet” may influence the balanced composition of the gut micro-
biome leading to perturbed immune responses, including effects 
on B cell production, activity, and maturation (17, 18) (Figure 1).

Effects of a high-fat diet (HFD) on B cell function have mostly 
been studied in diet-induced obesity models. Here, B  cells 
contribute to pro-inflammatory reactions in the adipose tissue 
mediating insulin insensitivity and diminished glucose clear-
ance. More specifically, B cells secrete pathogenic IgG antibodies 
and pro-inflammatory cytokines, which could interfere with 
macrophage polarization, CD4+ T cell function, such as regula-
tory T cell inhibition or Th17 cell polarization, and CD8+ T cell 
activation (19, 20). Reduced systemic antibody production has 
been demonstrated following influenza infection and/or ex vivo 
stimulation in a HFD-induced obesity mouse model and in obese 
individuals (21–23). Underlying mechanisms could involve 
effects on the responding plasma cells and molecular deregula-
tion. Yet, autoreactive and pro-inflammatory antibodies were 
increased in obese humans and HFD-fed mice (20, 24, 25), prob-
ably through CD40 ligand (CD40L) signaling. CD40L has been 
shown to induce inflammatory cytokine production in adipose 
cells in vitro and in vivo (26, 27). The increased natural autoreac-
tive IgM antibodies under HFD formed an immune complex 
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with apoptosis inhibitor of macrophage, which promoted IgG 
autoantibody production (28). Increased B cell frequencies and 
IgG levels were found in mouse obese white adipose tissue and 
obese humans, who additionally demonstrated a positive correla-
tion between IgM levels and body mass index (21). Furthermore, 
obese humans displayed reduced IL-10+ regulatory B cell levels 
in subcutaneous adipose tissue, which could contribute to the occur-
rence of autoantibodies (29). Mouse models further indicated 
diverse roles for different B  cell subtypes in obesity-associated 
pro-inflammatory responses (20, 29–31). Thus, B cells might play 
a crucial role in secondary inflammation following obesity and 
constitute a potential therapeutic target in diet-induced obesity.

High-fat diet also induces changes in the gut microbiota that 
are related to the development of obesity and diabetes. Obesity is 
associated with a decreased intestinal abundance of Bacteroidetes 
and an increased proportion of Firmicutes, both in mice and 
humans (32–34). It has been shown that germ-free (GF) mice 
may be protected against diet-induced obesity and the mecha-
nism possibly involves the fasting-induced adipose factor (Fiaf) 
in the intestinal epithelium and the AMP-activated protein kinase 
in skeletal muscle and liver (35). In addition, colonization of 
GF mice with microbiota harvested from conventionally raised 
animals resulted in a 60% increase in body fat content and insulin 
resistance (36). However, more research is necessary to unravel 
the link between HFD-mediated alterations of gut microbiota 
and B cell function or autoantibody production.

Another factor associated with “Western-diet” is the high 
salt content in processed foods and so-called “fast foods.” High 
salt diets have been shown to exert profound effects on animal 
models of autoimmunity by affecting Th cell populations and 
macrophages promoting a pro-inflammatory environment  
(37, 38). However, if high salt also affects B  cells is less well 
understood. Hybridoma cells under hyperosmotic stress exert 
suppressed cell growth but enhanced specific antibody production 
(39–41). Increased differentiation of Th17 and follicular helper T 
(Tfh) cells was demonstrated following a high salt diet in EAE and 
a lupus mouse model (42, 43). Tfh cells are involved in the selection 
of high-affinity B cells during the germinal center response. The 
mechanism involved in the high salt-mediated Th17 activation is 
dependent on nuclear factor of activated T cells 5 (NFAT5), p38/
MAPK, and the serum/glucocorticoid-regulated kinase 1 (SGK1). 
SGK1 expression is induced upon salt treatment and its activation 
depends on p38/MAPK. Silencing of SGK1 reverts the effect of 
salt on IL-17 levels. To exclude the possibility that high osmolarity 
mediates the enhanced Th17 pro-inflammatory profile, mannitol 
and MgCl2 were tested along and proved to have only a slight effect 
(42). Furthermore, high salt conditions result in cellular osmotic 
stress that is regulated via the guanine nucleotide exchange fac-
tor Brx-induced expression of NFAT5 (44). Interestingly, Brx 
was shown to be necessary for B cell differentiation in high salt 
conditions via NFAT5-mediated production of B cell activating 
factor (BAFF) that regulates splenic B cell differentiation and Ig 
production. A recent study described the correlation between salt 
intake and gut microbiome changes in EAE. More specifically, salt 
intake decreased the population of Lactobacillus murinus, while 
supplementation of L. murinus reduced the salt-induced EAE 
clinical scores and Th17 cell frequencies (45).

