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Most traditional mode choice models are based on the principle of random utility maximization derived from econometric theory.
Alternatively, mode choice modeling can be regarded as a pattern recognition problem reflected from the explanatory variables
of determining the choices between alternatives. The paper applies the knowledge discovery technique of rough sets theory to
model travel mode choices incorporating household and individual sociodemographics and travel information, and to identify the
significance of each attribute.The study uses the detailed travel diary survey data of Changxing county which contains information
on both household and individual travel behaviors for model estimation and evaluation. The knowledge is presented in the form
of easily understood IF-THEN statements or rules which reveal how each attribute influences mode choice behavior. These rules
are then used to predict travel mode choices from information held about previously unseen individuals and the classification
performance is assessed. The rough sets model shows high robustness and good predictive ability. The most significant condition
attributes identified to determine travelmode choices are gender, distance, household annual income, and occupation. Comparative
evaluation with the MNL model also proves that the rough sets model gives superior prediction accuracy and coverage on travel
mode choice modeling.

1. Introduction

Within the transportation field there exists many informative
and detailed datasets that reveal a great deal about the travel
behavior of households and individuals. However, it is the
sheer volume and potential complexity of data that have
discouraged these data from careful scrutiny.

Commonly used methods of travel mode choice model-
ing are based on the principle of randomutilitymaximization
derived from econometric theory. Since themultinomial logit
(MNL) model [1] was developed in the 1970s, the parametric
model family including different logit models with different
structures and components has become themost widely used
tool for mode choice analysis. However, many of these mod-
els suffer from the property of independence of irrelevant

alternatives (IIA), which implies that the effects attributes of
an alternative are compensatory and result in biased estimates
and incorrect predictions in cases that violate the IIA prop-
erty [2], although significant improvements on eliminating
the IIA property have beenmade.Their predetermined struc-
tures may often misestimate or ignore partial relationships
between explanatory variables and alternative choices for spe-
cific subgroups in a population.The linear property and syn-
ergy effects of the utility functions may not adequately model
the comprehensive and complex correlations among explana-
tory variables and between them and dependent variables [3].

Another approach and the approach adopted in this
paper are to embark on an exercise termed data mining or
knowledge discovery, which makes few or no assumptions
about the statistical nature of the data. Knowledge discovery
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can suggest the relationship between variables it contains
using as few probability assumptions and linear structural
relationships as possible. This information is usually con-
tained in a series of rules that when they are evaluated to be
true suggest a definite outcome.These rules can be expressed
in the form of IF-THEN statements or in a tree-like structure.
In this tree structure the internal nodes are decision tests;
branches are paths from these decisions and terminal nodes
are the outcome [4]. Other representations of the relationship
between attributes in the data are also possible, including
Bayesian networks [5] and neural networks [3]. In this paper,
the knowledge is contained in the form of IF-THEN clauses.
The technique for concluding these rules comes from the area
of fuzzy set theory and in particular the rough sets application
of this theory [6]. The characteristics of interest selected for
the application of this theory are the travel mode choice of an
individual for a trip.

Several recent studies of applying rough sets theory to
travel behavior modeling [7–9] demonstrate the good bene-
fits on prediction performance. However, existing researches
mainly focus on long distance intercity travel analysis and
few of them have compared the method with traditional
MNLmodel.The primary objectives of this paper include (a)
investigating the capability and performance onmode choice
modeling of urban diary travel using rough sets theory, (b)
figuring out the significance of condition attributes on mode
choices, and (c) to comparatively evaluating the performance
of rough sets model and MNL model.

2. Determinants of Travel Mode Choices

The most consistently quoted determinants of travel mode
choices are individual demographics, including age, gender,
education level, employment status, and availability of driver’s
license [10–14]. Young and elder individuals aremore likely to
utilize active modes of transportation.Women prefer to walk
for active travel while men are more likely to utilize a bicycle.
Individuals with higher levels of education walk significantly
more than those with lower levels of education. Employed
individuals are more likely to drive alone than unemployed
individuals.

