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A B S T R A C T   

In order to accurately identify the ship’s roll model parameters in shallow water, and solve the problems of 
difficult estimating nonlinear damping coefficients by traditional methods, a novel Nonlinear Least Squares - 
Support Vector Machine (NLS-SVM) is introduced. To illustrate the validity and applicability of the proposed 
method, simulation and decay tests data are combined and utilized to estimate unknown parameters and predict 
the roll motions. Firstly, simulation data is applied in the NLS-SVM model to obtain estimated damping pa-
rameters, compared with pre-defined parameters to verify the validity of the proposed method. Subsequently, 
decay tests data are used in identifying unknown parameters by utilizing traditional models and the new NLS- 
SVM model, the results illustrate that the intelligent method can improve the accuracy of parametric estima-
tion, and overcome the conventional algorithms’ weakness of difficult identification of the nonlinear damping 
parameter in the roll model. Finally, to show the wide applicability of the proposed model in shallow water, 
experimental data from various speeds and Under Keel Clearances (UKCs) are applied to identify the damping 
coefficients. Results reveal the potential of using the NLS-SVM for the problem of the roll motion in shallow 
water, and the effectiveness and accuracy are verified as well.   

1. Introduction 

Roll motion is one of the most critical responses the ship experiences 
in her lifespan. An accurate prediction of roll motion in real scenarios is 
then deemed necessary so to understand better the ship behavior and to 
avoid any hazardous condition (Jiang et al., 2016; Yin et al., 2018). The 
damping components of a roll model play a key role in properly pre-
dicting the ship’s roll response. The estimation of these parameters is, 
however, difficult because of their nonlinear characteristics as a result of 
their viscous and fiction dependency (Oliva Remola et al., 2018). An 
efficient approach to obtain accurately the damping terms is still absent, 
especially in the estimation of the nonlinear term (Hou and Zou, 2016) 
and to avoid parameter drifting. For this purpose, the identification of 
the roll damping terms is of critical interest (Jiang et al., 2017). 

Roll damping parameters have been investigated in numerous 
studies in literature (Oliveira and Fernandes, 2013; Lee et al., 2018; 
Falzarano et al., 2015). Generally, three main research directions are 
presented in literature to determine the damping coefficients, namely, 

semi-empirical approaches (Ikeda et al., 1978; Kawahara et al., 2012), 
model tests (Atsavapranee et al., 2007; Oliva Remola et al., 2018; Jang 
et al., 2010; Avalos et al., 2014), and numerical simulations (Gokce and 
Kinaci, 2018; Yang et al., 2012). By comparison, the most common 
approach to obtain this component is by means of free roll decay tests 
and fitting the measured response by conventional methods such as 
Least Squares (LS) approach. This method, however, when applied in 
shallow water has some difficulties to provide a clear distinction of the 
viscous parameters (Tello Ruiz, 2018), especially in the nonlinear term. 
One may argue that other alternatives, available nowadays, can provide 
better results. 

In recent years, the majority of efforts are devoted to developing 
advanced system identification techniques, so to obtain optimal roll 
damping parameters combined with numerical simulations or model 
tests. Mahfouz (2004) proposed a new robust method to obtain linear 
and nonlinear damping and restoring coefficients in ship roll motion 
equation. Sun and Sun (2013) combined the Partial Least-Squares 
regression algorithm with the Bass Energy and Roberts approaches for 
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estimating nonlinear roll damping coefficients. Kim and Park (2015) 
employed the Hilbert transform method to study a FPSO’s nonlinear 
damping and restoring moment. A wavelet approach was introduced to 
identify the nonlinear damping parameters in Sathyaseelan et al. (2017). 
Wassermann et al. (2016) compared the harmonic excited roll motion 
technique with the decay motion technique for establishing an efficient 
method to estimate the roll damping. A Radial Basis Function (RBF), 
neural network algorithm, was investigated for online prediction of the 
ship’s roll motion based on full scale trials (Yin et al., 2013). Somayajula 
and Falzarano (2017) applied an advanced system identification 
approach to study the roll damping terms using model tests. 

