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ABSTRACT 
In order to identify more accurately and efficiently the 

unknown parameters of a ship motions model, a novel 
Nonlinear Least Squares Support Vector Machine (NLSSVM) 
algorithm, whose penalty factor and Radial Basis Function 
(RBF ) kernel parameters are optimised by the Beetle Antennae 
Search algorithm (BAS), is proposed and investigated. Aiming 
at validating the accuracy and applicability of the proposed 
method, the method is employed to identify the linear and 
nonlinear parameters of the first-order nonlinear Nomoto 
model with training samples from numerical simulation and 
experimental data. Subsequently, the identified parameters are 
applied in predicting the ship motion. The predicted results 
illustrate that the new NLSSVM-BAS algorithm can be applied 
in identifying ship motion’s model, and the effectiveness is 
verified. Compared among traditional identification 
approaches with the proposed method, the results display that 
the accuracy is improved. Moreover, the robust and stability of 
the NLSSVM-BAS are verified by adding noise in the training 
sample data. 

Keywords: ship motions model; NLSSVM; BAS; 
parameter identification 
 
 
 
 
 
 
 
 

1   INTRODUCTION 
 The mathematical manoeuvring model of a ship has a 

major influence on simulating the ship’s motions and designing 
the ship’s course controllers [1]. The ship response model, as a 
critical branch of the ship manoeuvring mathematical models, 
has been one of the most common models for assessing the 
ship’s manoeuvreability and designing ship’s motion 
controllers due to its simple structure and high accuracy [2]. For 
this purpose, an accurate identification of the ship motion 
model’s linear and nonlinear parameters has become the key 
research issue in the fields of system identification and 
simulation [3]. 

Traditionally, common approaches including the least 
squares method (LS) [4], the maximum likelihood method (ML) 
[5], and the extended Kalman filter method (EKF) [6], have 
been successfully applied to identify the model parameters. 
Some disadvantages such as parameters drift, dependency on 
initial state, and ill-conditioned solutions are exposed in the 
conventional approaches. Then, the intelligent parameter 
estimation approaches such as the neural network (NN) method 
[7], are developed and considered to provide better results. The 
NN algorithm is able to achieve satisfactory performance for 
the black box identification, but the model needs to be trained 
with large sample data and long calculation time.  

Therefore, this paper proposes a novel Nonlinear Least 
Squares Support Vector Machine (NLSSVM) algorithm to 
solve the problems of identifying the ship’s motion models. 
Compared with the traditional and intelligent techniques using 
large sample data, the NLSSVM only depends on limited 
support vectors based on small samples. Moreover, the 
structure risk minimization theory instead of empirical risk 
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minimization is adopted by NLSSVM to solve optimization 
problems. A global optimization result is obtained, and local 
optimization issues are avoided. In addition, to obtain the 
optimal penalty factor and RBF kernel parameters of the 
NLSSVM model, a new method based on the Beetle Antennae 
Search (BAS) algorithm is firstly investigated [8]. The BAS 
algorithm, due to simple structure and excellent optimization 
ability, can perform more accurately and faster to obtain the 
optimal parameters compared to other optimization approaches 
such as particle swarm optimization (PSO) method [9]. 

Based on the above analysis, the proposed NLSSVM-BAS 
is utilized to identify the ship motion model. Firstly, numerical 
simulation data and experimental data from 20-20 zigzag tests 
in a towing tank (SIMMAN 2014) are collected for parameter 
identification. Then, the optimized NLSSVM model by the 
BAS algorithm is applied to identify the linear and nonlinear 
parameters for the ship response model. Finally, the accuracy 
and validity of the NLSSVM-BAS are investigated by 
comparing the original data with predicted data. 
 