Other common determinants are the household char-
acteristics, for example, income, household structure, and
car and bicycle ownership [13, 15–17]. Households on higher
incomes are more likely to own and use a car and families
with children are more likely to use the car than one-person
families. If households have cars, they would prefer to travel
by cars. On the other hand, individuals with bicycle in their
households have a higher propensity to participate in physi-
cally active pursuits.

Travel attributes could also impact people’s mode choices
[18]. When people go for work or school, they are more pos-
sibly to select motorized modes. Moreover, distance is an im-
portant factor for discrimination betweenmodes of transport
linked with higher costs (public transport and car/motorcy-
cle) and those with lower costs (walking and cycling).

3. Data Source and Preparation

3.1. Travel Diary Survey. Datawas collected from the activity-
travel survey of Changxing County, China, in 2013. Changx-
ing is a county in the prefecture-level city of Zhejiang Prov-
ince, with the area of 42 km2 and the population of 250,000
residents. Taking a whole household as a unit, a random sam-
pling and face-to-face interview were adopted for the survey
on Wednesday, May 29, 2013. The investigators are required
to select citizens randomly in different parts of the city in
order to guarantee the quality of the sample. The sample
involved a one-day (workday) activity-travel diary, whichwas
designed to record all activities involving travel details such
as purpose, mode, travel time, and origin destination of each
trip, for all individuals above six years old in the household.
It also included sociodemographics of both household and
individual. Finally, 4831 valid forms from 1809 households
were collected.

3.2.Data Preparation. Thealternatives for travelmode choice
used in this study are foot, bicycle (including tricycle), SOV
(including moped and motorcycle), transit (including bus
and company’s vehicle), and car (including private car and
taxi). When implementing rough sets analysis, returning
purposes are excluded because mode choice of returning
is largely associated with its former trip. This study is pri-
marily concerned with the prediction of travel mode choice
based on household and individual sociodemographics and
travel attributes. These attributes and their corresponding
categories are summarized in Table 1.

4. Rough Sets Theory

Rough sets theory is a mathematical framework that deals
with vague and potentially conflicting data and was first for-
mulated in the early 1980s [6]. The theory has been refined
and developed into a powerful set of knowledge discovery
and data mining techniques [19, 20] and is still an active area
of research, with researchers working on the extensions of
the theory [21, 22]. The theory has been implemented in a
number of bespoke software such as ROSE [23], Rosetta [24],
and RSES [25].

The theory belongs to the group of free-ranging algorithm
and processes that aim to discover the knowledge contained
within a dataset. In a dataset, it is possible to associate a
particular outcome (e.g., travel mode choice) with a combi-
nation of values or levels held by other predictive attributes
for a particular individual. When describing the process of
deriving and applying the classification rules associated with
rough sets, it is important to recognize that two stages are
involved. Initially there is a training stage where there is an
attempt to discover the knowledge and there then follows
a testing stage where the predicative performance of this
knowledge is tested.

4.1. Theory of Training. Let 𝑈 represent the universe, a finite
set of objects, and 𝐴 denotes a set of condition attributes.
For 𝑥, 𝑦 ∈ 𝑈, we say that 𝑥 and 𝑦 are indiscernible by the
set of condition attributes 𝐴 if 𝜌(𝑥, 𝑞) = 𝜌(𝑦, 𝑞) for every
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Table 1: Attributes and their descriptions.

Dimension Attribute Category

Household characteristics

Household size 1-2 persons; 3-4 persons; 5+ persons

Household annual income <30,000∗; 30,000–60,000; 60,000–90,000;
90,000–120,000; 120,000–150,000; >150,000

Car ownership Yes; no
Bicycle ownership Yes; no
Moped ownership Yes; no

Individual characteristics

Gender Male; female

Occupation Student; worker; employee; officer; businessman;
retired; other

Age 6∼19; 20∼29; 30∼39; 40∼49; 50∼59; 60+
Education Middle school or below; high school; college
License ownership Yes; no

Travel attributes
Purpose Work; school; business; leisure; bring/get someone;

visit; other
Distance (0, 2 km]; (2, 5 km]; (5 km, +∞)
Mode Foot; bicycle; SOV; transit; car

Note: ∗the unit is Yuan (RMB).

