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A Novel Approach to Design Low-Cost Two-Stage
Frequency-Response Masking Filters

Ying Wei, Member, IEEE, Shaoguang Huang, and Xiaojie Ma

Abstract—The multistage frequency-response masking (FRM)
technique is widely used to reduce the complexity of a filter
when the transition bandwidth is extremely small. In this brief,
a real generalized two-stage FRM filter without any constraint
on the subfilters or the interpolation factors was proposed. New
principles and equations were deduced to determine the design
parameters. The subfilters were then jointly optimized using non-
linear optimization. Experiential results show that when the pro-
posed algorithm obtains different solutions with the conventional
algorithm, the solution of the proposed approach is better with
less number of filter coefficients and sometimes with lower delay
as well than the conventional two-stage FRM, which can lead to a
reduced hardware cost in applications.

Index Terms—Finite-impulse response filters, frequency-
response masking (FRM), narrow transition-band filters,
optimization.

I. INTRODUCTION

THE frequency-response masking (FRM) technique is an
efficient method for the design of the finite-impulse re-

sponse filters with very narrow transition bands [1], [2]. The
overall transfer function H(z) is given by (1), where M is
an interpolation factor of the prototype filter Ha(z). In order
to remove the redundant periodic bands, two masking filters
Hma(z) and Hmc(z) are employed. In a case where the tran-
sition bandwidth is extremely narrow, to further reduce the
complexity, multistage FRM is used. The transfer function
H(z) of an R-stage FRM filter is shown in equation (2)

H(z)=Ha(z
M )Hma(z)+

(
z−

M(Na−1)
2 −Ha(z

M )
)
Hmc(z)

(1)

H(i−1)
a (z)= H(i)

a (zMi)H(i)
ma(z) +H(i)

c (zMi)H(i)
mc(z) (2)

where i = 1, . . . , R. Mi is the interpolation factor in the ith
stage. H(i)

a (z) is the prototype filter in the ith stage. H(i)
c (zMi)

is the complement of H(i)
a (zMi). H(i)

ma(z) and H
(i)
mc(z) are the

masking filters of the ith stage. The overall filter is H
(0)
a (z).
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Fig. 1. Two-stage FRM approach.

In this brief, we focus on the most commonly used multistage
FRM, i.e., the two-stage FRM.

The structure of a two-stage FRM filter is shown in Fig. 1.
The band-edge-shaping filter is denoted as G(z). For conven-
tional two-stage FRM, based on (2), we can see that P = Q,
and there is a constraint among the interpolation factors, i.e.,

M = kP = kQ, k is a positive integer. (3)

There were many improvements that addressed the multi-
stage FRM. In [3], a joint optimization of the subfilters was
proposed. It consists of a sequence of linear updates for the
design variables. Each update is based on the semidefinite
programming. Moreover, the group delay of the overall filter
was reduced by using the nonlinear-phase prototype filter. In
[4], an iterative algorithm combining linear programming was
proposed. The subfilters in the second stage were first updated
iteratively until meeting the prescribed tolerance, and then, the
subfilters in the first stage were updated similarly. It achieved
25% savings in terms of the number of multipliers compared
with the original method. The design of the multistage FRM
filter was converted into the weighted least-squares problem in
[5], which led to a satisfactory savings in the effective filter
length. A neural network algorithm was proposed to optimize
the subfilters in [6] and achieved better performance both in
passband ripples and stopband attenuation than several existing
methods. In [7] and [8], a two-step design technique was im-
proved. An initial solution was first provided by a simple design
method. Then, a suboptimal solution would be found with
the aid of a nonlinear optimization algorithm. The complexity
of multistage FRM filters using the proposed method in [7]
accounted for 70% of that using original FRM design methods.

The aforementioned improvements are under the assumption
of (3). The question is “Are the constraints necessary?” For
the two-stage FRM, the direct result of (3) is that the output
of the second stage produces a periodic magnitude response.
However, as long as the second stage can provide the transition
band of the overall filter, the output of it can be “periodic” or
“nonperiodic.” Based on this understanding, we proposed an
FRM structure with a nonperiodic band-edge-shaping filter in
[9]. The constraints on the interpolation factors were removed.
However, a constraint on the subfilters that all the subfilters in

1549-7747 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/275705207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


WEI et al.: NOVEL APPROACH TO DESIGN TWO-STAGE FRM FILTERS 983

Fig. 2. Possible magnitude response of G(z).

the second stage must come from the same prototype filter was
added to facilitate the design. In this brief, we further removed
the constraint on the subfilters to obtain a real generalized
two-stage structure. In fact, the structure in [9] can be viewed
as the specialized case of the proposed structure here. Based
on the generalized two-stage FRM structure, new principles
and equations were deduced to determine the specifications of
the five different subfilters. Furthermore, a two-step nonlinear
optimization technique [8] was used to jointly optimize the
subfilters.

