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Abstract
The introgression of rol-genes of rhizogenic Agrobacterium into the plant genome induces changes in plant phenotype and 
physiology. However, only limited experience with this technique is available for woody ornamentals. To induce new vari-
ation within the Escallonia genus, several species were co-cultivated with rhizogenic Agrobacterium strains. Co-cultivation 
of three rhizogenic Agrobacterium strains (Arqua1, LMG 63 and MAFF210266) with four Escallonia species (E. illinita, E. 
myrtoidea, E. rosea, and E. rubra), resulted in hairy roots production with a varying efficiency. Co-cultivation of E. rubra 
with MAFF210266, and E. myrtoidea with LMG63 did not yield hairy roots, while co-cultivation of E. rubra leaves with 
LMG63 was most successful for hairy root production (up to 80.6%). In addition, the efficiency of hairy root induction 
depended on the explant type (leaves or nodal sections). The presence of inserted rol-genes and aux-genes in hairy roots 
was molecularly confirmed using qPCR. Few shoots regenerated from hairy roots, but regeneration needs to be optimized 
for efficient implementation of rol-genes introgression in Escallonia breeding.

Key Message 
This research provides a protocol for the production of hairy roots with rol-genes inserted after co-cultivation of several 
species of Escallonia with rhizogenic Agrobacterium strains.

Keywords Hairy roots · rol genes · Woody ornamental breeding · Agrobacterium rhizogenes

Introduction

Rhizogenic Agrobacterium strains are naturally-occurring 
soil-dwelling organisms, containing transfer-DNA (T-DNA) 
on which, among others, four rol-genes (root oncogenic loci) 
(rolA, rolB, rolC, rolD) are located (Huffman et al. 1984; 

Desmet et al. 2019). When the T-DNA is transferred into the 
host plant cell and inserted in the host plant DNA (Chilton 
et al. 1982; White et al. 1985), a neoplastic growth of hairy 
roots occurs, which produce and exude opines (Vladimirov 
et al. 2015). Since these opines are the source of energy and 
food for the Agrobacterium strains in the rhizosphere, the 
gene-transfer of rhizogenic Agrobacterium strains to plant 
hosts can be seen as a survival strategy of the bacteria.

Based on this naturally occurring system, artificial co-
cultivation of plants with different rhizogenic Agrobacte-
rium strains has been attempted for many genera (Mauro 
et al. 2017). Regenerants originating from hairy roots, may 
contain the T-DNA of the bacteria, which can cause typical 
changes in plant phenotype and physiology (Georgiev et al. 
2012). Plants with rol-genes inserted can display compact-
ness due to a loss of apical dominance and a decrease in 
internode length, wrinkled leaves, alterations in flowering 
time, an increased rooting ability and different secondary 
metabolite concentrations (Tepfer 1984; Bulgakov 2008; 
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Christensen and Müller 2009). Although many woody spe-
cies are known for their recalcitrance in vitro (Rugini et al. 
1991; Rastogi et al. 2008), rol-genes were introduced suc-
cessfully in several woody species. Lavandula × intermedia 
plants with introgression of rol-genes displayed a compact 
growth and extensive lateral branching, a delay in flower-
ing time of 1 month and shortened flower stalks (Tsuro and 
Ikedo 2011). Betula pendula with rol-genes showed a slower 
and more bushy growth, smaller leaves and a larger root sys-
tem, while B. pendula with both rol- and aux-genes inserted, 
displayed a vigorous growth (Piispanen et al. 2003). The 
introduction of rol-genes has been attempted for Hibiscus 
rosa-sinensis (Christensen et al. 2009), but no successful 
regeneration was reported yet. Furthermore, transformations 
of woody species with transgenic rhizogenic Agrobacterium 
strains have also been successfully conducted on Malus bac-
cata rootstocks (Wu et al. 2012), Actinidia deliciosa (Rugini 
et al. 1991) and Aesculus hippocastanum (Zdravković-Korać 
et al. 2004).

