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Abstract. The current study deals with coupling of a volume conserving solver and a
structural solver to calculate the static deformation of flexible structures under the load
of a given volume of water. The volume-conserving solver contains a horizontal plane
representing the free surface of the fluid, which is moved in the non-linear iterations to
conserve the volume. The Partitioned approach is chosen to have code modularity and
reusability with many structural codes.

1 INTRODUCTION

Membrane structures have a wide variety of applications spanning across different en-
gineering disciplines, from the construction of light weight structures in civil engineering
to the deployment of parachutes during reentry in aerospace industry. Among the various
types of light weight structures, tensioned membrane structures may be the most ubiqui-
tous. These structures have a unique load carrying ability relative to their self-weight due
to their large deflection behavior. This at the same time makes them vulnerable to pond-
ing, which is the formation of indentation filled with liquid. There are many aspects of
an analysis on membrane structures, such as large deformation analysis, form finding [1],
wrinkling [2] and membrane wind interaction [3] but the analysis involving ponding wa-
ter on a membrane structure is relatively rare. However, there are studies [4, 5] where
the hydrostatic load is applied as a follower load on the structure and is solved in the
non-linear iterations of the structural solver, but this implementation involves access to
the structural solver which may not be possible in many structural codes. Therefore, the
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approach of partitioned coupling has been chosen for the present work. An example of
using this approach to study ponding on membrane structures is performed by Bown et
al [6]. In their work, the authors couple their in house structural code inTENS with their
shallow water solver in a partitioned manner to predict and analyze ponding on the mem-
brane structure. However, this is computationally expensive as they couple two transient
solvers to analyze what is in fact a steady state phenomenon. The volume-conserving
solver proposed in this work with an incremental increase of volume should simulate the
filling up of water in the local depression without incorporating the transient behavior.

One main motivation to simulate the ponding in membrane structures is to study the
case where the ponding water is coupled with a wind excitation. A real-life example
where this proved to be fatal is the Pukkelpop accident (Kiewit, Belgium 2011), where a
strong wind interacting with ponding water led to huge swaying of a tent in the vertical
direction and eventually resulting in the collapse of the structure. Computational methods
to investigate this phenomenon will involve a fluid-structure interaction (FSI) simulation
with a lightweight structure, ponding water and wind loads. The method discussed in this
work will be used to determine the deformed shape of the structure under the influence of
ponding, which will be the starting point of the FSI simulation discussed above. Moreover,
based on the literature search simulation involving coupling of ponding water, a membrane
structure and wind has not been studied before, therefore it is interesting from a research
point of view. The proposed method involves coupling a structural solver and a volume-
conserving solver in partitioned manner, in the same way how the effect of wind and
ponding on a membrane structure will be studied. The volume-conserving solver consists
of a plane representing the free surface of the water. The solver updates its position
based on the deformation of the underlying structure in order to conserve a given volume
of water, which in turn applies hydro-static loads on the structure. When the convergence
is achieved in the partitioned iterations, the deformed shape of the structure is determined.
The following sections discuss the proposed volume-conserving solver and how it is coupled
to a structural solver in KRATOS [7], an open-source finite element framework. At
the end, an example is presented where the static deformation of a flexible structure is
calculated due to the accumulation of an incompressible fluid.

2 CONTINUOUS PROBLEM

Let us assume a flexible structure which can be modeled as shell or membrane elements
with a suitable material model. The surface of the structure is denoted by ∂Ωs which
contains a certain volume of incompressible fluid. The free surface of the fluid is horizontal
(perpendicular to gravity), denoted by ∂Ωf . The part of ∂Ωs which is below ∂Ωf is
the fluid-structure interface called wetted surface, denoted by ∂Ωfs ,which experiences
hydrostatic pressure from the fluid above. In other words, a point S on ∂Ωfs experiences
traction, t in the form of pressure proportional to the height of the free surface above the
point. Mathematically, the traction at a point S with a position vector x on the structure
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can be stated as:

t = γf [(x− xf ) · nf ]n ∀x ∈ ∂Ωfs (1)

t = 0 ∀x ∈ ∂Ωs \ Ωfs

where, xf ∈ ∂Ωf , γf is the specific weight of the fluid, n is the outward unit normal vector
at the point S and xf is the position vector of any point at the free surface with an unit
normal nf . The expression (x− xf ) ·nf gives the the vertical height of the point S from
the free surface. The symbols and terminologies introduced above are clearly shown in
figure 1.
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Figure 1: Structure loaded by the hydrostatic pressure from the fluid.