Table 2: Examples of mode choice cases with describing features.

Case Age Car ownership Purpose Mode choice
1 Young Yes Work Bus
2 Old No Work Bus
3 Young Yes Work Car
4 Middle-aged Yes Work Car
5 Middle-aged No Leisure Car

𝑞 ∈ 𝐴 where 𝜌(𝑥, 𝑞) denotes the information function. A set
that has objects within it that are indiscernible by the set of
condition attributes 𝐴 is called elementary set. The family of
all elementary sets is denoted by𝐴∗. It represents the smallest
partitions of objects by the specified condition attributes
so that objects belonging to different elementary sets are
discernible and those belonging to the same elementary sets
are indiscernible. The lower approximation of 𝑋 (𝑋 ⊆ 𝑈),
denoted by 𝐴𝑋, and the upper approximation of 𝑋, denoted
by 𝐴𝑋, are defined as

𝐴𝑋 = ∪𝑃 {𝑃 ∈ 𝐴
∗
, 𝑃 ⊆ 𝑋} ,

𝐴𝑋 = ∪𝑃 {𝑃 ∈ 𝐴
∗
, 𝑃 ∩ 𝑋 ̸= 0} .

(1)

The lower approximation contains all objects that cer-
tainly belong to that category. The upper approximation
consists of all objects that possibly belong to that category.
A rough set is thus any subset defined through its lower and
upper approximation. Figure 1 is a graphical representation of
this concept. Each indiscernible set is displayed by a pixel.The
subset of objects we want to approximate is drawn as a dashed
line that crosses pixel boundaries and cannot be defined in a
crispmanner.The lower and upper approximations are drawn
as thick gridlines.

Upper approximation

Subset

Lower approximation

Figure 1: Approximation of sets.

For example, five mode choice cases, described with four
attributes, age, car ownership, purpose, and mode choice, are
given in Table 2.

Mode choice case 1, for instance, is characterized by the
following statement: IF (age = young) AND (car ownership =
yes) AND (purpose = work) THEN (mode choice = bus).

The above statement is called a rule in rough sets theory.
The attributes in “THEN” part are called decision attribute
which is the concept of concern, and attributes in “IF” part
are called condition attributes which are the information we
observe. The three condition attributes, age, car ownership,
and purpose, form four elementary sets: {1, 3}, {2}, {4}, {5}. It
represents that cases 1 and 3 are indiscernible while other
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cases are characterized uniquely with condition attributes.
Since cases 1 and 3 are indiscernible and lead to different
mode choices, they are called boundary-line cases represent-
ing those that cannot be properly classified with the available
information. Therefore, the bus mode choice is described
with the lower approximation set, {2}, and the upper approxi-
mation set, {1, 2, 3}. Similarly, the concept of car mode choice
is characterized with its lower approximation set, {4, 5}, and
upper approximation set, {1, 3, 4, 5}.

Apparently, concepts can be described with different
lower approximation andupper approximation by alternating
input condition attributes. Sometimes, some particular con-
dition attributes cannot be used to distinguish objects; they
are redundant. The condition attributes excluding redundant
attributes are called reduct in rough sets theory. A reduct is
the essential part of an information table which can discern
all objects discernible by the original table.

The performance of the specified condition attributes
can be described with two indicators: accuracy of the
approximation and quality of approximation. Accuracy of
approximation represents the percentage of the associated
objects definable with the specified condition attributes. It is
defined as follows:

𝛼
𝑝
(𝑋) =

card (𝐴𝑋)
card (𝐴𝑋)

, (2)

where cardrefers to cardinality. The value of accuracy ranges
from 0 to 1. The closer to 1 is the accuracy, the more dis-
cernible is the condition attribute, that is, travel mode. It
implies that the associated travel mode does exist unambigu-
ously.