In spite of the acceptable results obtained for the roll damping pa-
rameters by several identification methods, the major disadvantages are: 
parameters drift, requiring a large sample data, dependency on the 
initial state, and an ill-conditioned solution. Additionally, to the au-
thors’ best knowledge, the studies mentioned above, among others, are 
all focused on deep water. No particular attention has been made to the 
shallow water problem (Tello Ruiz et al., 2019). In such condition the 
limited water depths reduces the Under Keel Clearance (UKC) hence 
increasing the risk of bottom touching which consequently makes the 
prediction of roll motion even more critical. 

Motivated by the research opportunities mentioned above, the paper 
aims to investigate novel intelligent identification approaches which can 
be compared and tested against conventional methods. In the present 
work, the NLS-SVM (Nonlinear Least Squares - Support Vector Machine) 
algorithm will be investigated, which is a new generation machine 
learning method and can accurately identify model parameters by 
means of the RBF kernel function. Compared with other intelligent ap-
proaches, using large samples of data to estimate unknown parameters, 
the NLS-SVM only depends on limited support vectors based on small 
samples. Besides, the structure risk minimization theory instead of 
empirical risk minimization is adopted by the NLS-SVM to solve opti-
misation problems. A global optimisation result is obtained, and local 
optimisation issues are avoided. Moreover, high accuracy, time saving 
and wide applicability performances of the NLS-SVM are especially 
suitable for the identification of damping parameters in shallow water. 

To verify the effectiveness, accuracy and applicability of the NLS- 
SVM parametric estimation model in shallow water, free roll decay 
tests for a scale model of an Ultra Large Container Vessel (ULCV) at 
different forward speeds and different UKCs were carried out. Then, 
numerical simulation and experiment data are used to identify and 
predict the ship’s roll motions. Comparisons between predicted data and 
measured data illustrate the potential of employing the proposed 
method for the problem of ship roll motion in shallow water. 

2. Ship roll hydrodynamic model 

In a sense, an accurate definition and prediction of damping pa-
rameters (especially nonlinear damping coefficients) in the ship roll 
model is a very necessary task (Hou and Zou, 2016). On the basis of the 
rigid body theory (Hou and Zou, 2015), the 1DOF ship roll motion model 
can be written as (Xing and McCue, 2010): 
�
Ixx þA∞

44

�
€φþBð _φÞþC44φ¼ 0 (1)  

where Ixx is the mass moment of inertia, A∞
44 is the added mass moment 

of inertia (at infinite frequency), B is the moment due to the damping 
phenomena, C44 is the roll restoring coefficient, and φ  is the roll angle. 
The single dotted and double dotted variables represent the first and 
second order derivatives. 

The total damping coefficients are divided into a linear (b _φ), a 
nonlinear (b _φj _φj) (Ikeda et al., 1977; Himeno, 1981), and a potential 
contribution components in the following form: 

Bð _φÞ¼ b _φ _φ þ b _φj _φj _φj _φj þ
Z þ∞

� ∞
h44ðt � τÞ _φðτÞdτ (2)  

where _φ is the roll rate and h44 is the Impulse Response Function (IRF). 
Substituting Bð _φÞ into Eq. (1), the final model in the time domain is 
expressed as follows: 

�
IxxþA∞

44

�
€φþ b _φ _φ þ b _φj _φj _φj _φj þ

Z þ∞

� ∞
h44ðt � τÞ _φðτÞdτþC44φ ¼ 0 (3)  

3. Parameters estimation approaches 

3.1. Problem statement 

Assuming that a parametric system in state-form is available in the 
form of: 

dX
dt
¼ gðX; T; θÞ (4)  

where X ¼ ½x1; x2; …; xi� is the state variable,  dX
dt ¼

�
d
dtx1;

d
dtx2;…; d

dtxi

�T 

is the derivative of each state variable, T ¼ ½t1; t2;…; ti�T is the time 
variable, θ ¼ ½θ1; θ2;…; θi�

T is an unknown set of parameters (Mehrka-
noon et al., 2012). 

For the parametric system, the main goal is to identify the unknown 
parameters θ from observed data Y ¼ ½y1; y2;…; yi�

T at time variable T ¼
½t1; t2;…; ti�T. 

ei¼ YðtiÞ � XðtiÞ; i¼ 1; 2⋯n (5)  

where ei ¼ ½e1; e2;…; en�
T is the error between observed data Y and 

output of the estimate state variable X. The final goal is shifted to get the 
set of unknown parameters by minimizing the error ei. 