3 VOLUME-CONSERVING SOLVER

The fluid enclosed between Ωf and Ωfs is incompressible and therefore during the parti-
tioned FSI iterations, the volume of the fluid should always be conserved. This is achieved
by an algorithm called volume-conserving solver. It consists of two building blocks: a vol-
ume calculation algorithm and the non-linear iterations responsible for updating the free
surface to conserve the volume. The equation for calculating the fluid volume using the
points on wetted surface can be obtained by using equation 2 and the Gauss divergence
theorem. Following some substitutions, we arrive at the expression of volume (V ) of the
fluid domain (Ωf ) bounded by the wetted surface (∂Ωfs) and the free surface (∂Ωf ), given
in equation 3.

∇ · [(x− xf ) · nfnf ] = 1 ∀x ∈ Ωf (2)∫
Ωf

∇ · [(x− xf ) · nfnf ] dV =

∫
∂Ωfs

[(x− xf ) · nfnf ] · n dS

=⇒ V =

∫
Ωf

dV =

∫
∂Ωfs

[(x− xf ) · nfnf ] · n dS (3)
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The non-linear iterations to conserve the volume consist of a modification to the Newton’s
method called leap-frogging Newton, with residual equal to the difference between the
current volume, V (calculated using equation 3) and the target volume, Vt. The method
is discussed in detail in [9], which consists of a Newton step and followed by a pseudo
secant step. The main advantage of this method is that it only involves one derivative
evaluation, like Newton’s method and yet it can attain cubic convergence. Both methods
were tested for volume conservation with a complicated geometry and it was found that
the leap-frogging Newton was much more robust and had faster convergence rate than
Newton’s method. Hence, it was chosen over the other.

To understand the method, consider a function f(x) ∈ C2[a, b] with a root x∗ in the
interval [a, b]. Let xn be the solution at nth iteration. The Newton’s step to find the
intermediate solution x̃n is given as,

x̃n = xn −
f(xn)

f ′(xn)
(4)

In the next step, a secant is constructed from the points (xn, f(xn)) and (x̃n, f(x̃n)),
given by equation 5. The point where the secant line intersects the x-axis is taken as the
solution at iteration n+1. By substituting equation 4 in equation 5 and performing some
algebraic manipulation, one can obtain an expression to find xn+1, given in equation 6.
The two steps discussed above are clearly shown in figure 2.

y − f(xn) =
f(xn)− f(x̃n)

(xn − x̃n)
(x− xn) (5)

xn+1 = xn −
(f(xn))2

f ′(xn) (f(xn)− f(x̃n))
(6)

For the volume-conserving solver, volume V −Vt is the non-linear function f in equation 6.
Considering a case where nf is along the z-direction, the equation for calculating the
volume given in equation 3 simplifies to equation 7, where z and zf are the z-coordinates
of a point in Ωfs and Ωf , respectively. Clearly, this is a function of z, zf and n. However,
it can be noted that during the volume-conserving process the wetted surface doesn’t
change, hence the volume depends only on zf . The derivative of the function, f ′ can be
obtained by deriving the equation 7 by zf . As given in equation 8, the derivative of the
difference between the target and current volume is equal to the area of the free surface,
Af .

4



Navaneeth K Narayanan, Roland Wüchner and Joris Degroote

Figure 2: Leap-frogging Newton method to find the root of a non-linear function.

f(zf ) = V − Vt =

∫
∂Ωfs

(z − zf )ez · n dS − Vt (7)

f ′(zf ) = −
∫
∂Ωfs

ez · n dS = Af (8)

Using equations 6, 7 and 8, we can write an algorithm for the volume conserving solver as
given in algorithm 1, where the free surface is a plane with normal (nf = ez). A radius,
r is given as input to give a spatial limit to the volume calculation and hydrostatic load
application on the structure.

Algorithm 1 Leap-frogging Newton’s method for volume-conservation.