On the other hand, quality of approximation represents
what percentage of the universe is definable. Let 𝑋 = {𝑋

1
,

𝑋
2
, . . . , 𝑋

𝑛
} be a classification of𝑈; that is to say,𝑋

𝑖
∩𝑋
𝑗
= 0,

∀𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗 and⋃𝑛
𝑖=1
𝑋
𝑖
= 𝑈.𝑋

𝑖
is called class of𝑋. Quality

of approximation of classification𝑋 by a set of attributes can
be defined as follows:

𝛾
𝑝
(𝑋) =

∑
𝑟

𝑖=1
card (𝐴𝑋

𝑖
)

card (𝑈)
. (3)

The value of quality ranges from 0 to 1. The closer to 1 is
the quality, themore objects of the universe clearly belong to a
single class of𝑋. It implies that all travel modes can be clearly
identified.

To recognize further details of mode choices, rules need
to be extracted. Using reduced information table (without
redundant attributes), the rules could be found through
determining the decision attributes value based on condition
attributes values. Therefore, the rules are presented in an “IF
condition(s) THEN decision(s)” format. If the condition(s)
in the IF part matches with the given fact(s), the decision(s)
in the THEN part will be performed. Unlike mathematical
functions or statistical models in traditional travel demand
forecasting analysis, decision rules induced from a set of raw
data can capture and represent both numeric and nonnu-
meric variables. In addition, the modular nature of decision
rules makes it easy for researchers to insert new decisions

rules or to modify/delete existing decision rules without
affecting the overall system.

Once a set of rules have been derived, it is then that the
training stage of the knowledge discovery finishes and the
rules are then tested.

4.2. Theory of Testing. The testing stage is relatively straight
forward and involves the application of rules to a previously
unseen set of data in order to predict mode choice. Fortu-
nately the actual mode choice is known so it is therefore
possible to evaluate the predictive ability. This information is
usually presented in a confusion matrix [26] which contains
the actual mode choices as rows and the predicted mode
choices as columns. The main diagonal is clearly the correct
predictions and the off-diagonals are the incorrect predic-
tions.

To evaluate the mode choice modeling performance of
the rough sets, two prediction indicators are defined: accu-
racy of prediction and coverage of prediction. They, respec-
tively, reflect the modeling performance on individual and
aggregate level.

Accuracy of prediction (𝛾
𝑖
) or hit ratio is the ratio of

the number of correctly predicted individual observations for
one mode (𝑁pi) over the total number of the actual observa-
tions choosing this mode (𝑁

𝑎
), expressed as

𝑟
𝑖
=

𝑁pi

𝑁
𝑎

. (4)

Coverage of prediction (𝑟
𝑎
) reflects the prediction accu-

racy on the mode aggregate level, defined as the ratio of the
number of predicted observations (including correctly and
incorrectly predicted observations) for one mode (𝑁pa) over
the number of the actual observations choosing this mode
(𝑁
𝑎
), expressed as

𝑟
𝑎
=

𝑁pa

𝑁
𝑎

. (5)

The accuracy is always less than 1 while the coverage may
be greater than 1 or less than 1, with the accuracy rate being
always no more than coverage rate. In the context of rough
sets classification, accuracy alone is not ameaningfulmeasure
since the coverage affects how many classification attempts
are made. Therefore, in this paper, accuracy and coverage are
both utilized as the performance measures.

5. Applications to Travel Diary Survey

The software used to produce the results in this study is
Rosetta [27]. In the application of knowledge discovery pro-
cedures to datasets, it is important that overfitting does not
take place.Thismeans that data used to derive the knowledge
during the training stage are not the same as those used to
test the knowledge. There are standard procedures to ensure
that this does not take place. Where there is a limited amount
of data, a 𝑘-fold procedure is adopted where the data is split
into 𝑘mutually exclusive parts and then 𝑘 training and testing
procedures are conducted, but during each procedure one
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Table 3: Summary of the mode splits in the datasets.