2   NONLINEAR SHIP RESPONSE MODEL 
To simplify the ship manoeuvring mathematical model, the 

forward speed 𝒖 is assumed constant [10]. Thus, The steering 
mathematical model, accounting only for the sway and the yaw 
motions, is written as:  
 

𝑀𝑣 𝑁 𝑢 𝑣 𝐵𝛿  (1) 
 
where 
 

𝑀
𝑚 𝑌 𝑚𝑥 𝑌

𝑚𝑥 𝑁 𝐼 𝑁
  (2) 

 
𝑣 𝑣 𝑟  (3) 

 

𝑁 𝑢
𝑌 𝑚𝑢 𝑌
𝑁 𝑚𝑥 𝑢 𝑁  (4) 

 

𝐵
𝑌
𝑁  (5) 

 
where 𝑚  is the mass of ship, 𝑌 , 𝑌 , 𝑁   are the hydrodynamic 
coefficients, 𝑢  is the surge speed, 𝛿 is the rudder angle, 𝑥  is 
the coordinate of the center of gravity. 

In the present paper only the yaw motion is considered and 
the manoeuvring model can be expressed as a first-order linear 
Nomoto model : 
 

𝑇𝑟 𝑟 𝐾𝛿  (6) 
 

with 𝑇 the time constant and 𝐾 the gain [10]. Including a 
static nonlinearity in the first-order linear Nomoto model,  the 
following nonlinear form is obtained [11]: 

 
𝑇𝑟 𝑟 𝑎𝑟 𝐾𝛿  (7) 

 
where  𝑎  is the nonlinear constant.  

3   PARAMETER ESTIMATION APPROACHES 
3.1  Problem statement 

Assuming that a parametric system in state-form is 
available as follows: 

 

𝑔 𝑋, 𝑇, 𝜃   (8) 

 

where 𝑋 𝑥 , 𝑥 , … , 𝑥  is the state variable,  

𝑥 , 𝑥 , … , 𝑥 is the derivatives of the each state 

variable, 𝑇 𝑡 , 𝑡 , … , 𝑡  is the time variable, 𝜃
𝜃 , 𝜃 , … , 𝜃  is an unknown set of parameters. 

For the parametric system, the main goal is to identify the 
unknown parameters 𝜃  from observed data 𝑌
𝑦 , 𝑦 , … , 𝑦 at time variable 𝑇 𝑡 , 𝑡 , … , 𝑡 . 

 
𝑒 𝑌 𝑡 𝑋 𝑡 , 𝑖 1,2 ⋯ 𝑛  (9) 

 
where 𝑒 𝑒 , 𝑒 , … , 𝑒 is error between observed data 𝑌 and 
outputs of the estimate state variable 𝑋. The final goal is shifted 
to get the set of unknown parameters by minimizing the error 
𝑒 . 
 

3.2  Identification procedure 
Step 1:  Obtain sample data 

Obtain training samples data 𝑡 , 𝑦 , 𝑖 1,2, … , 𝑛 , where 
𝑡  is the time series, and 𝑦  is the numerical simulation data or 
experimental data [11]. 
 
Step 2: Approximate the state variable  

Estimate the state variable 𝑋 𝑥 , 𝑥 , … , 𝑥  based on 
numerical simulation or experimental data 𝑡 , 𝑦 , 𝑖
1,2, ⋯ 𝑛 . In the present study [12], the NLSSVM is adopted to 
approximate the state variable 𝑋. For 𝑥  of k-th state variable, 
which can be obtained by an approximation function in the form 
of: 

 
𝑥 𝑡 𝑤 𝜑 𝑡 𝑏  (10) 

 
where 𝑡 is the input data (time), 𝑥  is the output data, 𝑤 is the 
weights value, 𝜑 ∙  is the nonlinear function, which maps the 
input data 𝑡 to the Euclidean space, 𝑏  is the bias [5]. 

To solve the convex optimization issue according to the 
minimization of structure risk theory, construct and solve the 
following cost function: 
 

𝑓 𝑤, 𝑒 𝑤 𝑤 𝛾‖𝑒 ‖, ,  (11) 

subject to: 
 

𝑦 𝑤 𝜑 𝑡 𝑏 𝑒 (12) 
 
where 𝑖 1,2, ⋯ , n, 𝛾 is penalty factor, 𝑒 is the error. 