The present study aims to set-up a protocol for rol-
gene introduction in Escallonia using wild type strains 
of A. rhizogenes. The genus Escallonia Mutis ex L.f., 
contains about 40 flowering woody species and about 
20 botanical varieties, originating from South America. 
Most species are evergreen, have white to red flowers, a 
honey fragrance, and resin glands on leaves and branches 
(Bean and Murray 1989). Escallonia is used as a hedg-
ing plant, especially in coastal regions. Depending on the 
species, Escallonia can thrive in USDA zones from 10 to 
7b, corresponding to mean minimum temperatures ranging 
from − 1.1 to − 14.9 °C (Hoffman and Ravesloot 1998). 
Numerous hybrids and cultivars have been described 
(Krüsmann 1960; Bean and Murray 1989; Hillier Nurser-
ies 1991), resulting from harvests in the wild and selec-
tions from open pollinated seedling populations. Several 
developed cultivars were granted the Royal Horticultural 
Society’s Award of Garden Merit, e.g. ‘Apple Blossom’, 
‘Donard Radiance’, ‘Iveyi’, ‘Peach Blossom’, ‘Pride of 
Donard’, and ‘Crimson Spire’, indicating their added 
value in the garden (Royal Horticultural Society 2018). 
However, due to the fact that Escallonia is not very cold 

resistant, cultivars of this genus are underused in gardens. 
If breeding would enable to create cultivars with more cold 
resistance, compactness, and flower density, taken together 
with the evergreen characteristic which they already have, 
the commercial value of Escallonia would increase. Pos-
sibilities for breeding by polyploidization are evaluated 
(Denaeghel et al. 2018), but further breeding efforts in 
Escallonia are limited. The introgression of rol-genes into 
Escallonia, could result in plants with increased compact-
ness and flower density, which would already meet this 
highly demanded characteristics in the market segment 
of woody ornamentals in general, and for Escallonia in 
particular.

In this study Escallonia was co-cultivated with three 
rhizogenic Agrobacterium strains to develop a protocol 
for rol-gene introduction. First, the hairy root induction 
efficiency of these strains was evaluated. Second, several 
media and approaches were attempted to regenerate shoots 
from the resulting hairy roots. Finally, the presence of rol-
genes in the hairy roots and the regenerated shoots was 
determined.

Materials and methods

Plant material and growth conditions

In this study, we used one genotype within each of four 
Escallonia species: E. illinita, E. myrtoidea, E. rosea, and E. 
rubra (Table 1). Young, non-woody shoots of plants grown 
in 3 L container (peat based substrate, 1.5 kg/m3 fertilizer: 
12 N:14P:24 K + trace elements, pH 5.0–6.5, EC 450 µS/
cm) in a frost free greenhouse, were initiated in vitro accord-
ing to the procedure described by Denaeghel et al. (2018). 
Multiplication of in vitro shoots was done on a medium con-
taining MS macro-nutrients (Murashige and Skoog 1962), 
0.15  mg/L 6-benzylaminopurine (BAP) and 0.05  mg/L 
1-naphthaleneacetic acid (NAA). Cultures were renewed 
every 12 weeks. Both leaves and nodes of in vitro shoots 
were used in the co-cultivation experiments.

Table 1  Overview of the 
Escallonia species used

DN tree nursery De Neve, Oosterzele, Belgium, RBGE Royal Botanical Garden Edinburgh, Edinburgh, 
Scotland, UK, BMG Botanical Garden Meise, Meise, Belgium, HG Hillier Gardens, Ampfield, Romsey, 
UK, – information not known
a Voucher numbers assigned by the National Botanical Garden, Meise, Belgium for addition to the her-
barium

Genotype Acquisition Accession number Herbarium  vouchera

E. illinita Presl DN – BR0000025666403V
E. myrtoidea Bertero ex DC RBGE 20,130,304 BR0000025666458V
E. rosea Griseb HG – –
E. rubra (Ruiz & Pav.) Pers RBGE 19,924,317*B BR0000025666236V

Author's personal copy
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Storage and maintenance of rhizogenic 
Agrobacterium strains

Three strains were used in this study: Arqua1, LMG63 and 
MAFF210266 (Table 2). These strains were characterized 
in detail by Desmet et al. (2019). The bacteria were grown 
in dark conditions at 28 °C for 48 h and then kept at 4 °C in 
the dark. MAFF210266 was grown on a solid YEG medium 
(yeast extract glucose broth: 10 g/L yeast, 10 g/L d-glucose, 
1 g/L  (NH4)2SO4, 0.25 g/L  KH2PO4, 15 g/L Bacto-agar) 
while Arqua1 and LMG63 were grown on a solid MYA 
medium (malt yeast agar: 5 g/L yeast extract, 0.5 g/L casein 
hydrolysate, 8 g/L mannitol, 4.1 g/L  MgSO4·7H2O, 5 g/L 
NaCl, 15 g/L Bacto-agar, pH 6.6) (Leroy et al. 2006). Every 
4 weeks, a new culture of the three strains was started on 
YEG or MYA.

