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Chapter I

Introduction

Figure I-1: The upper panel (a) shows a QCD picture of two interacting nucleons,
i.e. a color exchange diagram. The lower panel (b) describes the same
process in terms of effective degrees of freedom, namely by means of
pions and nucleons.

The atomic nucleus is a quantum many-body system governed by the strong
interaction. The study and final understanding of the nucleus in all its complexity
is the genuine justification for the mere existence of nuclear physics.
The discovery in the early 20th century, of the nucleus by Rutherford, Geiger and
Marsden [1] followed by the discovery of the neutron a few years later [2] may
be considered as the birth of nuclear physics. Since the early days, a lot of data
have been collected culminating in a whole range of models trying to describe
the features of the nucleus.
At low excitation energies, typically of the order of a few MeV, the nucleus can,
to a good approximation, be described in terms of nucleonic degrees of freedom.
The nuclear shell-model, introduced by Mayer and Jensen in the fifties, is the
common tool to interpret the enormous richness of nuclear spectroscopy. The shell
model is very successful in explaining a lot of low-energy nuclear properties like

1
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the appearance of magic numbers, ground-state energies, transition probabilities
between low-lying excited states, . . . .
At a more fundamental level, one could hope to explain the basic features of nuclei
at low energies in terms of quarks and gluons which constitute the basic building
blocks of the hadronic universe as described by quantum chromo dynamics (QCD)
(see Fig. I-1). Unfortunately, QCD can not be directly used to do calculations at
nuclear physics temperatures (≈ MeV-scale). Indeed, this misdemeanor of QCD
is caused by its running coupling constant (αs = 12π

(33−2nf ) log q2/Λ2 ) which grows

infinitely large at low energies (≈ 1 GeV). One refers to this property as the anti-
screening effect of QCD. In short, only at very small distances where it is not
meaningful anymore to think of matter in terms of nuclei or nucleons, the strong
coupling constant is sufficiently small so that QCD can be solved perturbatively
using a Feynmann-diagram expansion.

In this dissertation, an attempt is made to improve our knowledge about the
nuclear dynamics up to distance scales of 0.5 fm. To that purpose we study
processes in which an electromagnetic probe and energy transfers ranging from
100 up to 600 MeV are involved. The research described in this thesis belongs
to a particular branch in physics, denoted hadron physics. Neither QCD nor the
nuclear shell-model are fully applicable to model the reaction processes at the
length scales covered in hadron physics. Indeed, at short distances one would
expect the influence of quark and gluon degrees of freedom to persist while on
the other hand nuclei are still described as manifolds of nucleons. A hybrid
model is adopted which describes the nucleus in terms of nucleonic degrees of
freedom, though corrected for the short-range features of the nucleon-nucleon
interaction. To describe these effects accurately one has to modify the high-
momentum components of the nuclear wave function as conceived with a nuclear
shell-model technique.
Summarizing, hadron physics studies the transition regime between the typical
high-energy behavior of subatomic matter governed by QCD and the low-energy
phenomena which can be efficiently described by the nuclear shell model. The
most important questions which will be addressed are: What are the relevant
degrees of freedom? Which Feynman diagrams play a role? Do the various
symmetries persist?

The meeting ground of those two regimes is formed by the so-called effective
field theories. During the last decades several techniques have been developed
to derive the nuclear wave function starting from some “effective” field theory.
Effective field theory is a more natural way to describe nature, because at every
energy scale it is formulated in terms of the relevant degrees of freedom. All
higher energy properties are absorbed in suitably chosen form factors (see Fig.
I-1). In this thesis, we wish to explore how the nuclear interior looks like at photon
energies of a few hundreds of MeV or equivalently at a distance of around 0.5 fm.
At this energy scale, it can be anticipated that other relevant degrees of freedom,
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like mesons (e.g. π, ρ, · · ·) and low-lying excited baryon states (e.g. ∆+, · · ·) play
a role. The aforementioned particles are not explicitly incorporated in nuclear-
structure calculations, though the specific functional form of the NN-potential
is a direct consequence of their presence. For example, the tensor part of the
NN-force is attributed to the one-pion exchange graphs. To study the nuclear
system at short distances one needs a high-quality wave function which goes
beyond those produced in an independent-particle model. Recent computational
advances made the exact calculation of the ground-state wave function for few-
body nuclei (A ≤ 8) feasible. This is however not the case for medium and heavy
nuclei. In this dissertation we focus on the 4He nucleus.

Since the experimental work by Lyman and Hofstadter [3] [4], who introduced
electron scattering as an alternative to nucleon transfer reactions (e.g. (α, d) or
(t, p)-reactions [5]) nuclear physics entered into a new era. Studies of the nu-
cleus with the aid of an electromagnetic probe were made possible thanks to the
progress made in accelerator and detector technology. On the theoretical side,
the development of quantum electrodynamics (QED) by Tomonaga, Schwinger
and Feynman is of crucial importance for the correct interpretation of the exper-
imental results. In contrast to QCD, QED has the major advantage of having a
weak coupling constant at MeV-scale (αe ≈ 1

137
) making the first Born expansion

of the scattering matrix a good approximation. The electromagnetic interaction
which has a highly penetrating potential in nuclear matter, can be used to map
the electric and magnetic charge- and current distributions in the nucleus.

From the very start, some deficiencies of the nuclear shell-model showed up.
First, the early elastic electron scattering experiments revealed the presence of
sub-nuclear degrees of freedom in the nucleus masked as meson exchange currents
(e.g. modifications of the charge form factor). Further, an (e, e′)-experiment to
measure the charge distribution of the 3s-proton in 206Pb, performed in the seven-
ties at Mainz [6] and independently at Saclay [7], provided the first unambiguous
experimental evidence for the depletion of the nuclear shell model states near the
Fermi level. This marked the onset of the quest for short- as well as long-range
correlations.
Later on, with the advent of high duty-cycle electron accelerators, double co-
incidence measurements came within experimental reach. A wide spectrum of
single nucleon-knockout experiments of the A(e, e′p) type have been the subject
of investigation at various laboratories. The one-nucleon knock-out data pointed
toward the necessity of having a better description for the nuclear interior (e.g.
high momentum components) [8] and for incorporating meson and baryon ex-
change currents (e.g., the delta peak at an invariant mass of ± 1200 MeV) in the
scattering matrix [9]. The presence of short-lived delta particles in the nucleus
could already be inferred from (e, e′) reactions where they give rise to a broad
structure above the quasi-elastic peak.

Improvements to the wave functions advocated by these experiments con-
cerned the inclusion of nucleon-nucleon short-range dynamics and can be jus-
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tified by the observation that most of the time the nucleons overlap inside the
nucleus. Early theoretical models folded the shell model wave function with
some correlation function (Jastrow ansatz). This has the effect of introducing
a form factor thereby modifying the short-range or high-momentum physics.

Figure I-2: The effect of the center-of-mass
spuriosity on the 4He charge form
factor. The dotted line has been
obtained using the Tassie-Barker
correction whereas the solid and
dashed lines are two differ-
ent solutions of the Gartenhaus-
Schwartz prescription (see Ref.

[10]) i.e. G(~R) = δ(~R) or 1 re-
spectively.

To impose further constraints on
the size and shape of the correla-
tion functions, direct two-nucleon
knock-out reactions were asserted
to be a particularly sensitive tool
[11]. During the last decade
a fair amount of two-nucleon
knock-out data haven been col-
lected at several accelerator fa-
cilities (e.g. Tokyo, NIKHEF,
MAMI, ELSA, JLAB, LEGS) for
a variety of kinematical settings
with medium-heavy nuclei as tar-
get (i.e. 12C, 16O, 40Ca, · · ·).
These experimental efforts have
gradually learned us where to
look or not to look for signa-
tures of the short-range correla-
tions. An analysis of 12C(e, e′pp)
and 16O(e, e′pp) data [12] taught
us that signals from the SRC can
only be detected when the pho-
ton gets absorbed on a dinucleon
with “large” relative and “small”
COM-momentum [9][12]. Due to
its high central density of approx-
imately two times nuclear matter
density, 4He can be expected to be
a good target nucleus with the eye
on detecting signals from the SRC’s.

Until now the major part of the two-nucleon knock-out reaction calculations
have been performed in a CBF inspired approach for the nuclear wave function
and neglect all recoil effects. Correlated Basis Function theory (CBF) is a tech-
nique to incorporate short-range correlations into the wave function by means of
correlation functions and operators.
Ciofi degli Atti [13] already pointed out the importance of the recoil effects for
light nuclear systems. A shell-model derived form factor contains the residual
center-of-mass motion in addition to the internal nucleon motion. From now
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on we will refer to a form factor which is not corrected for the COM-motion
as a non-intrinsic form factor. A standard procedure to correct for the center-
of-mass motion is to multiply the non-intrinsic form factor with the so-called
Tassie-Barker correction factor [10]. The non-intrinsic form factor is referred to
the center of the potential instead of to the COM of the nucleus. Adjusting the
non-intrinsic Slater determinant by means of this factor (= eb20q2/4A) is only well-
founded for harmonic oscillator (b0 equals the oscillator strength) single-particle
wave functions (see Fig. I-2). The recoil effects do not only alter the kinematical
phase space but also the wave function. To investigate whether modern nuclear
wave functions are able to explain the two-nucleon knock-out data, a proper
treatment of the center-of-mass motion is in order. The removal of the center-
of-mass coordinate from the non-intrinsic wave function inserts, apart from the
short-range correlations, so-called center-of-mass correlations into the intrinsic
wave function. Eliminating the center-of-mass motion from the wave function
and incorporating all recoil diagrams in the dynamical picture of a two-hadron
knockout process is a formidable task which can only be performed for light nu-
clei. For the deuteron this problem can be solved trivially. For the 3He and 3H
nuclei the Bochum group computed several observables by solving the Faddeev
equations to derive the wave functions [14][15]. In this thesis, an attempt will be
made to treat the COM effects in the four-body breakup of the 4He nucleus.

These days, a lot of experimental efforts are directed to the study of cor-
relations in light nuclei. A fair amount of one-nucleon emission data has been
collected [16] [17] [18]. Since the mid-eighties two-nucleon knock-out experiments
on the target nucleus 4He have been performed. A pioneering 4He(γ,NN) ex-
periment was performed at the TagX facility in Tokyo [19][20]. Both three- and
four-body break-up reactions were studied for photon energies ranging from 135
to 455 MeV. The TagX data showed a broad structure at photon energies of
about 350 MeV. At MAMI-A, low photon energy four-body break-up data where
collected by Doran et al. [21] showing a less significant probability for a photon
to be absorbed on a proton-proton pair than predicted by the calculations. A
comparative study of the photon asymmetry has been performed by Adamian
et al. [22] measuring the photon asymmetry for the d(γ, pn), 6Li(γ, pn)X and
4He(γ, pn)X-processes for a photon energy ranging from 200 up to 900 MeV. In
the near future 4He(~γ, pp)nn and 4He(~γ, pn)X data from the PIP-TOF collab-
oration in Mainz will become available. Complementary to the photon induced
reactions a 4He(e, e′pp)nn-experiment has been performed at the ELSA facility
in Bonn. This work has been described in the PH.D. thesis by de Vries [16].

In this work, the influence of recoil effects and short-range correlations on the
4He(γ∗, NN)X process is studied. Chapter 2 reviews a number of models which
have been successfully applied to construct the four-nucleon ground-state. Special
attention will be paid to the effect of ground-state correlations and center-of-mass
motion. The derivation of the 4He(γ,NN) and 4He(e, e′, NN) observables will
be the subject of Chapter 3. Apart from the differential cross section, also the
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polarization observables (i.e. asymmetries, induced polarizations and transferred
polarizations) are derived in this context. Theoretical results for the 4He(e, e′NN)
and 4He(γ,NN) reaction will be summarized in Chapter 4 and compared to the
available experimental data. The role played by short-range correlations and
recoil effects is discussed. The definitions and the more technical parts of the
derivations are summarized in the appendices.



Chapter II

The 4He Wave Function

It goes without saying that a good knowledge of the wave function is cru-

cial for doing nuclear-reaction calculations. The acquainted tool to com-

pute nuclear wave functions is the nuclear shell model which works re-

markably well, despite the fact that the nucleus is a high density strongly

interacting medium. The shell model is capable of explaining most of the

measured nuclear observables because of their surface character. The 4He

nucleus can’t be described in terms of the shell-model wave function con-

sisting of s-wave single-particle states only. This deficiency comes along

when trying to explain the diffractive nature of the 4He charge form fac-

tor. For the study of few-body (≤ 8) nuclei, techniques to determine

the wave function directly from the NN-interaction have been developed.

In this chapter, we will describe these techniques and define the most

important features of the 4He wave function.

§1 Introduction

Solving the A-body Schrödinger equation

(
A
∑

i=1

T̂i +
A
∑

i<j=1

V̂ij)Ψ(x1, x2, · · · , xA) = EAΨ(x1, x2, · · · , xA) (II-1)

with xi = (~ri, si, ti), for a realistic nucleon-nucleon potential is one of the major
goals in present-day nuclear physics. It remains a challenging task to understand
how nuclear structure and the observed symmetries come along from the underly-
ing interaction between nucleons or, at an even deeper level in terms of quarks and
gluons. The first major challenge, one encounters when trying to solve this prob-
lem is to determine a suitable functional form for the realistic nucleon-nucleon
potential. A large amount of NN-scattering data have been accumulated (some
1787 pp- and 2514 np-scattering data [23]) over the last decades. Several research
groups (e.g. the Nijmegen group [24][25]) have derived effective NN potentials
from these data sets. Up to now, no one has succeeded in deriving an expression
for the NN potential from first principles, i.e. QCD. In that respect, all of the
available potential models are fully or at best semi-phenomenological. To our

7
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present knowledge, the radial dependence of the nuclear potential can be subdi-
vided in three regions each characterized by a particular interaction mechanism.
A schematic picture is shown in Fig. II-1.

V
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N

ωρ
η

N1

N1

N2

N2
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N1
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π

Figure II-1: The NN-potential is shown indi-
cating its three different regions.
The green region is the long-
range part of the potential while
its intermediate range is located
in the blue region. The short
range repulsion is marked in red.

Agreement has been reached on
the nature of the long-range part
of the potential which is entirely
due to one-pion exchange. The
latter gives rise to a large tensor
component in the NN-interaction
at distances comparable to the in-
verse pion mass ( 1

mπ
≈ 1.4 fm).

Due to the tensorial character of
the nuclear potential, spin and
spatial degrees of freedom get in-
tertwined. An illustrative exam-
ple of this is the spin-dependence
of the deuteron nucleon density as
displayed in Fig. II-2. The long-
range part of the nuclear potential
is fairly well established. This is
not the case for short and interme-
diate distances. The intermediate
range of the NN-potential can be
modeled using medium and heavy
meson exchange as well as multi-
ple pion exchange diagrams, though there is no consensus on which diagrams
to include to properly describe the medium range of the NN-force. In the long
run, the repulsive core, which refers to strongly overlapping interacting nucleons,
needs to be understood in terms of quark and gluon degrees-of-freedom. Re-
cently, the existence of six-quark clusters have been put forward as a possible
explanation for some unsolved problems like the EMC-effect [27] and the hole in
the particle density of 4He [28][29], · · ·. The particle density emerges when the
nuclear charge density is corrected for the nucleon charge density. Summarizing,
most of the commonly used nucleon-nucleon potentials contain a phenomenolog-
ical parameterization for the short and intermediate-range part, in addition to a
long-range pion-exchange force.

Some groups claim to have found important effects from relativistic correc-
tions and three-body forces in the nuclear potential [30] [31]. Both corrections,
although small, have some effect on the nuclear ground-state energy due to large
cancellations between kinetic and two-body potential energy. Though, they are
of minor importance, especially the three-body potential, for the calculation of
the response functions.

Ignoring relativistic corrections, the most general operator structure for the
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Figure II-2: The deuteron nucleon density ρMJ
J=1(~r) for an angular momentum pro-

jection MJ = ±1 (upper panel) and MJ = 0 (lower panel). The re-
sulting geometrical structures are dubbed a “dumbbell” and a “torus”
[26].
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nuclear Hamiltonian reads :

Ĥ =
A
∑

i=1

~̂pi
2

2mi

+
A
∑

i<j=1

V̂ij +
A
∑

i<j<k=1

V̂ijk + · · · , (II-2)

which contains one-, two-, three and possibly many-body interactions. The two-
body force can be formally written as :

V̂ij(~rij) =
18
∑

p=1

vp(~rij)Ô
p
ij , (II-3)

where the operators Ôp
ij are contained in

Ôp
ij ∈ [1, ~σi.~σj, Sij, (~L.~S)ij, ~pij

2, ~pij
2~σi.~σj, (~L.~S)2

ij] ⊗ [1, ~τi.~τj]

⊕[Tij, Tij~σi.~σj, SijTij, (τiz + τjz)] (II-4)

with ~rij = ~ri − ~rj and ~pij = ~pi − ~pj. The tensor operator takes on its standard
form : Sij = 3~σi.~rij~σj.~rij/r

2
ij − ~σi.~σj while the isotensor operator looks like :

Tij = 3τizτjz − ~τi.~τj. Apart from a two-pion exchange diagram, there is no
agreement on what other terms should be incorporated into the three-nucleon
potential. Given an expression for the nuclear Hamiltonian, one still needs to
solve the Schrödinger equation to obtain the nuclear bound-state wave function.
Over the years, some techniques have been developed.

Since long, the Nuclear Shell Model (SM) [32] [33] has been the standard
technique to tackle the A-body nuclear problem. At first, the success of the SM
for understanding nuclei (e.g. explaining the magic numbers) may seem coun-
terintuitive until one realizes that the Pauli exclusion principle suppresses the
hard nucleon-nucleon collisions at low energy. Most static nuclear observables
are dominated by the surface properties of nuclei due to the occurrence of a r2

factor in their definition. At the surface, the nucleons are further apart favoring
a SM-approach. In a first order approximation, the nuclear SM method amounts
to solving the Hartree-Fock equation for a good chosen NN-potential which does
not possess a hard core (the so-called mean field-approach). In a next step, the
residual interactions can be incorporated as particle-hole excitations in an inert
core. The way to proceed is to diagonalize the nuclear Hamiltonian in a truncated
model space P . The truncation of the model space gives rise to the introduction
of an “effective interaction” [34][35]. The solutions of the eigenvalue problem for-
mulated in terms of the effective Hamiltonian, approach the real solutions for an
infinitely large model space (i.e. all p-h excitations). The main argument against
such an approach lies in its mean field (MF) character. A MF or independent-
particle model (IPM) approach has two major drawbacks. First, any mean-field
potential manifestly violates translation invariance [36][37]. Second, by treating
the nucleons as moving independently from each other in an average potential a
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lot of inter nucleon correlations (short, as well as long-range) are neglected. Over
the years, a lot of experimental evidence has been accumulated which advocates
the importance of these correlations. The IPM does not, for example, account for
the small spectroscopic factors (≈ 0.6 − 0.7) which are systematically extracted
from A(e, e′p) experiments [38]. An early, rather clumsy, attempt to explain this
observation was to introduce a spherical square well NN-potential shifted over
some distance relative to the origin. This potential could be tuned so as to re-
produce the 4He charge form factor or the dip in the inter nucleon separation
distribution at the origin. This approach was not popular due to the unrealistic
character of the potential and the big COM spuriosity [13].
A popular technique that goes beyond the IPM, is the correlated-basis function
approach (CBF) [39] [40]. In this approach, the IPM wave function is multi-
plied by a series of ascending powers in some correlation function. The central
correlation function models the repulsive effect of the short-range piece of the
nucleon-nucleon potential (see Fig. II-1) while the overall long-range part is ac-
counted for by the mean field potential. Although the introduction of correlation
functions is rather effective in correcting MF wave functions, it does not restore
translation invariance. The latter deficiency has an effect on the physical observ-
ables going as 1

A
, i.e. having a bigger effect on light nuclei then on medium or

heavy nuclei. Several COM effects have been studied throughout the years, rang-
ing from the modification of the energy spectrum [41] over a change of the charge
form factor [13][42] and a broadening of the coordinate as well as the momen-
tum density [43] to the altering of the spectroscopic factors (nk<kF

≈ 0.6 − 0.7)
[44][38][45]. Lipkin [36] pointed out that only for the harmonic oscillator potential
there exists an unambiguous method to eliminate the center-of-mass motion from
the wave function. Several methods e.g. a Gartenhaus-Schwartz transformation
[37], have been developed to project out the COM coordinate for an arbitrary
wave function. It is possible to construct a CBF wave function which is trans-
lationally invariant [46] provided that harmonic-oscillator states are used when
constructing the uncorrelated reference state. Harmonic oscillator one-particle
states are, however, unsuitable to correctly implement the short-range behavior
of the NN-potential.

§2 Model calculations: a survey

These days, most nuclear physics studies involving the electromagnetic probe use
light nuclei as a target. For these systems one can hope to find exact methods to
solve the nuclear A-body problem, thereby overcoming the shortcomings of the
shell model. Since long, only the two- and three-body problem could be solved ex-
actly for a realistic potential. Recently, different groups have developed methods
to perform ab initio calculations for the ground state of 4He. All of these cal-
culations are translationally invariant and account for the nuclear interaction in
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its full complexity [47]. These methods are the Faddeev-Yakubovsky (FY) equa-
tions, the variational methods (VM), the so-called “no-core Shell Model method”
and the Greens Function Monte Carlo (GFMC) technique. A recent paper [47]
by Kamada et al. showed all these wave functions giving more or less the same
predictions for the nuclear properties. Hereafter, we will highlight the features of
each technique separately.

§2.1 Shell-model inspired techniques

The no-core Shell Model calculations (NCSM) [48] are based on the standard Shell
Model techniques. To reduce the dimensionality of the problem, one diagonalizes
the bare Hamiltonian into some finite (truncated) model space introducing an
effective Hamiltonian :

Ĥeff = [P (1 + ω†ω)P ]−1/2(P + Pω†Q)H(QωP + P )[P (1 + ω†ω)P ]−1/2 , (II-5)

where, P is the projection operator onto the model space while Q ≡ 1 − P is
the complementary operator. The Lee-Suzuki similarity transformation ω imple-
ments the transition from the model space into the excitation space [34][35]. The
two main differences with the ordinary scheme is the usage of a center-of-mass
corrected model space and the fact that all particles are supposed to be active, in
contradistinction to the standard SM calculations that involve an inert core. In
these calculations, it is crucial to impose the right anti-symmetrization proper-
ties on the wave function which is a function of the relative coordinates only (i.e.
Jacobi coordinates, see App. B -1). Two different approaches have been adopted.
In the first one, the model space is spanned by HO-wave functions [49]. Al-
ternatively, hyperspherical harmonics, which are generalizations of the spherical
harmonics [50][51], have been used. These schemes do not explicitly implement
the short-range NN-behavior into the wave function. Therefore, a huge amount
of basis states is required to account for all the dynamical features of the 4He
nucleus.

§2.2 Faddeev-Yakubovski equations

The Faddeev-Yakubovsky (FY) equations [52][53][54][55][56][57][58] are a general-
ization of the Faddeev equations [59][60][61]. The Faddeev-Yakubovski equations
can be obtained by expanding the total wave function in terms of six Faddeev
amplitudes each referring to a particular interacting pair :

Ψ ≡
4
∑

i<j=1

ψij = ψ12 + ψ13 + ψ14 + ψ23 + ψ24 + ψ34 , (II-6)

these amplitudes are solutions of six Schrödinger-like differential equations :

(T̂ − E)ψij = −V̂ij

4
∑

k<l=1

ψkl . (II-7)
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In their turn, each of these amplitudes can be rewritten as a sum of three wave
functions corresponding to the different two-body breakup channels :

ψij = ψl
ij,k + ψk

ij,l + ψij,kl with (i < j, k < l) . (II-8)

This refinement gives rise to a threefold multiplication of the number of basis
states and correspondingly of the number of differential equations which leads to
18 equations.































(T̂ + V̂ij − E)ψl
ij,k = −V̂ij

(

ψl
ik,j + ψj

ik,l + ψik,lj + ψl
jk,i + ψi

jk,l + ψjk,il

)

(T̂ + V̂ij − E)ψk
ij,l = −V̂ij

(

ψk
il,j + ψj

il,k + ψil,kj + ψk
jl,i + ψi

jl,k + ψjl,ik

)

(T̂ + V̂ij − E)ψij,kl = −V̂ij

(

ψj
kl,i + ψi

kl,j + ψkl,ij

)

(II-9)

The different amplitudes are written in terms of Jacobi coordinates. K-type
coordinates for the twelve ψl

ij,k channels and H-type coordinates for the six ψij,kl

wave functions (see App. B -1). Eventually, the original Schrödinger equation can
be reformulated in terms of 18 differential equations. These manipulations on the
Schrödinger equation reduce the complexity of the original problem because in
every differential equation only one pair undergoes an interaction. When spin
and isospin degrees of freedom are introduced, the proton and neutron with their
respective spin projection sz can be seen as different appearances of one and the
same object. This allows one to reduce the 18 FY-equations to two equations (i.e.,
a K and a H-type: see App. B -1) by the introduction of permutation operators,

(T̂ + V̂12 − E)ψ4
12,3 = −V̂12[(1 + P34)(P13 + P23)ψ

4
12,3 − (P13 + P23)ψ12,34]

(T̂ + V̂12 − E)ψ12,34 = −V̂12[(P13P24 + P14P23)ψ
4
12,3 + P13P24ψ12,34] , (II-10)

where, Pij interchanges the particles i and j. The complete four-body wave
function of Eq. (II-6) can now be written as :

Ψ = Ψ3+1 + Ψ2+2 (II-11)

Ψ3+1 = [1 − (P13 + P23)][1 − (P14 + P24 + P34)]ψ
4
12,3 (II-12)

Ψ2+2 = [1 − (P13 + P23 + P14 + P24) + P13P24]ψ12,34 , (II-13)

where, Ψ3+1 and Ψ2+2 denote the two two-body breakup channels of 4He.
To solve the set of Yakubovski equations one projects the chain wave function
components (ψ4

12,3 or ψ12,34) onto a partial-wave basis depending on the type
of chain. The partial-wave expansion is usually expressed in terms of tripolar
harmonics which are defined according to :

Y[lxlylz ,LM ] = [[Ylx(~̂x) ⊗ Yly(~̂y)]lxy ⊗ Ylz(~̂z)]LM , (II-14)
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with, lx the angular momentum of the pair defined by ~x. For the 2+2 fragmenta-
tion, ly is the angular momentum of the pair defined by ~y while lz is the relative
angular momentum of the two two-particle systems. In the case of the 3+1 chain,
ly is the angular momentum of the third particle relative to the center of mass
of the pair which determines ~x and lz is the angular momentum of the fourth
particle relative to the three-body cluster. In practice, one accounts for a cer-
tain restricted number of relative and total angular momenta. The spin-isospin
channels, on the other hand, are treated in their full complexity. The eigenvalue
problem in the truncated angular momentum space has to be solved for every
chain and spin-isospin configuration which is a non-trivial task that could only
be done with the aid of super-computers. To arrive at the solution of the orig-
inal problem one has to sum the computed energy eigenvalues and radial wave
function eigenvectors according to the formula’s contained in Eqs. (II-11)-(II-13).

§2.3 Variational methods

The variational methods start from an educated guess for the ground-state wave
function |Ψ0〉 and solve for a set of parameters which minimize the nuclear ground-
state energy. The crucial point in the variational method is the proper choice
for the trial wave function. Three approaches have been followed. First, one
can choose the most appropriate functional form to describe the short- as well
as the long-range behavior and solve the matrix elements to find the best values
for the non-linear parameters. Second, facilitating the calculation of the matrix
elements, a large and simple basis can be chosen and one can solve the equations
for the expansion coefficients. Third, assuming a particular form for the wave
function (e.i. Ψ =

∑

µ=n,m,l,s,t uµ(ρ)Yµ(Ω)) one arrives at a differential equation
which needs to be solved in order to derive the radial component of the wave
function. All approaches make use of the Rayleigh-Ritz variational principle

δ(< Ψ0|Ĥ − E|Ψ0 >) = 0 (II-15)

to determine the free parameters or to derive the differential equation.
An example of the second approach is the Coupled-Rearrangement-Channel
Gaussian-Basis Variational method [62] developed to solve the Coulomb three-
body problem. The ground-state wave function is expanded in a Gaussian basis
using the two types of Jacobian coordinates which are the natural coordinate
frames to describe the relative four-body state. The main disadvantage of this
method is the slow convergence caused by the strong short-range repulsion of the
NN-potential which is not contained in the adopted basis states. One possibility
to correct for this shortcoming, is to introduce an additional correlation function
in front of the Gaussians. In Ref. [63] a Gaussian correlation function has been
adopted.
In order to solve the four-body problem, the authors of Ref. [63] adopted a
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Stochastic Variational Method (SVM). In this approach, the non-linear param-
eters, for each basis function added, are generated randomly from a predefined
domain while the expansion coefficients are determined to minimize the energy
eigenvalue. A general basis function looks like :

Ψ(LS)JMTMT
= A

{

e
1
2
x†Ax

[

Y[lxlylz ,LML]ξSMS

]

JMJ
χTMT

}

(II-16)

with, Y[lxlylz ,LML] the tripolar harmonics defined in Eq. (II-14). The spin and
isospin wave functions are denoted by ξSMS

and χTMT
respectively. The exponen-

tial has a matrix argument of dimension 3 × 3. The SVM uses a basic property
of the variational method i.e. enlarging the model space makes the computed
spectrum to move closer to the real spectrum. When more advanced correlation
functions are used one has to resort to other techniques.
One of these other techniques is the Correlated Hyperspherical Harmonics Vari-
ational method (CHH) [64] [65]. The ground-state wave function is expressed as
a sum over the different spin-, isospin- and angular momentum channels, as well
as over the different Jacobi rearrangement channels

Ψ =
∑

i

{

ψi
H(x, y, z) + ψi

K(x, y, z)
}

, (II-17)

with, H and K the two types of Jacobi arrangements (Appendix B -1). Also here,
the wave function is written in terms of the tripolar harmonics but an additional
expansion of the radial part of the wave function ψ(|~x|, |~y|, |~z|) is performed.
Before doing this, a coordinate transformation is pursued

ρ =
√

|~x|2 + |~y|2 + |~z|2

cosφ =
|~x|
ρ

cos η =
|~y|

ρ sinφ
, (II-18)

with, (ρ, φ, η) the hyperspherical coordinates referring to the original Cartesian
coordinates (|~x|, |~y|, |~z|). The two coordinates (φ, η) can be interpreted as some
hyper solid angle making an expansion of the radial wave function in terms of
spherical harmonics possible :

ψ(|~x|, |~y|, |~z|) =
∑

n,l,m

un,l(ρ)Ylm(φ, η) (II-19)

The radial hyperspherical component of the wave function un,l(ρ) is a solution of
a differential equation showing up as a result of the Rayleigh-Ritz variation to
obtain the correct ground-state.

The presence of large amounts of correlations in the exact ground state makes
all aforementioned methods to suffer from the same shortcoming, namely a large
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model space is mandatory in order to predict the experimental ground-state en-
ergy with some acceptable accuracy.
As alluded to earlier in the discussions, there exists an alternative approach which
circumvents this shortcoming. Instead of expanding the nuclear wave function in
a large model space of relatively simple functions, the correlation function in its
full operatorial complexity can be included. Evaluating the matrix elements for
such a wave function becomes a very involving task. Monte Carlo techniques are
used to perform the numerical quadratures which show up in the energy mini-
mizing procedure. The A-particle probability distribution is used as a weighting
function to perform the Monte Carlo quadratures. This approach is called the
Variational Monte Carlo (VMC) method. The 4He trial wave function has the
following form :

|Ψ >=

[

S
4
∏

i<j<k=1

Fijk

][

S
4
∏

i<j=1

Fij

]

|Φ > (II-20)

where Fij and Fijk are correlation functions with the same operatorial structure as
the two- and three-body potential. In general, the central, spin-isospin and tensor
isospin correlations are the most important ones. Because of the (S = 0, T = 0)
character of the 4He nucleus, the spin-spin and isospin-isospin operators induce
the same effect on the wave function. The uncorrelated wave function Φ is a
spin-isospin slater determinant corresponding with an (S = 0, T = 0) spin-isospin
state. Once the non-linear parameters, which minimize the energy, are fixed all
physical observables can be calculated.

The Argonne-Urbana group has developed a method to calculate the ground-
state properties starting from a general ground-state wave function. This method
projects out of the trial wave function the exact ground-state by means of an
iteration process.
The Diffusion or Greens Function Monte Carlo (GFMC) [66] [67][68][30][69][31]
method can be used as a further refinement for each of the previously obtained
wave functions using one of the various techniques enlisted above. Typically,
one resorts to the ground-state wave function obtained by the VMC-method,
as an input wave function. A Greens function operator is used to describe the
projection process

Ψ(τ) = e−
1
~
(Ĥ−E0)τΨT (II-21)

Ψ = lim
τ→∞

Ψ(τ) (II-22)

where, τ is the imaginary time. The GFMC method does not specifically alter
the expansion coefficients or non-linear parameters in the trial wave function, it
actually provides an alternative way of calculating expectation values :

< Ô(τ) > =
< Ψ(τ)|Ô|Ψ(τ) >

< Ψ(τ)|Ψ(τ) >



§2 Model calculations: a survey 17

=
< ΨT

[

e−
1
~
(Ĥ−E0)∆τ

]n

|Ô|
[

e−
1
~
(Ĥ−E0)∆τ

]m

ΨT >

< ΨT

[

e−
1
~
(Ĥ−E0)∆τ

]n

|
[

e−
1
~
(Ĥ−E0)∆τ

]m

ΨT >
(II-23)

with, ∆τ a small imaginary time interval and m(n) a parameter which is grad-
ually increased till convergence is approached. The crucial point in these calcu-
lations is the derivation for every spin-isospin channel of the A-body propagator
G(~R, ~R′) =< ~R|e− 1

~
(Ĥ−E0)∆τ |~R′ > in r-space (~R ≡ (~r1, . . . , ~rA)). To suppress

the errors induced by the approximations made to derive G, ∆τ has to be made
small.

§2.4 Cluster-expansion techniques

Calculating matrix elements with wave functions which account for the full com-
plexity of nucleon-nucleon correlations is not an easy task. Cluster expansion
techniques which are known from classical liquid and gas calculations, have been
adopted to the nuclear problem by Clark and Ristig [70] [71][72]. The A-body
correlation function is written in a functional form which lends itself easily to

expansions in a cluster series i.e. F = e−i
∑A

i<j=1 Ŝij [73][74][46] or =
∏A

i<j=1 fij

[75][76][77]. The cluster expansion method is suited to study the effect of two-,
three-, . . . body correlation effects on the physical observables. The major draw-
back of this approach is that with every order in the cluster expansion the wave
functions have to be renormalized and even re-orthogonalized [39].

An alternative way, circumventing the normalization pitfall, is to cluster ex-
pand the density functions instead of the wave function. The density functions
will be defined in the next section. The cluster expansion is performed in terms
of gc = f 2

c − 1 with fc the Jastrow correlation function defined at the level of the
wave functions. The major advantage of this perturbation expansion is that when
including only linked diagrams the correct normalization can be guaranteed. The
latter feature is also well-known from field theory.
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§3 The four-nucleon wave function

Throughout this work we will make use of a hybrid GFMC wave function for
the 4He ground state. The GFMC wave function contains central an tensor
correlations. In order to implement the effect of correlations we will adopt a
cluster expansion. The GFMC wave function as it has been calculated by the
Argonne-Urbana group [66] has the following functional form

Ψ4He

(

x1, x2, x3, x4

)

=
1

(2π)3/2
ei

~P . ~R ψ
(

~rrel
1, ~rrel

2, ~rrel
3
)

× 1√
4!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χms=1/2,mt=1/2(1) χms=1/2,mt=−1/2(1) χms=−1/2,mt=1/2(1) χms=−1/2,mt=−1/2(1)

χms=1/2,mt=1/2(2) χms=1/2,mt=−1/2(2) χms=−1/2,mt=1/2(2) χms=−1/2,mt=−1/2(2)

χms=1/2,mt=1/2(3) χms=1/2,mt=−1/2(3) χms=−1/2,mt=1/2(3) χms=−1/2,mt=−1/2(3)

χms=1/2,mt=1/2(4) χms=1/2,mt=−1/2(4) χms=−1/2,mt=1/2(4) χms=−1/2,mt=−1/2(4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(II-24)

where, ψ describes the internal excitation of the four-body system and the slater
determinant denotes the spin-isospin part. Equation (II-24) is an eigenvector of a
translationally invariant Hamiltonian, irrespective of the presence of correlations.
The internal wave function ψ reflects the specific nature of the NN-interaction
and has been cast in the following format within the GFMC framework

ψ
(

~rrel
1, ~rrel

2, ~rrel
3
)

=
1√
N

S
4
∏

i<j=1

(

1 + utτ (|~ri − ~rj|)

×
[

3
(~σi.~rij)(~σj.~rij)

r2
ij

− ~σi.~σj

]

~τi.~τj

)

4
∏

k<l=1

φc (|~rk − ~rl|) .