The Lagrangian function is introduced to solve the 
optimization problem as follows: 
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L 𝑤, 𝑏, 𝑒, 𝑎 𝑤 𝑤 𝛾‖𝑒 ‖ ∑ 𝑎 𝑤 𝜑 𝑡 𝑏 𝑒

𝑦                                                                                        (13)   
 
where the coefficients𝑎  are the Lagrange multipliers. The 
derivative matrix is obtained by partially differentiating 
Eq. 13  with respect to 𝑤, 𝑏, 𝑒, 𝑎: 
 

𝐾 𝛾 𝐼 1
1 0

𝑎
𝑏

𝑦
0

 (14) 

 
where 𝐾 𝑡 , 𝑡 𝜑 𝑡 𝜑 𝑡  is the kernel function, 𝐼  is the 
identity matrix,1 1; 1; … ; 1 , 𝛼 𝑎 ; 𝑎 ; … ; 𝑎 . 

The regression model is expressed as:  
 

𝑥 𝑡 𝑤 𝜑 𝑡 𝑏
∑ 𝛼 𝐾 𝑡 , 𝑡 𝑏    

                  (15) 

 
Step 3: Approximate the derivative of state variables  

Approximate the derivative of the state variable 𝑋

𝑥 , 𝑥 , … , 𝑥  by differentiating the approximated 

model with time [13]. 
Differentiate 𝑥 𝑡  with respect to time, which yields: 
 

𝑥 𝑡 𝑤 φ 𝑡 ∑ 𝛼  φ 𝑡 φ 𝑡   (16) 

 
According to the Mercer Theorem [14], the derivatives of 

the kernel equal the derivatives of the feature map. Therefore, 
the derivatives of the kernel can be obtained as: 
 

𝐾 𝑡 , 𝑡 ,  φ 𝑡 φ 𝑡   (17) 

  

𝑥 𝑡 ∑ 𝛼 𝐾 𝑡 , 𝑡   (18) 

 
Step 4: Identification of unknown parameters, and model’s 
prediction 

 𝑥 𝑡  and 𝑥 𝑡  in Eq. (15) and Eq. (18) are the 

approximated values of the k-th state variable and its derivative. 

All the state variables 𝑋  and their derivatives 𝑋  can be 

obtained by using the above same procedure based on the NLS-

SVM. After substituting 𝑋 and 𝑋 in the parameter system Eq. 

(8), the linear and nonlinear algebraic equations with unknown 
parameters are constructed.  

Finally, unknown parameters can be obtained by solving 
the optimization problem: 
 

∑ ‖𝑒 ‖   (19) 
 
subject to: 

 

𝑒 𝑋 𝑡 𝑔 𝑋 𝑡 , 𝑇, 𝜃 , 𝑖 1,2, ⋯ 𝑛  (20) 

 
3.3 BAS optimised NLSSVM algorithm    

The BAS optimisation method is an efficient meta-
heuristic optimisation algorithm which is similar to other 
intelligent optimisation algorithms such as Particle Swarm 
Optimisation (PSO) approach. The BAS algorithm, however, 
compared with other intelligent optimisation algorithms has 
some advantages such as: simpler structure, shorter 
computational time and superior optimisation ability with 
higher accuracy. Therefore, the BAS optimisation algorithm, as 
a recently proposed approach, is selected and applied to 
optimise the penalty parameter 𝛾  (see Eq. (11)) of the 
NLSSVM model as well as its kernel parameter σ. 

In order to obtain optimal values for the penalty factor 𝛾 
and the RBF kernel parameter σ in the NLSSVM model, an 
objective function is firstly defined as: 

 
𝑓 x 𝑅𝑀𝑆𝐸 𝑟 (21) 

 
where x 𝛾 ; 𝜎  is the position matrix of the beetle at each 
penalty factor 𝛾  and RBF kernel parameter 𝜎 , the  𝑟  is 
the error of the ship’s yaw rate. The 𝑓 x  is the concentration 
of odor (fitness function), which is defined as the Root-Mean-
Square Error (RMSE) of the ship yaw rate.  

The goal is to obtain optimal penalty factor 𝛾  and RBF 
kernel parameter σ by minimizing  RMSE (𝑓 ) when 𝑥
𝛾 ; 𝜎  is selected in the following form: 

 
𝑓 𝑥 min𝑅𝑀𝑆𝐸 𝑟  (22) 

 
When employing the BAS algorithm to optimise the 

NLSSVM model parameters, two different processes are 
defined: a). the parameters searching, and b). the parameters 
detecting according to the value of the fitness function. These 
steps are described in more detail in the following subsections 
(FIGURE 1).  