Co‑cultivation of Escallonia explants with rhizogenic 
Agrobacterium strains

One bacterial colony was transferred to 50  mL liquid 
MYA (for LMG63 and Arqua1) or 50 mL liquid YEG (for 
MAFF210266), and incubated in the dark on a rotary shaker 
(150 rpm) for 24 h at 28 °C. The density of the liquid bacte-
rial culture was analyzed with a spectrophotometer (iMark 
Microplate Reader, Bio-Rad Laboratories, Hercules, Cali-
fornia, USA) and cultures were diluted to an optical density 
between 0.5 and 0.6 OD (measured at 600 nm).

A schematic overview of the different steps for co-culti-
vation of Escallonia explants with A. rhizogenes is shown 
in Fig. 1. Leaf explants (0.5–0.8  cm2) were cut from young 
(maximum 12 weeks) in vitro leaves, always containing a 
midrib and a cut edge all around. Nodal explants cut from 
young in vitro shoots (maximum 12 weeks) were 0.3–0.6 cm 
long. Per species–strain combination (Table 3), 60 explants 
of each type were co-cultivated with bacteria, and 20 
explants of each type were used in a control treatment (appli-
cation with MYA or YEG without bacteria). Cultures were 
incubated with the bacterial suspension (15 mL) in Petri 
dishes (Ø 9 cm) in the dark on a rotary shaker (80 rpm) for 
30 min. Subsequently, the explants were air dried on sterile 
paper for 1–2 min to remove redundant bacterial suspension 
or liquid medium and placed on solid MS medium (30 g/L 
sucrose, MS salts and vitamins, 6 g/L agar (plant tissue cul-
ture grade agar No. 4, Neogen), pH 5.9 ± 0.1) with 20 mg/L 

acetosyringone (5 leaf explants and 5 nodal explants per 
Petri dish). The treated explants were placed in the dark in 
a growth chamber (ambient temperature 23 ± 1 °C) for 48 h.

After co-cultivation, all explants were submerged in 
liquid MS with 500 mg/L cefotaxime and stirred regularly 
for 20 min. Then the explants were air dried for 1–2 min 
on sterile filter paper, placed on solid MS with 500 mg/L 
cefotaxime and 100 mg/L timentin (5 leaf explants and 5 
nodal explants per Petri dish), and incubated in the dark 
at 23 ± 1 °C. Every 2 weeks, the MS medium containing 
antibiotics was renewed. Data on the number of roots per 
explant (>1 cm) and the time needed for rooting were col-
lected until a maximum of 12 weeks post co-cultivation. 
The cumulative percentage of rooted leaf and nodal explants 
for the different combinations of rhizogenic Agrobacterium 
strains and the Escallonia species was analyzed statistically 
in R (R Development Core Team 2008, version 3.6.0) using 
the Welch two sample t-test.

Shoot regeneration

The hairy roots (>1 cm) were excised and put on the regener-
ation medium (10 root explants per Petri dish, Fig. 1). Differ-
ent medium compositions for shoot regeneration were tested 
(Table 4), all based on MS salts and vitamins supplemented 
with 30 g/L sucrose and solidified with 6 g/L agar (plant tis-
sue culture grade agar No. 4, Neogen) (pH 5.9 ± 0.1). Three 
different approaches were applied: (1) continuous exposure 
to a medium without added plant hormones (RM00) (2) con-
tinuous exposure to media supplemented with low amounts 
of either BAP and NAA, thidiazuron (TDZ) or kinetin (KIN) 
(RM01–06), and (3) a shock treatment during 4–8 weeks on 
a medium with a relatively high concentration (1 mg/L to 