(II-25)

From the complete GFMC trial wave function (II-20) only the central and tensor
correlations have been retained because they are by far the dominant correlations.
To simplify the calculations of the matrix elements, a cluster expansion has been
adopted when computing the effect of the tensor correlations :

ψ
(

~rrel
1, ~rrel

2, ~rrel
3
)

=
1√
N

S
(

4
∏

i<j=1

fc (|~ri − ~rj|) +

4
∑

i<j=1

ftτ (|~ri − ~rj|)
[

3
(~σi.~rij)(~σj.~rij)

r2
ij

− ~σi.~σj

]

~τi.~τj + . . .
)

4
∏

k<l=1

φho (|~rk − ~rl|) ,

(II-26)
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with, φho(|~r|) the 1s Harmonic oscillator (HO) wave function (with oscillator
parameter ν = 0.4/fm2) upon which the short range dynamics is imposed by
means of the central (fc(|~r|)) and tensor (ftτ (|~r|)) correlation function. The
correlation functions as used in our calculations are displayed in Fig II-3. The
dip in the central correlation function (fc(r)) around zero NN-separation comes
from the hard-core repulsion in the NN-potential. The central correlation function
behaves as a form factor for the NN-potential cutting out its short range repulsive
part which reduces the binding energy. The tensor correlation function, although
small compared to the central one, enhances the effect of the pion and two-pion
exchange parts of the potential and contribute negatively to the binding energy.

r (fm)

0

0.5

1

0 2 4 6 8 10

Figure II-3: The central and tensor correla-
tion functions derived using a
GFMC-technique multiplied with
a 1s HO-relative pair wave func-
tion.

Although very important in deriv-
ing the binding energy, the ten-
sor correlations do not contribute,
in lowest order, to the particle
coordinate- as well as momentum
densities. Some studies explor-
ing the effect of state dependent
correlations have been reported.
The authors of Ref. [78] ob-
served only a minor modification
for scalar quantities (e.g. mass
density, momentum density, form
factor) stemming from the tensor
correlations in next-to-leading or-
der. Non-scalar quantities (e.g.
response functions) are, already
in lowest order, slightly altered
by the tensor part of the NN-
potential [79][80].

Incorporating the tensor correlations in a consistent manner into the calculations
is a challenging task. The mechanism that the tensor correlations shift some
strength in the momentum density from low to higher nucleon momenta can be
partly simulated by a proper increase of the Jastrow correlation function. In order
to keep the four-body breakup calculations manageable, tensor correlations will
be discarded in the remainder of this work. To compensate for the small increase
of high momentum components induced by the tensor correlations, we adopt a
more repulsive Jastrow ansatz as the one deduced by the Argonne-Urbana group
[66]. The Jastrow correlation function has been altered as to reproduce the one-
body momentum density which is measured up to a momentum of 600 MeV/c
[81][17][82].
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§3.1 Density operators

For an A-body system, the A-particle density matrix contains an equal amount of
information as the wave function. In atomic-, molecular- and solid state physics
it is common practice to use the density matrix instead of the wave function (e.g.
Density Functional Theory). The density matrices can be written as :

ρ1(x1;x
′
1) =

∫

Ψ(x1, x2, · · · , xA)†Ψ(x′1, x2, · · · , xA)dx2 . . . dxA

ρ2(x1, x2;x
′
1, x

′
2) =

∫

Ψ(x1, x2, · · · , xA)†Ψ(x′1, x
′
2, · · · , xA)dx3 · · · dxA

... , (II-27)

where, the variable xi denotes the coordinate space variables as well as spin
and isospin degrees of freedom. The diagonal part of the density operator is a
physical observable which is equal to the so-called N-body probability density.
To extract information about the off-diagonal elements a fourier transform can
be performed. The latter gives rise to the density matrix in momentum space.
Again, the diagonal elements give rise to an N-body probability distribution.
In what follows, we will restrict ourselves to the one- and two-particle density
operators. The one-body equidensity surfaces in coordinate space as well as in
momentum space become experimentally accessible quantities once some approx-
imations have been made. Usually, these approximations involve considerable
simplifications with respect to the treatment of possible reaction mechanisms, for
example neglect of particle distortions, in electromagnetically induced processes.
For example, in the first Born approximation, the (e, e′) cross-section is propor-
tional to the charge form factor which can be used to extract the charge density.
In a symmetrical nucleus (N = Z) and to first order in the charge operator (i.e.
neglecting all kind of sub nuclear contributions to the charge density e.g. from
pion exchange) the latter is just half the particle density.
In a Plane Wave Impulse Approximation (PWIA) description, the A(e, e′p) cross
section can be cast in the following factorized form [83]:

d5σ

dEe′dΩe′dΩp

= KσepS(|~pm|, Ex) (II-28)

where K is a kinematical factor and σep is the half off-shell electron proton scat-
tering cross section. Further, S(|~pm|, Ex) is the spectral function which reduces
after an integration over the excitation energy (Ex) of the residual nucleus to
the momentum density corresponding with the specific quantum numbers of the
struck proton.
As for the momentum density there’s no model independent way to extract
the two-particle density matrices from the experimental data. The two-nucleon
knockout cross-section does not factorize unless some additional approximations
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Figure II-4: The one-particle point density (left panel) and the 4He charge form
factor (right panel). Rescaled to unity, the form factor data are from
Refs. [86] and [87]. The purple dotted curve is a full calculation,
including meson exchange and isobar excitation currents, taken from
Ref. [88]. The full curve is obtained with the 4He wave function used
throughout this work (see App. C -1 for more details).

are made. The pair momentum distribution factorizes out in the (e, e′NN)-cross
section once one adopts the Gottfried approximation [11] i.e. a plane-wave de-
scription of the reaction process adopting additionally a spectator approximation
for the residual nucleons while describing the active pair as a quasi deuteron [84]:

d8σ

dEe′dΩe′dEN1dΩN1dΩN2

= KσeNNFpair(~P ) , (II-29)

where K = EN1PN1EN2PN2 and Fpair(~P ) is the pair momentum function [11][85].
The pair momentum function denotes the probability of finding a nucleon pair in
some particular two-particle state with a COM momentum ~P .

In Appendix C -1.1 and C -1.2 analytical expressions for the coordinate and
momentum space density matrices have been derived for the 4He case. Many
4He(e, e′) experiments have probed the charge form factor [86][87].

The charge form factor is determined as follows :

Fch(~q) =

[

dσ

dω
(e, e′)/

(

dσ

dω

)

p

(e, e′)

]

, (II-30)
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Figure II-5: A 3D plot of the internucleon separation distribution for 4He. The
left panel shows the 10% equiprobability surface while the right panel
depicts the 1.3% surface.

where, (dσ/dω)p is the cross section for elastic electron scattering from a point
particle.
Assuming that the meson and isobar contributions to the charge operator can
be neglected, it’s straightforward to obtain, in the first Born approximation for
the electromagnetic field, the charge form factor by a Fourier transform of the
one-body density.

Fch(~q) =

∫

d3~rρ(~r)e−i~q·~r . (II-31)

Before comparing the experimental and theoretical results one has to make sure
that the experimental nuclear form factor has been corrected for the finite exten-
sion of the nucleon (i.e. F exp

ch (~q)=Fproton
ch (~q) . Fnucleus

ch (~q)).
Fig. II-4 displays the one-particle point density and the 4He charge form

factor. Looking at the particle density, one observes, after dividing out the entire
solid angle (4π), a central density (≈ 0.35fm−3) of almost twice nuclear matter
density (≈ 0.17fm−3) pointing to the possibility of finding strong correlation
effects in 4He. The theoretical charge form factor reproduces the experimental
data within a few percent. Including the meson as well as the isobar currents [88]
shifts the charge form factor to the left, on top of the data points.

Just as for the deuteron (see Fig. II-2) one can calculate the 3D surfaces of
equal relative density (see also Eq. C-6) :

ρrel(~r) =
1

2

∫

d3 ~R < Ψ|
4
∑

i6=j=1

δ3(~r − ~rij)δ
3(~R− (

~ri + ~rj

2
− ~Rcom))|Ψ >

Fig. II-5 displays the equiprobability surface for finding two nucleons in the
nucleus at a particular (x, y, z) from each other with a probability of 10% (left
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panel) or 1.3% (right panel). As opposed to the deuteron, there’s only one type of
structure (i.e. a hybrid dumbbell toroidal structure) because the helium ground
state is an S=0 state. The typical deuteron dumbbell structure comes about from
the quadrupole character of the tensor correlations. Neglecting those one ends
up with a double sphere instead, as can be observed from Fig. II-5. When the
probability is lowered smaller nuclear densities are probed and the inner sphere
disappears giving rise to a spherical density as in the classical IPM description.
This can be explained by observing that when going to smaller nuclear densities,
the nucleons become less sensitive to the short range dynamics and only feel some
average field.

Although most wave functions are derived in coordinate space, their momen-
tum space counterparts are more relevant when it comes to calculating cross-
sections. In electromagnetically induced breakup reactions, one gets information
about the momentum distributions. One-nucleon knockout experiments are sensi-
tive to the nucleon momentum distribution n(~p) (see Eq. (II-28)) while two-body
knockout experiments offer the possibility to obtain information about the rel-
ative pair- ρrel(~q) and center-of-mass pair ρcom( ~Q) momentum distribution. All
three momentum distributions are plotted in Fig. II-6 for the 4He case. In a
factorized approach, the cross section even scales with the pair momentum func-
tion. Realistic calculations reproduce the experimental data nicely in the case
of the nucleon momentum distribution. The difference between the theoretical
curve and the model-dependent experimental data obtained by Ciofi et al. [82] is
resolved by including the tensor correlations. The major impact of the latter is
to enhance the momentum distribution at intermediate momenta (≈ 400 − 500
Mev/c).

We now discuss two peculiar aspects of the 4He wave function which will prove
to be of the utmost importance for the remainder of this thesis.

§3.2 Short-range correlations

Elastic scattering of high-energy electrons from nuclei has revealed features (e.g.,
the diffraction dip in the charge form factor) in the nuclear form factor which are
incompatible with naive IPM wave functions. When trying to explain the data,
the incorporation of short-range correlations appears indispensable.

In order to estimate the influence of short-range correlations one needs a ref-
erence model wave function which lacks the correlations. A suitable candidate is
the harmonic oscillator wave function (see Appendix C -2). Before proceeding it is
worth stressing that the realistic wave function is translationally invariant, there-
fore the outcome of the realistic calculations have to be compared to the results
obtained with the COM-corrected harmonic oscillator wave function (oscillator
parameter ν = 0.4/fm2).
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Figure II-6: The 4He momentum distributions as obtained with different wave
functions. The solid curve corresponds to the realistic wave func-
tion defined in App. C -1.2, the dashed curve is a HO-calculation
(see App. C -2). For both calculations the densities are averaged
over the solid angle and normalized to unity. The three data sets
are from : Refs [17] (★), [17] (�) and [81] (✴). The red triangles
(N) have been extracted from the experimental spectral function in a
model-dependent [82] while the black dots (•) represent a full calcu-
lation by the Argonne-Urbana group including tensor correlations up
to all orders [89].
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Figure II-7: The inter-particle separation
distribution for an harmonic
oscillator wave function (dashed
curve) as well as for a realistic
description (solid curve) (see
App. C -1.1).

In coordinate space, the inter-
particle separation distribution
ρrel(~r) will give us information
about the impact of short-range
correlations (see Fig. II-7). At
zero distance they push the nu-
cleons away from each other. For
inter-particle distances exceeding
4 fm both curves more or less over-
lap indicating that the short-range
correlations do hardly alter the
long-range behavior of the nucle-
ons. This is dubbed the healing
process. For heavy and intermedi-
ate nuclei the healing distance is
about 2fm indicating that all nu-
cleons feel to a greater extent the self-consistent field rather than the correlation
effects. In a 3D-picture the former dip gives rise to an exclusion sphere as earlier
explained when discussing Fig. II-5.
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Figure II-8: The pair distribution in 4He cal-
culated for three different model
wave functions i.e. a realis-
tic wave function (solid curve),
a translationally invariant HO-
wave (dashed curve) and a
genuine IPM harmonic oscilla-
tor wave function (dash-dotted
curve) (see App. C -1.1).

Another sign indicating the pres-
ence of SRC is obtained by com-
paring the average nuclear radius
< |~r| > with the average nucleon-
nucleon separation < |~r1 − ~r2| >
in the nucleus. The former equals
1.5 fm while the latter is equal
to 2.4 fm which forces us to con-
clude that most of the particles of
a pair are located at opposite sides
of the COM. Those pairs make
up for almost 50% of the total
amount of pairs. The cumulative
inter-particle separation distribu-

tion Φrel(~r) =
∫ ~r
~0
~x2 · ρrel(~x)d

3~x
confirms this statement. The pres-
ence of short-range correlations
can also be inferred from the mo-
mentum densities. In general they
induce a shift of strength from the

low to the high momentum components as can be observed from Fig. II-6. The
three dashed curves in Fig.II-6, representing the HO-momentum densities, all un-
dergo a similar modification when short-range correlations come into play. The
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alteration of the pair momentum density will produce an amplification of the
2-body knock-out cross-section at large missing momenta while for the 1-body
knock-out cross-section also an enlargement will be observed due to a larger high
momentum component in the one-body momentum density. These implications
can be deduced from the functional form of the respective cross sections II-28
II-29. Although they are only approximately correct, they still can be used to
infer some general tendencies.

§3.3 Center-of-mass corrections

Translational invariance of physical laws, imposed by the requirment of momen-
tum conservation, leads to the observation that the COM movement of a system
can not have any physical relevance and must therefore be discarded when describ-
ing the intrinsic properties of a composite system. To impose translational invari-
ance on a general wave function it must be separable into an internal and COM
part. A crucial issue is imposing, in addition, the correct anti-symmetrization.

As alluded to in Sec. §1, spurious COM contributions can alter some of
the experimental accessible quantities such as spectroscopic factors, charge form
factors, particle densities, etc. Already in 1958 Lipkin pointed out [36] that only
for the harmonic oscillator potential the COM coordinate can be separated out in
an unambiguous way. Techniques to remove the COM coordinate for an arbitrary
mean-field potential have been developed [37][41]. They have the disadvantage of
producing non-unique results and there is no criterion to decide which technique
is favorable [37][41]. Therefore, in what follows we will use the harmonic-oscillator
wave function with and without COM-corrections to estimate the impact of the
COM motion on the computed observables. The physically relevant quantities
which we will study to pin down the recoil-effects, are the coordinate as well as
the momentum density operators. The analytical expressions have been derived
in Appendix C -2.

For the realistic, uncorrected Slater wave function C-15 the densities are all
referred relative to the center of the potential while they are referred to the
center of the nucleus for the recoil-corrected wave function. In coordinate space
one expects to observe the largest effects on the pair COM distribution function.
From Fig. II-8 it’s clear that eliminating the COM motion reduces the width of
the distribution function as one would expect. The difference between the solid
and the dashed curve can be attributed to the short-range correlations. One can
state that the COM-corrected HO-wave function is a much better approximation
to the realistic one then the IPM wave.
In our approach, the charge form factor is not altered because we adjusted the
one-particle density so it reproduces the rms charge radius inducing the same
one-particle density for both descriptions.

Fig. II-9 displays the equivalent momentum distributions from Fig. II-6 but
uses different wave functions. All the curves in Fig. II-9 are obtained with
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HO-wave functions. The first set of curves refer to a translationally invariant
description (dashed curves). The second set (dash-dotted) is obtained when not
projecting out spurious COM effects. Both descriptions are obtained using an
IPM harmonic oscillator wave function. The relative momentum density ρrel(~q)
stays more or less the same as one would expect. Eliminating the recoil from the
wave function decreases the one nucleon n(~p) and pair momentum ρcom( ~Q) distri-
bution with a few orders of magnitude at intermediate momenta (≈ 500 MeV/c).
A similar reduction will be observed in the one- and two-nucleon knockout cross-
sections for missing momenta of the same magnitude, because the cross-section
is proportional to the respective density functions.
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variant wave function. The dot-dashed curves are the results when
neglecting this correction. The HO-parameters used, are ν = 0.4 for
the dashed and ν = 0.5 for the dot-dashed curves (see App. C -2).



Chapter III

Two Nucleon-Knockout Observables

When exploring the nuclear interior one needs a microscope. For sev-

eral reasons an electromagnetic probe (electron or photon beam) is, apart

from the low associated counting rates preferable above a hadronic beam.

Not only is the theory of electromagnetic interactions well understood,

the smallness of the electromagnetic coupling constant, makes the ex-

changed photon (real or virtual) to scan the entire nuclear volume.

§1 Introduction

Figure III-1: Schematic picture of the inclusive scattering cross section of a pho-
ton (real or virtual) from a proton or a nucleus [83].

To gain more insight in the relevant reaction mechanisms contributing to
the measured electron-scattering cross section, a little historical survey will be
undertaken in this section.

In the early days of nuclear-structure research, one remained in the conviction
that the A(e, e′) experiments would provide us with all the relevant information.
Those experiments produced, over the years, a huge amount of data ranging
from the elastic scattering peak up to the deep inelastic region. Fig. III-1 shows
a typical inclusive electron scattering A(e, e′) cross section as a function of trans-
ferred energy (ω) and four-momentum (Q2). These one-arm experiments could

29
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be explained quite well in terms of independent nucleons swirling around in the
nucleus. Those nucleons reside in a particular state or have a particular momen-
tum. The former model is commonly known as the shell model while the latter
is usually referred to as the Fermi gas model for nuclear matter. When we focus
on these A(e, e′) experiments which survey the quasi-elastic peak (QE), most of
the experimental results can be described within the context of the Fermi gas
framework. The low-energy scattering experiments, on the other hand, could be
well described in a shell-model approach. The shell model is well suited to ex-
plain the sharp peaks in the scattering cross section, which can be related to the
particle-hole excitation spectrum. In the transition region where the giant reso-
nances reside, one adopts a hybrid liquid drop model to describe the nucleus. The
existence of the giant resonances can be explained by considering deformations
of the nucleus as a whole.

When, over the years, the quality of the beams as well as the sensitivity of
the detectors improved, an L/T-separation of the (e, e′) cross section came within
experimental reach. A Rosenbluth separation can be accomplished by measuring
the cross section for different polarizations of the virtual photon. The Fermi gas
model, which did so well in explaining the total cross section in the QE-region,
failed in reproducing simultaneously the longitudinal and transverse response
function. A major quenching of the experimental longitudinal response function
in comparison with theory was observed. Moreover, a violation of the Coulomb
sum rule emerged from these experiments. The Coulomb sum rule states that
the integrated longitudinal response should equal the total nuclear charge.
Over the years, people searched for explanations of these observed discrepancies.
One proposed the inclusion of other reaction mechanisms such as meson exchange
and isobar currents as well as a better treatment of nuclear structure to remedy
those shortcomings. As yet still no single theory has succeeded in describing
simultaneously the longitudinal and the transverse inclusive response functions
starting from first principles.

Although still open, this problem has triggered a lot of theoretical and exper-
imental efforts.
To improve on our knowledge A(e, e′p)(A − 1) experiments were conducted at
several accelerator facilities. These experiments revealed the depletion of the
independent particle states just beneath the Fermi level in comparison to predic-
tions made by the genuine shell model. The theoretical answer in this matter was
the introduction of spectroscopic factors having a value of around 0.6 instead of
1 for the valence states. A spectroscopic factor gives the probability of finding
a nucleon in a particular state within the nucleus. Short- as well as long-range
correlations were called into play to explain these features. With the advent of
the proof of existence of strong correlations, the naive shell-model picture of the
nucleus had to be adjusted. Several techniques were introduced to implement the
correlations in the wave function. In the previous chapter, a wave function for
the 4He nucleus is proposed, incorporating these features in a generic way.
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Figure III-2: The missing-energy dependence
of the longitudinal and trans-
verse response functions for the
12C(e, e′p) reaction at q = 397
MeV/c and ω = 122 MeV [90].

Apart from nuclear structure
effects also the possible reaction
mechanisms are explored in the
search to explain the quench-
ing of the longitudinal response
function. The aforementioned
A(e, e′p)(A − 1) experiments re-
vealed some other caveats in our
description. In analogy to the
A(e, e′) case also the A(e, e′p)
cross section can be rewritten in
terms of structure functions. It
became clear that theory could
not fully account for all the
structure functions at the same
time [91] whenever energies above
the two-particle emission thresh-
old are probed. In 1990 Ul-
mer [90] conducted a 12C(e, e′p)-
experiment and extracted the lon-
gitudinal and transverse response
as a function of missing energy
(see Fig. III-2). The response
functions reveal some distinctive
behavior. At missing energies
above 50 MeV the transverse
and longitudinal response function
evolve along different lines as indicated by the rise in the function ST −SL around
30 MeV (Si = Ri/Kσ

CC1
ep , i = T, L the reduced response, where K is a kinemat-

ical factor). This missing energy value coincides with the two-nucleon emission
threshold alluding to some two-body current contributions in the transverse chan-
nel. These conclusions concerning the L/T separation reached in the 12C(e, e′p)
experiments at Bates by Ulmer et al. have recently been confirmed in a 12C(e, e′p)
experiment at Jefferson Lab [92].
Also in the dip region a substantial amount of A(e, e′p) strength is observed at
high missing energies [93]. Models based on the IPM cannot account for this
strength.

Summarizing, the semi-exclusive A(e, e′p) data appear to advocate the need
for many-body currents in addition to the dominant one body currents. An
excellent tool to study the two-nucleon mechanisms are the two-nucleon knock-
out reactions (e, e′NN) and (γ,NN). Due to the advent of high-duty cycle
accelerators and the advances made in detector technology, two- and even three-
fold coincidence measurements (e.g. 12C(γ, ppn) [94]) with e.m. probes came
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within experimental reach. During the last decade several accelerator facilities
have performed (e, e′NN) and (γ,NN) experiments on a variety of target nuclei
[95][96][97][12][98].

The various physical observables for the (e, e′NN) and (γ,NN) reactions will
be derived in the course of forthcoming sections. At the same time a detailed
discussion of the current operators corresponding with the contributing electro-
magnetic reaction mechanism is included. The current operators will be, starting
from an effective-field framework, derived in momentum space.

§2 Cross section

§2.1 Scattering matrix and cross section

The scattering matrix describes the evolution of a system from an initial (t =
−∞) into a final (t = +∞) asymptotic state. Over the years, it became common
practice to define the scattering matrix in the interaction or Dirac picture. This
picture has the advantage of allowing to discriminate between the free evolution of
the fields and the distortions attributable to the interactions. The latter picture
is convenient with the eye on performing a perturbation expansion. In what
follows, we adopt the interaction picture. The scattering matrix Ŝ reads

Sfi =
〈

Φf |Ŝ|Φi

〉

,

with

Ŝ = e−
i
~

∫

d4xĤint(x)

=
∞
∑

n=0

1

n!
(− i

~
)n

∫

d4x1 . . .

∫

d4xnT (Ĥint(x1) . . . Ĥint(xn)) , (III-1)

where, Φi and Φf are the initial and final non-interacting states, while Ĥint(x)
denotes the electromagnetic interaction Hamiltonian. In the one-photon exchange
approximation, only the first two terms of Eq. (III-1) are taken into account :

Sfi → δfi −
i

~

〈

Φf

∣

∣

∣

∫

d4xĤint(x)
∣

∣

∣Φi

〉

(III-2)

The electromagnetic interaction Hamiltonian has the following general form

Ĥint(x) = Ĵµ
N(x)Âγ

µ(x) , (III-3)

with ĴN(x) and Âγ(x) respectively the nuclear current and the electromagnetic
field associated with real or virtual photon exchange. A cross section contains all
features of a general scattering process 1 + 2 → 3 + 4 + . . ..
Three elements have to be introduced before a general expression for the cross
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section can be derived. First, using translational invariance a typical operator
in Minkowski space Ô(x) can be rewritten as e−iP̂ x/~Ô(0)eiP̂ x/~ and every wave
function has to be a 4-momentum eigenstate. Second, in a volume V the number
of momentum final states (normal modes) in the range defined by [~k,~k+d~k] equals

V d3~k/(2π)3. Third, the momentum eigenstates are to be normalized properly. To
do so in an unambiguous way we will derive the cross section in a box. Therefore
each wave function ψ has to be replaced by

ψV = [(2π)3/V ]1/2ψ . (III-4)

In the one-photon exchange approximation the scattering matrix defined in a box
of volume V looks like :

SV
fi = δfi −

i

~

∫

V

d4xe−i(Kf
N−Ki

N−qγ∗ )x

[

(2π)3

V

]N/2
〈

Φf

∣

∣

∣Ĵ
µ
N(0)Âγ

µ(0)
∣

∣

∣Φi

〉

[

(2π)3

V

]2/2

= δfi −
i

~
V Tδ3

~Kf
N , ~Ki

N+~qγ∗
δΩf

N ,Ωi
N+ωγ∗

[

(2π)3

V

](N+2)/2

Mfi , (III-5)

where, N is the number of particles in the final channel. The momentum and
energy of the c.o.m motion in respectively the initial and final state is denoted by

( ~Ki
N ,Ω

i
N) and ( ~Kf

N ,Ω
f
N). The transition matrix elementMfi =

〈

Φf |Ĵµ
N(0)Âγ

µ(0)|Φi

〉

contains all the dynamical features of the reaction process under study. In Eq.
(III-5) we replaced ΦV

f and ΦV
i by their renormalized versions (see Eq. III-4).

The transition rate is proportional to the squared scattering matrix and reads

dΓV
fi =

|SV
fi|2
T

×
N
∏

n=1

V

(2π)3
d3~kf

n

=

[

(2π)3

V

]2
V 2T

~2
δ3

~Kf
N , ~Ki

N+~qγ∗
δΩf

N ,Ωi
N+ωγ∗

|Mfi|2
N
∏

n=1

d~kf
n . (III-6)

To arrive at the transition rate, the squared scattering matrix was multiplied
with the density of final states (~kf are the momenta of the outgoing particles).
Eventually, the cross section is defined as the transition rate per incoming flux. In
a non-relativistic approximation, the incoming flux can be written as φ = vrel/V ,
with vrel the relative velocity of the projectile to the target. In a relativistic
treatment, the relative velocity is given by

vrel = c
√

(pt.pp)2 −m2
t c

2m2
pc

2/[(Et/c).(Ep/c)] ,

with (pt,mt, Et) and (pp,mp, Ep) denoting the target and projectile variables.
The differential scattering cross section reads

dσfi = lim
V,T→∞

dΓV
fi

φ
.
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dσfi = lim
V,T→∞

[

(2π)3

V

]2 Ep

c
Et

c
V

~2c
√

(pt.pp)2 −m2
t c

2m2
pc

2

×V 2Tδ3
~Kf

N , ~Ki
N+~qγ∗

δΩf
N ,Ωi

N+ωγ∗
|Mfi|2

N
∏

n=1

d~kf
n

= (2π)10δ4(Kf
N −K i

N − qγ∗)
Ep

c
Et

c

~2c
√

(pt.pp)2 −m2
t c

2m2
pc

2
|Mfi|2

N
∏

n=1

d~kf
n

(III-7)

where use has been made of the identity

lim
V,T→∞

δp
V δ

E
T → (2π)4

V T
δ3(p)δ(E) . (III-8)

In the one-photon exchange approximation, the photon and nuclear parts of the
squared transition matrix element can be separated

|Mfi|2 = |
〈

ΨN
f

∣

∣

∣Ĵ
µ
N(0)Âγ

µ(0)
∣

∣

∣ψ
γ
i ,Ψ

N
i

〉

|2

= |Jµ
NA

γ
µ|2

= ΓµνW
µν , (III-9)

with, Jµ
N =

〈

ΨN
f

∣

∣

∣Ĵ
µ
N(0)

∣

∣

∣ΨN
i

〉

and Aγ
µ =

〈

0
∣

∣

∣Âγ
µ(0)

∣

∣

∣ψ
γ
i

〉

. The electromagnetic

(Γµν) and hadronic (Wµν) tensor are products of the expectation values

Γµν = Aγ
µ[Aγ

ν ]
† (III-10)

and

W µν = Jµ
N [Jν

N ]† . (III-11)

In the following subsections we will derive expressions for the electromagnetic
tensor for the particular case of electro- and photo-induced four-body breakup of
4He.

§2.1.1 (~e, e′ ~NN) Cross section

Fig. III-3 displays the four-body breakup reaction 4He(e, e′NN)NN . The in-
coming electron has an energy Ee, momentum ~pe and spin projection se. The
outgoing electron has energy Ee′ , momentum ~pe′ and spin projection se′ . Ab-
sorption of the virtual photon (Eγ, ~pγ) leads to the breakup of the entire nucleus,
resulting in four escaping nucleons of which two are detected. The latter are
denoted as nucleon “one” and “two”. One refers to the peculiar situation that
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Figure III-3: Pictorial representation of the kinematical variables used to describe
the 4He(e, e′NN)NN cross section in coplanar kinematics.

both ejected nucleons are detected in the electron scattering plane as coplanar
kinematics. The conventions adopted to denote the outgoing nucleon energies,
momenta, spin and isospin projections are displayed in Fig. III-3.

Now, we shall derive the electromagnetic tensor for the specific case of electron
scattering. In terms of classical source theory, the electromagnetic field generated
by the electron current ĵe

µ(x) (i.e. the Möller potential) is a solution of the
following differential equation

2Aγ∗

µ (x) = −eµ0

〈

f
∣

∣

∣
ĵe
µ(x)

∣

∣

∣
i
〉

(e > 0)

= − ecµ0

(2π)3
ei(kf

e−ki
e)xū(~kf

e ,msf
)γµu(~k

i
e,msi

) . (III-12)

This equation can be solved for the electromagnetic field using a Greens’ function
technique :

Aγ∗

µ (x) = − ecµ0

(2π)3
ū(~kf

e ,msf
)γµu(~k

i
e,msi

)

∫

d4yG(x− y)ei(kf
e−ki

e)y ,

=
ecµ0

(2π)3
ei(kf

e−ki
e)x
ū(~kf

e ,msf
)γµu(~k

i
e,msi

)

(kf
e − ki

e)
2

, (III-13)

with, µ0 the permeability of vacuum and

G(x− y) = − 1

(2π)4

∫

d4k
e−ik(x−y)

k2
.
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Inserting this expression for the electromagnetic field into Γµν and putting x = 0,
leads to the definition of the leptonic tensor :

Γµν =

[

ecµ0

(2π)3

]2
1

(kf
e − ki

e)
4

(

ū(~kf
e ,msf

)γµu(~k
i
e,msi

)
)†
.
(

ū(~kf
e ,msf

)γνu(~k
i
e,msi

)
)

=

[

ecµ0

(2π)3

]2
1

(kf
e − ki

e)
4
Lµν , (III-14)

where, Lµν is the lepton tensor. The lepton tensor for the most general case of
incoming and outgoing electron polarization, is derived in Appendix C -3, and
reads, in the ultra-relativistic limit :

Lµν =
2c2

4Ef
eEi

e

{

(pf
e )µ(pi

e)ν + (pf
e )ν(p

i
e)µ − gµν(p

f
e .p

i
e) + ihεµναβ(pf

e )
α(pi

e)
β
}

, (III-15)

with, h the electron helicity (initial helicity = final helicity) and εµνρσ the Levi-
Civita tensor defined as follows : ε0123 = 1.
Relying on the above expression for the lepton tensor, it is convenient to refor-
mulate the contraction of the lepton and hadron tensor in a spherical basis.

LµνW
µν

=
2c2

4Ef
eEi

e

{

(pf
e )µ(pi

e)ν + (pf
e )ν(p

i
e)µ − gµν(p

f
e .p

i
e) + ihεµναβ(pf

e )
α(pi

e)
β
}

W µν

=

[

cos
θee′

2

]2

e2c2
{

vLWL + vTWT + vLTWLT + vTTWTT +

h (v′LTW
′
LT + v′TTW

′
TT )

}

, (III-16)

where, the common factor ec has been extracted from the nuclear current and
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the different lepton and hadron structure functions read :

vL =
[

pµ
γcpγµc

|~pγc|2

]2

WL = ρ [ρ]†

vT =

[

[

tan
θee′

2

]2

− 1
2

pµ
γcpγµc

|~pγc|2

]

WT =

[

~J−

[

~J−

]†
+ ~J+

[

~J+

]†
]

=

[

~Jx

[

~Jx

]†
+ ~Jy

[

~Jy

]†
]

vLT =
pµ

γcpγµc√
2|~pγc|3

(

Ei
e + Ef

e

)

tan
θee′

2
WLT = 2<

[

[ρ]† ~J− − [ρ]† ~J+

]

= 2
√

2<
[

[ρ]† ~Jx

]

vTT =
pµ

γcpγµc

2|~pγc|2 WTT = 2<
[

~J+

[

~J−

]†
]

= −
(

~Jx

[

~Jx

]†
− ~Jy

[

~Jy

]†
)

v′LT =
pµ

γcpγµc

|~pγc|2
√

2
tan

θee′

2
W ′

LT = −2<
[

[ρ]† ~J+ + [ρ]† ~J−

]

= −2
√

2=
[

[ρ]† ~Jy

]

v′TT = Ei
e+Ef

e

|~pγ |c

[

tan
θee′

2

]2

W ′
TT =

[

~J+

[

~J+

]†
− ~J−

[

~J−

]†
]

= 2=
[

~Jx

[

~Jy

]†
]

(III-17)

where, use has been made of the conservation of nuclear current and the ultra-
relativistic limit (me/Ee → 0) has been adopted. Further, the electron scattering
plane is chosen as the xz-plane.

With the transition matrix of Eq. (III-9) and the lepton tensor of Eq. (III-15),
the general N-particle knockout cross section of Eq. (III-7) reduces to the follow-
ing form for the electro-induced two-nucleon knockout reaction in the LAB-frame

d9σ =

∫

3

d3~k3

∫

4

d3~k4(2π)4δ4(k1 + k2 + k3 + k4 + kf
e −K4He − ki

e)

Ei
e

c

E4He

c

c
√

(pi
e.p4He)

2 −m2
ec

2m2
4Hec

2

[

ecµ0

~(kf
e − ki

e)
2

]2

LµνW
µνd3~kf

e d
3~k1d

3~k2

= (2π)4

∫

d2Ω3
|~k3|E3

~c2
f−1

rec

Ei
e

|~p i
e|c2

[

ecµ0

~(kf
e − ki

e)
2

]2

LµνW
µνd3~kf

e d
3~k1d

3~k2 , (III-18)

where the flux has been evaluated in the LAB-frame. In the LAB-frame the flux:
Ei

e

c

E4He

c

c
√

(pi
e.p4He)

2 −m2
ec

2m2
4Hec

2
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reduces to
Ei

e

|~p i
e|c2

.