Mode Total database Training set Testing set
Number Per (%) Number Per (%) Number Per (%)

Foot 1022 17.9 508 17.8 514 18.0
Bicycle 384 6.7 208 7.3 176 6.2
SOV 2383 41.7 1162 40.6 1221 42.7
Transit 619 10.8 333 11.6 286 10.0
Car 1313 23.0 650 22.7 663 23.2
Sum 5721 100.0 2861 100.0 2860 100.0

Table 4: Approximation results.

Travel mode No. of objects Lower approx. Upper approx. Accuracy Quality of classification
Foot 508 485 528 91.9%

91.9%
Bicycle 208 166 257 64.6%
SOV 1162 1097 1248 87.9%
Transit 333 282 387 72.9%
Car 650 600 699 85.8%

Table 5: Top supported induced decision rules.

Decision rules Support
IF (bicycle ownership = no) AND (car ownership = yes) AND (gender = male) (occupation = businessman) AND
(license ownership = yes) AND (distance = (5 km, +∞)) THEN (mode = car) 64

IF (bicycle ownership = no) AND (car ownership = no) AND (occupation = retired) AND (age = 60+) AND (purpose =
leisure) AND (distance = (0,2 km]) THEN (mode = foot) 60

IF (bicycle ownership = no) AND (moped ownership = yes) AND (car ownership = no) AND (gender = female) AND
(education = high school) AND (distance = (2,5 km]) THEN (mode = SOV) 59

IF (bicycle ownership = no) AND (car ownership = no) AND (household annual income = 60,000–90,000) AND
(license ownership = no) AND (purpose = work) AND (distance = (2,5 km]) THEN (mode = SOV) 58

IF (household size = 1∼2 persons) AND (bicycle ownership = no) AND (occupation = retired) AND (purpose = leisure)
AND (distance = (0,2 km]) THEN (mode = foot) 58

of the 𝑘 parts is not used during the training stage but is
held back for testing purposes. An alternative where there is
sufficient data is to partition the data into two parts, one for
exclusive training purposes and another for exclusive testing
purposes. Since the travel data available in this study is large,
it is this partition approach which has been adopted here.The
data has been randomly split into two parts, 1/2 for the model
estimation and another 1/2 for the subsequent validation test.
The actualmode split proportions in the total database as well
as the training set and testing set are shown in Table 3.

5.1. Approximation and Reduct. The accuracy of approxima-
tion is used to describe completeness of knowledge about
decision attribute (travel mode) that could be obtained from
condition attributes. As depicted in Table 4, foot shows the
highest accuracy value of 91.9%. Other modes also have rela-
tively good accuracy. This suggests that the twelve condition
attributes (household and individual sociodemographics,
travel attributes) could satisfactorily predict travel mode
choices. On the other hand, quality of classification is the
percentage of correctly classified cases. In this study, 91.9%

of cases are correctly classified, indicating well-performed
robustness of the rough sets model.

The reducts from the training set are calculated using the
computationally efficient genetic algorithmoption inRosetta.
The genetic algorithm is a heuristic for function optimization
and promotes “survival of fittest” [28]. In total more than
3000 reducts are calculated. The length of the reducts is 2∼12
attributes. It represents that any attribute is necessary for per-
fect approximation of the decision classes and removal of any
of them leads to the decrease of the quality of approximation.

5.2. Decision Rule Induction. Based on the concepts of indis-
cernibility relations, set approximation, and attribute reduc-
tion, the training set is analyzed and over 40,000 rules are
generated. This means that most rules are supported by just
one or two objects. In fact, the highest support for an exact
rule in this data is only 64 objects.The topfive supported rules
are shown in Table 5.