 

 
FIGURE 1 OPTIMISED PROCEDURES OF THE BAS 
ALGORITHM. 
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Firstly, Parameters searching  
In the first process, the BAS algorithm parameters 

including the beetle’s initial position 𝑥 𝛾 ; 𝜎 , the distance 
between two antennae 𝑑  and the initial step length 𝑙  are 
initialized. At the beginning, a randomly generated initial 
position 𝑥  is regarded as the best position 𝑥 , which is used 
to calculate the best fitness 𝑓 . Additionally, the searching 
direction of the beetle is assumed to be random and expressed 
as: 

 

𝐷𝚤𝑟
,

‖ , ‖
  (23) 

 
where 𝐷𝚤�⃗�  is the random searching direction, 𝑟𝑎𝑛𝑑 ∙  
represents the random function, and 𝑛 denotes searching space 
dimensions. 

Subsequently, the left antennae and the right antennae 
coordinates of the beetle are defined as 𝑥  and 𝑥  respectively. 
𝑥  is assigned as the beetle’s centroid coordinate at time 𝑡. Then 
two antennae coordinates are calculated by the form of: 

 
𝑥 𝑥 𝑑 𝐷𝚤�⃗�  (24) 
  
𝑥 𝑥 𝑑 𝐷𝚤�⃗� (25) 

 
where 𝑑 is the distance between two antennae corresponding to 
searching ability, whose value should be large enough to avoid 
local minimum values [15]. Then, the left and right antennae 
coordinates 𝑥  and 𝑥  are substituted in the fitness function as 
follows: 
 

𝑓 𝑓 𝑥 𝑅𝑀𝑆𝐸 𝑟   (26) 
 

𝑓 𝑓 𝑥 𝑅𝑀𝑆𝐸 𝑟   (27) 
 
Secondly, Parameters detecting 

In this part of the analysis, after the beetle searching 
parameters, the parameters detecting behaviour is formulated 
by setting an iterative system. 

If 𝑓 𝑓 , the beetle will search toward the left direction 
with the step length 𝑙 . The beetle’s centroid coordinate is 
updated at time 𝑡 as: 

 
𝑥 𝑥 𝑙 𝐷𝚤�⃗�   (28) 

 
If 𝑓 𝑓 , the beetle will search toward the right direction 

with the step length 𝑙 . The beetle’s centroid coordinate is 
updated at time 𝑡 as: 

 
𝑥 𝑥 𝑙 𝐷𝚤�⃗�   (29) 

 
Therefore, according to the iterative model, the state 

variables (see Eq. 28 and 29) are rewritten as: 
 

𝑥 𝑥 𝑙 𝐷𝚤�⃗� sign 𝑓 𝑥 𝑓 𝑥   (30) 

 
where sign ∙  is the sign function. 

After  the state variable 𝑥  is updated, the fitness value 
𝑓 𝑥  at time 𝑡 is obtained. 𝑓 𝑥  is then compared with the 
memorized 𝑓 𝑥  to update the best state variable 𝑥  
and minimum fitness value 𝑓 . 

 
𝑓 𝑓 𝑥

𝑥 𝑥
, 𝑓 𝑓 𝑥  

(31) 

 
It is worth mentioning that the update rules of the searching 

parameters 𝑑 and 𝑙 have the following form: 
 

𝑙 𝑐 𝑙 𝑙 (32) 
  
𝑑 𝑙 𝑐⁄ (33) 

 
where 𝑐  and 𝑐  are constants. 

Finally, circularly parameters searching and parameters 
detecting processes are executed until ending iterations with 
minimum RMSE.  
 
4   PARAMETER IDENTIFICATION 

In this section, the novel NLSSVM-BAS approach is 
applied to identify the nonlinear ship response model. The 
identification processes are described in more detail in FIGURE 
2 and TABLE 1. 