The recoil factor frec is derived in Appendix C -4 and reads

frec =

∣

∣

∣

∣

1 +
E3

E4

(1 − |~pm| cos (θ3m)

|~p3|
)

∣

∣

∣

∣

, (III-19)

where the missing momentum ~pm is defined as ~pm = ~p i
e−~p f

e−~p1−~p2. In the ultra-
relativistic limit, one has Ee ≈ |~pe|c. With this substitution and Eq. (III-16), the
final expression for the nine-fold differential electro-induced two nucleon knockout
cross section reads :

d9σ

d|~k1|d2Ω1d|~k2|d2Ω2d|~kf
e |d2Ωe

= (2π)4

∫

d2Ω3f
−1
rec

e4c4µ2
0

16~cEi
e
2
[

sin
θee′

2

]4

[

cos
θee′

2

]2

×|~k1|2|~k2|2|~k3|E3

{

vLWL + vTWT + vLTWLT + vTTWTT + h (v′LTW
′
LT + v′TTW

′
TT )

}

,

(III-20)

when inserting the Mott cross section :

(

dσ

dΩ

)

M

=
(α~cZ)2

[

cos
θee′

2

]2

4Ei
e
2
[

sin
θee′

2

]4 ,

with α = e2µ0c/4π~ ≈ 1/137 in Eq. (III-20) the differential cross section takes
on the following form :

d9σ

d|~k1|d2Ω1d|~k2|d2Ω2d|~kf
e |d2Ωe

=
(2π)6

4~c

(

dσ

dΩ

)

M

∫

d2Ω3f
−1
rec|~k1|2|~k2|2|~k3|E3

×
{

vLWL + vTWT + vLTWLT + vTTWTT + h (v′LTW
′
LT + v′TTW

′
TT )

}

.

(III-21)

§2.1.2 (~γ, ~NN) Cross section

The photo-induced four-body breakup reaction is sketched in Fig. III-4. For the
hadronic kinematical variables we adopt the same conventions as for the comple-
mentary electro-induced reaction. With a real photon beam only the transverse
part of the nuclear current can be probed whereas an electron beam is also sen-
sitive to the longitudinal nuclear current. Because nature is gauge invariant it
does not matter what gauge we choose to do our calculations in. From now on we
will use the Coulomb or physical gauge (A0 = 0 and ~∇. ~A = 0) which keeps only
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Figure III-4: Photo-induced four-body breakup 4He(γ,NN)NN in coplanar kine-
matics.

the physically relevant degrees of freedom. The electromagnetic field is defined
by the following expression :

Aµ = (0, ~A) (III-22)

~A =
∑

~q,r

N~q

{

~εr(~q)â(~q, r)e
−iqx + ~εr(~q)

∗â(~q, r)†eiqx
}

, (III-23)

where, N~q =
√

~µ0c2

2ωγ(2π)3
denotes the normalization constant while the â(~q, r) are

annihilation operators for a photon with momentum ~q and polarization denoted
by r. The ~εr(~q) vectors with r = 1, 2 constitute a polarization basis which

spans the plane perpendicular to ~k as required by the Coulomb gauge condition
~∇ · ~A = 0.
Concerning the polarization vectors, two different basis sets are in use namely a
linear and circular basis. In both cases the photon propagates along the z-axis.
With this choice one gets

linear basis : ~εr=1,2 = (~ex, ~ey)

circular basis : ~εr=± = (~e+ = − 1√
2
(~ex + i~ey), ~e− = 1√

2
(~ex − i~ey))

Irrespective of the choices made regarding the polarization basis, the electromag-
netic tensor reduces to

Γij =
~µ0c

2

2ωγ(2π)3
[(~εr)

i]∗(~εr)
j . (III-24)
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As in the electron case, one can evaluate the contraction between the photonic
and hadronic tensors in the spherical basis. The final expressions depend on
whether one deals with linearly or circularly polarized photons.

For a linearly polarized photon beam

ΓµνW
µν =

~µ0c
2

2ωγ(2π)3
[(~εr)i]

∗(~εr)jW
ij

=
~µ0e

2c4

4ωγ(2π)3
(WT + (−1)rWTT ) (r = 1, 2) ; (III-25)

For a circularly polarized photon beam

ΓµνW
µν =

~µ0c
2

2ωγ(2π)3
[(~εr)i]

∗(~εr)jW
ij

=
~µ0e

2c4

4ωγ(2π)3
(WT + rW ′

TT ) , (III-26)

with, r ∈ {−1,+1}. In deriving Eqs. (III-25) and (III-26) the factor ec has
been extracted from the expression for the nuclear current. The nuclear response
functions WT ,WTT and W ′

TT are defined in Eqs. (III-17) and are also part of the
electro-induced two nucleon knockout cross section.

After inserting Eq. (III-24), the photo-induced two nucleon knockout cross
section becomes

d6σ =

∫

3

d3~k3

∫

4

d3~k4(2π)10δ4(Kf
N −K i

N − qγ)
1

~2c

~µ0c
2

2ωγ(2π)3
[~εir]

∗~εjrWijd
3~k1d

3~k2 ,

(III-27)

where the photon flux is equal to c/V .
Discriminating between both photon polarizations and replacing [~εir]

∗~εjrWij by
the relations (III-25) and (III-26) gives rise to the following expressions for the
differential cross sections :

For linearly polarized photons (r = 1, 2)

d6σ

d|~k1|d2Ω1d|~k2|d2Ω2

= (2π)8 α

2Eγ

∫

d2Ω3|~k1|2|~k2|2|~k3|E3f
−1
rec (WT + (−1)rWTT )

(III-28)

For circularly polarized photons (h = ±)

d6σ

d|~k1|d2Ω1d|~k2|d2Ω2

= (2π)8 α

2Eγ

∫

d2Ω3|~k1|2|~k2|2|~k3|E3f
−1
rec (WT + hW ′

TT ) ,

(III-29)

with, f−1
rec defined by Eq. (III-19).
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§2.2 The hadronic tensor

In this subsection, a general expression for the hadronic tensor will be derived
for the specific reaction with two ejected nucleons in the final channel, one of
them being polarized. The kinematical variables of Fig. III-3 and III-4 hint at
the symmetry constraints which the hadronic tensor has to obey. The hadronic
tensor is a hermitian, second rank Lorentz tensor which has to satisfy gauge
invariance and parity conservation and is at most linear in the spin of one of the
outgoing nucleons [99][100]. The hadronic tensor Wµν receives contributions from
vectors that combine the Levi-Civita tensor with five four-vectors belonging to
{pγ, p1, s1, p2, pA}. The manifold of possible four-vectors has as cardinal number
15. A possible representation looks like :

{

pµ
γ , p

µ
1 , s

µ
1 , p

µ
2 , p

µ
A,

ζµ
1 = εµνρσ(pγ)ν(p1)ρ(p2)σ,

ζµ
2 = εµνρσ(pγ)ν(p1)ρ(pA)σ,

ζµ
3 = εµνρσ(pγ)ν(p1)ρ(s1)σ,

ζµ
4 = εµνρσ(pγ)ν(p2)ρ(pA)σ,

ζµ
5 = εµνρσ(pγ)ν(p2)ρ(s1)σ,

ζµ
6 = εµνρσ(pγ)ν(pA)ρ(s1)σ,

ζµ
7 = εµνρσ(p1)ν(p2)ρ(pA)σ,

ζµ
8 = εµνρσ(p1)ν(p2)ρ(s1)σ,

ζµ
9 = εµνρσ(p1)ν(pA)ρ(s1)σ,

ζµ
10 = εµνρσ(p2)ν(pA)ρ(s1)σ

}

. (III-30)

As the Minkowski space is four-dimensional, only four linearly independent four-
vectors out of (III-30) are required to decompose a general four-vector (i.e.,
pµ

γ , p
µ
1 , p

µ
2 , ζ

µ
1 ). The hadronic tensor can be decomposed using these four four-

vectors. Regarding the previously mentioned constraints i.e. gauge invariance,
parity conservation and linearity in the spin coordinate, the following expressions
for the hadronic tensor emerge:

W µν = W µν
S +W µν

A (III-31)

W µν
S = W1G

µν +W2V
µ
1 V

ν
1 +W3[V1, V2]

µν
+ +W4V

µ
2 V

ν
2 +

W̄5[V1, ζ1]
µν
+ + W̄6[V2, ζ1]

µν
+ (III-32)

W µν
A = W7[V1, V2]

µν
− + W̄8[V1, ζ1]

µν
− + W̄9[V2, ζ1]

µν
− , (III-33)

with, Gµν = gµν − pµ
γp

ν
γ/p

2
γ and V µ

i = pµ
i − (pi.pγ)p

µ
γ/p

2
γ . These combinations of

pγ, p1 and p2 are introduced to ensure gauge invariance. The hadronic tensor is
the sum of a symmetric (W µν

S ) and anti-symmetric (W µν
A ) term. The Wi and W̄i

are hadronic structure functions depending on scalar and pseudo-scalar variables
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constructed with the four-vectors of manifold (III-30). TheWi structure functions
are scalar quantities while the W̄i are pseudo-scalars. In order to further expand
the structure functions, we first need to define the possible Lorentz scalars and
pseudo-scalars with the four-vectors of manifold (III-30) :

Scalar : {p2
γ , pγ.p1, pγ.p2, pγ.pA, p1.p2, p1.pA, p2.pA,

ζ1.s1, ζ2.s1, ζ4.s1, ζ7.s1} (III-34)

Pseudo-scalar : {pγ .s1, p2.s1, pA.s1, ζ1.pA} . (III-35)

Using these scalar and pseudo-scalar quantities and remembering that the struc-
ture functions depend at most linear on s1, we can rewrite them as follows :

Wx = F 0
x + F 1

x ζ1.s1 + F 2
x ζ2.s1 + F 3

x ζ4.s1 + F 4
x ζ7.s1 (III-36)

W̄x = F̄ 1
xpγ.s1 + F̄ 2

xp2.s1 + F̄ 3
xpA.s1 (III-37)

Each of the newly introduced functions Fx and F̄x is a function of seven scalar (i.e.
{p2

γ, pγ.p1, pγ.p2, pγ.pA, p1.p2, p1.pA, p2.pA}) and one pseudo-scalar (i.e. ζ1.pA)
quantities. These variables can be reexpressed in the laboratory reference system
using the kinematical variables as they were defined in Figs. III-3 and III-4.

p2
γ =

E2
γ

c2
− |~pγ|2

pγ.p1 =
Eγ.E1

c2
− |~pγ||~p1| cos θ1

pγ.p2 =
Eγ.E2

c2
− |~pγ||~p2| cos θ2

pγ.pA = Eγ.MA

p1.p2 =
E1.E2

c2
− |~p1|.|~p2|(sin θ1 sin θ2 cos (φ1 − φ2) + cos θ1 cos θ2)

p1.pA = E1.MA

p2.pA = E2.MA

ζ1.pA = −~pγ.(~p1 × ~p2)MA . (III-38)

From these expressions one can infer that the hadronic structure functions F and
F̄ depend on (|~pγ|, Eγ , |~p1|, θ1, |~p2|, θ2, φ12 = φ1 − φ2) but not on the azimuthal
angle Φ = φ1+φ2

2
, assigned to the COM of the two ejectiles “1” and “2”.

Also expressions for the spin-dependent expansion variables of the structure
functions can be derived

ζ1.s1 = −~pγ.(~p1 × ~p2).s0 +

[

Eγ

c
(~p1 × ~p2) −

E1

c
(~pγ × ~p2) +

E2

c
(~pγ × ~p1)

]

×
(

~s1 +
(~s1.~p1c).~p1c

mNc2(E1 +mNc2)

)

(III-39)
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ζ2.s1 = MAc
2(~pγ × ~p1).~s1 (III-40)

ζ4.s1 = MAc
2(~pγ.~p2).

(

~s1 +
(~s1.~p1c).~p1c

mNc2(E1 +mNc2)

)

(III-41)

ζ7.s1 = MAc
2(~p1 × ~p2).~s1 (III-42)

pγ.s1 =
Eγ.s0

c
− ~pγ.

(

~s1 +
(~s1.~p1c).~p1c

mNc2(E1 +mNc2)

)

(III-43)

p2.s1 =
E2.s0

c
− ~p2.

(

~s1 +
(~s1.~p1c).~p1c

mNc2(E1 +mNc2)

)

(III-44)

pA.s1 =
MAc

2.s0

c
. (III-45)

Making use of the unity vectors (~el = ~p1/|~p1|, ~en = (~pγ × ~p1)/|~pγ × ~p1|, ~et =
(~p1 ×~en)/|~p1 ×~en|), the expansion variables derived in Eqs. (III-39)-(III-45) read
in coplanar kinematics

ζ1.s1 → ~en.~s1 (III-46)

ζ2.s1 → ~en.~s1 (III-47)

ζ4.s1 → ~en.~s1 (III-48)

ζ7.s1 → ~en.~s1 (III-49)

pγ.s1 → ~el.~s1 + ~et.~s1 (III-50)

p2.s1 → ~el.~s1 + ~et.~s1 (III-51)

pA.s1 → ~el.~s1 . (III-52)

A further simplification for the special case of super-parallel kinematcs, where
the two nucleons are ejected along the direction of the momentum transfer ~pγ

([101])

ζ1.s1 → 0 (III-53)

ζ2.s1 → 0 (III-54)

ζ4.s1 → 0 (III-55)

ζ7.s1 → 0 (III-56)

pγ.s1 → ~el.~s1 (III-57)

p2.s1 → ~el.~s1 (III-58)

pA.s1 → ~el.~s1 . (III-59)

From now on, we will restrict ourselves to coplanar kinematics unless otherwise
specified. With the aid of the expressions for the structure functions (Eqs. III-36
and III-37) and their specific spin dependence (Eqs. III-46 - III-52), the symmet-
ric and anti-symmetric hadronic tensor (Eqs. III-32 and III-33) read :

W µν
S = [F1 + F n

1 ~en.~s1]G
µν + [F2 + F n

2 ~en.~s1]V
µ
1 V

ν
1 + [F3 + F n

3 ~en.~s1][V1, V2]
µν
+ +
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[F4 + F n
4 ~en.~s1]V

µ
2 V

ν
2 + [F l

5~el.~s1 + F t
5~et.~s1][V1, ζ1]

µν
+ +

[F l
6~el.~s1 + F t

6~et.~s1][V2, ζ1]
µν
+ (III-60)

W µν
A = [F7 + F n

7 ~en.~s1][V1, V2]
µν
− + [F l

8~el.~s1 + F t
8~et.~s1][V1, ζ1]

µν
− +

[F l
9~el.~s1 + F t

9~et.~s1][V2, ζ1]
µν
− , (III-61)

where all of the 18 functions F x
i (i = 1, 9, x = l, n, t) are scalar functions of the

variables (|~pγ|, Eγ , |~p1|, θ1, |~p2|, θ2, φ12 = φ1 − φ2).

In what follows, we will rewrite the hadronic tensor in a spherical basis. This
formulation is more suitable to describe the interaction with the electromagnetic
field. A definition of the spherical basis in terms of the Cartesian frame of ref-
erence is contained in Appendix B -2. Due to hermiticity and gauge invariance
constraints, the number of independent elements of the hadronic tensor reduces
from 16 to only 6, namelyW 00

S , W 01
S , W 02

S , W 11
S , W 12

S , W 22
S . Whereas for the sym-

metric case only 4 independent elements remain leaving just two anti-symmetric
structure functions. Reformulated in a spherical basis, the 6 components read :

WL = W 00
S (III-62)

WT = −(W+−
S +W−+

S ) (III-63)

WLT = W 0−
S −W 0+

S (III-64)

WTT = −(W−−
S +W++

S ) (III-65)

W ′
LT = W 0+

A +W 0−
A (III-66)

W ′
TT = W+−

A −W−+
A , (III-67)

with, W λλ′
= W · [~eλ ⊗ ~eλ′ ].

The different terms of the hadronic tensor, Eqs. (III-32) and (III-33), contribute
to some or more of the response functions, Eqs. (III-62) - (III-67), as can be
observed from Appendix B -5.

From Eqs. (B-24) - (B-29) it can be observed that the response functions
WL,WT and W ′

TT do not depend on the average azimuthal angle Φ = (φ1 +φ2)/2
while WLT and W ′

LT are a function of Φ whereas WTT contains 2Φ as a functional
variable. In coplanar kinematics the response functions (B-24) - (B-29) can be
rewritten, using Eq. (III-60) and Eq. (III-61), as follows :

WL(Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = RL +Rn
L~en.~s1 (III-68)

WT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = RT +Rn
T~en.~s1 (III-69)

WLT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12,Φ) = RLT +Rn
LT~en.~s1 (III-70)

WTT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12, 2Φ) = RTT +Rn
TT~en.~s1 (III-71)

W ′
LT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12,Φ) = R′

LT
l
~el.~s1 +R′

LT
t
~et.~s1 (III-72)

W ′
TT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = R′

TT
l
~el.~s1 +R′

TT
t
~et.~s1 ,(III-73)
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where, in super-parallel kinematics only those terms survive which do not depend
on the spin and which depend on the longitudinal spin component only.

WL(Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = RL (III-74)

WT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = RT (III-75)

WLT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12,Φ) = RLT (III-76)

WTT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12, 2Φ) = RTT (III-77)

W ′
LT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12,Φ) = R′

LT
l
~el.~s1 (III-78)

W ′
TT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = R′

TT
l
~el.~s1 , (III-79)

To finish this section, an important property of the hadronic tensor will be
derived. It translates the principle of parity conservation and time symmetry into
a symmetry for the hadronic tensor. The influence of the previous symmetries can
be studied starting from the general expression for the nuclear electromagnetic
tensor W µν :

W µν(pγ, P, p1, s1, p2, (−)) =
∑

F

〈

p1, s1, p2, s2, p3, s3, p4, s4, (−)
∣

∣

∣(Ĵµ(pγ))
†
∣

∣

∣I, P
〉

×
〈

I, P
∣

∣

∣Ĵν(pγ)
∣

∣

∣p1, s1, p2, s2, p3, s3, p4, s4, (−)
〉

,

(III-80)

where, the sum over F implies an integration over the momenta of the third and
fourth particle and in addition a sum over the spin projection of nucleons two,
three and four. The minus sign, showing up in the final state wave function,
refers to the fact that the final waves evolve outward. The initial state has four-
momentum P and is non-degenerate in case of the 4He-ground state making it a
parity eigenstate due to the space reflection invariance of the strong interaction.
First we will examine the transformation properties of the nuclear tensor under
a parity transformation P . Inserting the identity P−1P in Eq. (III-80) gives rise
to the following relation :

W µν(pγ, P, p1, s1, p2, (−))

=
∑

F

〈

p1, s1, p2, s2, p3, s3, p4, s4, (−)
∣

∣

∣P−1
[

P Ĵµ(pγ)P−1
]†
P
∣

∣

∣I, P

〉

×
〈

I, P
∣

∣

∣P−1
[

P Ĵν(pγ)P−1
]

P
∣

∣

∣p1, s1, p2, s2, p3, s3, p4, s4, (−)
〉

= gµµgνν

∑

F

〈

p′1,−s′1, p′2, s2, p3, s3, p4, s4, (−)
∣

∣

∣Ĵµ(p′γ)
†
∣

∣

∣I, P ′
〉

×
〈

I, P ′
∣

∣

∣Ĵν(p′γ)
∣

∣

∣p′1,−s′1, p′2, s2, p3, s3, p4, s4, (−)
〉

= gµµgννW
µν(p′γ, P

′, p′1,−s′1, p′2, (−)) , (III-81)
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where, we did not indicate the transformed values of the momenta and spins of the
second, third and fourth particle because they are summed over a complete basis.
The primed four-vectors are the space reflected counterparts of the original ones
and are in more detail given by the expression x′ = (x0,−~x). The nuclear current
operator is a four-vector and transforms as such giving rise to the coefficients
gαα = ±. The nuclear current operator as well as the momentum four-vectors
transform the same way under a time reflection T . Therefore the previously
derived expression for the hadronic tensor (Eq. (III-81)) becomes :

W µν(pγ, P, p1, s1, p2, (−))

=
∑

F

〈

p′1,−s′1, p′2, s2, p3, s3, p4, s4, (−)
∣

∣

∣T Ĵµ(pγ)
†T −1

∣

∣

∣I, P ′
〉

×
〈

I, P ′
∣

∣

∣T Ĵν(pγ)T −1
∣

∣

∣p′1,−s′1, p′2, s2, p3, s3, p4, s4, (−)
〉

=
∑

F

〈

p1,−s1, p2, s2, p3, s3, p4, s4, (+)
∣

∣

∣Ĵν(pγ)
†
∣

∣

∣I, P
〉

×
〈

I, P |Ĵµ(pγ)|p1,−s1, p2, s2, p3, s3, p4, s4, (+)
〉

= W νµ(pγ, P, p1,−s1, p2, (+)) , (III-82)

the interchange of the indices (µ, ν) is invoked by the anti-linearity of the time
reflection operator. In addition this property causes the interchange of the in
going and outgoing evolution operator resulting in the replacement of retarded
wave solution with an advanced wave solution. In the plane wave limit the
differences between the in going and outgoing solutions can be ignored resulting
in the relation :

W µν(pγ, P, p1, s1, p2) = W νµ(pγ, P, p1,−s1, p2) . (III-83)

From Eq. (III-83) one can draw as general conclusion in a plane wave approxi-
mation : any terms linear in spin must vanish in the symmetric part of the tensor
and any terms not linear in the spin must vanish in the anti-symmetric part of
the tensor.

Combining this theorem with the expression of the nuclear electromagnetic
tensor in coplanar kinematics results in the final expressions for the nuclear re-
sponse functions :

WL(Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = RL (III-84)

WT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = RT (III-85)

WLT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12,Φ) = RLT (III-86)

WTT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12, 2Φ) = RTT (III-87)

W ′
LT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12,Φ) = R′

LT
l
~el.~s1 +R′

LT
t
~et.~s1 (III-88)

W ′
TT (Eγ, |~pγ|, |~p1|, θ1, |~p2|, θ2, φ12) = R′

TT
l
~el.~s1 +R′

TT
t
~et.~s1 , (III-89)
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while,in super parallel kinematics, the side-ways polarized components of the
W ′

LT and W ′
TT structure functions disappear also as indicated above.

§3 Polarization observables

As alluded to in section §1, as of now no theoretical model appears to be able
to simultaneously describe the longitudinal and the transverse (e, e′) nuclear re-
sponse (for light nuclei the authors of Ref. [102] claim to have succeeded in
describing both response functions). In an attempt to solve this shortcoming one
should focus on the exclusive and semi-exclusive counterparts of the inclusive
experiments. Those reactions offer better opportunities to study the single and
multi-nucleon contributions to the inclusive cross section. Studying the unpo-
larized photo- and electro-induced multi-nucleon knockout reaction, will provide
detailed information on the features of the principal mechanisms driving the reac-
tion. Complementary to the multi-coincidence measurements, polarization exper-
iments can help to elucidate the role played by the subnuclear degrees of freedom
and their contributions to the nine structure functions. Due to the dramatic fall
off of the reaction rates, coincidence and polarization experiments became only
feasible with the advent of high duty cycle accelerators and a new generation of
detectors. Polarization observables have the advantage of being rather insensi-
tive to various kinds of corrections which are an essential ingredient of a typical
data analysis. In subsections §3.1 and §3.2 we review the different polarization
observables for electro- and photo-induced two-nucleon knockout reactions.

§3.1 (~e, e′ ~NN)-polarization observables

For a 0+ target nucleus, one can consider three types of measurements involving
a polarized beam and the possibility to determine one of the ejectile’s polar-
ization : first, a two-nucleon knockout reaction induced by a polarized electron
beam ((~e, e′NN)); second, the polarization of one ejectile is detected ((e, e′ ~NN))

and third, the polarization transfer is measured ((~e, e′ ~NN)). The electron, being
ultra-relativistic, is spontaneously polarized along its propagation direction. The
nucleon spin, though, can in principle be directed along any axis in three dimen-
sional space. The nucleon polarization basis is usually attached to its rest frame
( = baryocentric basis).

~el =
~p

|~p| (III-90)

~en =
~pγ × ~p

|~pγ × ~p| (III-91)

~et =
~p× ~en

|~p× ~en|
. (III-92)



48 Chapter III Two Nucleon-Knockout Observables

The polarization vectors are displayed in Figs. III-3 and III-4.
The seventh structure function W7 (Eq. III-33) can be extracted from the cross
section by measuring the electron polarization. The (~e, e′NN)-experiments can
determine the so-called electron analyzing power Ae defined as

Ae =
σ(h = +1) − σ(h = −1)

σ(h = +1) + σ(h = −1)
. (III-93)

As becomes obvious from Eqs. (B-28) and (B-29) a non-vanishing value for the
electron analyzing power requires an out-of-plane experiment. In addition, our
discussion about the transformation properties of the nuclear electromagnetic
tensor under a space-time reflection reveals that in a plane-wave approximation
(PWA) the analyzing power will always vanish as a plane-wave doesn’t depend
on the nuclear spin. Therefore, the Ae variable is an excellent tool to study the
spin-dependence of final state interactions (FSI).

Alternatively, one can measure the outgoing nucleon polarization instead of
the electron helicity ((e, e′ ~NN)). To describe the hadron tensor for a polarized
final nucleon, the nucleon spin vector has to be projected in the nucleon bary-
ocentric basis defined in Eqs. (III-90) - (III-92). Three different polarization
observables can be defined, i.e. the three induced polarizations Pi(i = l, n, t) :

Pi =
σ(msi

=↑) − σ(msi
=↓)

σ(msi
=↑) + σ(msi

=↓) (i=l,n,t) . (III-94)

In coplanar kinematics only the normal (n) component of the induced polar-
ization is accessible. The latter can be inferred from equations III-68 - III-71.
The longitudinal (l) and the transverse (t) induced polarization Pi can only be
measured in an out-of-plane measurement (See Eqs. III-72 and III-73). A more
stringent condition on the induced polarization is imposed by the FSI. Without
FSI all three induced polarizations will be identical to zero. As for the electron
analyzing power the nucleon induced polarization can give us a clue of the effects
induced by FSI.

The only electron polarization observables which survive in the plane-wave
approximation for the ejectiles, are the so-called polarization transfer coefficients
(P ′

l , P
′
n, P

′
t ) lying along one of the three nucleon-polarization axes. To measure

these one has to setup a double-polarization experiment (~e, e′ ~NN). The P ′
i , (i =

l, n, t) are defined according to :

P ′
i =

(

σ(h=+1,msi=↑)−σ(h=−1,msi=↑)
)

−
(

σ(h=+1,msi=↓)−σ(h=−1,msi=↓)
)

(

σ(h=+1,msi=↑)+σ(h=−1,msi=↑)
)

+

(

σ(h=+1,msi=↓)+σ(h=−1,msi=↓)
) .

(III-95)

In coplanar kinematics the normal polarization transfer observable P ′
n vanishes

while in super-parallel kinematics also the P ′
t component vanishes.
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Using Eqs. (III-93), (III-94) and (III-95), the doubly-polarized differential
cross section can be casted into the form

d9σ

d|~k1|d2Ω1d|~k2|d2Ω2d|~kf
e |d2Ωe

=
1

2
σ0

[

1 + ~P .~σ + h
(

Ae + ~P ′.~σ
)]

, (III-96)

with, ~σ a unit vector in spin space. The unpolarized cross section σ0 is obtained
from Eq. (III-21) by summing over the electron and nucleon spin projections. For
the peculiar of coplanar kinematics and neglecting all forms of FSI mechanisms,
the above expression reduces to :

d9σ

d|~k1|d2Ω1d|~k2|d2Ω2d|~kf
e |d2Ωe

=
1

2
σ0 [1 + h (cos θ1P

′
l + sin θ1P

′
t )] , (III-97)

with, θ1 approaching zero in super-parallel kinematics.
In the PWA some of the polarization observables mentioned to vanish in

coplanar kinematics. We wish to stress that these properties are only valid under
the condition of strict hermiticity of the employed current operators. Once the
hermiticity condition is violated, by introducing a finite width for the in-medium
delta for example, some of the statements made are to be softened.

§3.2 (~γ, ~NN)-polarization observables

For processes involving polarized photons, one can either start from a linear or
from a circular photon polarization basis [103]. In the case of a linearly polarized
beam, the photon asymmetry determines the difference in the nuclear response
to a photon polarized in (σ||) or perpendicular (σ⊥) to the reaction plane

Σl =
σ|| − σ⊥
σ|| + σ⊥

= −WTT

WT

. (III-98)

For a circularly polarized incident photon, on the other hand, the asymmetry
reflects the difference in cross section for the absorption of a left- (σ(h = −1)) or
a right-handed (σ(h = +1)) photon

Σc =
σ(h = +1) − σ(h = −1)

σ(h = +1) + σ(h = −1)
=
W ′

TT

WT

. (III-99)

In coplanar kinematics, only the linear asymmetry survives. Even in the PWA it
does not vanish. An out-of-plane measurement is required to determine the cir-
cular asymmetry Σc. The circular asymmetry vanishes in any plane-wave model.

As for the electro-induced case, it is possible to define an induced polarization
and a polarization transfer coefficient. The induced polarization (Pi, (i = l, n, t)),
as defined in Eq. (III-94), looks identical in the photo- and electro-induced case.
In coplanar kinematics, only the component perpendicular to the reaction plane
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Reaction out-of-plane out-of-plane in-plane in-plane super super

parallel parallel

DWIA PWIA DWIA PWIA DWIA PWIA

(~e, e′NN) Ae X 0 0 0 0 0

(e, e′ ~NN) Pl X 0 0 0 0 0

Pn X 0 X 0 X 0

Pt X 0 0 0 0 0

(~e, e′ ~NN) P ′
l X X X X X X

P ′
n X X 0 0 0 0

P ′
t X X X X 0 0

(~γl, NN) Σl X X X X X X

(~γc, NN) Σc X 0 0 0 0 0

(γ, ~NN) Pl X 0 0 0 0 0

Pn X 0 X 0 X 0

Pt X 0 0 0 0 0

(~γl, ~NN) P ′
l X 0 0 0 0 0

P ′
n X 0 X 0 X 0

P ′
t X 0 0 0 0 0

(~γc, ~NN) P ′
l X X X X X X

P ′
n X X 0 0 0 0

P ′
t X X X X 0 0

Table III-1: The polarization observables for electromagnetically induced two-
nucleon knockout under some specific kinematical and dynamical con-
ditions. For each observable we indicate wether it will vanish (0) or
not (X) under the specific conditions.
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has a value different from zero. In the plane-wave approximation for the outgoing
nucleons also the component directed along ~en vanishes.

With a linearly polarized photon beam the transfer polarization coefficients
(P ′

i , (i = l, n, t)) look like :

P ′
i =

(

σ||(msi=↑) − σ⊥(msi=↑)
)

−
(

σ||(msi=↓) − σ⊥(msi=↓)
)

(

σ||(msi=↑) − σ⊥(msi=↑)
)

+
(

σ||(msi=↓) − σ⊥(msi=↓)
) . (III-100)

Only the normal component is assessible in coplanar kinematics. To get access
to P ′

l and P ′
t an out-of-plane measurement is required. In a plane wave approxi-

mation also the component normal to the scattering plane vanishes, making it a
tool to probe the influence of FSI mechanisms on the reaction cross section. A
totally different picture arises for the circularly polarized photon beam where the
transfer polarization observable is defined as in Eq. (III-95). As for Eq. (III-95)
the same conclusions can be drawn regarding the effects of selecting coplanar
kinematics and of including FSI. In brief, in a PWA approximation only the lon-
gitudinal P ′

l and transverse P ′
t transfer polarization coefficients survive. Where

the latter disappear in super parallel kinematics.
The differential cross sections can be rewritten in terms of the aforementioned

polarization observables. We will restrict ourselves to the case of coplanar kine-
matics and for a plane-wave approximation. The differential cross sections look
like :

For a linearly polarized photon

d6σ(~γ,NN)

d|~k1|d2Ω1d|~k2|d2Ω2

=
1

2
σ0

[

1 + (−1)hΣl

]

, (III-101)

where, h equals 1 for a photon polarized in the reaction plane while it is equal to
2 in the case of a perpendicular polarized photon.

For a circularly polarized photon

d6σ(~γ,NN)

d|~k1|d2Ω1d|~k2|d2Ω2

=
1

2
σ0 [1 + h (cos θ1P

′
l + sin θ1P

′
t )] , (III-102)

where h equals +1 for a right-handed photon and −1 for a left-handed one. θ1

refers to the polar angle of the polarized ejectile.
The different polarization observables for several kinematical and dynamical

situations are summarized in Table III-1.

§4 Two-nucleon knockout mechanisms

The ingredients determining the hadronic structure functionsW µν are the nuclear
initial and final wave functions and the nuclear electromagnetic current opera-
tor. Chapter II dealt with the initial 4He wave function. All of the calculations
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presented in this work are performed within the PWA for the ejectiles. The dis-
cussion of the implications of this approximation will be postponed until section
§5. In this section we will derive the different terms contributing to the nuclear
current and discuss the impact of electromagnetic and hadronic form factors as
well as the role played by the short-range correlations.
Adopting an effective field formalism the nuclear current is rewritten as an ex-
pansion of Feynman diagrams. In an effectieve field theory the nucleons as well as
the mesons are treated as elementary particles. To account for the internal struc-
ture of the hadrons, form factors are introduced. In an effective field theory one
should start from the most general possible Lagrangian density consistent with
the symmetries of the theory and expressed in terms of the relevant degrees of
freedom. To plug the electromagnetic field into the nuclear effective lagrangian,
use has been made of the minimal substitution method (∂µ → ∂µ − iqAµ). In the
one-photon exchange approximation, it is straightforward to derive the nuclear
current based on the effective lagrangian density. In our calculations, only the
tree diagrams for the nuclear current are retained. All higher order diagrams
are, on the one hand considered as final state interactions and on the other hand
included in some sense in the initial state nuclear wave function. Summarized,
apart from the common one-body convection- and magnetization current, lowest
order meson exchange and delta excitation diagrams are included into the current
operator.
Quantum electrodynamics being a gauge theory, the nuclear current operator
has to fulfill the Ward-Takahashi identities or, equivalently, the nuclear current
< Ĵµ > is a conserved quantity.The latter condition constrains the longitudinal
part of the nuclear current operator once the NN-potential is known, through the
following relation :

~qγ · ~̂JN =
[

ρ̂N , ĤNN

]

. (III-103)

Apart from the model independent longitudinal current, the unconstraint trans-
verse part of the nuclear current has to be derived on the basis of some microscopic
model assumptions with respect tot the nuclear dynamics.

§4.1 Meson exchange currents

Our calculations implement the pion exchange currents [104]. Heavier meson
exchange currents are neglected. These currents are suppressed by the short-range
correlations which tend to keep the nucleons apart. Moreover, the theoretical
description of short-range heavy-meson exchange is not free of ambiguities. The
existence of pions in the nucleus as a natural explanation for the NN-force was
already pointed out in the thirties by Yukawa. The exchange of a finite mass
pion explains the long-range character of the NN-potential, as well as its tensorial
component. The meson-exchange currents (MEC) consisting of the pion seagull
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and in-flight terms, can be derived from the pion-nucleon interaction Lagrangian
density

LPV = ψ̄(p/ −mNc)ψ +
1

2
∂µ
~φ.∂µ~φ− 1

2

(mπc

~

)2
~φ.~φ+

gPV
πNN

mπ

√

~3

c
ψ̄γµγ5∂µ(~φ.~τ)ψ , (III-104)

where the pseudo-vector πNN coupling scheme has been adopted and the corre-

sponding coupling constant is determined by
(

gPV
πNN

)2

/4π = 0.079.

The nuclear current induced by the pion-exchange graphs shown in Fig. III-5
can be obtained from the Lagrangian density LPV by means of the minimal sub-
stitution technique : ∂µ → ∂µ + i q

~
Aµ (with q the electromagnetic charge of the

active particle). The resulting expression for the above Lagrangian density is

qπ mτl
,

p
1 ms1, p

2 ms2,

’p
1

’ms1, ’p
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’ms2,

π+

γ
qπ mτl

,

p
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Figure III-5: The pion seagull and in-flight diagrams.