5.3. Validation. Confusion (ormisclassification)matrixmea-
sures the effectiveness of the mode choice modeling. Table 6
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Table 6: Confusion matrix generated by rough sets model.

Testing set
Predicted mode choice

Accuracy (%) Coverage (%)Foot
(547)

Bicycle
(92)

SOV
(1376)

Transit
(184)

Car
(661)

Actual mode choice

Foot (514) 470 7 27 2 8 91.4 106.4
Bicycle (176) 39 55 70 4 8 31.3 52.3
SOV (1221) 33 20 1058 20 90 86.7 112.7
Transit (286) 3 5 85 133 60 46.5 64.3
Car (663) 2 5 136 25 495 74.7 99.7

Overall accuracy (hit ratio) 77.3

presents confusion matrix induced by the model for the test-
ing set. In a confusionmatrix, the sumon each row or column
represents the actual or predicted number of observations for
each mode. The main diagonal cells give the match number
between reality and prediction and off-diagonal provides the
erroneous classification. The accuracy and coverage for each
mode appear in the table as the index of prediction perfor-
mance.

Overall, the rough setsmodel has a good accuracy predic-
tion,with the overall accuracy (hit ratio) up to 77.3%.Themis-
classification results reflect that it cannot distinguish between
the SOV and car modes well in the fact that many observa-
tions under these two modes are mutually misclassified. This
phenomenon indicates that the SOV and car modes, which
share household, individual and travel attributes, exhibit
more homogeneity within the explanatory variables than
othermodes.Themodel yields the highest prediction accura-
cy for foot with the rate up to 91.4%, showing most of the
observations choosing the foot mode are not misclassified as
other modes. However, the bicycle is underestimated heavily.
A large part of the misclassified observations of the bicycle
mode goes to the SOV mode, which may imply some
unobserved similar preferences between SOV travelers and
bicycle users.

On the other hand, the rough sets model made acceptable
predictions of the mode choice distribution on the coverage
level. It provides a relatively good coverage rate for the foot,
SOV, and car modes but underestimates the aggregate num-
bers of observations of the bicycle and transit modes.

5.4. Significance of Condition Attributes. In rough sets mod-
els, the significance of condition attributes is measured by
their presence of the derived rules [29]. When a condition
attribute shows more frequently among rules, it is more
frequently used to describe travel modes and hence more
significant to distinguish mode choices. Presence of a condi-
tion attribute is represented with presence percentage which
is calculated by summing its presence in each rule weighted
with cases of the associated rule divided by total cases. More-
over, since condition attributes with more categories tend
to distinguish between travel mode choices more effectively,
comparisons are made on those with the same number of
categories, shown in Figure 2.

There are total 12 condition attributes in this study select-
ed tomodelmode choices. Figure 2 indicates that all variables

make contributions to model estimation. Gender, distance,
household annual income, and occupation are those with
higher presence percentage among all condition attributes
with two, three, six, and seven categories.

6. Comparisons with a Multinomial Logit
(MNL) Model

The MNL model gives the choice probabilities of each alter-
native as a function of the systematic portion of the utility of
all the alternatives. The general expression of the probability
of choosing an alternative “𝑖” from a set of 𝐽 alternatives is as
follows:

Pr (𝑖) =
exp (𝑉

𝑖
)

∑
𝐽

𝑗=1
exp (𝑉

𝑗
)

, (6)

where Pr(𝑖) is the probability of the decision maker choosing
alternative 𝑖 and 𝑉

𝑗
is the systematic component of the utility

of alternative 𝑗.
We use the same training set to estimate the MNLmodel.

The car mode is arbitrarily used as the base alternative. From
the estimation results, the most significant variables to influ-
ence a traveler’s mode choice decision include car owner-
ship, license ownership, gender, distance, and occupation.
These variables approximately match the important variables
induced by the rough sets models. The confusion matrix
induced by the MNL model using the same testing set is
shown in Table 7.