 
TABLE 1 IDENTIFICATION PROCEDURES OF THE 
NLSSVM-BAS METHOD 

NLSSVM model optimised by  BAS algorithm 

Input: Construct objective function, 𝑓 𝑥
min𝑅𝑀𝑆𝐸 𝑟 ; Initialize model’s parameters 𝑥
𝛾 ; 𝜎 , 𝑑  and 𝑙 ; Calculate initial fitness value 𝑓 𝑥 , 

which is  firstly stored as 𝑓  at 𝑥 𝑥  ; 
For i=1:n (Iterative mechanism) 

      1. Randomly generate searching direction 𝐷𝚤𝑟 according 
to  Eq.(23); 

      2. Calculate the left antennae and right antennae  
coordinates 𝑥  and 𝑥  according to Eq.(24) and  Eq.(25); 

      3. Calculate and compare 𝑓 𝑥  and 𝑓 𝑥  to       update 
state variable 𝑥  according to Eq.(26) and  Eq.(27); 

      4. Calculate and compare 𝑓 𝑥  and 𝑓  to       update 
𝑥  and 𝑓  according to  Eq.(31); 

      5. Update rules of searching parameters 𝑑  and 𝑙 
according to Eq.(32) and  Eq.(33); 

      6. Execute parameters searching and parameters 
detecting procedures circularly 

end 

Output:  𝑥 𝛾 ; 𝜎  and 𝑓 . 

Optimise NLSSVM model parameters 
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FIGURE 2  NLSSVM IDENTIFICATION MODEL OPTIMISED BY BAS ALGORITHM. 

 

Aiming at verifying accuracy and applicability of the 
NLSSVM-BAS algorithm. Four case studies are carried out as 
follows: 

Case1 Obtain optimal parameters of the NLSSVM model 
using the BAS method (4.1). 

Case2  Investigate the effectiveness and accuracy of the 
NLSSVM-BAS model (4.2). 

Case3  Analyse the characteristics of the NLSSVM-BAS 
model (4.3). 

Case4 Study the robustness and stability of the  proposed 
model (4.4). 
 
4.1 BAS optimisation algorithm 

In this section, the BAS optimisation algorithm is adopted 
to search for the optimal penalty factor and kernel parameter of 
the NLSSVM model. In the optimisation process, the RMSE of 
the ship yaw rate is assigned as the objective function. Then, 
global optimal parameters are found by the BAS optimisation 
algorithm [16]. 

FIGURE 3 and FIGURE 4 present the optimisation 
trajectories of the beetle searching in two-dimensional (2D) and 
three-dimensional (3D) space. It can be seen that the beetle 
gradually moves to the optimal parameters point and quickly 
converges to the optimal value. Moreover, the convergence 
curve is found in FIGURE 5, it can be seen that the convergence 
rate of the fitness (objective function) is very fast, and the 
minimum value of the objective function is obtained after 
around 40 iterations. The optimisation results illustrate that the 
BAS algorithm has excellent optimisation ability and can 
quickly provide optimal parameters for the NLSSVM model. 

 

 
FIGURE 3 OPTIMISATION TRAJECTORIES OF THE 
BEETLE SEARCHING IN 2D SPACE. 
 

 
FIGURE 4 OPTIMISATION TRAJECTORIES OF THE 
BEETLE SEARCHING IN 3D SPACE. 
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FIGURE 5 CONVERGENCE CURVE OF PARAMETRIC 
OPTIMISATION. 
 
4.2 Effectiveness and accuracy of NLSSVM-BAS 

model  
In this section, the first-order nonlinear Nomoto model Eq. 

(7) is selected as a case study. The validation process in detail 
is as follow: 

The first step is to generate sample data and identify 
unknown parameters. The three parameters of the first-order 
nonlinear Nomoto model including time constant (𝑇), gain (𝐾) 
and nonlinear constant (𝑎) are pre-defined as the known values. 
Then, a fourth-order Runge-Kutta algorithm is used to solve the 
Nomoto mathematical model, and training sample data are 
obtained. Subsequently, the NLSSVM-BAS is employed to 
identify the parameters of the Nomoto model. The results are 
displayed in TABLE 2. By comparing the pre-defined 
parameters with the identified parameters,  small errors are 
observed with values of  0.6% for the time constant 𝑇, 0.1% for 
the gain 𝐾 and 1.1% for the nonlinear constant a. It means that 
the proposed approach can successfully identify the nonlinear 
Nomoto model with high accuracy.  
 