LPV
A = LPV − e

~

(

~φ× ∂µ
~φ
)

z
Aµ − eψ̄A/

1 + τz
2

ψ +

e

~

gPV
πNN

mπ

√

~3

c
ψ̄γµγ5

(

~τ × ~φ
)

z
ψAµ , (III-105)



54 Chapter III Two Nucleon-Knockout Observables

where, the quadratic terms in the electromagnetic field vector are neglected and
with the elementary charge e > 0. After some algebra, one arrives at the following
expressions for the pion seagull and in-flight current

Ĵµ
seagull(0) = iec

(

gPV
πNN

mπc2

)2

(~c)3

(

(p/ rcγ5)(2)(γ
µγ5)(1)

(pr
2c)

2 −m2
πc

4
− (p/ rcγ5)(1)(γ

µγ5)(2)

(pr
1c)

2 −m2
πc

4

)

×
[

~τ(1) × ~τ(2)
]

z
(III-106)

Ĵµ
in−flight(0) = iec

(

gPV
πNN

mπc2

)2

(~c)3 (p/ rcγ5)(1)(p/
rcγ5)(2)(p

r
2c− pr

1c)
µ

((pr
1c)

2 −m2
πc

4).((pr
2c)

2 −m2
πc

4)

[

~τ(1) × ~τ(2)
]

z
,

(III-107)

with, pr
1 = pf

1 −pi
1 equal to the four-momentum transfer to particle 1 for example.

In the absence of any relativistic description for the 4He nucleus, it is convenient
to use the non-relativistic limit of these currents. In the static and non-relativistic
limit the current operators of Eqs. (III-106) and (III-107) reduce to :

~̂Jseagull(0) = iec

(

gPV
πNN

mπc2

)2

(~c)3

(

~σ(1).~p
r
1 c

(~p r
1 c)

2 +m2
πc

4
.~σ(2) − ~σ(1).

~σ(2).~p
r
2 c

(~p r
2 c)

2 +m2
πc

4

)

×
[

~τ(1) × ~τ(2)
]

z
(III-108)

~̂J in−flight(0) = iec

(

gPV
πNN

mπc2

)2

(~c)3 ~σ(1).~p
r
1 c

(~p r
1 c)

2 +m2
πc

4
.

~σ(2).~p
r
2 c

(~p r
2 c)

2 +m2
πc

4
. (~p r

1 c− ~p r
2 c)

[

~τ(1) × ~τ(2)
]

z
, (III-109)

where, the nucleon energy was replaced by the nucleon mass and the perturbation
expansion was carried out up to lowest order in ~p/m. By construction these
currents obey current conservation for the nucleon charge density operator ρ(~r) =
1
2
(1 + τz)e

−i~q·~r and the one-pion exchange potential

VOPEP = −g
PV
πNN

mπc2

√

~3

c

~σ(1).~pπ~σ(2).~pπ

p2
π +m2

πc
2
~τ(1).~τ(2) .

In lowest non-relativistic order, the pion seagull and in-flight diagrams do not
contribute to the charge density operator.

It is a common practice in non-renormalizable effective-field theories to in-
troduce hadronic form factors Fπ(p2

π) to effectively incorporate the physics at
very-short distance scales. The hadronic form factors are purely phenomenologi-
cal and are commonly assumed to be of a monopole form

Fπ(p2
π) =

Λ2
π −m2

πc
2

~p2
π + Λ2

π

.

The standard range for the values of the cut-off mass Λπ is 800-1250 MeV/c.
In practice, the inclusion of a form factor Fπ(p2

π) amounts to neglecting all
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high-momentum contributions to the transition matrix elements. The softer the
form factor (i.e. the smaller the value of Λπ) the lower the upper-limit in the
momentum-space integrations. Both pion-exchange currents have to be altered,
always reminding to preserve gauge invariance, and the following final expressions
arise :

~̂Jseagull(0) = iec

(

gPV
πNN

mπc2

)2

(~c)3

(

Fπ(~p r
1 )

~σ(1).~p
r
1 c

(~p r
1 c)

2 +m2
πc

4
.~σ(2)−

~σ(1).Fπ(~p r
2 )

~σ(2).~p
r
2 c

(~p r
2 c)

2 +m2
πc

4

)

[

~τ(1) × ~τ(2)
]

z

(III-110)

~̂J in−flight(0) = iec

(

gPV
πNN

mπc2

)2

(~c)3(~σ(1).~p
r
1 c)

(

Fπ(~p r
1 )

1

(~p r
1 c)

2 +m2
πc

4
.Fπ(~p r

2 )
1

(~p r
2 c)

2 +m2
πc

4
+

Fπ(~p r
1 )

1

(~p r
1 c)

2 +m2
πc

4
.Fπ(~p r

2 )
1

(~p r
1 c)

2 + Λ2
πc

2
+

Fπ(~p r
1 )

1

(~p r
2 c)

2 + Λ2
πc

2
.Fπ(~p r

2 )
1

(~p r
2 c)

2 +m2
πc

4

)

(~σ(2).~p
r
2 c). (~p

r
1 − ~p r

2 )
[

~τ(1) × ~τ(2)
]

z
,

(III-111)

In the actual calculations, the last two terms in the above expression for the
pion-in-flight current have been neglected. The fast fall-off of the corrected pion-
in-flight propagator justifies this approximation despite the fact that gauge in-
variance with respect to the pion exchange potential will be slightly violated.

§4.2 Delta isobar excitation

A meson-exchange current of a different kind is the isobar current (IC). This
current is associated with the excitation of an intermediate delta ∆33 i.e. the
spin and isospin 3

2
excited state of the nucleon. The need for incorporating delta

degrees-of-freedom in realistic models of the nucleus, was prompted by photo-
and electro-pion production experiments showing a broad bump at a transferred
energy equal to approximately the mass of the delta [105] [106]. Some properties
of the delta particle are outlined in Appendix B -4. In contrast to pion-exchange
currents, isobar currents are model dependent. Indeed gauge invariance does
not constrain the delta current operator. As illustrated in Fig. III-6, the delta
excitation current consists of two topologically different diagrams namely an s-
channel (or, resonant diagram) and a u-channel (or, non-resonant diagram). In
order to derive the delta current associated with the diagrams of Fig. III-6 one
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Figure III-6: The resonant (left) and non-resonant (right) diagram which consti-
tute the delta current.

needs apart from the LπNN - also the Lγ∆N and LπN∆ Lagrangian densities :

Lγ∆N(x) = −e~fγN∆

2mπ

Ψ̄µ
∆(x)εµνρσγσT †

3∂
νAρ(x)ψ(x) + h.c. (III-112)

LπN∆(x) =
fπN∆

mπ

√

~3

c
ψ̄(x)∂µ(~φ(x). ~T )Ψµ

∆(x) + h.c. , (III-113)

where, Lγ∆N is manifestly gauge invariant. The electromagnetic coupling con-
stant fγN∆ equals 0.12 while the hadronic coupling constant is defined as (fπN∆)2/4π =
0.37. Throughout this work, the small non-magnetic terms in the γ∆N La-
grangian density will be neglected. As explained in more detail in Appendix
B -4, the isospin projection operator ~T projects an isospin 3

2
-state on an isospin

1
2
-state. The πN∆-Lagrangian has been taken from Refs. [107] [108] where we

only retained the on-shell part (discarding terms proportional to γµΨµ
∆) of the

chiral invariant Lagrangian proposed by the authors of Refs. [107] [108]. In the
static or non-relativistic limit, the interaction Lagrangian densities reduce to :

LπNN (x) ≈ −g
PV
πNN

mπ

√

~2

c
ψ†(x)~σ.

[

~∇
(

~φ.~τ
)]

ψ(x) (III-114)

Lγ∆N(x) ≈ e~

2mπ

fγN∆Ψ†
∆(x)T †

3
~S†.(~∇× ~A(x))ψ(x) + h.c. (III-115)

LπN∆(x) ≈ −fπN∆

mπ

√

~3

c
Ψ†

∆(x)~S†.
[

~∇
(

~φ.~T †
)]

ψ(x) + h.c. , (III-116)

where, use has been made of the non-relativistic expressions for the spin 1 (see
Appendix B -4) and 1

2
(see Appendix B -3) wave functions. The spin projection

operator ~S appears in a natural way in the theory when taking the non-relativistic
limit. The nucleon (ψ) and delta isobar (Ψ∆) wave functions, as they appear in
Eqs. (III-114), (III-115) and (III-116), are reduced to their spin-isospin content
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only :

ψ(x) =

∫

∑ d3~k

(2π)3/2
a(~k)χ( 1

2
,ms)

η( 1
2
,mt)

e−ikx + h.c. (III-117)

Ψ∆(x) =

∫

∑ d3~k

(2π)3/2
a(~k)χ( 3

2
,ms∆

)η( 3
2
,mt∆

)e
−ikx + h.c. . (III-118)

The final expression for the interaction Lagrangian which is needed to deduce the
matrix elements associated with the diagrams depicted in Fig. III-6 reads :

Lint(x) = −g
PV
πNN

mπ

√

~2

c
ψ†(x)~σ.

[

~∇
(

~φ.~τ
)]

ψ(x) +

e~

2mπ

fγN∆Ψ†
∆(x)T †

3
~S†.(~∇× ~A(x))ψ(x) + h.c.

−fπN∆

mπ

√

~3

c
Ψ†

∆(x)~S†.~∇~φ.~T †ψ(x) + h.c. . (III-119)
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Figure III-7: The left panel depicts the resonant delta propagator III-122 while in
the right panel its non-resonant III-124 counterpart is shown. The
different graphs in the left panel represent several approaches for the
delta decay width : zero width (full), fixed width ΣI of 80 MeV (dot-
dashed), only pion-nucleon decay width ΓπN (dashed) and the full
width i.e. ΓπN − 2ΣI (dotted).

In order to construct a current operator from these Lint(x), a non-relativistic
free delta propagator associated with the quantized field Ψ∆(x) is required. The
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obvious need for having realistic descriptions for the delta propagator was stressed
in Refs. [109], [110] and [111]. In essence, the free relativistic delta propagator
from Appendix B -4 has to be modified for the finite delta decay width and the
medium corrections. With the aid of Eqs. B-22 and B-23, the spin and isospin
dependence of the propagator can be ignored which leads to the following general
expression for the non-relativistic delta propagator :

G∆(
√
s) =

1

(m∆c2 + ΣR) −√
s− iΓπN−2.ΣI

2

, (III-120)

where,
√
s equals the total energy in the delta c.o.m. system. The two quantities

ΣR and ΣI are the real and imaginary parts of the in-medium delta self-energy
where the pion-nucleon decay channel (ΓπN) has been lifted out of the imaginary
part of the self-energy. In Appendix C -5 an expression (C-33) for the pion-
nucleon delta decay width, which is the most important decay channel in free
space, has been derived assuming that all participating particles are on-shell. The
in-medium delta propagator depends on the Mandelstam variable s, therefore
it will undergo a shift of the position of the delta resonance in addition to a
broadening as can be observed from Fig. III-7. The off-shell mass correction
ΣR is effectively implemented in our calculations through the off-shellness of the
excited nucleon as well as by its Fermi motion. Therefore, we set ΣR equal to
zero when computing the ∆ propagator. The imaginary part of the self-energy
(ΣI), receives contributions stemming from the in-medium decay channels on
one side, and the Pauli-blocking of these channels on the other side [112] [113].
In Ref. [114], Oset and Salcedo used an RPA approach including up to 3p3h
contributions to calculate the self-energy diagrams for a general spin-isospin NN
potential. The results of their calculations could be parametrized as follows

−ΣI = CQ(ρ/ρ0)
α + CA2(ρ/ρ0)

β + CA3(ρ/ρ0)
γ , (III-121)

with, the nuclear matter density ρ0 = 0.17/fm3. In our calculations we used
the density averaged version of the imaginary self-energy III-121. Therefore we
folded the above expression with the 4He density function C-3 and averaged over
3-dimensional space. The photon energy dependence of this width is shown in
Fig. III-8.

Accounting for both the off-shellness and the imaginary self-energy of the in-
medium delta gives rise to a broadening and a shift towards lower energies for
the in-medium delta resonance (see Fig. III-7).
One can write the energy-dependence of the delta propagator in terms of the
Mandelstam variable s

Gres
∆ (

√
s) =

1

m∆c2 −
√
sres − iΓπN−2.ΣI

2

, (III-122)

with,

√
sres =

√

(mNc2 − εh)2 + p2
γc

2 + 2(mNc2 − εh)Eγ , (III-123)
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Figure III-8: Imaginary part of the delta self-energy obtained by averaging expres-
sion (III-121) with the 4He density.

where, εh is the binding energy of the active nucleon. For the ∆ propagator in
the u channel on obtains

Gnon−res
∆ (

√
s) =

1

m∆c2 −√
snon−res

, (III-124)

with,

√
snon−res =

√

|~pγ|2c2 +m2
Nc

4 − Eγ . (III-125)

As can be observed from Fig. III-7, the nonresonant propagator has the tendency
to decrease the relative impact of the nonresonant diagram at higher values of
the Mandelstam variable s.

At this point, one can derive an expression for the delta-excitation current
associated with the diagrams displayed in Fig. III-6. Starting from the interac-
tion Lagrangian density of Eq. (III-119) and adopting the quantum field theory
formalism, after some algebra one arrives at the following expression for the non-
relativistic delta current :

~̂J∆(0) = iec
(~c)3

9

fPV
πNNfπN∆fγN∆

(mπc2)3
GγN∆(Q2)

{

[

Gres
∆ +Gnon−res

∆

]

Fπ(~p r
2 )

~σ2.~p
r
2 c

|~p r
2 |2c2 +m2

πc
4

(4τ z
2 (~p r

2 × ~q)c− (~τ1 × ~τ2)z(~σ1 × ~p r
2 c) × ~qc) +

[

Gres
∆ −Gnon−res

∆

]

Fπ(~p r
2 )

~σ2.~p
r
2 c

|~p r
2 |2c2 +m2

πc
4

( − 2iτ z
2 (~σ1 × ~p r

2 c) × ~qc− 2i(~τ1 × ~τ2)z(~p
r
2 × ~q)c) + 1 ↔ 2

}

,

(III-126)
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where, pion hadronic form factors Fπ(p) are introduced to account for the short
range physics. An electromagnetic form factor GγN∆ is inserted at the γN∆-
vertex. It accounts for the finite extension of the ∆ particle. As the ∆ is a more
extended object then a nucleon, the following parameterization for the form factor
is adopted (see Ref. [115])

GγN∆(Q2) =





1

1 + Q2

Λ2
1





2

1
√

1 + Q2

Λ2
2

,

with Λ1 = 840 MeV/c, Λ2 = 1200 MeV/c and Q2 = −p2
γ . Some final remark

concerning the inclusion of these form factors remains to be made. Due to the
transverse nature of the delta current and the particular way of including the
form factors, gauge invariance is not violated for the delta current.

§4.3 Dynamical and kinematical correlations

With “correlations” we refer to dynamical, induced by the short-range part of
the nucleon-nucleon force, as well as kinematical correlations. The latter emerge
when the center-of-mass motion is treated properly. In an IPM treatment for the
initial and final wave function, the one-body reaction mechanisms (introduced
in subsection (§4.3.1)) have vanishing contributions to the two-nucleon knockout
process due to the orthogonality of the initial and final state. The one-body
current is only capable of altering one of the outgoing nucleon states leaving the
other nucleon state unaltered. Therefore this final state will be orthogonal to the
initial state. Another point is the appearance of so-called recoil diagrams into
the scattering matrix because of the action of short range and COM correlations.
The former account for the short-range behavior of the nucleon-nucleon potential.
The COM correlations arise in a natural way when treating the COM-motion in
a proper manner. In the next two subsections, we will focus, in more detail, on
both corrections to the scattering process.

§4.3.1 One-body current

The dominant contribution to the exclusive A(e, e′p) one-nucleon knockout reac-
tion stems from the one-body nuclear current. For a two-nucleon knockout reac-
tion, the one-body current contribution vanishes in an IPM picture. Taking the
correlations into account reintroduces the one-body current in the two-nucleon
knockout reaction process. The initial bound nucleon, which absorbs the pho-
ton, is definitely off-shell (p2 6= m2

Nc
2) whereas the detected nucleon has to be

on-shell. The major issue now is to find a parameterization for the half off-shell
NNγ-vertex.
Guided by the principle of Lorentz invariance, in the sixties Bincer ([116]) derived
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a general form for the off-shell NNγ-vertex :

Γµ(pf , pi) = e
{

Λ+(pf )
[

f++
1 γµ + if++

2 σµν(pγ)ν/2mN + f++
3 pµ

γ

]

Λ+(pi)+

Λ+(pf )
[

f+−
1 γµ + if+−

2 σµν(pγ)ν/2mN + f+−
3 pµ

γ

]

Λ−(pi) +

Λ−(pf )
[

f−+
1 γµ + if−+

2 σµν(pγ)ν/2mN + f−+
3 pµ

γ

]

Λ+(pi) +

Λ−(pf )
[

f−−
1 γµ + if−−

2 σµν(pγ)ν/2mN + f−−
3 pµ

γ

]

Λ−(pi)
}

,

(III-127)

with, Λ±(p) = (W ± p.γ)/2W, (W = +(p2)1/2) and pγ = pf − pi. With the final
nucleon on-shell, gauge invariance can be imposed with the aid of the Ward-
Takahashi identity :

qµΓµ(pf , pi) = eS−1
0 (pf )

[

S(pi) − S(pf )
]

S−1
0 (pi) ,

where, the bare and full nucleon propagator are represented by S0(p) and S(p)
respectively. The electromagnetic vertex reads :

ū(~pf ,msf
)Γµ(pf , pi) = eū(~pf ,msf

)
{[

f++
1 γµ + if++

2 σµν(pγ)ν/2mN

]

Λ+(pi)+
[

f+−
1 γµ + if+−

2 σµν(pγ)ν/2mN

]

Λ−(pi)
}

.

(III-128)

In Eq. (III-128) we neglected the terms proportional to qµ because they vanish
once coupled to a conserved electron current or to a real photon field. A measure
for the off-shellness of the form factors fλλ′

(p2
γ, p

i2) is given by how much pi2

differs from m2
Nc

2. Many authors have stressed the fundamental impossibility to
assess off-shell properties of particles. The major argument is that it is always
possible to perform a field transformation which does not change the scattering
matrix albeit modifying the off-shell parameters (see for example Refs. [117]
[118]). We are not aware of a theoretical model giving precise predictions for
these off-shell form factors although some attempts have been made (see Ref.
[119]). A possible way out of this, is to adopt the same operatorial form as
for the on-shell vertex, but adjusting the kinematical parameters that enter it.
Concerning the latter remark, the inserted momenta are the off-shell nucleon
momenta while the energies are the associated on-shell extrapolations satisfying
the relativistic dispersion relation : E =

√

~p2c2 +m∗
N

2c2 (withm∗
N = mN−εh and

εh the nucleon binding energy). All results contained in this work are obtained
with the so-called CC2-prescription for the NNγ-vertex :

Γµ
CC2 = FN

1 (Q2)γµ + iκN
FN

2 (Q2)

2mNc
σµν(pγ)ν , (III-129)

where, κN denotes the anomalous magnetic moment of the nucleon N . Two
different recipes to impose current conservation will be adopted : the Coulomb
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gauge (Jz ≡ ω
q
ρ) and the Weyl gauge (ρ ≡ q

ω
Jz). Estimates of the uncertainties

induced by the gauge ambiguities on A(~e, e′~p) observables can be found in Refs.
[120] and [121].
The on-shell form factors appearing in Eq. (III-129) can be expressed in terms
of the nucleon electric (GN

E (Q2)) and magnetic (GN
M(Q2)) form factors (or, Sachs

form factors) through

GN
E (Q2) = FN

1 (Q2) − Q2

4m2
Nc

2
κNF

N
2 (Q2) (III-130)

GN
M(Q2) = FN

1 (Q2) + κNF
N
2 (Q2) , (III-131)

where a dipole parameterization has been used for the Sachs form factors

Gp
E(Q2) =

1
(

1 + Q2

β2

)2 with β2 = 0.71(GeV/c)2 (III-132)

Gp
M(Q2) = µpG

p
E(Q2) with µp = 1 + κp = 2.793 (III-133)

Gn
E(Q2) =

τ

1 + 5.6τ

∣

∣Gn
M(Q2)

∣

∣ with τ =
Q2

4m2
Nc

2
(III-134)

Gn
M(Q2) = µn

1
(

1 + Q2

β2

) with µn = κn = −1.913 . (III-135)

The finite size of the nucleon, imposing the use of form factors, gives rise to an
additional form factor GV (Q2) in the meson exchange current. Making use of the
relation III-103, one can prove that GV (Q2) depends on the nucleon form factor :

GV (Q2) = 2F V
1 (Q2) = F p

1 (Q2) − F n
1 (Q2) . (III-136)

Due to the non-relativistic nature of the nuclear wave function used in our
calculations, we need a reduction scheme to derive from the general relativistic
nucleon current an effective two-component hadronic current. Two different ap-
proaches appear in literature. First, the Pauli reduction scheme evaluates the
relativistic operator between free positive energy Dirac spinors (see Eq. (B-4))
and reduces the operator to a two-component form acting on the Pauli wave
functions. Second, the Foldy-Wouthuysen transformation which casts the oper-
ator in a block-diagonal form up to some higher order (in |~pN |/mN) correction
term. Only for the lowest order terms, the two techniques provide identical re-
sults (see Ref. [117]). The lowest order non-relativistic one-body nuclear current,
as derived in Appendix C -6 using the Pauli reduction method, reads :

ρ̂1−body(0) = eGp
E(Q2)

1 + τz
2

(III-137)

~̂J1−body(0) = ec

{

Gp
E(Q2)

~p fc+ ~p ic

2mNc2
1 + τz

2
+

i

[

Gp
M(Q2)

1 + τz
2

+Gn
M(Q2)

1 − τz
2

]

~σ × (~p f − ~p i)

2mNc

}

.(III-138)
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Amaro et al. performed a non-relativistic reduction for the meson exchange
current up to next to leading order [122]. From their relativistic expansions for
the pion-exchange currents and the transverse character of the delta current, one
can observe that to lowest relativistic order the time component of the nuclear
current does not receive any contribution beyond the one-body component, given
by Eq. (III-137).

§4.3.2 Recoil diagrams

All two-nucleon knockout calculations, involving “heavy” (A > 4) target nuclei
are performed in an IPM model or when corrected for the presence of short-range
correlations, in a CBF approach for the nuclear wave function. Both approaches
display some fundamental shortcomings which will be outlined throughout the
remainder of this section.
The IPM approximation discards all correlations neglecting manifestly the short-
range behavior of the nucleons. Experiments [123] advocate the necessity to
incorporate short-range correlations. The CBF technique, on the other hand,
incorporates the short-range correlations by folding the wave function with some
correlation function. This correlation correction is considered, in the calcula-
tions, as an additional pre-operator on the IPM wave function. Or, in other
words the correlations are considered as an essential part of the transition op-
erator. This has far reaching consequences for the wave function. A correlation
function makes the wave function no longer normalized and even worse the set of
corrected energy-eigenstates of the target nucleus are no longer orthogonal. The
latter introduces spurious contributions to the transition cross section coming
from a spontaneous decay of the target nucleus due to the mere presence of the
short-range correlations. A lot of present day theoretical model calculations are
performed in the so-called spectator approach; meaning : the remaining A − 2
nucleons do not participate in the reaction process whatsoever. Thereby discard-
ing a lot of rearrangement channels in the scattering matrix. In addition both
kind (IPM and CBF) of wave functions lack a proper description of the COM
dynamics. Correcting the COM fallacy alters the nuclear wave function as ex-
plained in chapter II.
In general, COM or short-range correlations alter the original IPM wave function
in a dramatic way which comes about when calculating the two-nucleon knock-
out scattering matrix. While in the common calculational schemes (no COM and
spectator approach at correlation level) only a few diagrams had to be calculated,
in the, along the previous lines adjusted, model a lot of additional diagrams have
to be included. Those are called recoil diagrams and account for the various re-
arrangement channels in the scattering process. The complete range of diagrams
included in our calculations are displayed in Fig. III-10. For an A-body nucleus
this amounts to A−1 and A(A−1)

2
−1 additional diagrams for respectively the one-

and two-body current and this for every component in the scattering matrix(e.g.
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Figure III-9: The polar angle dependence of the 12C(e, e′pp) and 12C(e, e′pn) dif-
ferential cross section in quasi-deuteron kinematics (P = 0). The
solid and dotted curve represent a calculation including final-state
interactions using two different correlation functions. The dot-
dashed curve represents the same calculation but in a PWA ap-
proach. For the dashed curve only the isobar current was included.
These pictures are taken from Ref. [125].

5 additional pion in-flight diagrams in the case of an 4He-target etc.). The need
for incorporating these recoil diagrams can be observed from the two-nucleon
knockout data using 3He as a nuclear target. From [124] and [14] it is clear that
the recoil contribution to the pp- knockout cross section coming from the meson
exchange current, for example, is needed in order to explain the data.

§5 Final state interactions

Towards the end of the theoretical part of this work some remarks regarding the
role of FSI in two-nucleon knockout reactions are in order. Many articles have
been published discussing the impact of final-state interactions on the unpolarized
cross section and the polarization observables. Final-state interactions do not al-
ter the angular dependence of the cross section considerably (see Fig. III-9). As
a matter of fact, FSI mechanisms reduce the nuclear response because of rescat-
tering effects into other final state channels (see Ref. [126]). As discussed in Sect.
§3 some of the polarization observables are particularly sensitive to rescattering
effects (Pi,Σc and Ae) (see Ref. [125]). The associated experimental observables
can be used as a measure to estimate the importance of FSI-effects in their being
different from zero all over phase space.
Because the aim of this work is to see whether the recoil terms give some ob-
servable contribution to the experimental quantities and to determine by which
reaction mechanisms the two-nucleon knockout reaction is driven, all FSI-effects
will be discarded. The final state wave function adopted, is a plane wave.
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The reaction studied throughout this dissertation is the semi-inclusive four-
body breakup channel contributing to the two-body knockout reaction on a 4He
nuclear target. In this particular case the final state wave function reads :

Ψf
4He(x1, x2, x3, x4)

PW
= A

{

1

(2π)3/2
e−i~pa.~r1χ(1/2,msa )(1)ζ(1/2,mta )(1).

1

(2π)3/2
e−i~pb.~r2χ(1/2,msb

)(2)ζ(1/2,mtb
)(2).

1

(2π)3/2
e−i~pc.~r3χ(1/2,msc )(3)ζ(1/2,mtc )(3).

1

(2π)3/2
e−i~pd.~r4χ(1/2,msd

)(4)ζ(1/2,mtd
)(4)

}

,(III-139)

where, msi
and mti denote the spin and isospin projections.

The above wave function is no solution of the Schrödinger equation for the re-
alistic NN potential adopted to derive the 4He bound-state wave function. The
continuum and bound state solutions of the Schrödinger equation belong to dif-
ferent orthogonal subspaces. In order to ensure orthogonality and remove all
sources of spurious overlaps, a Gramm-Schmidt procedure is adopted. Hereby,
the component orthogonal to the ground state is projected out of the plane wave
solution and reads as follows :

Ψf
4He(x1, x2, x3, x4) =

Ψf
4He

PW −
〈

Ψf
4He

PW
∣

∣

∣Ψi
4He

〉

P
Ψi

4HeP
√

1 −
∣

∣

∣

〈

Ψf
4He

PW
∣

∣

∣Ψi
4He

〉

P

∣

∣

∣

2
, (III-140)

with, Ψi
4HeP

= 1
(2π)3/2 e

−i ~P ~RΨi
4He.

In the most general case, a wave function constructed through such a procedure
will contain components from bound and continuum states. In the 4He case this
projected state will lie in a vector space spanned by continuum states only. In-
deed, 4He has only one bound state. The momenta and spin-isospin projections
for the outgoing particles remain the same as for the plane wave. The correct
continuum states differ from the plane wave solution by a momentum depend
phase factor. In short, we claim that this projected state will describe the correct
final state rather well in the case of 4He.
Some articles claim this orthogonalization procedure as being a final state inter-
action because it brings the newly obtained wave in closer agreement with the
actual wave function. Actually it is just a necessary procedure to make the model
internally consistent (≡ removing spurious transitions).



Chapter IV

Results and discussion

Differential cross sections and polarization observables are presented for

both electro- and photo-induced two-nucleon knockout reactions result-

ing from semi-exclusive four-body break-up of 4He. All calculations are

performed in coplanar kinematics which is the preferential kinemati-

cal choice for most experiments. An orthogonality corrected plane-wave

treatment for the ejected particles is adopted. This chapter focuses on

short-range correlations, recoil effects and the presence of subnuclear de-

grees of freedom like e.g. the delta resonance. Theoretical predictions will

be presented for the PIP-TOF 4He(γ, NN)NN experiments performed

at the Mainz microtron as well as for the 4He(e, e′pp)nn experiment per-

formed at the ELSA facility in Bonn.

§1 Introduction

Before turning to the problem of modeling the four-body breakup of the 4He
system, we will elaborate on the data and calculations available for three-body
breakup of the 3He nucleus. Common mean-field techniques used to study 16O,
12C, 208Pb, . . . for example are not applicable to 3He, where one has to resort to
few-body techniques. This is also the case for the 4He system. So, by studying
the qualitative features of the three-body breakup γ +3 He → p + p + n, one
may hope to get an idea of what to expect for 4He. At present, no exclusive
two-nucleon knockout calculations are available for 4He.
In this section, results stemming from two different theoretical schools will be
commented on. First, there are the calculations by the Bochum group (see Fig.
IV-1) for a recent 3He(e, e′pp) experiment performed at the NIKHEF-facility [14].
Second, calculations dating from 1987, performed by J.M. Laget are available.
He studied the 3He(e, e′pp) reaction in quasi-deuteron kinematics (See Fig. IV-2).
More recently, his calculations have been compared to the data of a 3He(e, e′pp)
experiment performed by the CLAS collaboration at TJNAF [127].

The NIKHEF 3He(e, e′pp) experiment [95] [128] was performed with an initial
beam energy of 563.7 MeV. Fig. IV-1 shows a comparison of the data with the
theoretical predictions for three different cuts in the phase space. The first panel
focuses on the low missing momentum (~pm = ~pγ∗−~pp1−~pp2 = ~pn) side of the spec-
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Figure IV-1: Figures from the Phd-thesis of David Groep [14]. In all three pic-
tures the solid curves represent the results of a continuum Faddeev
calculation including only one-body currents while for the dashed
curves also meson-exchange currents (MEC) are incorporated.
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trum where one would expect most of the strength. In this kinematical regime
the photon is absorbed predominantly by the detected proton pair leaving the
neutron merely as a spectator. In these circumstances, one could expect that the
meson-exchange contributions to the cross section are heavily suppressed. This
effect is confirmed by the Bochum calculations. At low transferred energy the
cross section is determined by the one-body knockout diagrams and short-range
correlations. At energy transfers approaching 250 MeV the reaction mechanisms
involving intermediate delta creation become increasingly important. At 250
MeV, the transferred energy has reached the point where the incident photon
can excite an intermediate delta inside the nucleus. From Fig. IV-1 one notices
that the Bochum calculations badly underestimate the experimental data once
intermediate ∆-excitation is expected to come into play. In the Bochum calcu-
lations, use is made of a static prescription for the delta current. It’s common
knowledge that the latter does not produce a pronounced delta signature in the
energy dependence of cross sections.
At higher missing momenta (see panel (b) of Fig. IV-1) the deviations between
the predictions and the data grow. In addition to the one-body current contri-
bution, they predict 3He(e, e′pp) strength attributed to the MEC. This two-body
contribution is found to be almost energy-independent and considerably smaller
than the one-body part. As already mentioned by Golak [15], the lack of strength
at ω ≈ 280 MeV, can be attributed to a three-body process where a delta is ex-
cited on a pn pair. In this reaction channel the undetected neutron carries a lot
of momentum generating therefore a high missing momentum.
The above features as a function of missing momentum pm are summarized in
the lower panel of Fig. IV-1. This figure displays the cross section for a certain
transferred energy and momentum as a function of missing momentum. This
picture clearly shows that the lack of strength in the theoretical cross section is
likely due to the three-body channel involving an intermediate delta. This state-
ment is confirmed by the observation that at low missing momenta the theoretical
predictions reproduce the experimental points within a few percent. At higher
missing momenta, on the contrary, the theoretical cross section underestimates
the measurements by one order of magnitude. In an attempt to improve their
calculations, the Bochum group included meson exchange currents. Albeit the
relative importance of the MEC contributions grows with missing momentum
they are unable to bridge the gap between theory and experiment.
Summarizing, a proper description of the delta resonance, on the one hand, and
including all rescattering channels on the other hand, appear indispensable to
arrive at a good description of the 3He(e, e′pp)n reaction mechanism.

The calculations displayed in Fig. IV-2 essentially provide additional argu-
ments to sustain the remarks made above. Laget focussed on QD kinematics in
his calculations depicted in Fig. IV-2. In QD kinematics, the active nucleon pair
resides in a relative S state and is assumed to be initially at rest in the nucleus.
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Figure IV-2: The longitudinal and transverse contribution to the 3He(e, e′pp)n
cross section in QD kinematics for Ee = 570 MeV, θ′e = 25 degrees
and ω = 200 MeV. The dashed lines denote a plane-wave approx-
imation without MEC’s, the dotted lines include the MEC mecha-
nisms in the PWA calculation, while the dot-dashed lines include
pp-rescattering. The solid lines are obtained by a full calculation
including MEC’s and final state interactions [124]. The polar angle
θ1 is expressed in the COM frame.
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In addition, the missing momentum pm = pf
n is put to zero so as to minimize

the contributions stemming from the rescattering channels. In this kinematical
regime the neutron does not participate in the reaction process and leaves the
nucleus without any further interactions. This is a well-known regime to empha-
size the contributions of the one-body current, and when selecting proton-proton
knockout, to reduce the effect of two-body currents. As expected, most of the
transition strength comes from the one-body current which makes up for almost
the entire longitudinal part. The transverse part, on the other hand, is suppressed
by adopting QD kinematics. To explain this we make the following two remarks.
First, the meson exchange currents contribute marginally to the pp-knockout
reaction only producing sizeable amounts of strength when approaching higher
missing momenta. Second, the delta current requires P- or D-wave admixtures in
the two-particle wave function which are suppressed in QD kinematics by setting
pm equal to zero.
In J.M. Laget’s theoretical model, the rescattering effects in the final channel are
taken into account using a partial wave analysis. They give rise to a correction
in the longitudinal response as can be readily observed from the bottom panel in
Fig. IV-2.
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Figure IV-3: The cosine of the pp lab frame open-
ing angle for the events with a leading
neutron and two fast protons. Filled
points show the data, open points
show the data with a leading neutron
emitted along ~q. The histogram shows
the available phase space volume nor-
malized to the data. Picture taken
from [127].

