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Background

Inversion constrained by Deep Generative Models

 Classical imaging algorithms sometimes fail in 
reproducing realistic structures.

This may in turn result in wrong 
predictions.

Solution: constrain the inversion to display the expected patterns 
                 (e.g. multiple-point statistics).
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Difficulty: high-dimensional parameters usually require large number 
                  of samples (simulations) for inference.

so
u
rc

e
 #

receiver #

traveltime
tomography

traveltime
data



Deep Generative Models (DGM)

Inversion constrained by Deep Generative Models

Train the DGM with many 
realizations (images) of 
expected patterns.

A latent space with lower 
number of dimensions is 
created.

Samples with the patterns are 
obtained by sampling in the 
latent space and passing through
a deep neural network.



Deep Generative Models (DGM)

Inversion constrained by Deep Generative Models

Two big contenders: VAE and GAN

Variational Autoencoder (VAE) Generative Adversarial Network (GAN)

Training: KL-divergence and reconstruction loss.
Training: Adversarial loss
(generator vs discriminator).

Issues: oversmooth samples. Issues: difficult training and
mode collapse (lack of diversity).

Advantages: easy training and high diversity. Advantages: sharp samples.

Implicit generative modeling

z m m = f(z) where f(z) is a deep neural network
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Gradient-based optimization

Inversion constrained by Deep Generative Models

 

Instead of optimizing w.r.t. (gridded) parameters, do it w.r.t. latent space of DGM

With a Deep Generative Model:

Optimization of the objective function

Global optimization - computationally expensive
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Generative Adversarial Network (GAN)
Inversion constrained by Deep Generative Models

 

Global optimization - MCMC is working fine.

Gradient-based inversion - issues with convergence to local minima.

Laloy et al. 2018, Water Resources Research

Laloy et al. 2019, Computers and Geosciences
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Variational Autoencoder (VAE)

Inversion constrained by Deep Generative Models

 

A less strict latent space allows easier optimization?

A tradeoff between the fidelity of samples and the easier optimization.

The ability to break up channels

reconstruction
(not inversion)
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Comparison of DGMs

Inversion constrained by Deep Generative Models
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Inference (gradient-based
inversion)

VAE induces a latent space 
which appears to allow for 
easier optimization.
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Comparison of DGMs

Inversion constrained by Deep Generative Models

WRMSE comparison for gradient-based inversion 
with GAN and VAE (100 different initial models)

noise 1

noise 2

models corresponding to the lowest WRMSE 
(among the 100 tries):



Concluding remarks and future work

Inversion constrained by Deep Generative Models

 

VAE latent space is easier to handle with gradient-based optimization compared
to GAN latent space.

There is a tradeoff between pattern fidelity and easier optimization.

What is the impact of the VAE model error on the final inversion result?

Is the method still useful for nonlinear forward operators (e.g. shortest path method)?



VAE theory

m

zθ φ

Variational Autoencoder

(VAE)
p(m|z) obtained from passing
p(z) through a DNN

Since p(z|m) is intractable, 
a variational q(z|m) is used
whose mean is a DNN too

p(z) chosen Gaussian

p(z)

Maximize:

encoding decoding

xtraining xreconstructed



VAE jumps
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Nonlinear forward traveltime

Does this work with a nonlinear forward model?



Linear vs nonlinear forward traveltime
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