This brief is organized as follows. In Section II, the pro-
posed structure is described in detail. The determination of
the design parameters for the proposed structure is discussed.
In Section III, design examples are presented to illustrate the
efficiency in the complexity and the group delay.

II. PROPOSED GENERALIZED TWO-STAGE FRM FILTER

In the proposed two-stage FRM structure shown in Fig. 1,
M , P , and Q are free parameters. The transfer function H(z)
of the overall filter is produced by

H(z) = G(z)H(1)
ma(z) +

(
z−(D1+D2) −G(z)

)
H(1)

mc(z). (4)

The z-transform transfer function of G(z) is represented by

G(z) = H(2)
a (zM )F

(2)
1 (z) +

(
z−D1 −H(2)

a (zM )
)
F

(2)
2 (z)

(5)
where F (2)

1 (z) and F
(2)
2 (z) are the masking filters of the second

stage, i.e.,

F
(2)
1 (z) =

{
H

(2)
ma(zP ) caseP = A

the complement of H(2)
ma(zP ) caseP = B

F
(2)
2 (z) =

{
H

(2)
mc(zQ) caseQ = A

the complement of H(2)
mc(zQ) caseQ = B.

The transition band of the overall filter can be formed by
H

(2)
a (zM ) (Case A) or its complement (Case B). Moreover,

the masking for the upper branch of Fig. 1 can be done by
H

(2)
ma(zP ) (Casep = A) or its complement (Casep = B). The

masking for the lower branch of Fig. 1 can be done byH(2)
mc(zQ)

(Caseq = A) or its complement (Caseq = B).
The possible magnitude response is shown in Fig. 2, where

ωp and ωs represent the passband edge and the stopband edge
of the overall filter, respectively. It should be noted that this
magnitude response may not be periodic since there is no con-
straint among M , P , and Q. The band edges of H(1)

ma(z), ω
(1)
pma,

and ω
(1)
sma and the band edges of H

(1)
mc(z), ω

(1)
pmc, and ω

(1)
smc

are also shown in the figure. We denote the distance between
ω
(1)
pmc and ω

(1)
smc by d1 and the distance between ω

(1)
pma and ω

(1)
sma

by d2. The pass- and stopband ripples of the overall filter are
denoted by δp and δs, respectively. Since the conventional way

Fig. 3. Magnitude response of the upper branch of G(z).

to determine the band edges of the subfilters cannot be used any
more, new design method needs to be developed.

The proposed structure contains several alternatives depend-
ing on the location of band edges. The set of [M,P,Q] that
leads to the lowest complexity in terms of the number of
multipliers is obtained by global search. For a given M , P , and
Q, let us illustrate how the parameters of these subfilters are
determined.

The determination of the band edges of H(2)
a (z) follows the

traditional way. The passband edge θa and the stopband edge
ϕa of H(2)

a (z) are easily obtained by [1].
For Case A

m =

⌊
ωpM

2π

⌋
(6a)

θa = ωpM − 2mπ (6b)
ϕa = ωsM − 2mπ (6c)

and for Case B

m =

⌊
ωsM

2π

⌋
(7a)

θa = 2mπ − ωsM (7b)
ϕa = 2mπ − ωpM (7c)

where �x� denotes the largest integer not larger than x, and
�x� denotes the smallest integer not smaller than x. It should
be known that both cases must satisfy the condition 0 < θa <
ϕa < π, and only one case will meet the requirement.

A. Determination of the Band Edges of the Masking Filters in
the Second Stage

Let us denote the pass- and stopband edges of H
(2)
ma(z)

and H
(2)
mc(z) by ω

(2)
pma, ω(2)

sma, ω(2)
pmc, and ω

(2)
smc, respectively.