Whereas, in QD kinemat-
ics one focuses on pm ≈ 0,
the 3He(e, e′pp)n experiment
conducted by the CLAS col-
laboration studied, to the
contrary, only those events
where the photon is ab-
sorbed entirely by the third
nucleon giving rise to a high
missing momentum. Their
goal is to study the nucleon-
nucleon dynamics within the
nucleus. To get a clear sig-
nal of the nuclear dynamics
one should select only those
events where the detected
nucleon pair does not par-
ticipate in the electromag-
netic reaction with the pho-
ton. By selecting only high
missing momentum events,
one ensures that the, in the
final channel, detected nu-
cleon pair acts merely as a
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Figure IV-4: a) Lab frame 3He(e, e′pp)n cross section vs. relative momentum
of the fast pn pair. Points show the data, solid histogram shows
the PWIA calculations reduced by a factor of 6, thick dashed his-
togram shows Laget’s one-body calculation, thin-dashed histogram
shows Laget’s full calculation; b) same data versus the total mo-
mentum; c) an d) the same for fast pp pairs. Picture taken from
[127].

spectator. In addition, of the latter only those events are selected where, on
the one hand, the leading nucleon is emitted predominantly along the momen-
tum transfer and on the other hand, the final nucleon momenta are high i.e.
pN ≥ 250 MeV/c. These conditions will reduce the effects of FSI. Summarizing,
this experiment provides a great opportunity to measure the initial pair momen-
tum distribution in the nucleus.
Fig. IV-3 displays the angular distribution of the detected pair. One observes

that the nucleons of the detected pair are preferentially emitted back-to-back.
This is a clear signal for the presence of short-range correlations. Fig. IV-4 plots
the cross section as a function of the relative and total momentum of the pair.
Both pn and pp knockout data is reported. Both reaction cross sections display
nearly the same functional dependence. This might indicate that the isospin-
dependent terms in the correlation operator are rather small. In our four-body
breakup calculations, the isospin dependent correlation operators have been ne-
glected. In Ref. [127], an almost isotropically distribution in angle of the emitted
correlated nucleons is reported. Such a behavior is indeed expected for a correla-
tion operator which depends solely on the radial distance. Fig. IV-4 demonstrates
that, in the kinematics of the TJNAF experiment, the one-body current is the
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dominant contribution. Other diagrams have to be included though, to accu-
rately explain the data.
When particular kinematics, i.e. QD and back-to-back kinematics, are selected,
the cross section is dominated by the one-body current. The 3He experiments
discussed above are recorded in quite different energy regimes for the incoming
virtual photon. Therefore, in drawing some overall conclusions based on these
experiments, one should be cautious. The respective phase spaces spanned our
quite different which will be reflected on the particular shape of the cross section.
Though, some general trends can be detected. First, rescattering diagrams can’t
be neglected and second, the short-range correlations have a strong central part
supporting the assumptions made in Chapter II.

Based on the analysis of the 3He(e, e′pp) reaction studied by the Bochum
group and J.M. Laget, we can deduce some guidelines for our study of the four-
body breakup of 4He. First, it can be anticipated that at low missing momenta
the 4He(e, e′pp) cross section will receive a sizeable contribution from one-body
photon absorption mechanisms. In our approach, FSI effects are only partially
included. Indeed, the FSI mechanisms where it concerns rescattering terms be-
yond the recoil diagrams depicted in Fig. III-10, are discarded. It will be one of
our goals to make an educated guess about their share in the full set of diagrams
representing final state interactions. In the PhD-thesis of David Groep [14] and
subsequent papers [95] [128], calculations from the Bochum group which include
a static delta current operator are shown. These calculations don’t even come
close in explaining the measured strength at a transferred energy of 260 MeV.
We wish to investigate whether a dynamic treatment of the ∆ excitation could
explain this discrepancy. To this end, we will study 4He(γ,NN) cross sections
comparing results obtained with a static and dynamic descriptions for the ∆ cur-
rent. Reactions induced by real photons, which probe only the transverse part of
the electromagnetic response, are considered to provide a stringent test to study
the effect of MEC and IC.
In the forthcoming sections, 4He(γ, pp), 4He(γ, pn) and 4He(e, e′pp) calculations
will be presented. They are obtained with the model outlined in previous chap-
ters. We will investigate if they are subject to similar shortcomings as the 3He
results.
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Table IV-1: The explicit form of the one-body current for the isospin ppnn and
spin ↑↑↓↑ channel. The ~p (~p ′) denote the initial (final) momenta of
the particles involved. I denotes the imaginary unit vector.

§2 Model calculations and discussion

§2.1 Technical aspects

In this section, we will elaborate on some of the technical details of the numerical
calculations. When tackling the problem of three- (threshold energy, Eb = 26.1
MeV) and four-body (Eb = 28.3 MeV) breakup of the 4He nucleus, the need
for a module capable of doing symbolic calculations in spin-isopsin space was
realized soon. Due to the dimensions of the spin-isospin phase space, namely 16
spin channels for each of the 6 isospin channels, it would have demanded a lot of
man-power to determine the complete spin-isopin dependence of the scattering
matrix. As an example, table IV-1 lists the final form of the one-body current
operator in the isospin ppnn and spin ↑↑↓↑ channel i.e. :
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The spin-isospin module alluded to above, provides us with closed expressions
for the nuclear charge and current operators, in terms of particle momenta. The
obtained nuclear charge and current operators are folded with the initial and final
nuclear wave function expressed in momentum space. At this point, integrals over
the initial momenta have to be performed in order to compute the nuclear tran-
sition matrix elements. These quadratures are challenging when attempting to
evaluate them on standard computers instead of supercomputers. A well-known
technique to reduce the amount of quadratures is to adopt a partial-wave ex-
pansion. This allows them to be solved analytically. Partial-wave analysis suffers
from one major drawback once short-range correlations are included, namely slow
convergence. Therefore, we don’t resort to a partial-wave expansion technique.
In order to reduce the numerical complexity without significant loss of accuracy,
an expansion in terms of Gaussians is adopted for the pair correlation function.
This procedure is described in more detail in Appendix C -1.2. In the PWA,
this technique allows one to calculate analytically the nine-dimensional integral
occurring in the matrix element for the one-body charge and current operator.
The matrix elements involving a two-body current, on the other hand, cannot be
computed analytically. Using the same expansion as for the one-body current,
though, the initial twelve-dimensional integral can be reduced to a one or three-
dimensional one depending on whether one is dealing with the pion-seagull, delta
isobar or the pion-in-flight current. The remaining integrals have to be performed
numerically. They are computed with a second-order Newton-Cotes quadrature
technique. The integration steps are chosen so as to optimize the accuracy, at the
same time keeping the computational times within reasonable limits. Whenever
we integrate over a solid angle, the interpolation points are selected in a way they
form a symmetrical grid on the unit sphere. This suppresses spurious contribu-
tions introduced by the oscillatory character of the phase-space volume d cos θ.
Each scattering matrix element is corrected for spurious contributions stemming
from the non-orthogonality deficiency of the initial and final 4He wave functions.
As explained in Chapter III, a Gramm-Schmidt orthogonalization correction is
used. The latter does not introduce any additional integral.
As can be inferred from Eq. III-140, the orthogonalization correction exhibits two
general features. First, the non-orthogonality corrections scale with the magni-
tude of the overlap between the initial- and final-state wave function. For out-
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going nucleons with a kinetic energy Tp ≥ 50 MeV, the overlap is small and the
spurious contributions are heavily suppressed. Second, the expectation value of
the nuclear current, sandwiched between the initial and final 4He wave functions,
decreases exponentially with transferred momentum ~q. Therefore, with increasing
transferred momentum, the plane-wave solutions approach the results obtained
with the Gramm-Schmidt corrected continuum wave function. In general, for
the range of photon energies and ejectile momenta we are interested in, the non-
orthogonality corrections are minor. They make up less then 0.2 percent of the
transition matrix element and can therefore be safely neglected.
Finally, to arrive at a semi-exclusive two-body knockout cross section, reflecting
a four-body breakup process, an additional integration over the solid angle of one
of the non-detected nucleons has to be performed. When comparing calculations
to data, a summation over the spin and isospin quantum numbers of the non-
detected nucleons is often required. E.g., determining the 4He(γ∗, pn)X cross
section requires an additional sum over the two isospin channels 4He(γ∗, pn)pn
and 4He(γ∗, pn)np. All calculations shown throughout the following sections are
performed along these lines.
Before turning to the discussion of the theoretical results a final remark has to
be made. The nucleons, swirling around in the nucleus, are generally not on
the mass shell. Therefore, the nucleon wave functions do not obey the Dirac
equation. As a consequence, charge conservation is not necessarily fulfilled. To
ensure gauge invariance, we will effectively restore current conservation. Over
the years, several prescriptions have been developed to do this. In this work, we
adopt the so-called Coulomb gauge in which the longitudinal component of the
nuclear vector current is substituted by a charge density operator :

Jz → ω

q
ρ .

Whereas real photons, only addresses the transverse part of the nuclear current,
electro-induced two-nucleon knockout is also sensitive to the longitudinal current
components. Therefore, the effects of this substitution will manifest themselves
for processes involving virtual photons.

§2.2 4He(e, e′pp) results in QD kinematics.

Over the last number of years, a lot of theoretical and experimental effort has
been directed towards detecting signatures of short-range correlations. Kinemat-
ical conditions which have been recognized to provide great prospects for doing
so, are so-called quasi-deuteron kinematics. It is defined by the requirement that
the missing momentum ~pm equals zero. In the impulse approximation and in
the absence of all FSI mechanisms, the missing momentum ~pm equals the initial
COM momentum of the detected pair. Due to the finite resolution of detectors,
it is experimentally not possible to select genuine QD kinematics because of the
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Figure IV-5: The eightfold differential cross section for the
16O(e, e′pp)14C(0+, Ex = 0 MeV) reaction as a function of the
pair COM momentum. The dashed curve shows the results of a
distorted-wave calculation that include only intermediate ∆ excita-
tion. The solid (dot-dashed) curve is the result of a distorted-wave
(plane-wave) calculation that accounts for both the intermediate
∆ and central short-range correlations. The picture is taken from
[129].

smallness of the phase space volume. Theoretically, though, it represents a good
test-case to study the impact of correlations on the physical observables. In what
follows, we will present 4He(e, e′pp) calculations in QD kinematics and compare
them with the 3He(e, e′pp) results of J.M. Laget.

As the two-nucleon knockout cross sections scale with the pair momentum
distribution F ( ~PCOM), and F strongly decreases with increasing ~PCOM, they reach

a maximum for kinematical conditions approaching ~pm ∼ ~PCOM ≈ ~0. Fig. IV-5
illustrates the latter remark for the 16O(e, e′pp)14C(0+ (g.s.)) case.
In QD kinematics, the cross section will be dominated by the one-body cur-
rent as the active pair in the target nucleus resides preferentially in a relative
S state [123]. This argument is confirmed by reaction model calculations for
the 16O(e, e′pp)14C(g.s.) measured at the Mainz facility by the A1 collaboration.
Fig. IV-5 displays the computed differential cross section for the 16O(e, e′pp)14C
reaction to a specific final state i.e. 14C(0+, Ex = 0 MeV) in super-parallel kine-
matics. In super-parallel kinematics the ejected particles are detected along the
momentum transfer direction. At low values of ~PCOM, the detected strength is
almost entirely due to the one-body current and contributions attributed to in-
termediate delta excitation represent only a few percent of the total strength.
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Shell model Relative COM Relative wave function

(n1, l1)(n2, l2) (L, S)Jπ
pair (n, l) (N,Λ) 2S+1lJ(T )

(1s)2 (0, 0)0+ (1, 0) (1, 0) 1S0(T = 1)

(1p)2 (0, 0)0+ (1, 0) (2, 0) 1S0(T = 1)

(0, 0)0+ (2, 0) (1, 0) 1S0(T = 1)

(1, 1)0+ (1, 1) (1, 1) 3P1(T = 1)

Table IV-2: Possible 0+ configurations for proton-proton knockout from s- and
p-shell combinations. Λ(l) denotes the COM (relative) angular mo-
mentum of the pair.

At the low missing momentum side, the nucleons are predominantly knocked out
of a relative 1S0 state [123]. This observation can be theoretically substantiated
by means of a Moshinsky decomposition of the initial two-particle state. From
Table IV-2 one notices that a relative S state is directly linked to a center-of-mass
S state (Λ = 0) endorsing the observation that in QD kinematics the nucleons
reside in a relative S state. All the arguments cited above, confirm the statement
that QD kinematics, where |~pm| equals zero by definition, will favor the one-
body reaction mechanism. When performing two-proton knockout calculations
in a non-relativistic approach, the effect of meson-exchange currents (MEC) van-
ishes in lowest order. Indeed, in direct proton-proton knockout the MEC terms
vanish as no charged meson can be exchanged. Summarizing, the two-body cur-
rent strength is suppressed in QD kinematics, creating good conditions to detect
signatures of short-range correlations.

Fig. IV-6 displays the 4He(e, e′pp) cross section in QD kinematics for a trans-
ferred energy of 250 MeV and a virtual photon momentum equal to 335 MeV/c.
First, we will comment on the shift of about 20 degrees in the polar-angle dis-
tribution, observed when comparing the above model calculations with the cor-
responding 3He(e, e′pp) predictions of J.M. Laget contained in Fig. IV-2. This
shift can be attributed to the particular reference frames adopted in either calcu-
lations. Laget evaluated the cross section in the COM frame, whereas throughout
this work we express the measurable quantities in the LAB frame. Therefore, a
Lorentz transformation has to be applied before both predictions can be com-
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Figure IV-6: 4He(e, e′pp) cross section calculated in QD kinematics with an initial
beam energy of Ei

e = 1200 MeV, ω = 250 MeV, q = 335.15 MeV/c
and Em = 50 MeV. The dashed (dot-dashed) line depicts the result
of model calculations including only the one-body (two-body) current.
The solid line is obtained when both one- and two-body currents are
taken into account (for the corresponding diagrams, see Fig. III-10).
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pared. The observed mirror asymmetry in the LAB system of the 4He(e, e′pp)
cross section around a polar angle of ±70 degrees is equally as well a consequence
of the particular observation frame selected. Due to the aberration effect caused
by the Lorentz transformation, the calculated cross section looses its mirror sym-
metry observed when expressed in the COM frame (see Fig. IV-2).

From Fig. IV-5, one notices that at pm = 0 the two-body strength is almost
two orders of magnitude smaller than the one-body contribution. This observa-
tion is confirmed in our 4He(e, e′pp) calculations in QD kinematics displayed in
Fig. IV-6 where the one-body contribution makes up for almost 90% of the cross
section. The peculiar angular shape of the one-body current contribution can be
explained by means of the information contained in Fig. IV-7. First, Fig. IV-7
confirms the effect of the Lorentz transformation alluded to above, i.e. the loss
of mirror symmetry.
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Figure IV-7: The initial momentum of the
struck nucleon as a function of
the polar angle of nucleon 1 in
QD kinematics and for a fixed
value of ω. The solid (dot-
dashed) line refers to the situ-
ation where the photon is ab-
sorbed by nucleon 1 (2).

Second, Fig. IV-7 illustrates
that the initial nucleon momen-
tum grows with increasing polar
angle when the photon is absorbed
on nucleon “1”, while the opposite
occurs when the photon couples to
nucleon “2”. When selecting QD
kinematics and final state interac-
tions are neglected, one can state
that the detected nucleons ini-
tially move back-to-back in their
COM frame. Their respective ini-
tial momenta are equal but oppo-
site, resulting in PCOM = 0. Based
on the shape of the one-body mo-
mentum density, depicted in Fig.
II-6, one can conclude that the
contribution of the one-body cur-
rent term where the photon cou-
ples to nucleon “1” drops with po-
lar angle. The opposite holds true
for the situation whereby the vir-

tual photon is absorbed on nucleon “2”. After superimposing both contributions,
one arrives at the dashed curve of Fig. IV-6.
Therefore, the observed local enhancement of the c.s., displayed in Fig. IV-6, at a
polar angle of about 70 degrees is due to the presence of short-range correlations
which introduce high nucleon momentum components in the nucleus. For θ1 ≈ 70
degrees either absorption on nucleon “1” or nucleon “2” requires the presence of
fast nucleons with an initial momentum of approximately 450 MeV/c. When
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Figure IV-8: 4He(e, e′pp) cross section calculated in QD kinematics with an initial
beam energy of Ei

e = 1200 MeV, ω = 250 MeV, q = 335.15 MeV/c
and Em = 50 MeV. The results are obtained with a harmonic oscil-
lator wave function. The same conventions are adopted as in Fig.
IV-6.

redoing the above calculations while neglecting all short-range correlations, one
arrives at Fig. IV-8. The noted differences between the cross sections contained
in Figs. IV-6 and IV-8, nicely illustrate the impact of short-range correlations.
Most of the above remarks rely on the assumption that the rescattering or final-
state interaction effects can be neglected. To investigate to what extent the recoil
terms contribute, we calculate the total cross section with and without including
the recoil diagrams. These diagrams were introduced in the previous chapter and
are displayed in Fig. III-10. They arise in a natural way when the COM motion
of the nucleus is properly taken into account. The reaction model calculations
are depicted in Fig. IV-9. One notices that the recoil diagrams only marginally
contribute to the cross section in QD kinematics. This provides a strong argu-
ment that the incident photon is entirely absorbed on the hit nucleon pair leaving
the remaining nucleons as mere spectators. In addition, one can state that due
to the selection of QD kinematics (pm = 0) and a photon momentum q = 335
MeV/c one selects only those events where the hit and detected nucleon pair are
identical.
These observations put forward the following picture of the scattering process in

QD kinematics. Initially, the four nucleons in the 4He nucleus combine to highly
correlated pairs residing in a relative 1S0 state. The incident virtual photon cou-
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Figure IV-9: 4He(e, e′pp) cross section calculated in QD kinematics with an initial
beam energy of Ei

e = 1200 MeV, ω = 250 MeV, q = 335.15 MeV/c
and Em = 50 MeV. The solid (dot-dashed) curve shows the result of
the model calculations when the recoil diagrams are (not) included.

ples to either one of the two nucleons of a correlated pair. Without any further
interaction the struck nucleon escapes from 4He. The remaining system is left in
an unbound state. Therefore, the other three nucleons propagate as free particles
to infinity without any further mutual interactions. As a first order correction
to this picture, one includes two-body reaction mechanisms in which the virtual
photon four-momentum is shared by both nucleons of the detected pair.

Fig. IV-10 displays a small non-vanishing two-body contribution due to the
excitation of an intermediate delta particle. A further refinement of the model
consists of including rescattering terms. One important class of these consists of
the meson-exchange diagrams where the photon is absorbed by a proton-neutron
pair. Fig. IV-10 shows the magnitude of these contributions to the total cross
section.

Summarizing, in QD kinematics the 4He(e, e′pp)nn results presented here ex-
hibit identical features than the 3He(e, e′pp)n calculations discussed earlier. For
both of the isotopes considered, the one-body current dominates in QD kine-
matics, creating optimum conditions to study short-range correlations. More in
particular, the magnetization term generates most of the one-body strength due
to its proportionality to the transferred momentum |~q|. The delta and meson ex-
change contributions account for the remaining strength which is predominantly
located at θ = 0 and θ = 180 degrees. The seagull diagram dominates the meson-
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Figure IV-10: 4He(e, e′pp) cross section calculated in QD kinematics with an ini-
tial beam energy of Ei

e = 1200 MeV, ω = 250 MeV, q = 335.15
MeV/c and Em = 50 MeV. As in Fig. IV-6 a realistic 4He wave
function is used. The dashed (dot-dashed) curve displays the me-
son (delta) contributions while the solid curve represents the total
cross section.

exchange contribution, as it overshoots the pion-in-flight term by two orders of
magnitude.

In QD kinematics, the two-nucleon knockout cross section is driven by the
one-body current. In what follows, we will find that also the polarization observ-
ables exhibit the same behavior. The only non-vanishing polarization observables
in 4He(~e, e′~pp) are the longitudinal P ′

l and transverse P ′
t components of the trans-

ferred polarization as can be inferred from Table III-1. Fig. IV-11 depicts both
the longitudinal and transverse transferred polarization in QD kinematics. The
upper panels of Fig. IV-11 are obtained with a realistic 4He wave function while
for the lower panels a harmonic oscillator wave function is adopted. Despite the
fact that the one-body contribution dominates the cross section, it generates a
rather small transferred polarization, for both the realistic and the harmonic os-
cillator wave function. The absence of an explicit spin dependence gives rise to a
vanishing transferred polarization induced by the convection current. Therefore,
only the magnetization current generates a sizeable transferred polarization. The
meson-exchange and isobar current induces a rather large transferred polariza-
tion which remains, however, suppressed in the final results due to their obviously
small contributions to the matrix elements.

Comparing the realistic to the harmonic oscillator calculations, one notices an
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Figure IV-11: The longitudinal P ′
l and transverse P ′

t components of the trans-
ferred polarization for the 4He(~e, e′~pp) reaction in QD kinematics
for E = 250 MeV, q = 335 MeV/c and Em = 50 MeV. The pan-
els (a) and (b) are obtained using a realistic 4He wave function
while for the pictures (c) and (d) a harmonic oscillator description
is adopted. The dashed (dot-dashed) curve displays the one-body
(two-body) contributions while the solid curve represents the total
transferred polarization.
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almost identical longitudinal transferred polarization. Therefore, one can state
that the longitudinal part of the polarization transfer is quite insensitive to the
detailed form of the 4He ground-state wave function. In other words, short-range
correlations do not affect the longitudinal component of the transferred polariza-
tion much. The transverse component of the polarization transfer, on the other
hand, emerges as a rather well suited quantity to study the effects of short-range
correlations.
Another conclusion which can be drawn from Fig. IV-11 concerns the impact of
rescattering effects. The rescattering effects generated by the recoil terms con-
tribute predominantly to the two-body current. Therefore one can state that the
recoil contributions will not alter the transferred polarization much. This conclu-
sion still holds when apart from the recoil diagrams also other FSI mechanisms
are included [125]. Concluding, the transverse component of the transferred po-
larization is particularly sensitive for the presence of short-range correlations. It
has the additional advantage of being rather insensitive to FSI.
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Figure IV-12: Experimental setup for the 4He(e, e′pp) experiment conducted at the
ELSA facility in Bonn by R. De Vries [16]

§2.3 The De Vries experiment: B2B-kinematics

Back in 1990, a 4He(e, e′pp) experiment at the ELSA facility in Bonn was con-
ducted by R. De Vries [16]. The ELSA facility consists of a 2.5 GeV synchrotron
which delivers the 1200 MeV electron beam. The scattered electrons were de-
tected under an angle of 12 degrees in the ELAN magnetic spectrometer. Two
sets of scintillator detectors were used to detect the knocked-out protons. One
placed in the forward direction and one in the backward direction relative to
the propagation direction of the virtual photon. The forward telescopes have an
energy acceptance ranging from 90 to 185 MeV. The energy acceptance of the
backward detectors lies in the range [35, 170] MeV.
In the analysis of the data, a cut on low missing energies was made i.e. Em ≤ 80
MeV. Generally, various reaction mechanisms have been recognized to contribute
to the two-nucleon knockout reaction. By cutting on low missing energies, the
genuine direct two-body reactions will be enhanced while the major rescattering
mechanisms are suppressed. In addition, one concentrates on the events where
the protons are moving initially back-to-back in their COM frame. Keeping the
relativistic aberration effect in mind, the forward and backward telescopes are not
placed exactly anti-parallel, as noticed from Fig. IV-12. The recent 3He(e, e′pp)n
results by Weinstein et al. [127], confirm that correlated nucleons are predomi-
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nantly moving back-to-back (B2B) in the nucleus. In addition, for pp-knockout
at low missing energies, no meson-exchange terms contribute. Therefore, one
may expect that proton-proton knockout in B2B kinematics will be particularly
sensitive to the nucleon-nucleon correlations in the 4He nucleus. The features
of the nucleon-nucleon dynamics give rise to the particular shape of the relative
pair momentum distribution. The 4He relative pair momentum distribution was
derived in chapter II and shown in Fig. II-6. The elusive short range correlations
reside at the high relative momentum side. When high relative pair momenta are
probed, small nucleon-nucleon distances are scanned i.e.

λ ∼ 197.3 MeV fm

pc
.

It would be most interesting to measure the c.s. as a function of the initial rel-
ative momentum associated with the detected pair. From an experimentalist’s
point of view one has to seek for an accessible observable which depends almost
linearly on the initial relative momentum. Alluded to above, the cut on miss-
ing energy forces the photon to couple to one of the nucleons of the detected
pair. Fig. IV-13 shows the phase space scanned by the Bonn experiment. The
top panels depict the accessible phase space volume, normalized to unity, as a
function of the opening angle of the forward proton and the relative momentum.
In the left (right) panel the initial relative momentum refers to the case where
the photon is entirely absorbed by proton 1 (2). The differences in acceptance
of the forward and backward detectors produce the observed asymmetry. These
pictures illustrate the ability to scan the relative pair momentum just by turning
the detectors around the target cell. In addition, by varying the detection angle
from 0 to 90 degrees one probes higher missing momenta. Therefore the cross
section will drop as a function of θf .
The bottom picture, on the other hand, plots the available phase space volume as
a function of the relative pair momentum for the cases where the photon couples
to either one of the detected protons. One notices from panel (c) that in back-to-
back (B2B) kinematics the scanned relative pair momentum is at its maximum.
Due to the higher relative pair momentum probed when the photon is absorbed
on the backward proton, one can safely assume that for the majority of events
the forward proton absorbs the incoming photon.
The simplified reaction picture looks as follows : a photon encounters a highly
correlated proton-proton pair and, after absorption by one of the protons, it
propagates along the direction of the photon. As a result, the nucleus entirely
disintegrates without any subsequent interactions between the constituents.

Now, we will elaborate on the features of the reaction process. Fig. IV-14
depicts the pp-knockout cross section in B2B kinematics with 250 < ω < 300
MeV and 0 < Em < 80 MeV. The data are from the 1990 experiment performed
at the ELSA facility by De Vries [16]. We compare the predictions obtained with a
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Figure IV-13: Phase space volume available as a function of θf and the initial
relative momentum. Both the situation where the photon couples
to the forward proton (a) as where it couples to the backward going
proton (a) is shown. B2B-kinematics is selected for an initial beam
energy of 1200 MeV and with Eγ∗ = 225 MeV, qγ∗ = 319 MeV/c
and Em = 40 MeV.
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Figure IV-14: The average 4He(e, e′pp) cross section, calculated with a realistic
(left panel) and a HO wave function (right panel), is plotted against
the forward angle θf . The calculations are performed for 200 <
ω < 250 MeV and for missing energies not exceeding 80 MeV. The
dashed curve represents the one-body current while the solid one
includes also the meson- and isobar exchange current. The data
are taken from Ref. [16]

realistic and a HO 4He wave function. A phase-space averaging, accounting for the
detector acceptances, is performed. As anticipated, for both choices of the wave
function the one-body contribution accounts for almost the entire 4He(e, e′pp)
strength. At larger opening angles θf , the two-body current diagrams represent
the major fraction of the two-proton knockout strength. The explanation for
this effect is twofold. First, the transverse character of the delta current makes
it appear at larger angles. Second, when turning the detectors away from the
incident beam higher missing momenta and equivalently missing energies are
probed. The latter statement can be proved by the following dispersion relation :

Em ≈ 28.3MeV +
p2

m

4mN

, (IV-1)

with mN the mass of the nucleon. The following expressions are adopted for the
missing energy and momentum in the four-body breakup channel :

Em = ω − T f
n1

− T f
n2

= 28.3 MeV + T f
n3

+ T f
n4

(IV-2)

~pm = ~pγ − ~pf
n1

− ~pf
n2

= ~pf
n3

+ ~pf
n4

, (IV-3)

with n1 and n2 the detected nucleons. In pp-knockout and selecting B2B-kinematics,
namely, the two-body current strength resides at high missing energies.
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Figure IV-15: The average 4He(e, e′pp) cross section versus the forward angle θf .
The left panel includes all reaction channels while for the right
panel the recoil terms are neglected. The calculations are performed
for 200 < ω < 250 MeV and with a missing energy cut equal to 80
MeV. The dashed curve represents the one-body current, the dot-
ted curve displays the meson-exchange current while the dot-dashed
curve represents the delta contribution. The full line includes all
reaction channels. The data are taken from Ref. [16]

It is noteworthy that with a HO wave function one obtains larger 4He(e, e′pp)
cross sections adopting a one-body current. Nevertheless, the HO wave function
cannot be expected to account properly for the effect of short-range correlations.
Indeed, the one-body current contribution (dashed line in Fig. IV-14) falls steeply
with increasing θf , or equivalently prel, for a HO wave function. This lead us to
conclude that other correlations must be present in the nucleus besides the SRC.
One source of them are so-called center-of-mass correlations as defined in Section
§4.3. They embody an important part of the collective behavior of the nucleons
in the nucleus. In other words, the nucleons are not individually circling around
an imaginary origin but they prefer to stay close to each other. Mathematically,
this objective of implementing COM effects can be accomplished by making the
wave function to depend on the relative coordinates only.
In this work, we will make a distinction between two kinds of correlations i.e.,

COM which are rather long-range and short-range correlations. Where the COM-
correlations tend to hold the nucleons together, the SRC drive the nucleons out
of each others vicinity. The former favor low relative pair momenta while the
SRC’s add strength to the high momentum side of the relative pair momentum
distribution. Fig. IV-14 illustrates this feature. From Fig. IV-13 we inferred
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Figure IV-16: The longitudinal component of the transferred polarization P ′
l cal-

culated with a realistic model wave function, is plotted against the
forward angle θf . The calculations are performed for 200 < ω <
250 MeV and with a missing energy cut equal to 80 MeV. The
dashed curve represents the one-body current, the dotted curve dis-
plays the meson-exchange current while the dot-dashed curve rep-
resents the delta contribution. The full line includes all reaction
diagrams.

that in order to probe high relative momenta, one has to turn the detectors to
more perpendicular angles. The one-body strength falls as a function of forward
angle, or, equivalently relative pair momentum. This feature is independent of the
wave function used. Though we notice a different behavior for the realistic as for
the HO calculations. The HO calculations predict more strength at low relative
momenta where for a realistic wave function one notices a shift of strength to
higher relative momenta. Summarizing, calculations performed with a realistic
wave function predict two-proton knockout cross sections which fall gradually
with increasing ~prel. For a HO wave function, on the other hand, a steep fall
with growing ~prel is noticed.

To gain additional insight in the reaction process, we plotted in Fig. IV-15
the various sub-mechanisms contributing to the cross section. A realistic model
wave function is used. The left panel of Fig. IV-15 accounts for all diagrams
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of Fig. III-10. The curves displayed in the right panel, on the other hand, only
include direct knockout processes i.e. only the diagrams of Fig. III-10 within the
red boxes are retained. The meson-exchange terms, although not present in the
direct proton-proton knockout picture, start playing a role once recoil effects are
included in the reaction model. One should keep in mind that while going from
left to right on the θf -axis, the missing momenta and equivalently energies (see
Eq. IV-1) grow. This observation explains why the meson exchange strength is
located at larger polar angles. The majority of the delta excitation strength can
be attributed to recoil terms and therefore lies at the high missing energy side of
the spectrum. At forward angles, the delta current vanishes due to its transverse
character as already alluded to earlier in this section. The predicted impact of
the recoil terms could have been experimentally verified if the data had covered a
wider range in θf . Indeed, at θf = 60 degrees calculations which neglect the recoil
diagrams predict a c.s. which is about one order of magnitude smaller than when
including them. The one-body current, on the other hand, is only marginally
altered by the presence of rescattering terms. Albeit, a small enhancement of the
cross section is observed for large polar angles.

In back-to-back kinematics, the one-body diagram overwhelms all other reac-
tion diagrams. Polarization observables come in handy to determine the sensitiv-
ity to the two-body strength. Fig. IV-16 shows the longitudinal component P ′

l of
the transferred polarization. At a polar angle of 50 degrees, one gets a clear sig-
nature for the presence of the delta excitation. Fig. IV-16 confirms the previous
observation that the recoil terms dominate the two-body reaction mechanisms.
Notice the difference in the θf dependence of the transferred polarization between
the direct knockout and recoil terms.

Summarizing, the impact on the 4He(e, e′pp) cross section of COM correlations
and SRC’s is demonstrated for B2B-kinematics. Whereas the former reign at
low relative pair momenta, the latter show up at the high relative momentum
side. The recoil diagrams are shown to generate some strength at high missing
momenta. Polarization measurements could select them out of the background.
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Figure IV-17: Experimental setup for the 4He(~γ,NN) experiment conducted by
the A2 collaboration at the MAMI facility in Mainz [130].

§2.4 The Mainz 4He(~γ,NN) experiment

In this section, we focus on the 4He(~γ, ~NN)NN reaction. Both photo-induced
pn- and pp-knockout are studied. Our calculations are performed for the specific
experimental setup used for the 4He(γ,NN) measurements by the A2 collabo-
ration in Mainz, for which a sketch is depicted in Fig. IV-17. The microtron
MAMI delivers the 854.6 MeV electron beam. The accelerated electron beam is
directed on a diamond crystal. This radiator produces a photon beam based on
the process of Bremsstrahlung. Bremsstrahlung generated by electron scattering
on a lattice structure produces a highly polarized photon beam as can be deduced
from the reaction cross section :

dσ(e→ e′ + γ) ∼
∑

λ

∫

d3~k

(2π)3
.
e2

2k

∣

∣

∣

∣

~ελ.

(

~p′

p′.k
− ~p

p.k

)∣

∣

∣

∣

2
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θ φ Ω

stand 1 13.98 180. 0.092

stand 2 14.52 0. 0.093

stand 3 31.50 0. 0.092

stand 4 50.71 0. 0.094

stand 5 72.13 0. 0.18

stand 6 99.65 0. 0.21

stand 7 143.54 0. .30

Table IV-3: The polar and azimuthal angles and associated solid angle volumes
used in the calculations. The latter are taken into account to simulate
the specific acceptances of TOF.

with ~ελ the polarization vector and ~p(~p′) the initial (final) electron momentum.
Obviously, the Bremsstrahlung photons are polarized predominantly parallel to
the scattering plane and perpendicular to the photon propagation direction. The
scattered electrons are detected in the Tagger. The Tagger which consists of a 1
Tesla magnet, is used to determine the energy of the scattered electrons. Due to
the mechanical properties of the Tagger, polarized photons are produced with an
energy ranging from 100 to approximately 700 MeV.

The reaction products of the photo-induced pn- and pp-knockout reaction are
detected by the PIP-TOF detectors. The pion proton (PIP) detector is positioned
behind the target and perpendicular to the photon beam. The proton, or for pp-
knockout one of the protons, is detected by PIP. PIP spans a polar angle ranging
from 69 to 126 degrees and has an azimuthal acceptance of ± 21 degrees. To keep
the calculations manageable, the cross section will be evaluated at the center of
PIP (θ = 90 and φ = 180 degrees) and weighted by the covered solid angle (i.e.
1.03 sr) to account for the total acceptance of PIP. The second reaction product,
a proton or a neutron, is captured by the TOF detector. The time of flight (TOF)
detector consists of up to 7 detector stands covering a wide polar angle extending
approximately from -20 to 150 degrees. Its azimuthal acceptance varies over the
several stands with an average value of ± 20 degrees. As for the PIP detector,
each of the seven stands of TOF will be reduced to one single point in space when
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performing the numerical calculations. The angular acceptances are implemented
by means of a weight factor equal to the covered solid angle. Table IV-3 gives
an overview of the angular positions of the various detector stands together with
their respective solid angle acceptances. With the aid of a start and veto detector
(SVD) who wraps the target cell, TOF can discriminate between a proton and a
neutron.
The energy acceptance of the PIP and TOF detectors is confined to the range
[40, 250] MeV. The upper bound of 250 MeV for TOF was imposed so as to ensure
that protons and pions could be unambiguously discriminated.
To account for the fact that the detectors have a finite resolving capability, one
has to average the theoretical quantities. Meaning, before comparing the data
with the model calculations a smoothing of the latter, as a function of the quantity
depicted on the x-axis, has to be performed. The calculated cross sections for
PIP-TOF kinematics presented in this work will be denoted as :

(

d6

dT1DΩ1DT2dΩ2

)

int
.

The latter is a short notation for the six dimensional cross section integrated over
the available PIP-TOF phase space :
(

d6σ

dT1dΩ1dT2dΩ2

)

int
=

∫

PIP-TOF phase space

d6σ

dT1dΩ1dT2dΩ2

dT1dΩ1dT2dΩ2 .