By contrast, dietary supplementation with n − 3 polyunsatu-
rated fatty acids (PUFAs) derived from fish oils could impact B cell 
function and suppress pro-inflammatory responses (46). Results 
from mouse models for obesity, colitis, peritonitis, and systemic 
lupus erythematosus indicated that dietary administration of 
fish oil containing n-3 PUFAs elevated splenic B cell numbers, 
increased B  cell cytokine and IgM production while reducing 
autoantibodies (47–51). Monthly consumption of fish oil by post-
partum women led to lower levels of anti-thyroid autoantibodies 
(52). In individuals at risk for rheumatoid arthritis, the use of n-3 
PUFA food supplements and n-3 PUFA levels in red blood cell 
membranes were inversely associated with anti-cyclic citrullinated 
peptide and rheumatoid factor positivity (53, 54). Specialized 
pro-resolving lipid mediators (SPMs) that are endogenously 
synthesized from n-3 and n-6 PUFAs play a role in suppressing 
adipose tissue inflammation. In obese humans, selected SPMs 
were declined in adipose tissue (55). 17-hydroxydosahexaenoic 
acid (17-HDHA), DHA and resolving D1 stimulated increased Ig 
production in humans or mice with diet-induced obesity (21, 56). 
Furthermore, DHA and eicosapentaenoic acid (EPA) induced 
differential effects on B cell cytokine production and on distinct 
B cell subtypes that correlated with increased natural serum IgM 
and cecal IgA in murine obesity (57). Opposed to this, lipoxin A4 
decreased (antigen-specific) IgM and IgG production and inhib-
ited memory B cell function in an ovalbumin immunized mouse 
model (58). Thus, n − 3 PUFAs and their derived SPMs can have 
profound effects on B cell function. More research is needed to 
clarify the differential effects associated with different types of 
PUFAs and to mechanistically link the effects to inflammation in 
obesity. Of note, in MS, EPA and DHA had no beneficial effects 
on disease activity (OFAMS study) (59).

Furthermore, a diet rich in short-chain fatty acids (SCFAs) 
could positively impact gut microbiota and inflammatory 
processes (37). The microbiome converts non-digestible carbo-
hydrates (dietary fibers) to SCFAs, including acetate, butyrate, 
and propionate, which reduce the risk of inflammatory diseases, 
type 2 diabetes, obesity, heart disease, and other conditions (60). 
Non-obese diabetic mice on a diet rich in acetate were charac-
terized by decreased IL-12-producing marginal zone B  cells, a 
B  cell subtype linked to the disruption of immune tolerance, 
in the spleen and the Payer’s patches that additionally showed 
decreased expression of major histocompatibility complex I and 
CD86 (61). At the transcriptional level, changes were detected in 
genes associated with B cell costimulation, antigen presentation, 
proliferation, and differentiation. Thus, SCFAs and in particular 
acetate could affect the ability of B cells to expand autoreactive 
T cells in vivo and the development of type 1 diabetes. Butyrate 
was also suggested to protect against the development of anti-
islet cell autoantibodies involved in type 1 diabetes (62). Early 
introduction of a non-milk diet in infants increased the risk for 
autoantibody production by reduced butyrate production and 
was associated with high Bacteroides levels. A milk-based diet 
resulted in a competitive advantage of acetogens compared to 
sulfate reducing bacteria, thereby leading to increased butyrate 
production via co-fermentation of acetate.

Dietary components such as gluten (63, 64), selenium (65), 
and iodine [reviewed in Ref. (66)] have been shown to increase 
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autoantibody production. Additionally, impaired protein intake 
alters IgA responses, attenuating the protective efficacy of vaccina-
tion against cholera and Salmonella enterica serovar Typhimurium 
in mice (67). On the contrary, a cocoa-rich diet decreases 
autoantibody production and confers beneficial immune function 
(68–72).

CROSSTALK BeTween MiCROBiOMe 
AnD B CeLLS

Studies in various animal models of impaired microbial control 
[including GF, antibiotic-treated mice, mice with restricted flora 
and activation-induced cytidine deaminase knockout (AID−/−) 
mice], but also in humans, have demonstrated that gastrointes-
tinal bacteria participate in B  cell differentiation, maturation, 
and activation (73–76). A proof-of-principle study in Pakistani 
infants living in impoverished areas showed an accelerated  
maturation of the salivary IgA system compared with healthy 
Swedish infants (77). In contrast, in Swedish infants, the gut 
microbiota took longer to establish and was characterized by a 
lower diversity (78–80). B cell maturation in Swedish infants was 
shaped by the intestinal bacterial colonization pattern, mainly by 
Escherichia coli and Bifidobacteria (74).