TABLE 2 PRE-DEFINED PARAMETERS AND 
IDENTIFIED PARAMETERS USING THE NLSSVM-BAS 
MODEL 

Parameters Known Identified Error (%) 

T (𝑠) 66.0 66.38 0.6 

K (1/s) 0.10 0.10 0.1 

a (s²/deg²) 1.00 0.99 1.1 

 
Furthermore, for a better idea of the importance of the 

method, the identified parameters are applied to predict the ship 
yaw rates (FIGURE 6). It is easily seen that the predicted values 
of the ship yaw rate agree well with the actual values with only 
small deviations. It is worth noting that the maximum error 
between predicted data and actual data is around 0.01 °/s, which 
illustrates that the predicted results well match with the 
simulation results with high precision. 

After qualitative and quantitative analysis, the 
effectiveness and accuracy of the NLSSVM-BAS model in 
identifying the ship response model are verified.    

FIGURE 6 PREDICTED RESULTS AND ERRORS WITH 
PRE-DEFINED PARAMETERS USING SIMULATION 

DATA. 
 

4.3 Comparison among different optimisation 
approaches 
The aim of this section is to study the characteristics of the 

NLSSVM-BAS model by comparing the NLSSVM model 
optimised by other techniques such as CV (Cross Validation) 
and PSO [17]. The sample data are obtained from 20-20 zigzag 
tests on the 1/37.89 scale model of the KRISO Container Ship 
(KCS) in the MARIN towing tank (252 x 10.5 x 5.5 m, 
SIMMAN 2014) [18]. The main dimensions of the KCS are 
presented in TABLE 3. 

 
TABLE 3 THE MAIN DIMENSIONS OF KCS SHIP MODEL 

Parameters Value 

Length perpendiculars 𝐿 (m) 6.070 

Breadth 𝐵 (m) 0.850 

Draft 𝐷 (m) 0.502 

Displacement ∇ (m3) 0.957 

Block coefficient 𝐶  0.651 

 
 After setting the same simulation parameters and 

conditions of the NLSSVM model, three intelligent algorithms 
are adopted to optimise the parameters of the NLSSVM model, 
and their performances are compared and described in detail as 
follows:  

For quantitative analysis, two characteristic indexes 
including the CPU time and the Root-Mean-Square Error 
(RMSE) of the ship yaw rate are selected for comparisons. The 
results including estimated parameters, the RMSE, the CPU 
time by three different optimised algorithms are listed in 
TABLE 4. From the TABLE 4, it can be found that there are 
similar results among the three optimisation methods, but there 
are differences for the estimated parameters and two 
characteristic indexes (RMSE and CPU time). Compared with 
other optimisation approaches, the BAS algorithm has the 
smallest RMSE (0.061°/s) and the shortest CPU time (6.2 s), 
which means the proposed model outperforms the other two 
algorithms. 
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TABLE 4 COMPARISON RESULTS AMONG DIFFERENT 
OPTIMISATION METHODS. 

Parameters CV BAS PSO 

T (𝑠) 61.75 62.38 62.27 

K (1 𝑠⁄ ) 0.113 0.114 0.114 

a (s²/deg²) 0.719 0.725 0.713 

RMSE (°/s) 0.064 0.061 0.063 

CPU Time (𝑠) 7.5 6.2 15.4 

 
For qualitative analysis, the identified parameters by the 

three methods are applied in predicting the ship yaw rates. The 
predicted results are showed in FIGURE 7. On one hand, the 
three identification algorithms perform similarly with small 
derivations compared to the measured data (red colour), but not 
significant. On the other hand, comparing the partial 
enlargement of the BAS, CV and PSO optimisation algorithms 
in FIGURE 7, it can be seen that the curve predicted by the BAS 

method (blue colour) is closer to the actual data curve compared 
to the CV and the PSO approaches.  