3.2. Identification procedure 

Step 1 Obtain sample data 

Obtain training samples data fðti; yiÞ; i ¼ 1; 2;…; ng, where ti is the 
time series, and yi is the numerical simulation data or experimental data. 

Step 2 Approximate the state variable 

Estimate the state variable bX ¼ ½bx1; bx2;…; bxi�
T based on simulation 

or experimental data fðti;yiÞ;i ¼ 1; 2;⋯ng. In the present study, the NLS- 
SVM approach is adopted to approximate the state variable bX . xk or the 
k-th state variable can be obtained by an approximation function of the 
following form: 

bxkðtÞ ¼wT
k ϕðtÞ þ bk (6)  

where t is the input data (time), bxk is the output data, wk is the weight 
value, ϕð⋅Þ is the nonlinear function, which maps the input data t to the 
Euclidean space, bk is the bias (David et al., 2013; Xu and Guedes Soares, 
2016). 

To solve the convex optimisation issue according to the minimization 
of structure risk theory, construct and solve the following cost function: 

min
w;b;ef ðw; eÞ¼

1
2
wT wþ

1
2

γkeik
2
2 (7) 

Subject to: 

yi¼wT ϕðtiÞþ bþ ei (8)  

where i ¼ 1; 2;⋯;n, γ is penalty factor, ei is the error. 
A lagrangian function is introduced to solve the optimisation prob-

lem as follows: 
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Lðw; b; e; aÞ¼
1
2

wT wþ
1
2

γkeik
2
2 �

Xn

i¼1
ai
�
wT ϕðtiÞþ bþ ei � yi

�
(9)  

where the coefficients ai are the Lagrange multipliers. The derivative 
matrix is obtained by partially differentiating Eq. (9) with respect to w;b;
e;a: 
"

K þ γ� 1IN 1N

1T
N 0

#�
ak

bk

�

¼

�
yk

0

�

(10)  

where Kðti; tÞ ¼ ϕðtiÞϕðtÞ is the kernel function, IN is the identity matrix, 
1N ¼ ½1; 1; …; 1� , αk ¼ ½ak

1; ak
2; …; ak

n�. 
The regression model is expressed as: 

bxkðtÞ¼wT
k ϕðtÞþ bk ¼

Xn

i¼1
αk

i Kðti; tÞ þ bk (11)   

Step 3 Derivatives of the state variable approximation 

Approximate the derivatives of the state variable d
dt
bX ¼

�
d
dtbx1;

d
dtbx2;… 

; d
dtbxn

�

by differentiating the approximated model with time. 

Differentiation of bxkðtÞ with time, yields: 

d
dt
bxkðtÞ ¼ wT

k
_ϕðtÞ ¼

Xn

i¼1
αk

i ϕðtiÞ
T _ϕðtÞ (12) 

According to the Mercer Theorem (Steinwart and Scovel, 2012), the 
derivatives of the kernel are equal to the derivatives of the feature map. 
Therefore, the derivatives of the kernel can be obtained in the form of: 

K1ðti; tÞ¼
∂Kðti; tÞ

∂t
¼ϕðtiÞ

T _ϕðtÞ (13)  

d
dt
bxkðtÞ¼

Xn

i¼1
αk

i K1ðti; tÞ (14)   

Step 4 Identification of unknown parameters, and model’s prediction 

bxkðtÞ and d
dtbxkðtÞ in Eq. (11) and Eq. (14) are the approximated values 

of the k-th state variable and its derivative. All the state variables bX and 
their derivatives d

dt
bX can be obtained by using the above same procedure 

based on the NLS-SVM model. After substituting bX and ddt
bX in Eq. (4), the 

linear or nonlinear algebraic equation with unknown parameters is 
constructed. 