Our model, outlined in chapter III, incorporates apart from genuine two-
body absorption mechanisms also a multitude of rescattering terms, i.e. the
recoil diagrams. The latter appear in a natural way when both SRC and COM
correlations are included. As a consequence, our reaction model is designed to
model the data over a wide range of Em and pm (see Eq. IV-3). Albeit some
of the rescattering processes are accounted for, our theoretical description does
not account for pion reabsorption and production. Neither does it account for
the final state interactions (FSI) apart from the recoil terms. Fig. IV-18 shows
a Monte Carlo simulation displaying the strengths stemming from the various
reaction mechanisms contributing to NN knockout. The calculations fail in de-
scribing the 4He data whereas for the 12C data a good agreement is obtained.
This can be attributed to the treatment of the nucleus as a Fermi gas, which can
only be expected to be a reasonable approximation for medium heavy and heavy
nuclei. Nevertheless, the Monte-Carlo calculations from the Valencia group allow
to draw various conclusions about the general features and trends of the un-
derlying reaction mechanisms to photo-induced two-nucleon knockout processes.
First, the impact of FSI is much smaller for pn- than for pp-knockout. Second,
for pp-knockout, FSI, rescattering terms and pion production account for most of
the cross section. Third, a cut in missing energy at 50 MeV ensures that mostly
genuine two-nucleon knockout processes are retained. Fourth, the rescattering
(3N and even 4N) effects are more pronounced for pp- then for pn-knockout.
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Figure IV-18: Comparison of the (γ, np) (top) and (γ, pp) (bottom) experimental
data (points) for three photon energy bins with the Valencia model
(stacked histograms) for 12C and 4He. The different shaded regions
represent : NN direct photo-absorption on a nucleon pair without
(dark blue) and with FSI (light blue), 3N absorption (red), 1N ab-
sorption with pion reabsorption (green) and pion emission (yellow)
[130].
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Fifth, FSI mechanisms, as such, are less important for NN -knockout from 4He
then they are for medium-heavy nuclei. Each of the above five remarks will be
reconsidered, in the light of our theoretical results, in the course of this section.

§2.4.1 The 4He(γ,NN)NN cross section: a discussion

Fig IV-19 displays the results of the numerical calculations for pp- and pn-
knockout from 4He. The data acquired by the A2 collaboration are also shown.
From Fig IV-19, one can conclude that the reaction model calculations are in
fair agreement with the data both for pp- and pn-knockout. Although no cuts
in missing energy were imposed, the model succeeds in describing the data for
photon energies ranging from 100 up to 600 MeV.
Fig. IV-19 illustrates some general features. First, the deviation between the pp
knockout data and the theoretical cross section at low photon energies, can be
attributed to FSI mechanisms. Fig. IV-18 indicates that FSI mechanisms are
much more important for pp- than for pn-knockout. This may explain why an
equivalent mismatch at low photon energies is not observed for pn-knockout. On
the other hand, when the transferred energy is raised FSI’s lose in importance
as noticed from Fig. IV-18. This explains the overall agreement between theory
and experimental data once the photon energy exceeds 300 MeV. Concluding,
the aforementioned remarks about the impact of FSI is in agreement with our
reaction model calculations. Second, the delta contribution is rather small in
both pp- and pn-knockout. This observation is in contradiction with the findings
made in electromagnetically induced two-nucleon knockout reactions from nuclei
like 12C and 16O [131] where the ∆ plays a dominant role in the reaction process.
Fig. IV-5 and Table IV-2 throw some light upon this issue. On the one hand,
based on Table IV-2 and the observation that the nucleons in 4He reside predom-
inantly in an s-wave one-particle state, one might conclude that the only possible
proton-proton relative wave function is a 1S0(T = 1) state. For pn-knockout, on
the other hand, apart of a 1S0(T = 1) state also a relative 3S1(T = 0) configura-
tion belongs to the possibilities. In Sect. §2.2 it was printed out that relative S
states produce small ∆-current contributions. The comparison of the data with
the calculations contained in Fig. IV-19, seem to confirm the suppression of the
delta contribution in 4He, which is evidence for the dominance of relative S states.
Third, although our reaction model does neither account for pion reabsorption,
nor for real pion production processes it succeeds in explaining the data quite
well. This observation might lead us to the conclusion that those processes are
somehow suppressed in NN -knockout from 4He for the kinematics under study.
For pn-knockout this is what one already sees from the Monte Carlo simulations
based on the Valencia model. However, the simulation of Fig. IV-18 fails com-
pletely when it concerns 4He(γ, pp) at 400 ≤ Eγ ≤ 600 MeV. This might indicate
that other processes, apart from pion reabsorption and emission, strongly con-
tribute. Fig. IV-19 and more in particular the 4He(γ, pn) cross section at high ω,
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Figure IV-19: Integrated differential 4He(γ, pp)nn (upper panel) and
4He(γ, pn)NN (lower panel) cross sections versus photon en-
ergy for PIP-TOF kinematics. The contribution from the different
reaction mechanisms are shown : The one-body current (dashed),
the meson exchange contribution (dotted), the delta isobar current
(dot-dashed) and the total cross section (solid). The data are from
the PIP-TOF collaboration [130].
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Figure IV-20: Ratio of the 4He(γ, pp)nn to the 4He(γ, pn)NN cross section versus
photon energy for PIP-TOF kinematics. The same conventions as
in Fig. IV-19 are used.

indicates that the rescattering diagrams of Fig. III-10 may account for this high
missing energy strength. Fourth, based on a previous remark about the available
relative states in 4He for respectively pp- and pn-knockout, the significant differ-
ence in their respective strengths can be explained. The larger number of allowed
pn pairs (T = 0, S = 1 and T = 1, S = 0) relative to pp pairs (T = 1, S = 0) as
well as the larger number of available reaction channels (e.g. the meson exchange
current), let us expect transition strengths which are a factor of 5 to 10 stronger
for pn- than for pp-knockout. This feature is confirmed by the calculations. In
addition, Fig. IV-20 depicts the ratio of the photo-induced pp- to pn-knockout
cross section. One notices that the pp to pn cross section ratio increases steadily
with photon energy. With increasing transferred momentum the delta and me-
son exchange contributions are suppressed due to the 1/q2 dependence of the
pion propagator. This fall-off is at the origin of the observed steady increase
of the 4He(γ, pp)/4He(γ, pn) ratio. The ratio of the one-body strengths, on the
other hand, displays a broad peak at about 200 MeV. The one-body current, as
derived in Eq. III-138, consists of two terms i.e. the convection and the mag-
netization current. Where the convection current describes the coupling of a
photon to a proton, the magnetization current accounts for both photon-proton
and photon-neutron coupling with a comparable coupling constant (i.e µp = 2.793
and µn = −1.913). Concluding, the convection current couples twice as strong to
a pp- than it does to a pn pair. Second, the magnetization current makes a less
pronounced distinction between a pp- and a pn pair. For PIP-TOF kinematics,
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Figure 5.13: Average cross section as a function of the energy transfer ω at

q=375 MeV/c and 50 < pm < 100 MeV/c. The curves represent

calculations with a one-body current only (solid), including MECs

(dashed) and including MECs and ‘static’ ICs (dot-dashed).

two-nucleon plus photon system [Mac93, Wilh96]. By varying the energy trans-

fer of the reaction the role of isobar currents can be investigated. Therefore,

measurements were performed for 170 < ω < 290 MeV at a momentum-transfer

value of q=375 MeV/c (LW, CQW, IW, and HW).

As argued in section 5.2, the low pm region is most likely due to direct two-

proton knockout, as in this domain the neutron is left ‘at rest’. In case of such a

direct reaction mechanism, the invariant mass of the two emitted protons Wp′

1
p′

2

can be identified with the invariant mass of the γpp system. For the ω region

covered for pm < 100 MeV/c, this invariant mass ranges from 2055 MeV/c2 at

ω = 220 MeV (more than one full width below the peak of the ∆ resonance) to

2120 MeV/c2 at ω = 290 MeV, i.e., almost on top of the resonance.

In Fig. 5.13 the data for the pm domain from 50 to 100 MeV/c at q=375 MeV/c

are shown. As expected from the measurements at LQ, the agreement between

data and calculations for ω=220 MeV is quite good. This already holds for a

calculation with only one-body currents, which can be seen as additional evidence

for the dominance of one-body currents in this pm and ω domain.

Figure IV-21: Average 3He(e, e′pp)n cross section as a function of transferred en-
ergy for q = 375MeV/c and 50 < pm < 100MeV/c. The different
curves represent Faddeev calculations with a one-body current only
(solid), including MEC’s (dashed) and including MEC’s as well as
static IC’s (dot-dashed) [14].

one-body photo-absorption through the convection current peaks at Eγ ≈ 200
MeV, whilst the magnetization current grows in importance with increasing Eγ.
Therefore explaining the enhancement of the one-body strengths ratio observed
at 200 MeV. At the high photon-energy side, where essentially only the one-body
current contributes, the 4He(γ, pp)/4He(γ, pn) ratio evolves to a value between
0.2 and 0.25. This value is roughly equal to the ratio of the total number of
pp to pn pairs in the 4He nucleus i.e. 1

4
. The (γ, pp)/(γ, pn) ratio attributed

to the one-body current already reaches this asymptotical value at Eγ ≈ 300
MeV. Summarizing, in kinematical regions where the delta and meson exchange
currents prevail the pn cross section is much stronger than the pp one. For high
transferred energies, where only the one-body current survives, a constant ratio
of about 0.2 is reached. This indicates that the photon couples with an equal
strength to a pp as to a pn pair. The asymptotical ratio of 0.2 emerges from the
mere fact that 4He contains 4 times more pn than pp pairs.

§2.4.2 The ∆ current

The excitation of an intermediate delta in two-nucleon knockout from a medium-
heavy nucleus, gives a non-negligible contribution to the reaction cross section
provided that the participating nucleons do not reside in a relative S state. Over
the years, experimental evidence has been gathered which confirms this for nuclei
with A ≥ 12 [96] [97].
In light nuclei, where the nucleons predominantly populate the 1s single-particle
states, one expects the delta strength to be small. Fig. IV-19 depicts, for both
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Figure IV-22: The 16O(γ,NN) cross section as a function of the photon energy.
The left(right) panel depicts pn(pp)-knockout. The MEC contribu-
tions are displayed by the dashed curve, the dotted curve depicts the
MEC + the static IC while the solid line shows the MEC + energy
dependent IC [132].

the 4He(γ, pp) and 4He(γ, pn) cross section, the contribution stemming from the
various reaction mechanisms. Albeit not overshooting all other reaction mecha-
nisms, the delta current is indispensable to arrive at a good description of the
two-nucleon knockout reaction. To elaborate on this issue, the calculations per-
formed by the Bochum group, describing the 3He(e, e′pp) reaction [14], will be
commented on. Fig. IV-21 displays the results of the Bochum Faddeev calcu-
lations for a 3He(e, e′pp) experiment performed at NIKHEF [14]. The different
reaction channels are disentangled, i.e. the one-body, MEC and IC current. In
these calculations, the ∆ excitation emerges as an insignificant background pro-
cess. The 3He(e, e′pp)n reaction calculations from the Bochum group, however,
do not stand the comparison with the data. They come not even close in ex-
plaining the observed enhancement of the data located at a transferred energy of
± 250 MeV. In Ref. [15] Golak puts forward that the static description of the
delta could be at the origin of this discrepancy. In the static limit,esteemed valid
at sufficiently small q and ω, the resonant and non-resonant delta propagators
reduce to :

Gres
∆ (

√
s) → 1

(m∆ −mN)c2

Gnon-res
∆ (

√
s) → 1

(m∆ −mN)c2

The static propagator Gres
∆ does not display a resonant behavior as a function of

transferred energy explaining the rather flat ∆ strength in Fig. IV-21. In 1993,
L. Machenil et al. [132] investigated the impact of the choices with respect to
the ∆-current propagators on the computed two-nucleon knockout cross sections.
Their results are displayed in Fig. IV-22 for 16O(γ,NN). Fig. IV-22 clearly
demonstrates the significant difference between the delta current contribution
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Figure IV-23: 4He(γ, pn)NN cross section obtained with an additional delta width
ΣI = 30 MeV. The same conventions are used as in Fig. IV-19.

evaluated in the static approximation and with the energy-dependent propaga-
tors from Eqs. III-122 and III-124. Only with the latter choice one is able to
predict a resonance structure at Eγ ≈ 250 MeV.
An energy-dependent delta propagator (see Eqs. III-122 and III-124) is adopted
in our reaction model calculations. The expression for the resonant delta propa-
gator, as derived in Sect. §4.2, looks like :

Gres
∆ (

√
s) =

1

m∆c2 −
√
sres − iΓπN−2.ΣI

2

,

with ΓπN the pion-nucleon decay width and ΣI the decay width stemming from
other processes. Oset and Salcedo [114] obtained a closed expression for the latter
based on an RPA calculation in nuclear matter including up to 3p3h diagrams.
Fig. III-8 plots ΣI as a function of photon energy based on the Oset and Salcedo
parameterization for ΣI after folding it with the 4He one-particle density. From
Fig. III-8, an average value of 30 MeV is obtained for ΣI . Fig. IV-23 displays the
4He(γ, pn) results for the PIP-TOF experiments [130]. In the calculations, the
energy-dependent delta width ΣI from Ref. [114] has been adopted. Obviously,
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Figure IV-24: The photon asymmetry Σ(~γ,pn) is displayed for the different reaction
channels namely : the 1-body current (dashed), the meson exchange
(dotted) and the delta current (dot-dashed). The solid curve repre-
sents the total photon asymmetry. Data are taken from [133] with :
Σ2H (4), Σ6Li (●) and Σ4He (★). The deuteron data at low Eγ are
taken from [134] (2) while the recent data for 4He are from [130]
(✳).

the predicted delta contribution is small. The data exhibit a peak at Eγ ≈ 250.
It appears that in 4He the delta has a much smaller width than expected from the
nuclear matter calculations. Hjorth-Jensen et al. [135] also evaluated the width
of the delta in nuclear matter at various densities. In general, they find widths
smaller than those reported in Ref. [114]. For the nuclei 16O, 40Ca and 100Sn,
adopting a HO description for the bound states, they obtained a smaller width
ΣI than the typical values of Ref. [114]. In addition, they observed a decrease
of the delta width for smaller mass numbers A. Based on this observation, we
recalculated the 4He(γ, pn)NN cross section accounting only for the pion-nucleon
decay width ΓπN . The results are depicted in Fig. IV-19. They agree remarkably
well with the data irrespective the fact that we put, somewhat artificially, ΣI

equal to zero. This obvious success may indicate that a ∆ resonance created in
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the 4He nucleus, is not subject to additional decay mechanisms apart from the
usual ∆ → πN decay. A possible argument can be that the 3p3h diagrams which
are accounted for by the authors of Ref. [114] in their ΣI calculations, are almost
non-existent in light nuclei.
Concluding, the description of the delta current has a major impact on the cal-
culated cross section. It was already recognized that a static approximation can
not account for the resonant structure observed in the reaction cross section. It is
clear from our analysis that also the width of the delta is an important ingredient
in the model calculations.

In order to further explore the role played by the ∆, we investigated the pho-
ton asymmetry Σ for the 4He(~γ, pn)NN reaction. In Ref. [125] it is claimed
that the photon asymmetry, at intermediate photon energies, is only marginally
depending on the mass number. The latter was confirmed by Adamian et al.
[133] who compared the available data on the photon asymmetry for 2H, 4He and
6Li. Fig. IV-24 compares our 4He(~γ, pn)NN photon asymmetry predictions with
experimental data from Refs. [133] and [130]. Whereas the measured 4He(~γ, pn)
asymmetries are negative, our predictions are positive.
The delta current is known to produce a negative photon asymmetry while the
one-body and meson exchange currents give rise to a positive photon asymmetry
(see Ref. [125]). This is confirmed by our calculations in Fig. IV-24. In addi-
tion, some general conclusions can be drawn. First, at low energies, the photon
asymmetry is dominated by the meson-exchange current and more in particu-
lar the seagull term. At Eγ ≈ 100 MeV, the deuteron data display a positive
photon asymmetry. Alluding to an argument made earlier, the deuteron photon
asymmetry seem to confirm the dominance of the meson-exchange current at low
Eγ. Second, at the high energy side, the reaction process is driven predominantly
by the one-body current. For large transferred momenta, the one-body response
stems almost entirely from the magnetization current. Whereas the magnetiza-
tion current shows a functional dependence on ~σx~pγ, the corresponding photon
asymmetry vanishes once the final summation over the nucleon spins is performed.
The data displayed in Fig. IV-24 seem to confirm this. Third, at Eγ ≈ 240 MeV
the delta current forces the photon asymmetry to become negative. Concluding,
at the low and high energy side as well as at the delta peak, the calculations dis-
play the same trends as the data. Whereas, beyond these particular regions, the
calculations fall short in explaining for the data. As of now, no solution has been
found. Although, a few have been proposed e.g. the admixture of higher angular
momentum states in the 4He wave function. This would produce a stronger delta
relative to the other reaction channels as alluded to above, reducing the photon
asymmetry significantly. Whether this resolves the observed discrepancies still
remains an open question. Future research addressing the Mainz measurements
may provide more insight in this matter.
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Figure IV-25: Integrated differential 4He(γ, pp)nn (upper panel) and
4He(γ, pn)NN (lower panel) cross section versus photon en-
ergy for PIP-TOF kinematics. The solid lines account for all
diagrams contained in Fig. III-10. The dot-dashed curves are the
predicted when ignoring the recoil diagrams and including solely
the diagrams of Fig. III-10 contained in the (red) boxes. The data
indicated with the solid circles do not impose a cut in Em, whereas
for the open triangles the additional condition Em ≤ 45 MeV was
demanded [130].
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Figure IV-26: Integrated differential 4He(γ, pn)NN cross section versus photon
energy for PIP-TOF kinematics including only the common two-
nucleon knockout diagrams of Fig. III-10. The same conventions
are used as in Fig. IV-19. For the data a cut on missing energy
i.e. Em < 45 MeV was used [130].

§2.4.3 Recoil effects

Elucidating the role played by the recoil diagrams as defined in chapter III, is
one of the major goals of this work. Whereas in medium-heavy and heavy nuclei
recoil effects can be expected to be negligible, they can not by ignored when ad-
dressing light systems. The naive picture of a nucleus as a manifold of point-like
nucleons swirling in an average potential doesn’t suffice for light nuclei. There,
the nucleus has to be described as a coupled system of mutually interacting par-
ticles. Pulling at one of the nucleons, will have its effect on the entire system.
This response of the nuclear system, to an external event, is denoted by the term
recoil. Fig. III-10 depicts for the two-nucleon knockout process from 4He, apart
of the direct knockout terms, all recoil diagrams. Long-range correlations emerge
when adjusting the nuclear wave function to account for the recoil mechanisms.
Thereby, the frequently adopted technique is making the nuclear wave function
translationally invariant. Fig. IV-25 illustrates, for both the 4He(γ, pp)nn and
4He(γ, pn)NN reaction, the impact of the recoil effects. The data shown are
taken from [130]. A constraint in missing energy, i.e. Em < 45 MeV is put
forward as a criterion to suppress the contributions of the recoil diagrams. It is
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Figure IV-27: Integrated differential 4He(γ, pn)NN cross section versus missing
energy for PIP-TOF kinematics at ω = 400 MeV. The left panel
implements all diagrams of Fig. III-10, whereas for the right panel
the recoil diagrams are neglected. The same conventions are used
as in Fig. IV-19.

an understatement to say that the recoil diagrams are indispensable to describe
the reaction cross section. For pp-knockout, the data and the reaction-model
calculations indicate that the direct knockout diagrams contribute significantly
even at relatively high missing energies Em > 45 MeV. The pn calculations fit
the data quite well. This applies to both the situations whereby no Em-cut has
been imposed (data with solid circles and theory with solid curves) and the more
restricted phase-space coverage imposed by setting Em < 45 MeV (open trian-
gles and dot-dashed curves). From Fig. IV-25 one can conclude that only at low
missing energies the spectator approximation, well-known from medium-heavy
and heavy nuclei, is able to describe the reaction process.

The contribution of the various reaction mechanisms feeding the 4He(γ, pn)
cross section is shown in Fig. IV-26. We notice that when selecting events in
which the undetected pn pair is left with little excitation energy, the strength
stems predominantly from the meson exchange and delta current. The cross sec-
tion drops with growing transferred energy due to the inverse energy dependence
of the pion propagator. This is the common picture for pn knockout known from
the study of nuclei with A ≥ 12. The theoretical results overshoot the data at
low photon energies. This effect can be attributed to the neglect of FSI rescat-
terings which are prevailing at low energies. From Fig. IV-19 and Fig. IV-26
some conclusions can be drawn. First, the meson-exchange and delta current
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Figure IV-28: Integrated differential 4He(γ, pn)NN cross section versus missing
energy for PIP-TOF kinematics and ω = 400 MeV. A HO wave
function has been used. The same conventions are used as in Fig.
IV-19.

strengths in the 4He(γ, pn) cross section are generated almost exclusively by the
direct knockout diagrams. The charge exchange character of both currents, will
make most of the recoil diagrams vanish in pn-knockout.

For the case of pp-knockout, the same argument explains the non-negligible
contributions arising from the delta and meson currents once recoil diagrams
are included. Second, the one-body channel is preferentially feeded by the re-
coil diagrams. The energy acceptance of the detectors (Tp in [40, 250] MeV) will
suppress the one-body contribution in the direct knockout response where the
photon is absorbed entirely on one of the detected nucleons. This argument will
definitely be true at higher photon energies. For the recoil diagrams, they do not
suffer from this restraint. As a direct consequence, in PIP-TOF kinematics the
recoil diagrams will dominate at higher photon energies. Fig. IV-27 displays the
4He(γ, pn)NN cross section as a function of missing energy for Eγ = 400 MeV.

d6σ

dEm

=

∫

PIP-TOF phase space

d6σ

dTpdΩpdTndΩn

δ(Em − 400 + Tp + Tn)dTpdΩpdTndΩn .

In the left panel, the recoil diagrams are accounted for where in the right panel
only the direct knockout terms are retained. At Em ≤ 120 MeV almost the com-
plete cross section can be attributed to the direct knockout diagrams. For the
recoil diagrams, they dominate the higher missing energies. Further the recoil
diagrams have their largest effect in combination with the one-body current. The
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Figure IV-29: Integrated differential 4He(γ, pn)NN cross section versus kinetic
energy Tp for PIP-TOF kinematics at ω = 400 MeV. The left panel
implements all diagrams of Fig. III-10, whereas for the right panel
the recoil diagrams are neglected. The same conventions are used
as in Fig. IV-19.

latter processes give us a clear glimpse within the nucleus. No corrections ac-
counting for the particular reaction process involved, have to be performed whilst
the detected nucleons escaped from the nucleus without any external interaction.
Therefore the recorded kinetic energies, T1 and T2, can be related to the average
kinetic energy of the nucleons within the nucleus :

Em = ω − T f
p − T f

n ≈ ω − 2 < T i > ,

with, < T i > the average nucleon kinetic energy. Based on this formulae, an
average kinetic energy of 125 MeV and an average nucleon momentum of 500
MeV is obtained. This may indicate the presence of short-range correlations.
Fig. IV-28 shows analogous curves as in the left panel of Fig. IV-27 but adopts
a HO wave function. Despite the fact that the recoil diagrams are implemented,
the one-body term (dashed curve) plays only a limited role. This confirms our
statement concerning the presence of short range correlations. Concluding, one
can state that by studying the two-nucleon knockout strength at high Em, one
can extract information about the nucleon dynamics. This strategy is adopted
in the analysis of the 3He(e, e′p)pn measurements in Ref. [127].

Fig. IV-29 shows, for a transferred energy of 400 MeV, the 4He(γ, pn)NN
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Figure IV-30: Integrated differential 4He(γ, pn)NN cross section versus kinetic
energy Tp for PIP-TOF kinematics at ω = 400 MeV. A HO wave
function has been used. The same conventions are used as in Fig.
IV-19.

cross section as a function of the proton kinetic energy.

d6σ

dTp

=

∫

PIP-TOF phase space

d6σ

dTpdΩpdTndΩn

δ(Tp − 400 + Tn + Em)dTpdΩpdTndΩn .

As in Fig. IV-27, the left panel accounts for all diagrams whereas in the right
panel only the direct knockout terms are retained. The meson exchange and delta
current contributions do not change significantly whether or not one adopts the
spectator approximation. Most of the strength can be attributed to the one-body
current stemming from the recoil terms. In the spectator approximation, one no-
tices two broad shoulders in the one-body contribution (dashed curve). The peak
at 150 MeV corresponds to photo absorption by the neutron. When the photon
interacts with the proton (detected by TOF) strength appears in the smaller peak
at lower Tp. The left panel shows a totally different picture. One notices just
one major peak at 125 MeV. The recoil diagrams generate most of this strength.
Again, one can state that the one-body strength reflects the momentum distri-
bution of the proton in 4He. Again, we arrive at a value of Tp ≈ 125 MeV for
the initial kinetic energy. In line with the observations made when studying the
Em dependence of the 4He(γ, pn) cross sections, the one-body current is heavily
suppressed when using a HO instead of a realistic wave function (see Fig. IV-30).

The recoil diagrams, commonly neglected in the study of medium and heavy
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nuclei, are indispensable when light nuclei are addressed. For both pp and pn
knockout they appear at transferred energies above 200 MeV. By studying the
recoil effects, information about short-range dynamics can be obtained. For the
recoil diagrams describe the process where a nucleon escapes from the nucleus
without any additional interaction apart of FSI. So we do not have to account
for the dynamics of the specific reaction process involved. The major advantages
offered by this technique are already perceived by the authors of [127].

§2.4.4 Short-range correlation

In the previous subsection we made some remarks about short-range correla-
tions and how they can be hunted with two-nucleon knockout reactions. Guided
by an analysis of a 3He(γ, p)pn experiment at TJNAF [127], we computed the
4He(γ, pp)nn cross section for ω = 400 MeV as a function of the opening angle
between the two detected protons.

d6σ

dθpp

=

∫

PIP-TOF phase space

d6σ

dTpdΩpdTpdΩp

δ(θpp − (θp1 − θp2))dTpdΩpdTpdΩp .

One of the protons is detected by PIP which is placed perpendicular to the pho-
ton beam. The other proton has hit one of the detector stands of the TOF
detector. Fig. IV-31 displays the corresponding cross section. For the left panel
all diagrams are included whereas for the right panel the spectator approxima-
tion is adopted. Comparing both plots, one may conclude that, in the spectator
approximation, the neutron is emitted predominantly parallel to the incident
photon beam. When recoil diagrams are accounted for, a strong peak appears
at an opening angle of ±180 degrees triggered by the one-body current. In other
words, whenever the detected pair acts as a spectator, the corresponding nu-
cleons are emitted predominantly back-to-back. The suppression of the direct
knockout process relative to the recoil reaction can be explained by the high mo-
menta required in the former reaction type to compensate for the large photon
momentum. From Fig. IV-31 it is clear that the entire strength located between
150 and 200 degrees stems from genuine recoil diagrams. One can conclude that
the detected pair moves back-to-back in the nuclear medium. This is a well-
known hinting at the presence of short-range correlations. The detected proton
pair was subject to heavy repulsion forcing them to escape in a back-to-back
configuration. In order to substantiate this claim, we calculate the cross section
in coplanar and symmetrical kinematics. Coplanar and symmetrical kinematics
corresponds with the situation where the detected nucleons escape with equal
kinetic energies and polar angle with respect to the direction of the momentum
transfer. For fixed energy transfer ω = 400 MeV and kinetic energy of the de-
tected nucleons Tp = 120 MeV, we have plotted the cross section relative to the
polar angle in Fig. IV-32. By varying the polar angle from 40 to 140 degrees,
the missing momentum Pm increases. For the scanned relative momentum, it
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Figure IV-31: Integrated differential 4He(γ, pp)nn cross section versus the LAB-
frame opening angle θpp for PIP-TOF kinematics at ω = 400 MeV.
The left panel includes all recoil diagrams whereas the right panel
adopts the spectator approximation. The same conventions are used
as in Fig. IV-19.

reaches a maximum at 90 degrees. By selecting only those events in which the
kinetic energy of the detected nucleons is high, one can hope to observe a glimpse
of the elusive short-range correlations. An analogue reasoning is outlined in the
paper by Weinstein et al. [127]. Fig. IV-32 displays two different reaction cal-
culations i.e. the left panel shows the full calculations including all terms of Fig.
III-10 while for the right panel the spectator approximation is adopted. At small
opening angles, the transition strength can be attributed almost completly to the
direct knockout diagrams. For the high kinetic energies selected, a two-body pro-
cess is required to transfer part of the photon momentum to the other nucleon.
The meson-exchange current fulfills this role as can be observed from Fig. IV-32.
The peak observed at ±90 degrees is generated solely by one-body mechanisms
regarding recoil diagrams are included. The same signal is obtained from Fig.
IV-31. To elucidate whether or not short-range correlations are at the origin of
this strong response, we computed the 4He(γ, pn)NN cross section in coplanar
and symmetrical kinematics using a HO wave function. Fig. IV-33 displays the
results of these calculations. For a HO description inherently lacks all kinds of
short-range correlations, we expect no peak at ±90 degrees. This is confirmed
by Fig. IV-33. A HO description supports apparently only the direct knockout
processes for no recoil effects are observed. Therefore, one may conclude that the
peak at θpp ≈ 180 degrees reflects the presence of SRC.
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Figure IV-32: Integrated differential 4He(γ, pn)NN cross section versus opening
angle θpn for coplanar and symmetrical kinematics with ω = 400
MeV and Tp = 120 MeV. The left panel includes all recoil diagrams
whereas the right panel adopts the spectator approximation. The
same conventions are used as in Fig. IV-19.
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Figure IV-33: Integrated differential 4He(γ, pn)NN cross section versus opening
angle θpn for coplanar and symmetrical kinematics with ω = 400
MeV and Tp = 120 MeV. A HO wave function has been used. The
same conventions are used as in Fig. IV-19.
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Summarizing the findings of this subsection. First, by studying the two-
nucleon knockout reaction at high missing energies, a clear signal of the short
range correlations can be obtained. Second, the nucleons composing 4He are
subject to violent repulsions triggered by the short-range correlations. Their
presence can be experimentally confirmed at an opening angle of 180 degrees.



Summary

The study of nucleon-nucleon dynamics inside the nuclear medium is one of the
primary goals of intermediate-energy nuclear physics. As easy as it is to for-
mulate, as difficult it is to model the dynamics of the nucleons populating the
nuclear system. For years, to solve for the exact nuclear wave function has been
the holy grail in nuclear physics. Though as Walecka once said, there are two
ways of doing physics. One can try to find an approximate solution for the origi-
nal problem, or one can exactly solve for a related, more simplified, problem. As
of today, the most successful theory to describe the nucleus (i.e. the nuclear shell
model) adheres to the second point of view. The nuclear shell model reduces
the original coupled N-body problem to a more simple one of N nucleons moving
independently in a properly constructed average potential. Corrections on this
picture are in order when probing inter-nucleon dynamics at a length scale of
the order of 0.5 fm. At these short inter-nucleon distances, the strong repulsive
nature of the nuclear force will show up, and the nuclear shell model description
will be at stake. Over the years, all kinds of techniques have been developed
to correct the shell model for the so-called short-range correlations (SRC). The
correlated basis functional theory (CBF) is the most widely spread.
With the advent of increasingly fast computers, the hope to solve the nuclear
problem exactly grows, at least for light nuclei. The Argonne-Urbana, Bochum,
Trento and Pisa groups succeeded in solving the coupled N-body nuclear wave
function for a few light nuclei like 3He, 4He, . . .. Whereas a typical nuclear
shell-model wave function lacks translational invariance, the ones obtained from
exactly solvable approaches depend solely on the relative coordinates. Due to the
requirement of translational invariance and the Pauli exclusion principle, the nu-
cleonic degrees of freedom are strongly intertwined in the nuclear wave function.
Subsequently, it remains a challenging task to compute the transition matrix
elements. In this work, a model to describe the two-nucleon knockout process
from 4He based on the Argonne-Urbana wave function was presented. The di-
rect motivation for this work was to investigate whether one we could reproduce
the available two-nucleon knockout data from 4He. In addition, we addressed
the issue of how to find signatures of the elusive short-range correlations. From
the nuclear density (twice as high as in nuclear matter), one expects them to be
manifestly present in 4He. To preserve the translationally invariant description
of 4He, additional diagrams are introduced, i.e. the so-called recoil diagrams.
We investigated to what extent they have an influence on the four-body breakup
reaction process.
From two-nucleon knockout studies in medium-heavy nuclei, some kinematics are
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known to be particularly sensitive to short-range correlations. Four kinematical
regimes are treated throughout this work. First, QD-kinematics, selecting only
those events with Pm ≈ 0, is adopted to study the electro-induced two-proton
knockout reaction. As no data exist for this specific part of the phase space, we
compared our results with 3He calculations by J.M. Laget. Up to some scaling
factor, both cross sections display identical features. This observation speaks in
favor of the reliability of our model calculations. In addition, short-range cor-
relations were demonstrated to be present in the 4He nucleus. Throughout this
work, the effect of SRC mechanisms is estimated by comparing four-body breakup
predictions obtained with a HO 4He wave function to those obtained with a real-
istic wave function. Indeed, as a HO wave function lacks inherently short-range
correlations, this is esteemed to be an unambiguous technique to quantify SRC
mechanisms. In QD-kinematics, the effect of SRC’s appear when high initial
nuclear momenta are probed. In addition, polarization observables are studied
as they are rather insensitive to FSI mechanisms. The transverse component of
the transferred polarization is particularly sensitive to short-range correlations
whereas the longitudinal component is rather insensitive to the details of the
bound-state wave function used.
Second, we carried out calculations for an experiment performed by De Vries
at ELSA in Bonn. He measured the 4He(e, e′pp) cross section in back-to-back
kinematics as a function of the opening angle between the forward proton and
the transferred momentum. In back-to-back kinematics, one probes high relative
momenta. The calculations show, on the one hand, that the SRC’s are located
at high opening angles or, equivalently, at large relative momenta. On the other
hand, the recoil diagrams which couple predominantly to the two-body currents
in back-back kinematics, also appear at large relative momenta. As the recoil
effects for the one-body current contribute solely at large opening angles, a clear
signal for the presence of short-range correlations in 4He is obtained.
Third, in a recent experiment conducted by the A2 collaboration at the Mainz
facility, both photo-induced pp and pn-knockout cross sections were measured.
In this specific kinematical setup, the proton is detected in a wide solid-angle
detector positioned perpendicular to the photon beam, whereas the second nu-
cleon is detected over the entire half plane opposite to the proton detector. Our
model calculations succeed in reproducing the magnitude of the 4He(γ, pp) and
4He(γ, pn) cross sections over a wide range of photon energies. The importance
of having a proper description for the in-medium delta was outlined. For a reso-
nant ∆ should emerge in the energy dependence of the cross section, an energy-
dependent propagator is needed instead of the static variant used throughout the
Bochum calculations for 3He(e, e′pX). We found that in 4He an intermediate ∆
preferentially decays by the well-known ∆ → πN reaction, whereas the other
decay channels are heavily suppressed resulting in ΣI ≈ 0. Despite the success
in reproducing the pp- and pn-knockout cross sections, the interpretation of the
4He(~γ, pn) photon asymmetry remains an open issue. Indeed, the overall photon
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energy dependence and importance of the various reaction components contribut-
ing to the photon asymmetry (i.e. one-body, meson-exchange and delta currents)
agree with what is known for medium-heavy nuclei. Their coherent sum, however,
does not reproduce the experimentally determined photon asymmetries. The lack
of higher angular momentum admixtures in the 4He wave function, is proposed
as a possible explanation. Indeed, non-central correlations are a source of higher
angular momentum components entering the ground state. Further research on
this topic is needed.
The predicted effects of the recoil diagrams are huge for PIP-TOF kinematics.
Both in the 4He(γ, pp) and 4He(γ, pn) cross section, the recoil effects show up
once Eγ ≥ 200 MeV. The calculations indicate that most of the recoil strength
can be attributed to the one-body current. For their charge-exchange character,
the meson-exchange and delta current only weakly couple to recoil mechanisms.
Proton-proton knockout, on the other hand, receives large contributions from the
meson-exchange and ∆-isobar currents by means of the recoil diagrams. Where
the detector acceptances (Tp in [40, 250] MeV) constrain the available phase space
in the direct knockout channel, the recoil triggered reactions do not suffer from
this shortcoming. This explains the sudden appearance of recoil strength at large
photon energies. To study the recoil effects more in detail, cross sections are
computed as a function of Em and Tp at Eγ ≈ 400 MeV. In pn-knockout, the
strength from the recoil terms is observed at Em > 120 MeV. Whereas the di-
rect pn-knockout strength can be mainly attributed to the two-body current, the
recoil strength is preferentially generated through the one-body current. Com-
paring the c.s. for a realistic 4He wave function to an identical calculation using
a HO wave function, evidences that the recoil strength is due to the presence
of short-range correlations. From the position of the recoil peak in the pn cross
section plotted against missing energy, a rough estimate for the average nucleon
momentum in a correlated pair in 4He of approximately 500 MeV is obtained.
From the 4He(γ, pn) cross section studied as a function of the detected proton
kinetic energy, the same conclusions can be drawn.
The mere observation of two nucleons escaping back-to-back from the nucleus,
is accepted as a clear signal for the presence of short-range correlations. There-
fore, we recalculated the 4He(γ, pn) cross section as a function of the opening
angle between the escaping nucleons. The obtained results confirm the previous
findings : the direct knockout diagrams contribute at small angles whereas the
recoil diagrams mainly generate strength at opening angles θpn ≈ 180 degrees.
To conclude our investigations into the role of short-range correlations as the
major source of the recoil strength, pp-knockout is computed in coplanar and
symmetrical kinematics. As expected, the recoil strength in symmetrical kine-
matics, generated for back-to-back emission, requires the presence of short-range
correlations.