1: n = 0
2: while

∥∥∥V−VtVt

∥∥∥ > ε do

3: if n < nmax then
4: Calculate f(xn) = V − Vt using equation 7, where xn = zf at nth iteration.
5: Calculate f ′(xn) = Af using equation 8.
6: Move the plane to an intermediate position along ez using equation 4.
7: Calculate f(x̃n) = Ṽ − Vt using equation 7.
8: Calculate xn+1 using equation 6. Move the plane to zf = xn+1

9: n = n+ 1
10: end if
11: end while
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4 IMPLICIT PARTITIONED COUPLING

The deformed shape of the structure under the load of given volume of fluid, Vt is
obtained once the structural equilibrium equations and boundary conditions given in
equation 1 are satisfied with fluid volume, V = Vt. The implicit partitioned approach to
find the solution consists of iterations involving sequential calls to the structural solver to
calculate the structural deformation and volume-conserving solver to conserve the volume.
In each iteration, the structural solver gets the traction at the wetted surface based on
the plane’s position (equation 1), which in turn updates the plane’s position based on the
structural deformation so that V = Vt (algorithm 1). Convergence accelerators such as
Aitken and IQN-ILS [8] are used to achieve faster convergence. In order to explain the
algorithm, we need to define some terms mathematically. Let d and t be the displacement
and traction on the structure, respectively. With this definition the volume-conserving
solver (F) and structural solver (S) can be written as:

t = F(d) (9)

d = S(t) (10)

The problem of finding the equilibrium shape of the structure under the hydrostatic load
of a fixed volume of fluid can be written as a fixed point problem,

d = S ◦ F(d) (11)

Algorithm 2 Partioned FSI iterations to calculate structural deformation under hydro-
static load.

1: k = 0
2: d̃k = S ◦ F(dk)
3: r0 = d̃0 − d0

4: while
∥∥rk∥∥ > ε do

5: if k < kmax then
6: dk+1 = dk + δdk

7: d̃k = S ◦ F(dk)
8: rk+1 = d̃k − dk

9: δdk = Convergence accelerator.ComputeUpdate(rk+1, dk)
10: k = k + 1
11: end if
12: end while

In the present work, the solution to the problem given in equation 11 is obtained by
implicit partitioned coupling, which involves additional coupling iterations between the
structural solver S and volume-conserving solver F . If k represents the iteration number
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for the coupling iterations, then the residual of equation 11 at the kth iteration is given
by equation 12, where dk is the displacement at the kth iteration and d̃k = S ◦ F(dk).

rk = d̃k − dk (12)

With all these definitions, we can write the implicit partitioned coupling algorithm for
the problem as given in algorithm 2.

5 DISCRETIZED PROBLEM

The structural equilibrium equations with the boundary conditions are generally solved
using the finite element method. This involves first discretizing the structure into elements
that converts the continuous problem into a discrete set of equations. When the equa-
tions are non-linear, an iterative algorithm based on Newton-Raphson is used where the
linearized equation given in equation 13 is solved in every iteration to get the solution
update until convergence.

KT∆d = rs (13)

where, KT is the tangent stiffness matrix, rs is the residual vector of the discretized
structural equations and ∆d is the update in the displacements.

In the current work, the structural-solver responsible for performing non-linear itera-
tions is treated as a black-box. It takes the traction in the form of nodal pressures as
input and gives the displacements as output. Consequently, this process introduces an
error in the elements that are cut by the free surface plane. As shown in figure 3, the
nodes of the cut elements that are below the free surface plane receive pressure values
proportional to their vertical distance, as given in equation 1. By contrast, the nodes that
are above this plane receive zero pressure, which means equation 1 is not satisfied exactly
in the cut elements. However, this error should decrease with a finer discretization.

The volume-conserving solver presented in this paper basically involves computation
of two quantities, V − Vt and Af . As evident from the equation 7 and 8, this will involve
integration of a scalar quantity in the domain ∂Ωfs, which is performed by numerical
integration based on Gauss quadrature in the discretized geometry. This is especially
challenging at the cut elements as the elements have to be divided around the free surface
plane to resolve the discontinuity. The number and type of divisions will depend on the
type of elements. Therefore, it was decided to keep the implementation simple and con-
sider only linear triangular elements for all the simulations. Figure 4 shows the different
possibilites and how the elements will be divided to perform the integration. The integra-
tion is only performed on the wetted surface and therefore, in the numerical integration
only the Gauss points in the shaded region are considered. It can be noted in equation 7
that the volume is calculated by integrating the projection of the distance vector along the
surface normal of the wetted surface i.e. (z − zf )ez · n, also shown in figure 4. Therefore,
the volume is calculated by first calculating the distance vector, (z − zf )ez for the Gauss
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points based on their vertical distance from the plane. Then the weighted sum of their
projection with the unit normal vector gives the volume of the enclosed region.