Finally, the unknown parameters can be obtained by solving the 
optimisation problem as: 

min
θ

1
2
Xn

i
keik

2
2 (15) 

Subject to: 

ei¼
d
dt
bXðtiÞ � gðbXðtiÞ; T; θÞ; i¼ 1; 2;⋯n (16)  

4. Experimental program 

4.1. Towing tank 

Free decay tests were carried out at the Towing Tank for Manoeuvres 
in Confined Water (co-operation Flanders Hydraulics Research and 
Ghent University) in Antwerp, Belgium. The main dimensions of the 
towing tank are listed in Table 1, and more detailed information about 
towing tank can be obtained in Delefortrie et al. (2016). 

4.2. Ship model 

A 1/90 scale model of Ultra Large Container Vessel (ULCV) was 
chosen to carry out free roll decay tests (Tello Ruiz, 2018). The main 
particulars and cross sectional view of the ship model are shown in the 
Table 2 and Fig. 1. 

4.3. Free decay tests 

The free decay tests were performed by providing an initial roll angle 
for the ship model. Then, the ship model was held at this initial position 
until the towing carriage reached its desired speed and immediately 
released by pulling the cord attached to a wooden stick (Tello Ruiz, 
2018). A illustration of the model test setup and mechanism is displayed 
in Fig. 2. 

The free decay tests were carried out at different UKCs (from 10% to 
190% UKCs) and speeds (from 0 to 12 knots). For the present study, the 
UKCs of 10%, 20%, 35%, 190% and the speeds at 0, 3, 6, 9, 12 knots are 
selected as study cases. The initial roll angles at the chosen conditions 
are presented in Table 3 and Fig. 3. 

5. Parameter identification 

Taking into consideration of the parameters estimation method in 
the section 3, the novel NLS-SVM approach is introduced to estimate the 
linear and nonlinear viscous damping parameters in the nonlinear roll 
model (Eq. (3)). The identification processes are, in more detail, 
described in Table 4 and Fig. 4. 

In order to verify the effectiveness, accuracy as well as applicability 
of the NLS-SVM model in shallow water, three case studies are con-
ducted by using the novel identification method, they are: 

Case 1. Validate the effectiveness of the NLS-SVM (5.1.) 

Case 2. Illustrate the advantages of the NLS-SVM (5.2.) 

Case 3. Verify the applicability of the NLS-SVM in shallow water (5.3.) 

These cases are described in detail in the following subsections. 

5.1. Effectiveness of NLS-SVM model 

In this case study, the roll motions with known linear (b _φ) and 
nonlinear (b _φj _φj) viscous damping coefficients (Table 5) are selected to 

Table 1 
The main dimensions of the Towing Tank for Manoeuvres in Confined Water.  

Items Value Units 

Total length 87.5 m 
Useful length 68.0 m 
Width 7.0 m 
Maximum water depth 0.50 m 
Length of the ship models 3.5–4.5 m  

Table 2 
Main particulars of model scale and full scale for the Ultra Large Container 
Vessel (ULCV).  

Items Model scale (1/90) Full scale 

Value Units Value Units 

LOA  4.418 m 397.6 m 
LPP  4.191 m 377.2 m 
B  0.627 m 56.4 m 
D  0.330 m 29.7 m 
TM  0.145 m 13.1 m 
m  226.4 kg 165046 ton 
Cb  0.6 – 0.6 –  
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simulate a free roll decay test. The known linear and nonlinear damping 
parameters are substituted into the roll model, Eq. (3). It is worth noting 
that other parameters in Eq. (3) are regarded as known values, which 
can be found in Tello Ruiz (2018). Using a fourth-order Runge-Kutta 
approach to solve the differential equation, the simulated roll angles 
(samples data) are obtained. 

Subsequently, simulated samples data are divided into two sets, the 
first set as a training sample (blue circles) is used to train the NLS-SVM 
model and the second set as a test sample (green circles) is selected to 
test the model. The results are displayed in Fig. 5 (a). 

Fig. 1. The cross sectional view of the Ultra Large Container Vessel (ULCV).  

Fig. 2. The model test setup and mechanism of free decay tests.  

Table 3 
The initial roll angles at different speeds and UKCs.  