Summarizing, the nucleons in 4He are highly correlated and when modeling
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He nucleus4

γ

Figure IV-34: Schematic representation of the reaction process feeding the
4He(γ, pn) cross section through a recoil mechanism. The red (blue)
circles depict a proton (neutron).

the two-nucleon knockout cross section, recoil effects can not be neglected. It is
outlined that identifying four-body breakup induced by a typical recoil diagram is
a promising tool to study short-range correlations. Fig. IV-34 provides a simpli-
fied picture of the pn knockout reaction from 4He, induced through mediation of
one of the recoil diagrams. The SRC’s are represented by the overlapping proton-
neutron circles. In order to suppress the two-body currents in the recoil channel,
sufficiently large energy transfers are to be selected. Then, the recoil process will
give a clear signal of the genuine nucleon dynamics within the nucleus. Recently,
the same strategy is adopted with success in the analysis of a 3He(e, e′p)pn ex-
periment reported in Ref. [127]. When the Mainz data are analyzed accordingly,
they could be used to study short-range correlations.



Appendix A

Abbreviations

In this appendix some of the commonly used abbreviations throughout

this work are listed. Definitions will not be found here. They can be

found in the various sections where the subjects are treated in more

detail.

COM Center of mass

QCD Quantum Chromodynamics

SM Shell Model

MF Mean Field

IPM Independent Particle Model

FY Faddeev Yakubovski equations

VM Variational Method

GFMC Greens Function Monte Carlo method

SVM Stochastic Variational Method

CHH Correlated Hyperspherical Harmonics method

VMC Variational Monte Carlo method
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Appendix B

Definitions

This chapter contains several definitions. Though all of them are well-

known and can be found in several textbooks. They are mainly included

here to refresh the memory and make the reader familiar with the nota-

tions used in this work.

B -1 The Jacobi coordinates
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Figure B-1: Jacobi coordinates
characterizing the
four-body system.

The Jacobi coordinates are a general-
ization of the well-known relative coor-
dinate (~r12 = ~r1 − ~r2) which is com-
monly introduced when tackling a two-
body problem.
They characterize the topologically dif-
ferent two-body break-up channels of a
bound A-body system. For the two-
and three-body problem the definition
of the Jacobi coordinates is unambigu-
ous. There is only one two-body break-
up channel available. As soon as more
particles come into play various defini-
tions of the coordinates become possi-
ble. Here, we restrict ourselves to Jacobi
coordinates suitable for dealing with the
four-body problem.

Two different sets are introduced
and they will be referred to as K-
and H-type of Jacobi coordinates. The
expressions for the Jacobi coordinates
for a system of four particles with
coordinates (~r1, ~r2, ~r3, ~r4) and masses
(m1,m2,m3,m4) look like :
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K-type coordinates (3+1 break-up)

~xK = ~ri − ~rj

~yK = ~rk −
mi~ri +mj~rj

mi +mj

~zK = ~rl −
mi~ri +mj~rj +mk~rk

mi +mj +mk

H-type coordinates (2+2 break-up)

~xH = ~ri − ~rj

~yH = ~rk − ~rl

~zH =
mi~ri +mj~rj

mi +mj

− mk~rk +ml~rl

mk +ml

For both the H- and K-type other sets can be derived by a permutation of the
particles (1234). Three distinguishable sets exist for the H-type of coordinates,
while there are twelve different basis sets in the K-type case.

B -2 The Spherical basis vectors

Starting from the Cartesian coordinate system and the photon propagation di-
rection, one can define the spherical coordinate system .

~e+ = − 1√
2
(~ex + i~ey)

~e− =
1√
2
(~ex − i~ey)

~e0 = ~ez =
~q

|~q|
The spherical coordinate system is a more natural way to describe the physics of
a polarized beam.
In the spherical basis, the properties for the unit vectors hold (λ = 0,±) :

(~eλ)
† = (−1)λ~e−λ

(~eλ)
†~eλ′ = δλλ′

vλ = ~v.~eλ ↔ ~v = vλ.(~eλ)
†

v†λ = (−1)λ
[

~v †]
−λ

~v · ~w =
∑

λ=0,±
(−1)λvλw−λ

~v · ~w † =
∑

λ=0,±
vλ(wλ)

†
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=
∑

λ=0,±
(−1)λvλ

[

w†]
−λ

~e+ × ~e− = i~e0

~e− × ~e0 = −i~e−
~e0 × ~e+ = i~e+

B -3 The Dirac equation

In this section some general properties of the spin 1
2

wave functions will be sum-
marized (see Ref. [136]). The spin 1

2
wave function is determined from the, by

Dirac in 1928 derived, differential equation

i~
∂

c∂t
γ0ψ(~x, t) =

(

~γ.~̂p+mc
)

ψ(~x, t) , (B-1)

with, γµ the gamma matrices. In Bjorken and Drell conventions, they read

γ0 =









1I 0

0 1I









~γ =









0 ~σ

−~σ 0









, (B-2)

where, ~σ are the well-known Pauli spin matrices and 1I is the two by two identity
matrix in spin space. A common practice in solving the above differential equa-
tion consists of determining the normal modes, i.e. solutions corresponding with

a fixed energy and momentum eigenvalue : ψ(~x, t) ≡ ψ(~0, 0) e−
i
~

p.x

(2π~)3/2 . The latter

quantity (namely ψ(~0, 0)) can be written as a two-dimensional column vector,
separating explicitly the positive (upper) and negative (lower) energy compo-
nents :

ψ(~0, 0) =









φu

φl









.

Inserting this parametrized form for ψ(~x, t) into the Dirac equation results into
a linear system of equations in (φu, φl) :















E
c
φu − ~σ.~pφl −mcφu = 0

−E
c
φl + ~σ.~pφu −mcφl = 0

. (B-3)
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This homogeneous system has two solutions depending on the sign of the energy
eigenvalue Ep =

√

|~p|2c2 +m2c4 :

E = Ep u(~p,ms) =

√

Ep +mc2

2mc2









1

~σ.~pc
Ep+mc2









χ(1/2,ms) (B-4)

E = −Ep v(~p,ms) =

√

Ep +mc2

2mc2









~σ.~pc
Ep+mc2

1









χ(1/2,ms) , (B-5)

where, χ(1/2,ms) denotes the spin wave function for a spin 1
2

particle with spin
projection ms along the z-axis in its rest frame. These normal modes fulfill the
following orthogonalization relations :

ū(~p,ms)u(~p,ms′) = δms,ms′
v̄(~p,ms)v(~p,ms′) = −δms,ms′

(B-6)

u†(~p,ms)u(~p,ms′) =
Ep

mc2
δms,ms′

v†(~p,ms)v(~p,ms′) =
Ep

mc2
δms,ms′

. (B-7)

The positive energy spin- 1
2

wave function fulfills the following relations :
(

p/ +mc

2mc

)

u(~p,ms) = u(~p,ms) (B-8)

(

1 + γ5s/

2

)

u(~p,ms) = u(~p,ms) (B-9)

∑

ms

uα(~p,ms)ūβ(~p,ms) =

(

p/c+mc2

2Ep

)

αβ

, (B-10)

with, sµ the relativistic continuation of the classical polarization vector ~s. More
in particular, ~s is the basis vector along which the spin- 1

2
particle, in its rest

frame, is polarized. Starting from the polarization vector : ~s = |~s|(cos θ~eL +
sin θ~eT ), decomposed into a component along the propagation direction and one
perpendicular to it, a general polarization four vector can be defined as follows :

sµ ~p=~0
= (0, ~s)

sµ ~p6=~0
= (

|~p|c√
m2c4 + E2 tan θ2

,
E√

m2c4 + E2 tan θ2
~eL +

E√
m2c4 cot θ2 + E2

~eT ) . (B-11)

From Eq. B-11 the longitudinal to transverse polarization ratio of a spin 1
2

particle
beam can be deduced rT/L = mc2/E. This ratio reveals a fundamental aspect
of ultra-relativistic spin 1

2
-particles namely the fact that they are self-polarizing

more specifically along the direction of propagation. The latter can be explained
as resulting from a length contraction of the longitudinal component of some
internal field associated with the spin.
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B -4 The Delta isobar ∆ 3

2

3

2

After Ref. [137], the free Lagrangian density for a ∆-particle can be written as
follows :

L∆ = Ψ̄µ
∆ΛµνΨ

ν
∆ , (B-12)

with,

Λµν = −
[

(−p/ +m∆c)gµν − A(γµpν + γνpµ) −
1

2
(3A2 + 2A+ 1)γµp/γν −m∆c(3A

2 + 3A+ 1)γµγν

]

, (B-13)

where, A is a constant. The variation in the parameter A can be identified with
a gauge transformation for the spin- 3

2
field. Indeed

A → A′ = A(1 − λ) − A

2
, (B-14)

implies the following gauge transformation for the wave function :

Ψµ
∆ → Ψµ

∆ +
1

4
λγµγνΨ

ν
∆ (B-15)

This transformation does not alter the spin 3
2

content of the wave function Ψ∆

although the spinor components are changed. The original Rarita-Schwinger
equations [138] are obtained for the particular choice A = −1 :

L∆ = Ψ̄µ
∆ [(p/ −m∆c)gµν + γµ(p/ +m∆c)γν − (γµpν + γνpµ)] Ψν

∆ , (B-16)

and the associated free delta propagator :

Gµν
∆ = ~

(p/ +m∆c)

p2 −m2
∆c

2

[

gµν − 1

3
γµγν − 2

3

pµpν

m2
∆c

2
+
pµγν − pνγµ

3m∆c

]

. (B-17)

In the nuclear medium, this propagator has to be modified to account for the
unstable character of the delta particle and for its off the mass-shell behavior.
According to the original approach of Rarita and Schwinger, the delta wave func-
tion can be written as a direct product of a spin 1 with a spin 1

2
constituent

[138].

Ψµ
∆(~p,ms∆

) =
∑

m

<
3

2
,ms∆

|1,m;
1

2
,ms∆

−m > u(~p,ms)ε
µ(ms∆

−m, ~p) , (B-18)

with, u(~p,ms) and εµ(ms∆
−m, ~p) respectively a Dirac spinor and a spin 1 po-

larization vector. An explicit expression for the Dirac spinor has been derived in
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section B -3. Using the expressions from section B -2, the general spin-1 polariza-
tion vectors look like :

εµ+1(~p = ~0) =

























0

− 1√
2

− i√
2

0

























εµ−1(~p = ~0) =

























0

1√
2

− i√
2

0

























εµ0 (~p = ~0) =

























0

0

0

1

























εµ+1(~p) =

























0

−(cos θ cosφ− i sinφ) eiφ√
2

−(cos θ sinφ+ i cosφ) eiφ√
2

sin θ eiφ√
2

























εµ−1(~p) =

























0

(cos θ cosφ+ i sinφ) e−iφ√
2

(cos θ sinφ− i cosφ) e−iφ√
2

− sin θ e−iφ√
2
























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




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






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E
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E
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E
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








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
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





,

(B-19)

with, ~p directed along the axis (θ, φ). In the non-relativistic limit, the energy de-
pendence of the polarization vectors vanishes as well as their µ = 0-components.
In order to express the delta wave function in terms of photon, nucleon and pion
degrees of freedom spin and isospin projection operators have to be defined :

〈

3

2
,ms∆

∣

∣

∣

~S†
m

∣

∣

∣

1

2
,ms

〉

=

〈

3

2
ms∆

∣

∣

∣1,m;
1

2
,ms

〉

(B-20)

〈

3

2
,mt∆

∣

∣

∣

~T †
m

∣

∣

∣

1

2
,mt

〉

=

〈

3

2
mt∆

∣

∣

∣1,m;
1

2
,mt

〉

, (B-21)

where, both operators have an identical impact in the spin and isospin space re-
spectively. Making use of general angular momentum algebra rules, the following
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relations for the projection operators can be derived

∑

ms∆

~Si

∣

∣

∣

∣

3

2
,ms∆

〉〈

3

2
,ms∆

∣

∣

∣

∣

~S†
j =

2

3
δij1I −

i

3
εijk~σk (B-22)

∑

mt∆

~Ti

∣

∣

∣

∣

3

2
,mt∆

〉〈

3

2
,mt∆

∣

∣

∣

∣

~T †
j =

2

3
δij1I −

i

3
εijk~τk , (B-23)

with ~σ and ~τ the Pauli matrices acting in respectively spin and isospin space.
The quantity εijk is the Levi-Civita tensor.

B -5 The nuclear response functions

The elements of the hadronic tensor can be combined to the well-known nuclear
response functions (see Eqs. III-62 - III-67). In order to arrive at the response
functions one expresses the Cartesian components of the hadronic tensor (see
Eqs. III-32 and III-33) in a spherical basis as introduced in section B -2. In
this section, we report for every Cartesian component of the hadronic tensor, the
explicit expressions of the hadronic response functions.

Gµν = gµν − pµ
γp

ν
γ

p2
γ


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









WL = − |~pγ |2
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V µ
1 V

ν
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(

pµ
1 − (p1.pγ)p

µ
γ

p2
γ
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pν
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ν
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)
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
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








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E1

c
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p2
γ

.Eγ

c

]2

WT = |~p1|2 sin θ1
2

WLT =
√

2|~p1|
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E1

c
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p2
γ

.Eγ

c

]
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[V µ
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ν
γ
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)
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
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]
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√
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ν
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)
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√
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+

|~pγ||~p1|2 sin θ1
2 cosφ1|~p2| sin θ2 sin (φ1 − φ2)
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+
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V µ
2 V

ν
2 =
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µ
γ

p2
γ

)(

pν
2 −
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After summing all of those contributions, the response functions look like :
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WT = −2W1 +W2|~p1|2 sin θ1
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2|~pγ||~p2| sin θ2|~p1| sin θ1 sin (φ1 − φ2)
)

(B-25)
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(B-26)

WTT = −W2|~p1|2 sin θ1
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|~p1| sin θ1|~p2| sin θ2 sin (φ1 + φ2) −

E2

c
|~p1|2 sin θ1

2 sin (2φ1)
)

]

−

2W̄6

[

Eγ

c

(

|~p2|2 sin θ2
2|~p1| cos θ1 sin (2φ2) −

|~p2|2 cos θ2 sin θ2|~p1| sin θ1 sin (φ1 + φ2)
)

+

|~pγ|
(E2

c
|~p2| sin θ2|~p1| sin θ1 sin (φ1 + φ2) −

E1

c
|~p2|2 sin θ2

2 sin (2φ2)
)

]

(B-27)

W ′
LT = −

√
2iW7

{

[E1

c
− E1Eγ/c

2 − |~p1||~pγ| cos θ1

p2
γ

.
Eγ

c

]

|~p2| sin θ2 sinφ2 −
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|~p1| sin θ1 sinφ1

[E2

c
− E2Eγ/c

2 − |~p2||~pγ| cos θ2

p2
γ

.
Eγ

c

]

}

+

√
2iW̄8

{

− E1

c

[Eγ

c
(|~p1| sin θ1 cosφ1|~p2| cos θ2 − |~p1| cos θ1|~p2| sin θ2 cosφ2)

+|~pγ|(
E1

c
|~p2| sin θ2 cosφ2 −

E2

c
|~p1| sin θ1 cosφ1)

]

+

|~p1|2 sin θ1
2 sinφ1|~pγ||~p2| sin θ2 sin (φ1 − φ2)

}

+

√
2iW̄9

{

E2

c

[Eγ

c
(|~p2| sin θ2 cosφ2|~p1| cos θ1 − |~p2| cos θ2|~p1| sin θ1 cosφ1

)

+

|~pγ|(
E2

c
|~p1| sin θ1 cosφ1 −

E1

c
|~p2| sin θ2 cosφ2)

]

+

|~p2|2 sin θ2
2 sinφ2|~pγ||~p2| sin θ1 sin (φ1 − φ2)

}

(B-28)

W ′
TT = −2iW7|~p1| sin θ1|~p2| sin θ2 sin (φ1 − φ2) + 2iW̄8

{

Eγ

c

[

|~p2| cos θ2|~p1|2 sin θ1
2

−|~p1|2 cos θ1 sin θ1|~p2| sin θ2 cos (φ1 − φ2)
]

+

|~pγ|
[E1

c
|~p1| sin θ1|~p2| sin θ2 cos (φ1 − φ2) −

E2

c
|~p1|2 sin θ1

2
]

}

−

2iW̄9

{

Eγ

c

[

|~p1| cos θ1|~p2|2 sin θ2
2 − |~p2|2 cos θ2 sin θ2|~p1| sin θ1 cos (φ1 − φ2)

]

+

|~pγ|
[E2

c
|~p2| sin θ2|~p1| sin θ1 cos (φ1 − φ2) −

E1

c
|~p2|2 sin θ2

2
]

}

. (B-29)





Appendix C

Calculational details

In order, to keep the line of discussion clear and not to over do the text

with technicalities of the calculations, some of them are included in this

chapter. These derivations, some of them in extent, will contribute to

the better understanding of some of the remarks made.

C -1 The 4He density functions

C -1.1 Coordinate space

The general solution of the four-body Schrödinger equation for a realistic poten-
tial can be casted in a format which serves as a starting point for CBF calcula-
tions. This realistic wave function is translationally invariant by construction as
can be observed from its the expression Eq. II-26.

Starting from the expression II-26 for the 4He wave function, an expansion
for φc(|~r|) = fc(|~r|).φho(|~r|) in terms of Gaussians can been adopted :

φc(|~r|) = a[1]e−r2/2b[1] + a[2]e−r2/2b[2] + a[3]e−r2/2b[3]































a[1] = −0.92695023 b[1] = 0.24725465

a[2] = 0.64799724 b[2] = 13.810559

a[3] = 0.5923402 b[3] = 2.2518416

(C-1)

This expansion allows us to rewrite the central part of the 4He wave function as
follows :

Ψ(~r1, ~r2, ~r3, ~r4) =
1√
N

4
∑

i<j=1

3
∑

tij=1

a[t12]a[t13]a[t14]a[t23]a[t24]a[t34]

e−
1
2
(|~r1−~r2|2/b[t12]+|~r1−~r3|2/b[t13]+|~r1−~r4|2/b[t14]+|~r2−~r3|2/b[t23]+|~r2−~r4|2/b[t24]+|~r3−~r4|2/b[t34]) .

(C-2)

The tensor correlations up to first order in the cluster expansion of II-26 don’t
give a contribution to the nuclear densities. The coordinate space densities as

135



136 Appendix C Calculational details

obtained after performing the integrations analytically are listed underneath.

ρ(~r) =
4

N
4
∑

i<j=1

3
∑

tiij ,tfij=1

F i
aFf

a

(

2π

α

)3/2(
2π

β

)3/2(
4

3

)3

e−8γr2/9 (C-3)

Fch(~q) =

∫

d3~rρ(~r)e−i~q.~r

=
2

N
4
∑

i<j=1

3
∑

tiij ,tfij=1

F i
aFf

a

(

2π

α

)3/2(
2π

β

)3/2(
2π

γ

)3/2

e−9q2/32γ (C-4)

ρcom(~R) =

∫

d3~r1d
3~r2ρ(~r1, ~r2)δ

3(~R− ~r1 + ~r2
2

)

= 6
23

N
4
∑

i<j=1

3
∑

tiij ,tfij=1

F i
aFf

a

(

2π

α

)3/2(
2π

δ

)3/2

e−
1
2
(4ζ−λ2/δ)R2

(C-5)

ρrel(~r) =

∫

d3~r1d
3~r2ρ(~r1, ~r2)δ

3(~r − (~r1 − ~r2))

= 6
23

N
4
∑

i<j=1

3
∑

tiij ,tfij=1

F i
aFf

a

(

2π

α

)3/2(
π

2ζ

)3/2

e−
1
2
(δ−λ2/4ζ)r2

(C-6)

where, the constants F i
a and Ff

a are products of Gaussian amplitudes e.g.
F i

a = a[ti12]a[t
i
13]a[t

i
14]a[t

i
23]a[t

i
24]a[t

i
34]. The one-body density function is normal-

ized to the total number of particles (= 4), while the other two distribution
functions, which are derived from the two-body density operator, are normalized
to the number of pairs in the nucleus (= 6). The other variables, introduced
to make the expressions for the density operators more transparent are listed in
Table C-1.

C -1.2 Momentum space

The momentum space wave function can be obtained from Eq. C-2 by means of
a Fourier transform :

Φ(~k1, ~k2, ~k3, ~k4) =
∫

d3~r1d
3~r2d

3~r3d
3~r4Ψ(~r1, ~r2, ~r3, ~r4)e

−i(~k1.~r1+~k2.~r2+~k3.~r3+~k4.~r4) (C-7)

An analytical expression can be obtained for the momentum space wave func-
tion as well as for the density functions once the central correlation function is
expanded in a Gaussian basis given by Eq. C-1. The key concepts in all of these
derivations is the insertion of a unity operator of the form :

1I =

∫

d3~r
1

(2π)3

∫

d3~ke−i~k.~r (C-8)
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α = 1
b[ti12]

+ 1

b[tf12]
+ 1

4b[ti13]
+ 1

4b[tf13]
+

1
4b[ti14]

+ 1

4b[tf14]
+ 1

4b[ti23]
+ 1

4b[tf23]
+ 1

4b[ti24]
+ 1

4b[tf24]

β = 1
b[ti13]

+ 1

b[tf13]
+ 1

9b[ti14]
+ 1

9b[tf14]
+ 1

b[ti23]
+ 1

b[tf23]
+ 1

9b[ti24]
+ 1

9b[tf24]
+

4
9b[ti34]

+ 4

9b[tf34]
− 1

4α1
( 1

b[ti13]
+ 1

b[tf13]
+ 1

3b[ti14]
+ 1

3b[tf14]

− 1
b[ti23]

− 1

b[tf23]
− 1

3b[ti24]
− 1

3b[tf24]
)2

γ = 1
b[ti14]

+ 1

b[tf14]
+ 1

b[ti24]
+ 1

b[tf24]
+ 1

b[ti34]
+ 1

b[tf34]
− 1

4α1
( 1

b[ti14]
+ 1

b[tf14]
− 1

b[ti24]
− 1

b[tf24]
)2−

1
4α2

( 2
3b[ti14]

+ 2

3b[tf14]
+ 2

3b[ti24]
+ 2

3b[tf24]
− 4

3b[ti34]
− 4

3b[tf34]
−

2
4α1

( 1
b[ti13]

+ 1

b[tf13]
+ 1

3b[ti14]
+ 1

3b[tf14]
− 1

b[ti23]
− 1

b[tf23]
− 1

3b[ti24]
− 1

3b[tf24]
)

( 1
b[ti14]

+ 1

b[tf14]
− 1

b[ti24]
− 1

b[tf24]
))2

δ = 1
4b[ti13]

+ 1

4b[tf13]
+ 1

4b[ti14]
+ 1

4b[tf14]
+ 1

4b[ti23]
+ 1

4b[tf23]
+ 1

4b[ti24]
+ 1

4b[tf24]
+

1
b[ti34]

+ 1

b[tf34]
− 1

4α1
(− 1

2b[ti13]
− 1

2b[tf13]
+ 1

2b[ti14]
+ 1

2b[tf14]
+ 1

2b[ti23]
+ 1

2b[tf23]
−

1
2b[ti24]

− 1

2b[tf24]
)2

ζ = 1
b[ti13]

+ 1

b[tf13]
+ 1

b[ti14]
+ 1

b[tf14]
+ 1

b[ti23]
+ 1

b[tf23]
+ 1

b[ti24]
+ 1

b[tf24]
−

1
4α1

( 1
b[ti13]

+ 1

b[tf13]
+ 1

b[ti14]
+ 1

b[tf14]
− 1

b[ti23]
− 1

b[tf23]
− 1

b[ti24]
− 1

b[tf24]
)2

λ = − 1
b[ti13]

− 1

b[tf13]
+ 1

b[ti14]
+ 1

b[tf14]
− 1

b[ti23]
− 1

b[tf23]
+ 1

b[ti24]
+ 1

b[tf24]
−

2
4α1

(− 1
2b[ti13]

− 1

2b[tf13]
+ 1

2b[ti14]
+ 1

2b[tf14]
+ 1

2b[ti23]
+ 1

2b[tf23]
− 1

2b[ti24]
− 1

2b[tf24]
)

( 1
b[ti13]

+ 1

b[tf13]
+ 1

b[ti14]
+ 1

b[tf14]
− 1

b[ti23]
− 1

b[tf23]
− 1

b[ti24]
− 1

b[tf24]
)

Table C-1: This table enlists the various variables introduced in the equations
C-3 through C-6
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and the Fubini-Tonelli theorem specifying the conditions under which it is allowed
to interchange an integration sequence.

Φ( ~Kcom, ~k
1
rel,
~k2

rel,
~k3

rel) =

(2π)3/2δ3( ~Kcom)
1√
N

3
∑

t12=1

3
∑

t13=1

3
∑

t14=1

3
∑

t23=1

3
∑

t24=1

3
∑

t34=1

a[t12]a[t13]a[t14]a[t23]a[t24]a[t34]

(b[t12]b[t13]b[t14]b[t23]b[t24]b[t34])
3/2

[

2π

α

]3/2 [
2π

β

]3/2 [
2π

γ

]3/2

e−
1
2
(e1|~k1

rel|2+e2|~k2
rel|2+e3|~k3

rel|2−2e12
~k1
rel.

~k2
rel−2e13

~k1
rel.

~k3
rel−2e23

~krel2.~k3
rel)

1√
4!

∣

∣

∣

∣

∣

∣

ST-Slater

(C-9)

with


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






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




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
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
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















































































































































































































































α = b[t13] + b[t14] + b[t34]

β = b[t13] + b[t14] + b[t23] + b[t24] − (b[t13]+b[t14])2

α

γ = b[t12] + b[t14] + b[t24] − b[t14]2

α
− (b[t14]+b[t24]− b[t14](b[t13]+b[t14])

α
)2

β

e1 = b[t12](1 − b[t12]
γ

)

e2 = b[t23](1 − b[t23]
β

(1 +
(b[t14]+b[t24]− b[t14](b[t13]+b[t14])

α
)2

βγ
))

e3 = b[t34](1 − b[t34]
α

(1 + 1
α
( (b[t13]+b[t14])2

β
+

(−b[t14]+
b[t13]+b[t14]

β
(b[t14]+b[t24]− b[t14](b[t13]+b[t14])

α
))2

γ
)))

e12 = b[t12]b[t23]
βγ

(b[t14] + b[t24] − b[t14](b[t13]+b[t14])
α

)

e13 = b[t12]b[t34]
αγ

(−b[t14] + b[t13]+b[t14]
e
¯

ta
(b[t14] + b[t24] − b[t14](b[t13]+b[t14])

α
))

e23 = b[t23]b[t34]
αβ

(b[t13] + b[t14] + 1
γ
(b[t14] + b[t24] − b[t14](b[t13]+b[t14])

α
)

(−b[t14] + b[t13]+b[t14]
β

(b[t14] + b[t24] − b[t14](b[t13]+b[t14])
α

)))

,

where, 1
4!

∣

∣

∣

∣

∣

∣

ST-Slater

is an abbreviation for the spin-isospin Slater determinant.

The center-of-mass and relative momenta, used to describe the intrinsic dy-
namics for the 4He-nucleus are given by the following expressions :

~Kcom = ~k1 + ~k2 + ~k3 + ~k4

~k1
rel =

3

4
~k1 −

~k2 + ~k3 + ~k4

4

~k2
rel =

~k1 + ~k2

2
−
~k3 + ~k4

2
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~k3
rel =

~k1 + ~k2 + ~k3

4
− 3

4
~k4· (C-10)

In an analogous manner as for the coordinate-space density functions, formulas
for their counterparts in momentum-space can be derived. Replacing Ψ with Φ
and ~r by ~k in the formulas C-3,C-5 and C-6 leads to :

ρ(~k) =
4

N
4
∑

i<j=1

3
∑

tiij ,tfij=1

F i
abFf

ab

[

2π

e1

]3/2 [
2π

e2

]3/2

e−
1
2
(e3−e2

23/e2)k2

(C-11)

ρrel(~q) =
6

N
4
∑

i<j=1

3
∑

tiij ,tfij=1

F i
abFf

ab

[

2π

e1

]3/2 [
2π

e2 + e3/4 − e23

]3/2

×e− 1
2
(e3−(e3/2−e23)2/(e2+e3/4−e23))q2

(C-12)

ρcom( ~Q) =
6

N
4
∑

i<j=1

3
∑

tiij ,tfij=1

F i
abFf

ab

[

2π

e1

]3/2 [
2π

e3

]3/2

×e− 1
2
(e2+e3/4−e23−(e3/2−e23)2/e3)Q2

, (C-13)

where, the parameters F i
ab and Ff

ab are mixed products of Gaussian amplitudes
and widths e.g.

F i
ab = a[ti12]a[t

i
13]a[t

i
14]a[t

i
23]a[t

i
24]a[t

i
34](b[t

i
12]b[t

i
13]b[t

i
14]b[t

i
23]b[t

i
24]b[t

i
34])

3/2

[

2π

αiβiγi

]3/2

.

In order, to make the above expressions more transparent, following variables
have been introduced















































































e1 = ei
1 + ef

1

e2 = ei
2 + ef

2 − (ei
12+ef

12)2

ei
1+ef

1

e3 = ei
3 + ef

3 − (ei
13+ef

13)2

ei
1+ef

1

e12 = ei
12 + ef

12

e13 = ei
13 + ef

13

e23 = ei
23 + ef

23 + e12e13

e1

Just as their coordinate space counterparts they are normalized to the total
number of particles or pairs in the nucleus depending on whether one is dealing
with the momentum density, the relative- or COM-pair momentum density.
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C -2 Harmonic oscillator wave function

The solution of the Schrödinger equation for an harmonic oscillator potential
Vho =

∑4
i=1

1
2
mNω

2|~ri|2 with zero angular momentum (L = 0) is

ΨHO(x1, x2, x3, x4) =

[
√

(ν

π

)3/2
]4

e−ν
∑4

i=1 r2
i /2 1√

4!

∣

∣

∣

∣

∣

∣

ST-Slater

(C-14)

with ν = ωmN/~ and xi = (~ri, si, ti).
The radial part of the HO-wave function factorizes into a COM- and an intrinsic
part :

ΨHO(~Rcom, ~rrel
1, ~rrel

2, ~rrel
3) =

√

(

4ν

π

)3/2

e−2ν|~Rcom|2ψrel

HO(~rrel
1, ~rrel

2, ~rrel
3)

with ψrel

HO(~rrel
1, ~rrel

2, ~rrel
3) =

4
∏

i<j

√
2
[ ν

4π

]3/8

e−
ν|~ri−~rj |

2

2
1√
4!

∣

∣

∣

∣

∣

∣

ST-Slater

, (C-15)

which allows eliminating the center-of-mass coordinate in an unambiguous way.
For this HO-wave function two types of density functions can be calculated. On
the one hand, the density function relative to the COM. On the other hand,
relative to the center of the potential. The results of both types of calculations
are listed in Table C-2. Comparing both columns, just like that, would lead to the
conclusion that by eliminating the center-of-mass coordinate the width of the one-
body and pair density gets reduced while the NN-separation distribution remains
unaltered. This is what one would expect intuitively and so did also the authors
of Ref. [43]. But instead of using the same oscillator parameter ν for both kind
of densities one should determine ν as a result of fitting a theoretical expectation
value to the respective experimental value. To fix the oscillator parameter, we
fitted the rms charge radius < |~r|2ch >1/2

exp to its measured value 1.676 fm. Into
lowest order, the charge density, for all particles in a 1s-state, reads :

ρch
4He(~r) = 2|φ(~r)|2

= 2

∣

∣

∣

∣

(ν

π

)3/4

e−ν|~r|2/2

∣

∣

∣

∣

2

(C-16)

The charge density is normalized to the total number of protons explaining the
extra factor of two.
With the above charge density, the rms charge radius reads :

< ~r 2
ch > =

1

2

∫

d3~r ~r 2 ρch
4He(~r)

=















3
2ν

HO-model

9
8ν

com-corrected HO-model

(C-17)
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HO-model COM-corrected

HO-model

(ν = 0.534/fm2) (ν = 0.4/fm2)

ρ(~r) 4
(

ν
π

)3/2
e−νr2

4 . 8
(

ν
3π

)3/2
e−4νr2/3

Fch(~q) 2e−q2/4ν 2e−3q2/16ν

ρrel(~r) 6
(

ν
2π

)3/2
e−νr2/2 6

(

ν
2π

)3/2
e−νr2/2

ρcom(~R) 6
(

2ν
π

)3/2
e−2νR2

6 . 8
(

ν
π

)3/2
e−4νR2

Table C-2: The one- and two-body densities and the charge form factor computed
in a HO-model. The left column contains the genuine IPM densities
while the distributions in the right column are obtained after elimi-
nating the center-of-mass motion.



142 Appendix C Calculational details

Solving for ν returns the oscillator parameters as given in Table C-2.

HO-model COM-corrected

HO-model

(ν = 0.534/fm2) (ν = 0.4/fm2)

ρ(~k) 4
(

1
πν

)3/2
e−k2/ν 4

(

4
3πν

)3/2
e−4k2/3ν

ρrel(~q) 6
(

2
πν

)3/2
e−2q2/ν 6

(

2
πν

)3/2
e−2q2/ν

ρcom( ~Q) 6
(

1
2πν

)3/2
e−Q2/2ν 6

(

1
πν

)3/2
e−Q2/ν

Table C-3: The momentum density functions of 4He calculated in an HO-model.
The first column contains the density distributions in the LAB-frame
while the momentum distributions in the COM-frame are tabulated
in the second column.

The momentum space HO-wave functions (in the COM- and LAB-frame) are
obtained by a suitable Fourier transform :

ΦHO(~k1, ~k2, ~k3, ~k4) =

∫

d3~r1d
3~r2d

3~r3d
3~r4ΨHO(~r1, ~r2, ~r3, ~r4)e

−i(~k1.~r1+~k2.~r2+~k3.~r3+~k4.~r4) .

The previous equation can be solved in the LAB- as well as in the COM-frame
of reference :

ΦLAB

HO (~k1, ~k2, ~k3, ~k4) =

[

(

4π

ν

)3/4
]4

e−(k2
1+k2

2+k2
3+k2

4)/2ν 1√
4!

∣

∣

∣

∣

∣

∣

ST-Slater

(C-18)

ΦCOM

HO ( ~Kcom, ~k
1
rel,
~k2

rel,
~k3

rel) = (2π)3/2δ3( ~Kcom)

[

4
(π

ν

)3/4
]3

×e−(|~krel
1−~krel

2/2|2/ν+|~krel
3−~krel

2/2|2/ν+|~krel
2|2/2ν) 1√

4!