On the other hand, intestinal IgA can influence the gut 
microbiota composition. Natural and specific IgA antibodies 
in breast milk were capable of binding commensal bacteria and 
might be involved in establishing the newborn’s microbiome  
(81). High-affinity IgA, generated via T cell-dependent mecha-
nisms, was essential in mice for the protection from invasive 
commensal species, such as segmented filamentous bacteria 
(SFB), and from true pathogens, such as Salmonella typhimurium 
and Enterobacter cloacae (82). Of note, SFB increased IgA+ B cells 
in vivo (83, 84). Moreover, SIgA promoted the establishment of 
host–microbial relationships by modulating bacterial epitopes 
and modifying bacterial metabolism, as demonstrated by the 
downregulation of bacterial genes involved in the metabolism 
of oxidative products, i.e., Bacteroides thetaiotaomicron (85). 
An alternative mechanism proposed a mouse monoclonal IgA 
which was reactive against multiple commensal but not beneficial 
bacteria by specific recognition of an epitope in serine hydroxy-
methyltransferase, a bacterial metabolic enzyme (86). Oral 
administration of this IgA antibody in vivo effectively prevented 
the development of colitis in several mouse models (86, 87).

Probiotics, live microbial food ingredients, have been dem-
onstrated to affect B  cell function by stimulating systemic and 
mucosal IgA production in humans (88, 89). More specifically, 
probiotic strains such as Bifidobacterium lactis and Saccharomyces 
boulardii enhanced IgA production through alteration of the 
gut mucosa cytokine milieu in preterm infants and mice, 
respectively (90, 91). Probiotic bacteria can induce TGF-β, 
IL-10, and IL-6 expression by epithelial cells, which potentiate 
IgA production through B  cell maturation and class switching 
to IgA (92, 93). Finally, probiotics augment the expression of 
polymeric Ig receptors on the basolateral surface of intestinal 
epithelial cells enhancing IgA transcytosis into the gut lumen 
(94). Not only supplementation of preterm infants with B. lactis 

but also administration of Lactobacillus casei in mice resulted in 
increased IgA-producing cells (95, 96). Pretreatment of mice with 
the Bifidobacterium species B. bifidum and B. infantis increased 
gut mucosal pathogen-specific IgA antibody titers and reduced 
illness after challenge with rotavirus (97, 98). Similar results were 
described in infant rabbits and gnotobiotic pigs, pinpointing 
the effects of several commensals on IgA production (99, 100). 
Dietary components, shown to directly affect microbiome com-
position with subsequent influence on human’s immunity and 
health, include proteins, fats, carbohydrates, and polyphenols. 
Data from clinical studies prove that plant-derived proteins, non-
digestible carbohydrates (prebiotics), and restricted fat consump-
tion and polyphenols increase the intestinal numbers of beneficial  
bacteria such as Bifodobacterium and Lactobacillus. Interestingly, 
contrary to animal-derived proteins that can lead to inflamma-
tory bowel disease and cardiovascular diseases, plant-derived 
proteins increase SCFAs and regulatory T  cells, counteracting 
inflammatory responses (101).

Therefore, a “Western-diet” lacking components of high nutri-
ent value such as probiotics may negatively modulate immune 
responses, thereby leading to decreased immune tolerance as well 
as disease and infection progression.

inTeRPLAY OF B CeLLS AnD 
MiCROBiOMe in MS

B cells are important players in MS pathogenesis via antibody-
dependent and -independent mechanisms (1). Bidirectional traf-
ficking of B cells has been demonstrated between the periphery 
and CNS, where they could locally produce (auto)antibodies 
(102). IgA antibodies, that mediate humoral immunity in the 
gastrointestinal tract, have been described to play a role in MS 
as well. Increased serum IgA antibodies directed against myelin 
basic protein (MBP), myelin oligodendrocyte glycoprotein 
(MOG), plant and human aquaporins, and S100B have been 
described in MS (103, 104). Anti-MBP IgA antibodies were able 
to catalyze MBP hydrolysis, which could contribute to demyelina-
tion (105). Intrathecal IgG, IgA, and IgM synthesis correlated with 
the presence of anti-MBP or anti-proteolipid protein-secreting 
cells (106). Interestingly, IgA antibodies were found to be associ-
ated with a progressive disease course (103). More specifically, 
cerebrospinal fluid (CSF) IgA synthesis was correlated with the 
yearly disease progression rate in primary progressive MS (107). 
In addition, IgA antibodies directed against gliadin, gluten, and 
casein were increased in MS patients (108). In the CNS, IgA was 
reported as a major component of immune responses in MS with 
IgA+ plasma cells showing signs of clonal expansion, intraclonal 
diversification, and anti-axonal reactivity (109–111). An impor-
tant correlation was found between CSF levels of chemokine 
C-X-C motif ligand (CXCL)13 and the extent of intrathecal IgA 
synthesis (112).