UKCs Speeds 

0 kn 3 kn 6 kn 9 kn 12 kn 

10% UKC (deg) 2.21 1.60 1.89 1.54 1.77 
20% UKC (deg) 2.70 3.04 2.71 3.51 2.74 
35% UKC (deg) 3.11 3.32 3.27 2.68 1.95 
190% UKC (deg) 6.96 6.66 6.45 5.69 6.23  

Fig. 3. The initial roll angles at different speeds for 10%UKC (blue line), 20%UKC (red line), 35%UKC (black line), 190%UKC (orange line). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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After the NLS-SVM model being trained, unknown damping co-
efficients are identified by the proposed model and are shown in Table 5. 
Comparing the identified parameters with the known parameters, the 
results show that the relative errors of the linear (b _φ) and nonlinear 
(b _φj _φj) viscous damping coefficients are about 0.33% and 1.00%, 
respectively. These very small errors reveal that the NLS-SVM approach 
can accurately identify unknown parameters and can be well applied in 
identifying the roll model. 

Furthermore, for a better idea of the importance of the method, the 
identified damping parameters are used to predict the roll motions and 
are compared against the sample data. Satisfactory agreement between 
predicted values and original values can be found in Fig. 5(b), with 
maximum errors between predicted values and original values of around 
0.001 deg. This illustrates the potential of the NLS-SVM as it performs 
well with high prediction accuracy. Therefore, the novel NLS-SVM al-
gorithm can be applied in identifying the ship roll model. 

5.2. Comparison with different identification methods 

In order to illustrate the characteristics of the NLS-SVM algorithm, 
traditional methods, such as Nonlinear Least Square (NLS) and Fitting 
Least Square (FLS) algorithms are selected for comparing and analyzing. 

The NLS algorithm has been one of the most common approaches 
used to identify unknown parameters before intelligent algorithms 
appeared (Zhu et al., 2017a). The method is described in Fig. 6. 

Apart from the NLS, the FLS algorithm has also been successfully 
applied for system identification. The main difference is that in the FLS 
approach the curve fitting is firstly applied to the initial data, then a 
basic LS algorithm is applied to identify the unknown parameters. This 

process is relatively simpler than the direct application displayed Figs. 6 
and 7 sketches the process for better illustration purposes. 

Aiming at comparing and analyzing the performance of the three 
identification approaches, three evaluation indexes are selected, they 
are the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) 
(Zhu et al., 2017b), and the Computational time (CPU time) (Huang 
et al., 2018). In machine learning theory, the MAE is employed to assess 
the performance of the model; the RMSE is utilized to measure the ac-
curacy of the model; the CPU time is represented as calculation time 
(Zhang et al., 2018). The MAE and the RMSE are, respectively given by: 

MAE¼
Pi¼1

n jφi � bφij

n
(17)  

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi¼1

n ðφi � bφiÞ
2

n

s

(18) 

In this case study, the free decay tests data at the speed of 12 knot and 
the UKC of 20% are selected to compare and analyze. The parameters 
identified by the methods described above and their respective com-
parison can be found in Table 6. From the results, it can be seen that the 
linear damping coefficient (b _φ) can be identified by all methods within 
the same magnitude (109). The nonlinear term, however, has some 
discrepancies, the traditional NLS method estimates a magnitude of b _φj _φj

which is around 100 times smaller than other two approaches. The 
latter, draws the main attention to consider the use of intelligent 
method, the NLS-SVM, for improving the performance in practice. 

Moreover, the MAE is around 0.0405 deg for the NLS-SVM model, 
which decreased by 27.9% from 0.0562 deg for the NLS model and by 
17.2% from 0.0489 deg for the FLS model respectively. For accuracy 
analysis, the RMSE (0.0502 deg) of the NLS-SVM is reduced by 20.6% 
(0.0632 deg) compared to the NLS model and by 17.4% (0.0608 deg) 
compared to the FLS model, which demonstrates that the NLS-SVM 
model’s errors are smaller, and the accuracy is higher than traditional 
methods. Moreover, comparing the CPU times, less time is taken by the 
proposed model. 

Subsequently, the identified linear and nonlinear damping co-
efficients are employed to predict the ship’s roll motions separately. The 
predicted results and errors (Eq. (19)) are presented in Fig. 8(a) and (b), 
respectively. From Fig. 8(a), there are small but not significant de-
viations between the original data and predicted data for the three 
identification approaches. It is noted that the predicted values by the 
NLS-SVM method are closer to the original values than the other two 
approaches. Furthermore, the overall errors of the NLS-SVM model in 
Fig. 8(b) are smaller than that of NLS and FLS methods. 