Additionally, the passbands of H(2)
a (Mω) and its complement

ranging from 0 to π are numbered as 0, 2, . . . , 2× �M/2|� and
1, 3, . . . , 2× �(M − 1)/2|�, respectively.

1) Case A: The magnitude response of the upper branch
of G(z) is shown in Fig. 3. Suppose that the passband of

H
(2)
a (Mω), marked as 2m, provides the transition band. Define

the “effective passband” as the passband of the masking filter
that extracts this transition band. From Fig. 2, we can see that
d1 and d2 are the transition bandwidths of the masking filters in
the first stage. Therefore, considering the complexity, small d1
and d2 should be avoided. In accordance with Fig. 3, in order to
avoid small d1, we set a constraint that at least the passband
2m should be extracted completely. In order to avoid small
d2, we set a constraint that the passband 2(m+ 1) should be
completely outside the effective passband. The two constraints
can also be described as follows.

1) The left passband edge of the effective passband, i.e., x1,
is no larger than the left stopband edge ω1 of the pass-
band 2m.
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TABLE I
ω
(2)
pma , ω(2)

sma AND THE INEQUALITIES AND VARIABLES

FOR H
(2)
ma(z) IN CASE A

Fig. 4. Magnitude response of the lower branch of G(z).

2) The right passband edge of the effective passband, i.e.,
x2, is no smaller than the right passband edge ω2 of the
passband 2m.

3) The right stopband edge of the effective passband, i.e., x3,
is no larger than the left stopband edge ω3 of the passband
2(m+ 1).

The values of ω(2)
pma, ω(2)

sma, and the inequalities and variables
are shown in Table I, where p is the index of the passbands
of H

(2)
ma(Pω) satisfying 0 ≤ p ≤ �P/2�. For the given set

of [M,P,Q], if there exists p that enables ω
(2)
pma and ω

(2)
sma

to satisfy the three inequalities (10a)–(10c), we continue the
design; otherwise, we discard this set of the interpolators. After
solving the inequalities (10a)–(10c) by replacing x1, x2, and
x3 with (11a)–(11c) when casep = A or (12a)–(12c) when

casep = B, we obtained the range of ω(2)
sma and ω

(2)
pma. Then we

take the upper bound of ω(2)
sma and the lower bound of ω(2)

pma,
respectively, as shown in (8) and (9), such that the transition
band of H(2)

ma(z) is widest.

It is similar to determining the band edges of H(2)
mc(z). The

magnitude response of the lower branch of G(z) is shown
in Fig. 4. To avoid small d1, passband (2m− 1) is kept
completely. To avoid small d2, passband (2m+ 1) is removed

completely. ω
(2)
pmc, ω

(2)
smc, and the inequalities and variables

are shown in Table II, where q is the index of the passbands
of H(2)

mc(Qω) satisfying 0 ≤ q ≤ �Q/2�. After solving the in-
equalities (14a)–(14d) by replacing y1, y2, y3, and y4 with
(15a)–(15d) when caseq = A or (16a)–(16d) when caseq = B,

we obtained the range of ω(2)
smc and ω

(2)
pmc. Then we take the up-

per bound of ω(2)
smc and the lower bound of ω(2)

pmc, respectively,
which are shown in (12d) and (13).

2) Case B: The determination of the band edges of H(2)
ma(z)

is similar to that of H(2)
mc(z) in Case A. The determination of the

band edges of H(2)
mc(z) is similar to that of H(2)

ma(z) in Case A.

The values of (ω(2)
pma, ω

(2)
sma), (ω

(2)
pmc, ω

(2)
smc), and corresponding

inequalities and parameters are shown in Tables III and IV,
respectively.

TABLE II
ω
(2)
pmc , ω(2)

smc , AND THE INEQUALITIES AND VARIABLES

FOR H
(2)
mc(z) IN CASE A

TABLE III
ω
(2)
pma , ω(2)

sma , AND THE INEQUALITIES AND VARIABLES

FOR H
(2)
ma(z) IN CASE B

TABLE IV
ω
(2)
pmc , ω(2)

smc , AND THE INEQUALITIES AND VARIABLES

FOR H
(2)
mc(z) IN CASE B

B. Determination of the Band Edges of the Masking Filters in
the First Stage

1) Case A: For masking filter H(1)
ma(z), the passband edge

ω
(1)
pma is equal to ωp since the transition band of H(z) is pro-

vided by H
(2)
a (zM ). We only need to determine the stopband

edge ω
(1)
sma. Illustration of the determination of ω(1)

sma is shown
in Fig. 5.