Zero pressure

Hydrostatic pressure 

Figure 3: Hydrostatic pressure applied on the discretized structure.
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Negative distance 

Gauss point

z

y

Figure 4: Volume calculation on the discretized structure using Gauss integration.
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6 NUMERICAL EXAMPLES

6.1 Volume enclosed between a plane and hemisphere

Before performing numerical simulation of a structural problem, it is important to
validate the volume-conserving solver developed in this work. To this end, let us consider
a hollow hemisphere of radius R = 1.0 m. The volume enclosed by a horizontal plane at
vertical distance of 0.5 m (= zref ) below the center of hemisphere would be V = 5π

24
=

0.6545 m3. The volume-conserving solver was run with a target volume, Vt = 0.6545m3

and r = 2.0 and center coinciding with the center of the hemisphere. Three different
meshes were considered with element size 0.1m, 0.05m and 0.025m and the results (zcomp)
for the three cases are summarized in table 1. It clearly shows, that the volume-conserving
solver was able to calculate the plane’s position accurately, limited by the discretization
error in the surface representation.

Table 1: Results of volume-conserving solver with Vt = 0.6545 m3.

Mesh size (m) zcomp (m)
0.1 -0.4984
0.05 -0.4996
0.025 -0.4999

6.2 Hydrostatic load on a hemisphere

In this numerical example, we consider a flexible hemisphere of radius R = 1.0 m, with
thickness t = 0.05 m, fixed at the top edge. The hemisphere is discretized using linear
triangular shell elements with the material properties Young’s modulus E = 104 Pa and
Poisson’s ratio ν = 0.3. A fluid of specific weight γ = 200 N m−3 is gradually filled inside
the structure until the fluid volume reaches V = 1.5 m3. The simulations are performed
using implicit partitioned coupling between the structural solver in KRATOS and the
implemented volume-conserving solver. Three different meshes with element size 0.1 m,
0.05 m and 0.025 m were considered to study the effect of discretization on the result.
Inside the coupling iterations, Aitken relaxation is used as a convergence accelerator for all
the simulations. As a quantity for comparison, the vertical displacement of point A (uz)
shown in figure 5 is determined for all the meshes. Figure 6 shows the variation of the
vertical displacement of point A with the volume of fluid. This data is also presented
in table 2 for V = 1.5 m3, where we can observe that the difference in the vertical
displacements between the meshes decreases as the mesh becomes finer. The table also
contains the total vertical reaction force at the fixed top edge. If the loading condition is
correct, then this value should be equal to the total weight of the fluid (W = γV ). From
table 2, we can observe that it is indeed the case with small errors. One interesting result
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is that this value approaches the weight of the fluid as the mesh is more refined. This
behaviour indicates that the deviation in the reaction force is due the error in the volume
calculation and hydrostatic load application on nodes (in section 5) which are directly
related to the discretization of the structure. As an example of results, a deformed
geometry for mesh with element size 0.05 m and Vt = 1.5 m3 is shown in figure 7a and 7b,
where the distance and displacement field are plotted, respectively. The distance value in
the color legend is scaled to positive and negative values very close to zero, to show the
wetted region of the structure.

A (0,0,-1)

fluid

R 

Figure 5: Problem set up for the hydrostatic load on a hemisphere.
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Figure 6: Vertical displacement vs volume of the fluid for three different meshes

10



Navaneeth K Narayanan, Roland Wüchner and Joris Degroote

Table 2: Comparison of (uz) and total reaction force (Fz) for different meshes with V =
1.5 m3

Mesh size (m) uz (m) Fz (N) W (N)
0.1 -0.228121 300.163 300
0.05 -0.229833 300.050 300
0.025 -0.23017 300.014 300

(a) Element size = 0.1 m (b) Element size = 0.025 m

Figure 7: Distance and displacement results for mesh with element size 0.05 m and
Vt = 1.5 m3.

7 CONCLUSIONS AND OUTLOOK

The main objective of this work was to develop an algorithm for calculating the static
deformation of a structure under the hydrostatic load from a fixed volume of fluid. The
partition approach was chosen to have code modularity and reusablity with many struc-
tural codes. Consequently, a volume conserving-solver was developed which was coupled
to a structural solver to achieve the goal. This procedure will be used in the future to
find the shape of the membrane due to ponding. Further, the obtained shape will serve as
a starting point for performing FSI simulations with membrane, ponding water and wind
loads.
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