In conclusion, the analyzed results demonstrate that the new NLS- 
SVM model has better identification performance and time saving 
ability as well as higher accuracy compared to traditional algorithms. 
The advantages of the NLS-SVM are validated. 

5.3. Applicability analysis of NLS-SVM 

In this subsection, the free roll decay tests from various UKCs and 
speeds are studied. The applicability in shallow water of the NLS-SVM 
model is illustrated. 

5.3.1. Applicability analysis for different UKCs 
Considering the effect of water depth on the damping coefficients, 

the different UKCs (10%, 20%, 35% and 190% UKCs) at a speed of 6 knot 
are selected as case studies. After the NLS-SVM model being trained by 
the decay tests data in different UKCs, Table 7 presents a quantitative 
comparison of the identified results. It is noted that the MAE (around 
0.01–0.05 deg) and the RMSE (the values around 0.02–0.07 deg) are 
pretty small, and computational time are very short (10–20 s), which 
reveal furtherly good generality and applicability of the NLS-SVM model 
both in shallow water and deep water. 

Table 4 
Identification processes of the NLS-SVM model.  

Parameter identification using the NLS-SVM model  

1 Obtain the sample data fðti;φiÞ; i¼ 1; 2;⋯; ng based on numerical simulation 
tests or free decay tests. Where ti is the time series and φi is the roll angles.  

2 Estimate the trajectory of the roll angle φ (the state variable) by using the NLS- 
SVM model, Eq. (11).  

3 Differentiate the NLS-SVM predicting model with respect to time, Eq. (14); 
And the closed-form approximation for the first ( _φ) and second (€φ) derivatives 
of the state variable are obtained respectively.  

4 Identify the linear (b _φ) and nonlinear (b _φj _φj) viscous damping coefficients by 
solving the optimisation problem in Eq. (15).  

5 Substitute the identified linear and nonlinear viscous damping coefficients in 
the roll model, Eq. (3). After applying a fourth-order Runge-Kutta approach to 
solve the ship’s roll response equation (Eq. (3)), the ship roll motions are 
predicted.    

Fig. 4. Identification process of NLS-SVM.  

Table 5 
Known parameters and identified parameters using the NLS-SVM approach.  

Parameters Known Identified Error (%) 

b _φ (kgm2
= s, 108)  6.0 6.02 0.33 

b _φj _φj (kgm2, 107)  4.0 4.04 1.00  
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Fig. 5. Train, test and predict results with known damping coefficients using NLS-SVM method.  

Fig. 6. Nonlinear Least Square (NLS) identification method.  
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To have a better idea of the effect of the UKCs, substituting the 
identified parameters in the roll model, Eq. (3), the ship’s roll motion for 
different UKCs are predicted. The results are displayed in Fig. 9(a) to 9 
(d), for 10%, 20%, 35% and 190% UKC, respectively. In Fig. 9(a) to 9(d) 

Fig. 7. Fitting Least Square (FLS) identification method.  

Table 6 
Comparisons of identification results among NLS, FLS and NLS-SVM identifica-
tion methods. 
error¼φknown� φpred (19)   

Parameters Methods 

NLS FLS NLS-SVM 

b _φ (kgm2
= s, 109)  3.30 3.43 3.38 

b _φj _φj (kgm2, 107)  0.0493 5.14 3.55 

MAE (deg, 10� 2) 5.62 4.89 4.05 
RMSE (deg, 10� 2) 6.32 6.08 5.02 
CPU time (s) 97 13 12  

Fig. 8. Predicted results and errors using NLS, FLS, NLS-SVM approaches.  

Table 7 
Comparisons identification results for different UKCs at a speed of 6 knot.  