An overall performance comparison was conducted
based on the prediction results of the two models using the
testing set. Figure 3 shows the prediction accuracy and cover-
age of the models by eachmode, in which the actual numbers
of observations for each mode are also labeled.

The two models show similar prediction performances.
Neither of them gives a perfect prediction rate for each
mode on accuracy and coverage, especially for the insufficient
observations in the dataset. On the accuracy of prediction,
the rough sets model shows a better performance over the
MNLmodel in the prediction of the bicycle, SOV, and transit
modes. And the overall performance of the rough sets model
(77.3%) is also better than the MNL model (75.2%).

On the prediction coverage, theMNLmodel shows better
coverage on the SOV mode (110.8%) but performs worse on
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Table 7: Confusion matrix generated by MNL model.

Testing set
Predicted mode choice

Accuracy (%) Coverage (%)Foot
(560)

Bicycle
(88)

SOV
(1353)

Transit
(181)

Car
(678)

Actual mode choice

Foot (514) 478 6 29 0 1 93.0 108.9
Bicycle (176) 42 44 77 8 5 25.0 50.0
SOV (1221) 39 25 1021 31 105 83.6 110.8
Transit (286) 1 7 106 106 66 37.1 63.3
Car (663) 0 6 120 36 501 75.6 102.3

Overall accuracy (hit ratio) 75.2

25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0

Attributes with 2 categories
Attributes with 6 categories

Attributes with 3 categories
Attributes with 7 categories

License ownership
Car ownership

Moped ownership
Bicycle ownership

Gender

Distance

Age

Purpose
Occupation

Education
Household size

Household annual income

(%)

Figure 2: Presence percentage of condition attributes.
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Figure 3: Prediction performance comparisons between rough sets model and MNL model.
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other modes. The rough sets model outperforms the predic-
tion for the foot, bicycle, transit, and car modes. Another in-
dicator,mean absolute percentage error (MAPE), was utilized
to compare the coverage. MAPE is expressed as follows:

MAPE =
∑
𝑛

𝑖=1

PE𝑖


𝑛
,

PE
𝑖
=
𝑋
𝑖
− 𝐹
𝑖

𝑋
𝑖

,

(7)

where PE
𝑖
is the prediction percentage error of observations

for the 𝑖th travel mode, 𝑋
𝑖
is the actual number of obser-

vations for the 𝑖th mode, and 𝐹
𝑖
is the predicted number of

observations for the 𝑖th mode.
TheMAPE for rough setsmodel andMNLmodel is 20.6%

and 21.7%, respectively. Thus, the rough sets model proves to
be better on the overall prediction coverage.

7. Conclusions

This paper has demonstrated the successful application of a
relatively new technique in the area of knowledge discovery
to the well-studied problem of understanding and predicting
traveler’s mode choices. The method has been able to reveal
information about the household characteristics, individual
demographics, and travel attributes with mode choices in a
readily understandable form (a set of “IF-THEN” statements)
and to use this information to predict mode choice for
previously unseen individuals.

The rough setsmodel shows high robustness of themodel
structure to the training dataset due to their data induc-
tion property. No statistical assumptions (e.g., IIA property
assumption) need to be made so the compatibility between
the model structure and the observations is enhanced in the
model estimation and hence the prediction performance can
be improved. According to presence of derived rules, the
most significant condition attributes identified by the rough
sets model of determining travel mode choices are gender,
distance, household annual income, and occupation.

Comparative evaluation with the MNLmodel shows that
the rough sets model has comparable but slightly better
prediction capability on travel mode choice modeling. The
prediction results based on separate testing dataset show,
on both accuracy and coverage, that the rough sets mode
outperforms the MNL model.

However, the rough sets induce too many detailed rules.
Although the single rule is easy to interpret, the complete rule
set is far too large to gain sound insight in travel behavior.
Techniques such as generalization or shortening of the rule
have been applied to deal with the problem [26]. Advanced
models such as rough sets combined with genetic program-
ming [30] can also be adopted in the future to improve the
performance of rule extraction and observations validation.
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