The stopband edge ω
(1)
sma is the right end point of d2, there-

fore, we pay attention to the first passbands of the masking
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Fig. 5. Process to determine ω
(1)
sma for Case A.

TABLE V
VALUES OF THE VARIABLES FOR DETERMINING ω

(1)
sma IN CASE A

filters right to the transition band. The left stopband edges
of the two passbands are denoted as t1 and t2, respectively.
The position of t1 in H

(2)
a (Mω) and the position of t2 in

1−H
(2)
a (Mω) need to be found out. The pass- and stopband

regions of H(2)
a (Mω) can be calculated as

Rpass(k) =

[
2πk − θa

M
,
2πk + θa

M

]
, k= 0, . . . ,

⌊
M

2

⌋
(27)

Rstop(k) =

[
2π(k − 1) + ϕa

M
,
2πk − ϕa

M

]
, k= 0, . . . ,

⌊
M

2

⌋
(28)

where k is the index of the passbands(or stopbands). In accor-
dance with the position of t1, we obtain a temporal value of
ω
(1)
sma, denoted as ω(1)

sma_temp1

ω
(1)
sma_temp1 =

{
t1 t1 �∈ Rstop(k)

ω8 t1 ∈ Rstop(k1)
(29)

where k1 is the index number of the stopband region in which
t1 falls into and ω8 is the right end of Rstop(k1). In accordance

with the position of t2, we obtain a temporal value of ω
(1)
sma,

denoted as ω(1)
sma_temp2

ω
(1)
sma_temp2 =

{
t2 t2 �∈ Rpass(k)

ω9 t2 ∈ Rpass(k2)
(30)

where k2 is the index number of the passband region in which
t2 falls into and ω9 is the right end of Rpass(k2). The value of

ω
(1)
sma is obtained by

ω(1)
sma = min

(
ω
(1)
sma_temp1, ω

(1)
sma_temp2

)
. (31)

The values of t1, t2, ω8 and ω9 are listed in Table V.
For masking filter H(1)

mc(z), the stopband edge ω
(1)
smc equals

to ωs, and we only need to determine the passband edge ω(1)
pmc.

Illustration of the determination of ω
(1)
pmc is shown in Fig. 6.

Since ω
(1)
pmc is the left endpoint of d1, for H(2)

ma(Pω), we pay
attention to the passband that contains the transition band. For
H

(2)
mc(Qω), we pay attention to the first passband left to the

transition band. The left passband edges of these two passbands
are denoted as t3 and t4, respectively.

Fig. 6. Process to determine ω
(1)
smc for Case A.

TABLE VI
VALUES OF THE VARIABLES FOR DETERMINING ω

(1)
pmc IN CASE A

If t3 ≥ t4, we have

ω(1)
pmc =

{
t3 t3 �∈ Rstop(k)

max ((2π(k3 − 1) + ϕa) /M, t4) t3 ∈ Rstop(k3).

(38)If t3 < t4, we have

ω(1)
pmc =

{
t4, t4 �∈ Rpass(k)

max ((2πk4 − θa)/M, t3) , t4 ∈ Rpass(k4).

(39)
k3 is the index number of the stopband region in which t3 falls
into, and k4 is the index number of the passband region in which
t4 falls into. The values of t3 and t4 are listed in Table VI.

2) Case B: The determinations of ω(1)
sma and ω

(1)
pmc in Case B

are similar with that in Case A, and the parameters are shown
in Tables VII and VIII, respectively. It should be pointed out
that all the band edges of subfilters must range from 0 to π;
otherwise, the set of [M,P,Q] is invalid for the further design
procedures.

III. DESIGN EXAMPLES AND ANALYSIS

The process of finding the best [M,P,Q] can be described as
follows,

1) Search through all the combinations of [M,P,Q]. For
each set, estimate the number of multipliers needed for
the two-stage FRM based on the set.

2) There exists a set of [M,P,Q] for which the estimated
number of multipliers is smallest. In accordance with
the suggestion in [8], the candidates with the number of
multipliers less than 105% of the smallest number are also
taken into consideration for further optimization.