Parameters UKC (6 knot) 

10% UKC 20% UKC 35% UKC 190% UKC 

b _φ (kgm2
=s, 109)  2.56 1.97 1.70 0.95 

b _φj _φj (kgm2, 107)  2.58 3.01 3.26 4.03 

MAE (deg, 10� 2) 1.51 1.77 1.24 5.10 
RMSE (deg, 10� 2) 1.70 2.23 1.43 7.29 
CPU time (s) 15 15 11 18  
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it can be observed that the predicted roll angles agree well with the 
experiments for all tests and that the maximum errors for all UKCs are 
about 0.30 (at 10% UKC), 0.06 (at 20% UKC), 0.02 (at 35% UKC) and 
0.20 (at 190% UKC) deg. Note that the larger error is obtained when a 
smaller initial roll angle is chosen (see 10% UKC). The latter can be 
associated to the model formulation needed to satisfy such maginitudes 
and not of the identification method itself. In spite of the relative larger 
errors obtained for the lower UKC the overall results show that the NLS- 
SVM method can successfully be used to identify parameters of the roll 
model in the shallow and deep water with small errors. 

5.3.2. Applicability analysis for different speeds 
Similarly, the applicability in shallow water (20% UKC) at different 

speeds are investigated. The experimental data at 0 to12 knots are taken 
as examples to train the NLS-SVM model and to identify the unknown 
linear and nonlinear damping coefficients at different speeds. The 
identified results are shown in Table 8. The RMSE is around 
0.0185–0.0891 deg, whose values are speed dependent. Moreover, the 
MAE at different speeds are with small values about 0.0185–0.0739 deg. 
For the CPU time, they are around 15–17 s. It can be seen that the three 
evolution indexes are very small. After quantitative comparison, it can 
be concluded that the NLS-SVM model has good applicability in shallow 
water at different speeds. 

Furthermore, the predicted results in shallow water at speeds of 0, 6, 
12 knots are obtained in Fig. 10(a) and (b) and 10(c). It can be observed 
that the predicted values have satisfactory agreement with the original 
data at different speeds. The predicted roll angles at a speed of 12kn are 
a little bit higher than the original ones, but the predicted results are still 
valid, because the overall errors are very small and the effect on the ship 
is not significant. 

To summarize, the effectiveness and applicability of the NLS-SVM 
approach applied in shallow water at different speeds are verified. 

6. Conclusions 

In this paper, the novel NLS-SVM parametric identification approach 
for estimating unknown damping coefficients in shallow water is 
investigated. Firstly, comparisons between numerical simulation roll 
angles based on the known damping coefficients and predicted roll an-
gles using estimated damping coefficients presents satisfactory agree-
ment, which illustrate the proposed identification algorithm can be 
effectively applied in identifying the roll model. Subsequently, 
comparing traditional identification approaches (NLS and FLS) with 
intelligent method, the NLS-SVM algorithm can perform better with 
higher accuracy, and overcome the weakness of conventional methods 
for identifying nonlinear damping coefficients. Moreover, free decay 
tests data in different UKCs and speeds were prepared for the purpose of 
demonstrating the shallow water effect in parametric identification 
based on the NLS-SVM method. The good agreement between decay 

Fig. 9. Predicted results and errors for 10%, 20%, 35%, 190% UKCs.  

Table 8 
Comparisons identification results for different speeds (20% UKC).  

Parameters Speed (20% UKC) 

0kn 3kn 6kn 9kn 12kn 

b _φ (kgm2
=s, 109)  1.93 1.94 1.97 2.84 3.38 

b _φj _φj (kgm2, 107)  2.66 2.93 3.01 3.45 3.55 

MAE (deg, 10� 2) 1.85 1.92 1.77 7.39 4.05 
RMSE (deg, 10� 2) 1.85 2.20 2.23 8.91 5.02 
CPU time (s) 15 17 15 17 15  
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tests results and predicted results suggests the satisfactory applicability 
of the proposed algorithm in shallow water. Therefore, the effectiveness, 
accuracy and applicability of the NLS-SVM model applied in identifying 
the nonlinear roll model in shallow water, have been verified by qual-
itative and quantitative analysis. 

Future work includes two main tasks: first, all coefficients of the roll 
model will be identified and analyzed (e.g. the roll damping and 
restoring moment coefficients) while the effect of the impulse response 
function “h” will be investigated; second, intelligent optimised algo-
rithms (e.g. beetle antennae search and particle swarm optimization 
methods) will be considered as well as to obtain the best penalty factors 
and kernel factors of the NLS-SVM model. 
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