∣

∣

∣

∣

∣

∣

ST-Slater

, (C-19)
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where ( ~Kcom, ~k
1
rel,
~k2

rel,
~k3

rel) are defined as in Eq. C-10.
Table C-3 displays the IPM momentum densities. Ignoring the oscillator pa-
rameter differences, one concludes that the c.o.m.-corrected momentum and pair
momentum distributions are narrower relative to the genuine shell model densi-
ties while the pair relative momentum function remains unaltered. This is what
one would expect by simply eliminating the center-of-mass motion, These con-
clusions, should be looked upon along the same lines as expressed in the previous
paragraph.

C -3 Lepton tensor

The lepton tensor as defined in Eq. III-15 looks like :

Lµν = ū( ~kf
e,msf

)γµu(~ki
e,msi

)
†
ū( ~kf

e,msf
)γνu(~ki

e,msi
) . (C-20)

The electron wave function u(~ke,ms) is a solution of the Dirac equation and as
such, it has the properties outlined in Appendix B -3.
Using Eq. B-9 makes it possible to rewrite Eq. III-15 as :

Lµν =

+1/2
∑

msi ,msf
=−1/2

ū( ~kf
e,msf

)γµ
1 + γ5s/ i

2
u(~ki

e,msi
)

ū(~ki
e,msi

)γν

1 + γ5s/ f

2
u( ~kf

e,msf
)

Inserting Eq. B-10 one obtains

Lµν = Tr

[

p/ f
e c+mec

2

2Ef
e

γµ
1 + γ5s/ i

2

p/ i
ec+mec

2

2Ei
e

γν

1 + γ5s/ f

2

]

=
1

16Ei
eEf

e

Tr
[

p/ f
e cγµp/

i
ecγν + p/ f

e cγµp/
i
ecγνγ5s/ f + p/ f

e cγµmec
2γν+

p/ f
e cγµmec

2γνγ5s/ f + p/ f
e cγµγ5s/ ip/

i
ecγν + p/ f

e cγµγ5s/ ip/
i
ecγνγ5s/ f +

p/ f
e cγµγ5s/ imec

2γν + p/ f
e cγµγ5s/ imec

2γνγ5s/ f +mec
2γµp/

i
ecγν +

mec
2γµp/

i
ecγνγ5s/ f +mec

2γµmec
2γν +mec

2γµmec
2γνγ5s/ f +

mec
2γµγ5s/ ip/

i
ecγν +mec

2γµγ5s/ ip/
i
ecγνγ5s/ f +mec

2γµγ5s/ imec
2γν +

mec
2γµγ5s/ imec

2γνγ5s/ f

]

=
c2

4Ei
eEf

e

{

(pi
ep

f
e )
[

−gµν − (si)µ(sf )ν − (si)ν(sf )µ +
gµν

2
(sisf )

]

+

(pi
esi)

[

−(pf
e )µ(sf )ν + (pf

e )ν(sf )µ − gµν

2
(pf

esf )
]

+
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(pi
esf )

[

(pf
e )µ(si)ν + (pf

e )ν(si)µ − gµν

2
(pf

esi)
]

+

(pf
esi)

[

(pe
i )µ(sf )ν + (pi

e)ν(sf )µ − gµν

2
(pi

esf )
]

+

(pf
esf )

[

(pi
e)µ(si)ν − (pi

e)ν(si)µ − gµν

2
(pi

esi)
]

+

(sisf )
[

−gµνm
2
ec

2 − (pf
e )µ(pi

e)ν − (pf
e )ν(p

i
e)µ +

gµν

2
(pf

ep
i
e)
]

+

(pf
e )µ(pi

e)ν + (pf
e )ν(p

i
e)µ +m2

ec
2 [(si)µ(sf )ν + (si)ν(sf )µ] + gµνm

2
ec

2 +

iεαβµν

[

(pf
e )

α(sf )
β + (pf

e )
α(si)

β − (pi
e)

α(sf )
β − (pi

e)
α(si)

β
]

mec
}

·(C-21)

In the relativistic limit the electron is longitudinally polarized (i.e., si → hi
pi

e

mec

and sf → hf
pf

e

mec
) and Eq. C-21 becomes

Lµν =
c2

4Ei
eEf

e

{

−(1 + hihf )(p
i
ep

f
e )gµν + (1 − hihf )gµνm

2
ec

2+

(1 + hihf )
[

(pf
e )µ(pi

e)ν + (pf
e )ν(p

i
e)µ

]

+ iεαβµν(hi + hf )(p
f
e )

α(pi
e)

β
}

(C-22)

Electron scattering in the ultra-relativistic limit conserves helicity as can be de-
duced from Eq. C-22 :

Lµν(hi = hf = h) =
2c2

4Ei
eEf

e

{

(pf
e )µ(pi

e)ν + (pf
e )ν(p

i
e)µ−

gµν(p
i
ep

f
e ) + ihεαβµν(p

f
e )

α(pi
e)

β
}

(C-23)

Lµν(hi 6= hf ) =
2c2

4Ei
eEf

e

gµνm
2
ec

2
me
Ee

→0
→ 0 . (C-24)

The final expression for the lepton tensor in the ultra-relativistic limit reads :

Lµν =

2c2

4Ei
eEf

e

{

(pf
e )µ(pi

e)ν + (pf
e )ν(p

i
e)µ − gµν(p

i
ep

f
e ) + ihεαβµν(p

f
e )

α(pi
e)

β
}

(C-25)

C -4 Recoil factor

The recoil factor appears as a direct consequence of the following integral :
∫

f(|~k3|)δ(ωγ∗ + ω4He − ω1 − ω2 − ω3 − ω4)d|~k3|

=

∫

f(|~k3|)
∑

i

1
∣

∣

∣∂[∆E(|~k3|)]/∂|~k3|
∣

∣

∣

δ(|~k3| − |~k3|i)d|~k3|

=
∑

i

f(|~k3|i)
1

∣

∣

∣
∂[∆E(|~k3|i)]/∂|~k3|

∣

∣

∣

,
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where use have been made of a property of the Dirac delta function

δ(f(x)) =
∑

i

1

|df(xi)/dx|
δ(x− xi) (C-26)

with xi a root of the function f(x). To proceed, we will first calculate ∂[∆E(| ~k3|)]/∂|~k3| :

∆E(|~k3|) =

ωγ∗ + ω4He − ω1 − ω2 − c

√

|~k3|2 +
m2

Nc
4

(~c)2
− c

√

( ~km − ~k3)2 +
m2

Nc
4

(~c)2
,

with ~km = ~qγ − ~k1 − ~k2.

∂[∆E(|~k3|)]/∂|~k3| = 0 + 0 − 0 − 0 − c|~k3|
√

|~k3|2 +
m2

N c4

(~c)2

− c(|~k3| − | ~km|cos(θ3m))
√

( ~km − ~k3)2 +
m2

N c4

(~c)2

= −c2
(

|~k3|
ω3

+
|~k3| − | ~km|cos(θ3m)

ω4

)

= −c2
( |~p3|
E3

+
|~p3| − | ~pm|cos(θ3m)

E4

)

= −c2 |~p3|
E3

(

1 +
E3

E4

(

1 − | ~pm|cos(θ3m)

|~p3|

))

. (C-27)

The recoil factor is identified with the last part of Eq. C-27 :

frecoil =

∣

∣

∣

∣

∣

∣

1

1 + E3

E4

(

1 − | ~pm|cos(θ3m)
| ~p3|

)

∣

∣

∣

∣

∣

∣

. (C-28)

C -5 The delta decay width

A decay width Γ gets defined through the following relation

Γ =
1

16

∫

∑ |Sfi|2
T

dρf , (C-29)

with T the specific time interval during which the transition probability is calcu-
lated in a box normalization technique.
One averages over the initial spin and isospin projections and sums over the final

ones. This results into an additional factor of
(

1/[2×(3/2)+1]
)2

. The scattering

matrix Sfi, characterizing the decay reaction gets multiplied by the phase-space
factor.

dρf = V
d3~kN

(2π)3
V
d3~kπ

(2π)3
,
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P (∆ m∆ , )0

PN (E N
, k )

Pπ (E π , k )

∆

N

π

Figure C-1: The pion-nucleon decay channel of the delta resonance.

which denotes the density of final states in a volume V. The scattering matrix
can be derived using the quantum field theory formalism with the interaction
Lagrangian density LπN∆ of Eq. III-113 :

Sfi = − i

~

∫

d4x 〈πN | − LπN∆(x)|∆〉

= − i

~

∫

d4x

〈

πN |fπN∆

mπ

√

~3

c
ψ̄(x)~T .(∂µ

~φ(x))Ψµ
∆(x)|∆

〉

= lim
V →∞

i

~2

fπN∆

mπ

√

~3

c
(2π~)4δ4(p∆ − pN − pπ)

(

1√
V

)3
√

mNc2

EN

√

~2c2

2Eπ

ū(~pN ,ms)η
†
( 1
2
,mt)

(~T )i(pπ)µu
µ
∆(~p∆,ms∆

)η( 3
2
,mt∆

) . (C-30)

The squared scattering matrix looks like :

1

16

∑

s,t

|Sfi|2 = lim
V,T→∞

V T (2π~)4δ4(p∆ − pN − pπ)
1

16

∑ f 2
πN∆mNc

3

2m2
πENEπ

~

V 3

ū(~pN ,ms)η
†
( 1
2
,mt)

(~T )i(pπ)µu
µ
∆(~p∆,ms∆

)η( 3
2
,mt∆

).

(pπ)ν ū
ν
∆(~p∆,ms∆

)η†
( 3
2
,mt∆

)
(~T )†iu(~pN ,ms)η( 1

2
,mt)

= lim
V,T→∞

~T

V 2
(2π~)4δ4(p∆ − pN − pπ)

1

16

f 2
πN∆mNc

3

2m2
πENEπ

[

3
∑

i=1

2

3
δii

]





1/2
∑

mt=−1/2

η†
( 1
2
,mt)

η( 1
2
,mt)



 |~pπ|2





3/2
∑

ms∆
=−3/2

∣

∣

∣

∣

〈

1

2
,ms∆

; 1, 0|3
2
,ms∆

〉∣

∣

∣

∣

2

×





1/2
∑

ms=−1/2

|ū(~pN ,ms)u(~p∆,ms∆
)|2







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where use have been made of the properties of the isospin projection operator
defined in Appendix B -4.
In the non-relativistic limit this expression reduces to

1

16

∑

s,t

|Sfi|2 = lim
V,T→∞

~T

V 2
(2π~)4δ4(p∆ − pN − pπ)

1

16

f 2
πN∆mNc

3

2m2
πENEπ

2

3
3 2 |~pπ|2

4

3

= lim
V,T→∞

~T

V 2
(2π~)4δ4(p∆ − pN − pπ)

f 2
πN∆mNc

3

2m2
πENEπ

|~pπ|2
3

, (C-31)

where we have used the property that the non-relativistic reduction of a spin 1
2

spinor is momentum independent which justifies the equality

ū(~pN ,ms)u(~p∆,ms∆
)

NR
= 1 · (C-32)

To arrive at the final expression for the scattering matrix we assumed that the
pion propagates along the z-axis. Inserting Eq. C-31 into the expression for the
decay width gives rise to the following equation :

Γ = lim
V,T→∞

∫

(2π~)4δ4(p∆ − pN − pπ)
f 2

πN∆mNc
3

2m2
πENEπ

~|~pπ|2
3

d3~pN

(2π~)3

d3~pπ

(2π~)3

=
2π

3

f 2
πN∆mNc

3

m2
πENEπ

~

(2π~)2

∫

δ(E∆ − EN − Eπ)|~pπ|4d|~pπ|

=
2

3

1

4π

f 2
πN∆

m2
π

mN

m∆

|~pπ|3
~c

, (C-33)

where we used the expression :

δ(E∆ − EN − Eπ) →
∑

i

ENEπ

|~pπ|c2.m∆c2
δ(|~pπ| − pi

0) ,

with the sum running over the roots of the kernel E∆ − EN − Eπ. The pion
momentum pπ is given by :

|~pπ| =

√

1

4s
[(s− (mNc+mπc)2)(s− (mNc−mπc)2)] , (C-34)

which places a cut on the Mandelstam variable s namely s > mNc+mπc.

C -6 The non-relativistic one-body current

We start from the relativistic one-body vertex defined in Eq. III-129

Γµ
CC2 = FN

1 (Q2)γµ + iκN
FN

2 (Q2)

2mNc
σµν(pγ)ν
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and adopt the Pauli reduction scheme [136] to derive the non-relativistic one-
body nuclear current to lowest order in pN

mN
. As explained in Section §4.3.1 the

Pauli reduction method starts from the expectation value of the hadronic current
for an on-shell positive-energy Dirac spinor :

ψE=Ep(~x, t) =

√

Ep +mNc2

2mNc2
e−

i
~

p.x

(2π~)3/2









1

~σ.~pc
Ep+mN c2









χ(1/2,ms) .

The nuclear current operator in two-dimensional spin space looks like :

Ĵµ
N(0) =

√

Ef
p +mNc2

2mNc2

(

1 ~σ.~pf c

Ef
p +mN c2

)

γ0

[

FN
1 (Q2)γµ + iκN

FN
2 (Q2)

2mNc
σµν(pγ)ν

]

×
√

Ei
p +mNc2

2mNc2









1

~σ.~pic
Ei

p+mN c2









, (C-35)

with charge and vector components :

ρ̂(0) =

√

Ef
p +mNc2

2mNc2

(

1 ~σ.~pf c

Ef
p +mN c2

)









FN
1 (Q2) −κN

F N
2 (Q2)

2mN c
~σ.~pγ

κN
F N

2 (Q2)

2mN c
~σ.~pγ FN

1 (Q2)









×
√

Ei
p +mNc2

2mNc2









1

~σ.~pic
Ei

p+mN c2









(C-36)

~̂J(0) =

√

Ef
p +mNc2

2mNc2

(

1 ~σ.~pf c

Ef
p +mN c2

)

×









iκN
F N

2 (Q2)

2mN c
(~σ × ~pγ)

[

FN
1 (Q2) + κN

Eγ

2mN c2
FN

2 (Q2)
]

~σ

[

FN
1 (Q2) − κN

Eγ

2mN c2
FN

2 (Q2)
]

~σ −iκN
F N

2 (Q2)

2mN c
(~σ × ~pγ)









×
√

Ei
p +mNc2

2mNc2









1

~σ.~pic
Ei

p+mN c2









. (C-37)

Starting from this expression for the charge and current operator, a perturba-

tion expansion in |~p(f/i)|
mN

can be performed. Retaining only terms up to lowest
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relativistic order one gets

ρ̂LO(0) = FN
1 (Q2) (C-38)

~̂JLO(0) =
FN

1 (Q2)

2mNc

(

~pi + ~pf
)

+ i
FN

1 (Q2) + κNF
N
2 (Q2)

2mNc
~σ × (~pf − ~pi) . (C-39)

In the lowest relativistic order an identical expression for the one-body current
can be derived with the aid of a Foldy-Wouthuysen transformation [139].
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Samenvatting

In dit doctoraatswerk wordt een translatie invariant model voorgesteld voor de
beschrijving van twee nucleon uitstoot reacties aan een helium kern. De titel
haalt reeds de twee belangrijkste onderdelen in dit werk aan: nl. enerzijds een
beschrijving van het reactie mechanisme en anderzijds een consistente modellering
van de helium kern. Op de helium kern golffunctie wordt in hoofdstuk 2 van dit
werk uitvoerig ingegaan terwijl hoofdstuk 3 volledig gewijd is aan het beschrijven
van het twee nucleon uitstoot reactie proces.

Nucleon uitstoot reacties behoren tot het domein van de intermediaire energie
kernfysica. De nadruk ligt hierbij vooral op de studie van de onderliggende struc-
tuur van kernmaterie en haar dynamisch gedrag op korte afstandsschaal gaande
van 3 tot 0.5 fm. Bij een dergelijk resolverend vermogen begint de substructuur
van de nucleonen een belangrijke rol te spelen. Het is dan ook niet verwonderlijk
dat de klassieke beschrijving van de kern als een verzameling van nucleonen die
onafhankelijk van elkaar bewegen en ten gevolge van elkaars aanwezigheid een
gemiddelde aantrekking ondervinden, niet meer toerijkend zal zijn. Dit beeld
van de kern werd in de jaren 50 door Mayer en Jensen naar voor geschoven als
de schillenmodel benadering van de nucleus. De kern werd hierbij voorgesteld
als bestaande uit een inerte core waarrond de valentie nucleonen cirkelen als sa-
tellieten. Voor de beschrijving van globale eigenschappen van de kern zoals bv.
zijn energiespectrum, de kernstraal, lage-energie transitie sterktes etc. voldoet
dit beeld wonderwel. Tal van eigenschappen zoals de stabiliteit van de magische
kernen konden hiermee verklaard worden.

Wanneer we echter het gedrag van de afzonderlijke nucleonen in de kern willen
beschrijven op steeds kortere afstandsschaal zal het sterk repulsieve karakter van
de nucleon-nucleon wisselwerking een rol beginnen spelen. Op dat ogenblik is
bovenstaand beeld van de kern niet meer toereikend daar de valentie nucleonen
weliswaar nog rond de inerte core bewegen maar hierbij wel elkaars aanwezig-
heid zullen mijden. Fysisch, komt dit enerzijds neer op een herverdeling van de
bezettingssterkten van de valentie orbitalen over hoger gelegen één-deeltjes toe-
standen. Dit geeft aanleiding tot experimentele spectroscopische factoren van 0.7
in plaats van 1 (in het schillenmodel) voor de één-deeltjes toestanden gelegen
beneden het Fermi-niveau. Daarnaast neemt men een toename waar, in de mo-
mentum dichtheden, van de sterkte bij hoge impuls momenta als gevolg van de
aanwezigheid van deze zogenaamde korte dracht correlaties. Door de sterke re-
pulsieve kracht die twee nucleonen ondervinden op een onderling afstand van 0.5
fm zullen zij in toestanden boven het Fermi-niveau verstrooid worden. Om hier-
voor te corrigeren werden aangepaste spectroscopische factoren gehanteerd in de
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verstrooiings reactie berekeningen. Hiermee wordt het effect van de herverdeling
van sterkten over hoger liggende één-deeltjes toestanden gesimuleerd. Recente
berekeningen voor de verstrooiings reactie 16O(e, e′pp)14C toonden aan dat de
differentiele werkzame doorsnede uitermate gevoelig is voor de gebruikte spectro-
scopische verdeling [129]. Men ziet zeer duidelijk hoe de vorm en de sterkte van
de werkzame doorsnede afhankelijk zijn van de ruimtelijke vorm van de door de
verstrooide nucleonen bezette orbitalen.
Anderzijds, zal het sterk repulsief karakter van de internucleon kracht aanleiding
geven tot een deformatie van de één-deeltjes golffuncties zoals bekomen uit een
Hartree-Fock berekening. Fysisch, kan men dit als volgt inzien: door de ruimte-
lijke uitgebreidheid van de nucleonen zullen zij elkaar wegduwen in het nucleair
medium. Dit manifesteert zich als een sterke terugval in de twee-deeltjes waar-
schijnlijkheids distributie bij kleine internucleon afstanden. De standaard manier
om voor dit effect te corrigeren is om vertrekkende van een typisch schillenmodel
Slater golffunctie, een correlatie functie toe te voegen die symmetrisch is in de
nucleon vrijheidsgraden. Deze techniek noemt men gecorreleerde basisfunctie the-
orie welke zeer populair is in o.a. de vloeistof- en atoomfysica en gëıntroduceerd
werd in de jaren 60 door Ristig en Clarck. Ook in deze domeinen bestaat de
nood om de korte dracht effecten te modeleren zonder het N-deeltjes probleem in
zijn volledige complexiteit te moeten oplossen. Weliswaar bestaat geen consensus
omtrent de correcte functionele vorm van de correlatiefunctie die dient te worden
gebruikt. Het experiment zal in deze laatste aangelegenheid uitsluitsel moeten
brengen. Een belangrijk voordeel van deze techniek is de mogelijkheid om aan
storingsrekening te doen op basis van een expansie van de correlatiefunctie.

Het schillenmodel, als typisch voorbeeld van een gemiddeld-veld benadering,
vertoont nog een tekortkoming die zich des te meer zal uiten naarmate de kern
ter studie lichter wordt. De standaard gemiddeld-veld golffunctie, berekend in
het laboratorium coördinatenstelsel, is inherent niet-translatie invariant omwille
van de bevoorrechte positie ingenomen door de oorsprong. De oorsprong wordt
hierbij gelegd in het centrum van de gemiddelde potentiaal waarin de nucleo-
nen bewegen ten gevolge van de aanwezigheid van de andere kerndeeltjes. Dit
vormt geen belemmering voor de beschrijving van de statische eigenschappen van
de kern op voorwaarde dat zij geen afhankelijkheid vertonen van de impuls van
de kern als geheel. Zo ja, zal men vooreerst een intrinsieke golffunctie moeten
distilleren uit de gemiddeld-veld golffunctie om de residuele massacentrum be-
weging te elimineren. Hierbij dient wel opgemerkt dat de effecten ten gevolge
van het niet-translatie invariant zijn van de golffunctie schalen als 1/A3/2 met A
het massagetal van de desbetreffende kern. Men kan dus gerust stellen dat deze
afwijkingen kunnen verwaarloosd worden in het geval van middel-zware en zware
kernen.
Als voorbeeld werden zowel de ladings vormfactor als de dichtheidsfuncties bere-
kend voor de 4He-kern. Hierbij werd vertrokken van een gemiddeld-veld en een
intrinsieke golffunctie voor het specifieke geval van een harmonische oscillator
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potentiaal. Enkel voor een dergelijke potentiaal is het mogelijk om de massacen-
trum vrijheidsgraden op een ondubbelzinnige wijze af te zonderen. We merken
heel duidelijk hoe een foutieve behandeling van de massacentrum beweging fy-
sisch meetbare grootheden kan bëınvloeden wanneer we kijken naar de figuren
II-8 en II-9. Dit geeft een heel duidelijk signaal nl. een beschrijving van de kern
in termen van de effectieve vrijheidsgraden is onontbeerlijk wanneer men kernpro-
cessen wil bestuderen. Voor interactie potentialen die niet van het harmonische
oscillator type zijn, werden in de loop van de jaren tal van technieken ontwik-
keld, zoals de Tassie-Barker methode, die wijd toepasbaar zijn maar echter geen
afdoende antwoord geven op de vraag: Hoe kan men de invloed van het mas-
sacentrum op de berekende fysische grootheden op een ondubbelzinnige manier
elimineren?

De hierboven aangehaalde tekortkomingen van de klassieke gemiddeld-veld be-
naderingen, voor het beschrijven van kernen, hebben een nieuw onderzoeksdomein
doen ontstaan nl. de weinig deeltjes natuurkunde (Few-Body Physics). Hierbij
probeert men, vertrekkende van een aantal basisprincipes, tot een consistente be-
schrijving van het nucleair medium te komen. In de loop van de jaren zijn hiervoor
een aantal technieken ontwikkeld. Deze kunnen in twee grote groepen opgedeeld
worden. Vooreerst zijn er die, vertrekkende van de initiële N-deeltjes Schrödinger
vergelijking, op basis van een aantal coördinaten transformaties, finaal komen tot
een nog numeriek op te lossen differentiaal vergelijking. Een belangrijke verte-
genwoordiger vormen de Faddeev-Yakubovski vergelijkingen. De Bochum groep
heeft via dit formalisme een golffunctie bepaald voor de 3He kern. Daarnaast zijn
er de variationele technieken waarbij de Argonne-Urbana groep vaandeldrager is.
Hierbij wordt een algemene functionele vorm voor de golffunctie vooropgesteld
waarna het oorsprokelijk probleem herleid wordt tot fitten van een aantal para-
meters op basis van het Rayleigh-Ritz variationeel principe. Hiervoor werden een
aantal methoden ontwikkeld zoals: de stochastische variationele methode, de va-
riationele Monte-Carlo methode, de Greense functie Monte-Carlo techniek,... In
dit proefschrift wordt de, op basis van de Greense functie Monte-Carlo techniek
verkregen 4He golffunctie gebruikt. Het was de Argonne-Urbana groep die ons
deze golffunctie heeft aangereikt.
In het vervolg van hoofdstuk 2 worden een aantal dichtheidsfuncties als mede
de ladingsvormfactor berekend en vergeleken met de beschikbare experimentele
data. Binnen de fout marges slagen we er perfect in om de desbetreffende fysische
grootheden theoretisch te beschrijven.

Nu we beschikken over een consistente beschrijving voor de grondtoestand
van de 4He kern kunnen we deze aanwenden bij de studie van nucleaire verstrooi-
ings processen. Voor de studie van gelijk wel object dient men informatie over
dit object in te winnen. Standaard gebeurt dit door het object te observeren
en zijn gedragingen onder externe impulsen te beschrijven. Wanneer de afme-
tingen van de voorwerpen onder studie zeer klein zijn gebruikt men hiervoor een
microscoop. In de kernfysica is een elektronen- of fotonenbundel de microscoop
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bij uitstek. De gedragingen waarop we ons in dit werk gefocusseerd hebben zijn
deze waarbij de helium kern twee nucleonen uitstoot ten gevolge van de impact
van een reëel of virtueel foton. Beide nucleonen worden gedetecteerd waardoor
we een idee krijgen van de ruimtelijke als wel als de energetische spreiding van
de nucleonen zoals initieel in de kern aanwezig. Dit geeft ons de mogelijkheid om
vertrekkende van QED en nucleon reactiemodellen terug te rekenen. Hierbij ho-
pen we het beeld te reconstrueren van net voor de impact van het foton alsmede
informatie te verkrijgen over het feitelijke reactieproces.
De fysisch toegankelijke grootheid is het aantal gëıdentificeerde reacties waarge-
nomen bij een bepaalde opstelling van de detectoren. Op basis van de detector
acceptanties en de intensiteit van de bundel kan men deze observabele linken
met de differentieel werkzame doorsnede. In hoofdstuk 3 wordt een uitdrukking
afgeleid voor de werkzame doorsnede corresponderend met elektronen- als wel
als fotonenverstrooiing aan een 4He-kern. We spitsen onze aandacht toe op het
exclusieve kanaal waarbij de 4 nucleonen na de impact vrij bewegen. Vermits
4He een klein systeem is, waardoor de invloed van finale toestands interacties
kan verwaarloosd worden, zullen de uitgaande nucleonen tot op zekere hoogte
kunnen beschreven worden met behulp van een vlakke golf benadering. Wel zal
er een Gramm-Schmidt orthogonalisatie correctie gebeuren zodoende effecten ten
gevolge van het niet-orthogonaal zijn van de begin- en eindtoestand te elimineren.
Bij een foton momentum van 300 MeV/c is het resolverende vermogen van de
reële of virtuele fotonen zo groot dat naast nucleon vrijheidsgraden ook meson-
en zelfs delta isobaar vrijheidsgraden in rekening moeten gebracht worden voor
de beschrijving van het reactie proces. De relevante verstrooiings processen zijn
meson uitwisselings reacties, resonante zowel als niet-resonante delta excitatie en
korte dracht gecorrigeerde één-deeltjes reacties. In hoofdstuk 3 worden, vertrek-
kende van een effectief lagrangiaan formalisme, uitdrukkingen afgeleid voor elk
van deze processen. Dit leidt dan tot een formulering van een aantal verstrooiings
matrix elementen die dan kunnen aangewend worden bij de berekening van de
werkzame doorsnede.
Naast de werkzame doorsnede beschikt men nog over een gamma andere expe-
rimenteel toegankelijke grootheden nl. de polarisatie observabelen. Deze groot-
heden bekomt men door gepolariseerde metingen te doen en vervolgens de ver-
kregen werkzame doorsneden van elkaar af te trekken. Men onderscheid hierbij
een aantal verschillende metingen, nl. metingen waarbij het inkomende foton
gepolariseerd is, metingen waarbij de polarisatie van één van de uitgaande nu-
cleonen bepaald wordt, of metingen waarbij een gepolariseerd foton binnen komt
en men de polarisatie graad van een van de finale nucleonen meet. Deze verschil-
lende opstellingen resulteren in 3 verschillende polarisatie grootheden nl. de foton
asymmetrie of het electron analyserend vermogen, de terugstoot polarisatie en de
overdracht polarisatie. Omwille van symmetrie redenen kunnen een aantal van
deze polarisatie vrijheidsgraden verdwijnen zoals duidelijk weergegeven in tabel
III-1.
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Figuur III-10 toont de verschillende reactie diagrammen die opgenomen werden
in de verstrooiings werkzame doorsnede. Belangrijk hierbij is op te merken dat
naast de klassieke diagrammen waarbij het foton geabsorbeerd wordt door het
finaal gedetecteerde nucleonen paar er nog een hele reeks andere diagrammen
uitgelijst zijn. Dit zijn diagrammen die op een natuurlijke manier te voorschijn
komen wanneer men werkt met een translatie invariante golffunctie. Fysisch kan
men deze identificeren met een terugstoot proces waarbij het foton de 2 niet
gedetecteerde nucleonen treft terwijl de waargenomen nucleonen een soort te-
rugstoot krijgen ten gevolge van de massacentrum beweging van de kern. Deze
niet-conventionele diagrammen zijn van belang om de hermiticiteit van de scat-
tering matrix te verzekeren.

De in hoofdstuk 3 bepaalde grootheden worden vervolgens voor een aantal
geselecteerde detector opstellingen uitgerekend. Een drietal opstellingen wor-
den onderscheiden nl. quasi-deuteron kinematiek, rug-aan-rug kinematiek en een
quasi rug-aan-rug kinematiek. De eerste situatie, nl. quasi-deuteron kinematiek,
waarbij het initieel nucleonen paar in rust is in de kern, werd geselecteerd om de
invloed van korte dracht correlaties verder te bestuderen. Om deze effecten te
bestuderen werd er een vergelijkende studie gedaan nl. de berekeningen werden
enerzijds uitgevoerd vertrekkende van een massacentum gecorrigeerde harmoni-
sche oscillator golffunctie en anderzijds van de realistische golffunctie zoals be-
komen met behulp van de Greense functie Monte-Carlo techniek. Hieruit komt
het effect van korte-dracht correlaties zeer sterk naar voren. De tweede set van
berekeningen is een simulatie van het experiment uitgevoerd door R. De Vries
in 1990. Dit experiment werd uitgevoerd in Bonn aan de ELSA faciliteit. Bij
deze opstelling worden enkel die processen gedetecteerd waarbij de nucleonen rug
aan rug worden uitgezonden. Dit maakt deze opstelling uitermate geschikt om
de impact van korte-dracht correlaties te bestuderen. Uit de berekeningen blijkt
echter dat naast de korte-dracht korrelaties eveneens de terugstoot diagrammen
een belangrijke rol spelen. Terwille van het inrekening brengen van terugstoot
effecten blijkt dat meson-uitwisselings processen eveneens bijdragen tot een reac-
tie van het type (e, e′pp). Tot slot wordt een experiment aan de Mainz faciliteit
uitvoerig bestudeerd binnen het hierboven beschreven formalisme. Gelijkaardige
conclusies dringen zich ook hier op nl. korte-dracht correlaties en terugstoot di-
agrammen zijn van belang voor een korrekte beschrijving van het reactie proces.

Tot slot kunnen we stellen dat bij de beschrijving van lichte kernen en de
bijhorende reactie processen een grotere voorzichtigheid aan de dag moet gelegd
worden dan bij hun zwaardere tegenhangers. Enerzijds wegen massacentrum
effecten zwaarder door en zullen zij een zichtbaar teken nalaten in de fysische
grootheden. Anderzijds, in het geval van 4He, dient door de grote dichtheid van
het nucleair medium het repulsieve karakter van de kernkracht en haar effect op
de kern golffunctie in rekening gebracht te worden.
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[8] H. Müther and A.Polls, Prog.Part.Nucl.Phys. 45, 243 (2000).

[9] J. Ryckebusch, V. Van Der Sluys, K. Heyde, H. Holvoet, W. Van Nespen,
M. Waroquier, and M. Vanderhaeghen, Nucl. Phys. A624, 581–622 (1997).

[10] S. Boffi and F. Pacati, Nucl. Phys. A210, 477 (1973).

[11] K. Gottfried, Nucl. Phys. 5, 557 (1958).

[12] G. Rosner, Prog.Part.Nucl.Phys. 44, 99 (2000).

[13] C. Ciofi degli Atti, L. Lantto, and P. Toropainen, Phys. Lett. B42, 27–30
(1972).

[14] D. Groep, Ph.D. thesis, University Utrecht, 2000.

[15] W. Gloeckle et al., Phys.Rep. 274, 107 (1996).

[16] R. De Vries, Ph.D. thesis, University Utrecht, 1995.

[17] J. van den Brand et al., Phys. Rev. Lett. 60, 2006–2009 (1988).

[18] W. Eickhoff, Ph.D. thesis, University Bonn, 2003.

[19] T. Emura et al., Phys. Lett. B267, 460–464 (1991).

[20] T. Emura et al., Phys. Lett. B286, 229–233 (1992).

[21] S. Doran et al., Nucl. Phys. A559, 347–367 (1993).

159



160 BIBLIOGRAPHY

[22] F. Adamian et al., J. Phys. G17, 1657–1664 (1991).

[23] V. Stoks, R. Klomp, M. Rentmeester, and J. de Swart, Phys. Rev. C48,
792–815 (1993).

[24] V. Stoks, R. Klomp, C. Terheggen, and J. de Swart, Phys. Rev. C49,
2950–2962 (1994).

[25] R. Wiringa, V. Stoks, and R. Schiavilla, Phys. Rev. C51, 38–51 (1995).

[26] J. Forest, V. Pandharipande, S. Pieper, R. Wiringa, R. Schiavilla, and A.
Arriaga, Phys. Rev. C54, 646–667 (1996).

[27] H. Pirner and J. Vary, Phys. Rev. Lett. 46, 1376 (1981).

[28] L. Wilets, M. Alberg, S. Pepin, F. Stancu, J. Carlson, and W. Koepf, Phys.
Rev. C56, 486–490 (1997).

[29] L. Wilets, M. Alberg, S. Pepin, F. Stancu, J. Carlson, and W. Koepf, In
Proceeding International Conference on Nuclear Physics at the Turn of the
Millennium, (George, South Africa, 1996).

[30] V. Pandharipande, Nucle. Phys. A654, 157–177 (1999).

[31] R. Wiringa, Phys. Rev. C43, 1585–1598 (1991).

[32] K. Heyde, The Nuclear Shell Model (Springer-Verlag, 1990).

[33] K. Heyde, Basic Ideas and Concepts in Nuclear Physics (IOP Publishing
Ltd, 1994).

[34] D. Zheng, J. Vary, and B. Barrett, Nucl. Phys. A560, 211–222 (1993).

[35] B. Brandow, Rev. Mod. Phys 39, 771–828 (1967).

[36] H. J. Lipkin, Phys. Rev. 110, 1395 (1958).

[37] S. Gartenhaus and C. Schwartz, Phys. Rev. 108, 482–490 (1957).

[38] V. Pandharipande, I. Sick, and P. de Witt Huberts, Rev. Mod. Phys. 69,
981–992 (1997).

[39] S. Fantoni and V. Pandharipande, Nucl. Phys. A473, 234 (1987).

[40] S. Fantoni and V. Pandharipande, Phys. Rev. C37, 1697–1707 (1988).

[41] C. Vincent, Phys. Rev. C8, 929–937 (1973).

[42] B. Mihaila and J. Heisenberg, Phys. Rev. C60, 054303 (1999).



BIBLIOGRAPHY 161

[43] S. Dementii, V. Ogurtsov, A. Shebeko, and N. Afanas’ev, Sov. J. Nucl.
Phys. 22, 6–9 (1976).

[44] A. Dieperink and J. T. de Forest, Phys. Rev. C10, 543–549 (1974).

[45] D. Van Neck, M. Waroquier, A. Dieperink, S. Pieper, and V. Pandhari-
pande, Phys. Rev. C57, 2308–2315 (1998).
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