Moreover, errors at each predicted points of three 
approaches are presented in FIGURE 8. Overall the trend of 
errors in the BAS algorithm is the lowest, and the maximum 
error of the BAS method is the smallest. As seen, the error 
curves illustrate that the NLSSVM model optimised by the BAS 
algorithm performs better than the other two approaches. 

To summarize, the advantages of the NLSSVM-BAS 
approach are illustrated in detail by comparison with other 
optimisation methods. 

 
 
 
 
 
 
 

 
FIGURE 7 PREDICTED RESULTS OF THE NLSSVM MODEL OPTIMISED BY THE BAS, CV AND PSO. 

 
FIGURE 8 ERRORS OF THE NLSSVM MODEL OPTIMISED BY THE BAS, CV AND PSO. 
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TABLE 5 COMPARISON AMONG IDENTIFICATION RESULTS BY BAS METHOD AFTER ADDING 
DIFFERENT GAUSSIAN WHITE NOISES. 

 T (𝑠) K (1/s) a (s²/deg²) 
Noise True Estimate Error (%) True Estimate Error (%) True Estimate Error (%) 

0.000 66.00 66.38 0.57 0.10 0.10 0.10 1.00 0.99 1.13 

0.001 66.00 66.54 0.82 0.10 0.10 0.35 1.00 0.98 1.63 

0.003 66.00 66.62 0.94 0.10 0.10 0.58 1.00 0.98 1.85 

 
4.4 Robustness and stability analysis 

In order to analyse the robustness and stability of 
the proposed model. Gaussian white noises are added 
in the original sample data. The noise level is defined 
as standard deviation of noises ranging from 0.057 °/s  
to 0.172 °/s. 

The  identification results for different parameters 
and their relative errors in different noise levels are 
displayed in TABLE 5. To better illustrate the stability 
of the model, the comparison results are plotted in 
FIGURE 9(a), 9(b) and 9(c). From results in TABLE 
5, the errors between pre-defined parameters and 
estimated parameters for the time constant 𝑇 , gain 
constant 𝐾 and nonlinear constant increase gradually 
with noise level rising. The relative errors get bigger 
as well. 

Take time constant 𝑇  as an example. The 
identified parameter value is around 66.38 s and its 
relative error is about 0.57% when there is no Gaussian 
white noise in the original sample data. Then, add 
Gaussian white noise with the levels of 0.057 °/s and 
0.172 ° /s to the sample data, the relative errors 
increase to around 0.82% and 0.94% respectively, and 
the identified parameters with small deviations, but 
not significant. Small errors mean that the 
identification results can be accepted and used to 
predict.  

In conclusion, the proposed NLSSVM-BAS 
model can accurately identify model parameters with 
small Gaussian white noise. The robustness and 
stability of the proposed model are verified.   

 

 
 (a) TIME CONSTANT “T” AND ITS RELATIVE 
ERRORS. 
  

 
(b) GAIN “K” AND ITS RELATIVE ERRORS. 
 

 
(c) NONLINEAR CONSTANT “A” AND ITS 
RELATIVE ERRORS. 
FIGURE 9 IDENTIFICATION RESULTS FOR 
DIFFERENT PARAMETERS AND THEIR 
RELATIVE ERRORS IN DIFFERENT NOISE 
LEVELS. 

 
5 CONCLUSIONS 

In this paper, a new NLSSVM-BAS method is 
proposed to improve the performance of parameters 
identification in the field of the ship motions model. 
Numerical simulation data and experimental data are 
used to identify the model and to predict the ship yaw 
motions. The comparison of the results demonstrates 
that the proposed model presents better performance. 
Compared the numerical simulation data with the 
predicted data by identified model, the good 
agreement and the high accuracy are observed, which  
illustrate that the developed model can be applied in 
estimating parameters of the ship motions model. 
Meanwhile, compared with CV and PSO, the 
NLSSVM approach, optimised by the BAS algorithm, 
outperforms and can improve the accuracy of 
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parametric identification. In addition, comparisons 
among identified results disturbed by various 
Gaussian white noises, the stability and robustness are 
verified.  

Future research will concentrate on developing  
the adaptive BAS optimisation algorithm to further 
enhance the performance of the NLSSVM model; 
besides, applying the identified ship motions model in 
a ship control system is another potential research 
direction. 
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