3) For each set of [M,P,Q], the subfilters are produced and
optimized using nonlinear optimization in [8].

4) Among all the sets that lead to the final filters that meet
the specifications, the one with the minimum number of
multipliers is chosen as the solution. If there are two or
more solutions, the one with the shortest group delay is
chosen.

Example 1: Example 1 is a narrow transition-band filter
with specifications ωp = 0.6π, ωs = 0.602π, δp = 0.01, and
δs = 40 dB. With the proposed method, the best solution is
obtained with Na = 28, Nma2 = 20, Nmc2 = 16, Nma = 17,
and Nmc = 29. The interpolation factors M , P , and Q are 69,
9, and 9, respectively. It is a Case B design with Casep = B
and Caseq = B. The number of multipliers is 59, and the group
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TABLE VII
VALUES OF THE VARIABLES FOR DETERMINING ω

(1)
sma IN CASE B

TABLE VIII
VALUES OF THE VARIABLES FOR DETERMINING ω

(1)
pmc IN CASE B

TABLE IX
DESIGN RESULTS AND COMPARISONS FOR EXAMPLE 1

delay is 1070.5. The passband ripple and the stopband atten-
uation ripple are 0.010 and 40.0109 dB, respectively. Com-
parisons with several other two-stage designs are shown in
Table IX, where Nmult is the number of multipliers in the
overall system.

Compared with the conventional two-stage FRM [10], the
number of multipliers is reduced by 35.8%, and the group delay
is reduced by 3.1%. Compared with the nonperiodical FRM [9],
the number of multipliers is increased by 7.3%, whereas the
group delay is reduced by 11.8%. The difference above may be
caused by the different optimization methods used. Therefore,
it is meaningful to compare our work with [8], which uses
the same optimization method. Compared with [8], the number
of multipliers is reduced by 4.8%, whereas the group delay is
increased by 0.3%.

Example 2: The filter of example 2 has a larger transi-
tion band than the filter of example 1 with passband edge
ωp = 0.6, stopband edge ωs = 0.61π, passband ripple δp =
0.003643, and stopband ripple δs = 48.78 dB. Using the pro-
posed method, the optimal interpolation factors are M = 19,
P = 4, and Q = 4. It is a Case B design with Casep = A

and Caseq = A. The orders of subfilters H
(2)
a (z), H

(2)
ma(z),

H
(2)
mc(z), H

(1)
ma(z), and H

(1)
mc(z) are 26, 10, 16, 11, and 15, re-

spectively. The maximum ripple in the passband is 0.0033,
and the attenuation in the stopband is 49.5651 dB. The results
compared with other work are listed in Table X. The complexity
in terms of number of multipliers of the proposed method is
lowest among the methods in the table. Compared with [8],
which uses the same optimization algorithm, the number of
multipliers is reduced by 2.3%, and the group delay is also
reduced by 1.5% for design 1 and 7.6% for design 2.

It is necessary to have a further look at the comparison with
the work in [9], which is our previous work, and the work
in [8], which represents the state of the art of the two-stage
FRM. In [9], by using the same prototype filter to generate all
the subfilters at the second stage (we can regard it as using
the single filter frequency masking method), the structure in
[9] may achieve smaller complexity compared with that of the

TABLE X
DESIGN RESULTS AND COMPARISONS FOR EXAMPLE 2

proposed structure. However, in the examples, the complexity
of the proposed structure is smaller than that of [9]. This
reduction of complexity may come from the usage of joint
optimization.

Since we adopted the optimization approach proposed in [8],
the comparison with [8] is fair. Sometimes, the solution of the
proposed method may be the same as that of [8], which means
it happened that the conventional design could find the optimal
solution. For example, when using the proposed method to
design a low-pass filter with the band edges at (0.2, 0.201),
passband ripple of 0.01, and stopband attenuation of −60 dB,
the optimal interpolation factors are M = 54, P = 9, and Q =
9 [M , P , and Q satisfy (3)]. For other examples in this brief, the
set of the interpolation factors obtained by the proposed method
is different with that of [8], which are more efficient designs
whose efficiency comes from the modification of the structure.
In fact, removing the constraints on the interpolation factors
enables us to search the solution in a wider space. Some cases
that are excluded due to the constraints on the conventional
structure are now included in our consideration. Thus, the
proposed structure results in the possibility of improvement, in
complexity and/or delay.
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