In addition, mounting evidence highlights the implication 
of the gut environment in MS onset and progression. Recently, 
microbiome analysis indicated altered levels of several commen-
sals in MS patients (113–115). Possible mechanisms employed 
by microbiota to induce MS could potentially include low-grade 
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microbial translocation such as peptidoglycan, a bacterial cell 
wall component, from the gut to the CNS (115, 116). Additionally, 
gut microbiota can lead to disruption of the blood–brain barrier 
(117), microglia activation (118), limited astrocyte pathogenicity 
(119), and expression of myelinating genes (120). Interestingly, 
microbiota transplantation of MS patients to GF mice resulted in 
more severe EAE symptoms and reduced IL-10+ regulatory T cells 
compared to mice transplanted with selected healthy human 
microbiomes (113, 121). Commensal microbiota is necessary for 
disease development in spontaneous and actively induced EAE 
models (122, 123). MOG-immunized GF mice showed reduced 
anti-MOG antibodies that could be increased by colonization 
with microbiota from MS-affected twins. Furthermore, GF 
housing conditions resulted in impaired B  cell recruitment to 
brain-draining lymph nodes and reduced MOG-specific IgG2a 
antibodies in spontaneously developing EAE (121). In line with 
this, an antibiotic mixture orally administered before EAE induc-
tion impaired EAE development due to increased regulatory 
T cells in the mesenteric and cervical lymph nodes and increased 
IL-10-producing CD5+ B cells in cervical lymph nodes (124). The 
induced B cells were able to reduce EAE severity when adoptively 
transferred into naïve recipient mice by causing a shift from a 
Th1/Th17 toward a Th2 cytokine profile (125). Thus, antibiotic 
treatment stimulated both regulatory T and B cells, which both 
contributed to the protection against EAE.

In addition, dietary interventions have been tested in EAE 
models. A prophylactic diet of 66% caloric restriction protected 
Lewis rats from developing EAE as evident by reduced splenic 
CD8+ T cells and B cells, lymphoid and thymic CD4+ T cells and 
B cells, and IFN-γ production (126). Other dietary interventions 
that demonstrated efficacy in reducing EAE symptoms are SCFAs, 
low fat diets, and zinc aspartate (127). However, currently no 
information is available on the effects of these dietary components on 
B cell function or autoantibody production. Moreover, some vita-
mins, i.e., A, E, and D are important immune regulators and have 
been shown to limit EAE progression (116). Of note, vitamin D,  
which is mainly produced by sun exposure but is also contained 
in food such as salmon, beef meet, and egg yolks, has been 
shown to decrease EAE manifestations in vivo. Administration of 
1,25-dihydroxyvitamin D3 to mice, the active form of vitamin D,  
prevented EAE development and significantly reduced serum 
anti-MBP antibody production (128). In MS patients, different 
dietary interventions have been studied although mostly unsuc-
cessful or causality could not be demonstrated (116). However, 

preliminary data from a recent study indicated that a fasting 
mimicking diet or chronic ketogenic diet could be safe, feasible, 
and potentially effective in MS treatment (129).

COnCLUSiOn

Increasing evidence is being gathered for the interplay between 
diet, microbiome, and autoantibody production. Deregulation of 
this system could contribute to different pathologies, including 
MS. A “Western-diet” consisting among others of high fat and 
high salt content has been associated with increased autoantibody 
production, obesity, inflammatory disorders, and autoimmune 
diseases. Gut bacteria have been shown to modulate B cell differ-
entiation, maturation, and activation with a profound influence 
on IgA responses (Figure 1). Dietary interventions and the use of 
probiotics could restore immune deregulation that is seen in case 
of diet-induced microbiome alterations. They thus may represent 
valuable tools for improving the treatment of inflammatory and 
autoimmune disorders. However, more research is needed to 
clarify the mechanisms underlying the effects of dietary com-
ponents on autoantibody production and its relation to disease 
development in order to obtain a more efficient and preventive 
treatment line. In MS patients, IgA antibodies against several 
autoantigens have been described. Additionally, a disturbed 
microbiome has been observed in MS patients and animal stud-
ies have supported a possible link between the microbiome and 
the disease. However, the exact role of diet and the microbiome 
in B  cell-mediated pathology in MS, along with the respective 
mechanisms, remain to be determined.
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