Table 2  Overview of rhizogenic Agrobacterium strains used

Strain Opine-type Plasmid Supplier References

Arqua1 Agropine pRiA4 D. Vereecke, VIB White et al. (1985) and Jouanin et al. (1987)
LMG63 Mannopine pRi8196 BCCM/LMG (Belgian Coordinated Col-

lections of Micro-organisms)
Trypsteen et al. (1991) and Desmet et al. (2019)

MAFF210266 Mikimopine pRi1724 NARO Genetic Resources Center Japan Tsuro and Ikedo (2011)

Table 3  Number of experiments performed for each Escallonia spe-
cies–bacterial strain combination

Genotype Arqua1 LMG63 MAFF210266

E. illinita 3 2 1
E. myrtoidea 1 1 –
E. rosea 3 1 –
E. rubra 2 1 1

Author's personal copy
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7 mg/L) of cytokinins (BAP or TDZ) followed by a medium 
containing a sevenfold lower cytokinin concentration (RM10 
followed by RM12) or tenfold lower cytokinin concentration 
(RM07 followed by RM01, RM08 by RM09 and RM11 by 
RM13). The hairy roots were placed in the growth cham-
ber (ambient temperature 23 ± 1 °C, photoperiod 16 h, light 
intensity 35 µmol/m2/s, bottom cooling 18 ± 1 °C), and the 
regeneration medium was renewed every 4 weeks.

Molecular screening of shoots and roots

The process of molecular screening of hairy roots and 
regenerated shoots is shown in Fig.  1. DNA extrac-
tion was performed according to the modified CTAB 

(cetyltrimethylammonium bromide) DNA isolation pro-
tocol (Doyle and Doyle 1990) using 100 mg of young 
hairy root tips of minimum 8 weeks old or 100 mg of leaf 
material of regenerated shoots. Leaf tissue of the in vitro 
stock plants was used as a negative control. A sample of 
the rhizogenic Agrobacterium strains was included as a 
positive control. Bacterial DNA extraction was conducted 
according to Desmet et al. (2019). DNA integrity was 
checked with universal plant its-u3 and its-u4 primers 
(Cheng et al. 2016). Both on plant and bacterial DNA, 
virD2 A and C′ primers of Haas et al. (1995) were used 
to identify the presence of the bacterial virD2-gene and 
rol-gene specific primers were used to confirm introgres-
sion of T-DNA in the plant. For Arqua1, primers for rolA, 

Fig. 1  Schematic overview of the subsequent steps in the co-cultivation and regeneration process of shoots from Escallonia hairy roots. a Prepa-
ration, b co-cultivation, c subculture and d regeneration

Author's personal copy
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rolB, rolC and rolD of Lütken et al. (2012a, b) were used 
for this purpose, for LMG63 specific rol-primers (rolA, 
rolB, rolC and rolD) were developed based on WGS data 
of Desmet et al. (2019) (Table 5). Roots transformed with 
Arqua1 were also tested for the presence of both aux-
genes (aux1 and aux2) using the primers of Lütken et al. 
(2012a). The qPCR mix contained 300 nM of both primers 
and 2 × SensiFAST SYBR® No-ROX Mix (Bioline Rea-
gents Ltd., London, UK). Cycling conditions were 2 min 
at 95 °C, followed by 40 cycles of 5 s 95 °C, 10 s 59 °C 
(its and rol-genes Arqua1)/56 °C (rol-genes LMG63 and 
aux-genes)/55 °C (virD) and 20 s 72 °C, with data acqui-
sition at the end of every cycle. Melting curve analysis is 
performed as follows: 5 s 95 °C, 1 min 61 °C and heating 
to 97 °C with a ramp rate of 0.06 °C/s. Data acquisition 
occurs 10 times for every °C.

Results

Hairy root formation on Escallonia species

The phenotypic difference between roots produced on 
explants inoculated with a rhizogenic Agrobacterium strain 
and on control explants was clearly visible for all species 
(Fig. 2). In control treatments, roots occasionally formed 
on nodal segments but not on leaves. Wild type roots were 
smooth, thin and did not show branching. In contrast, 
roots formed on inoculated explants were thicker, more 
branched and grew vigorously with numerous root hairs. 
Only roots with this particular latter phenotype were fur-
ther considered as hairy roots. The different bacteria–host 
combinations showed varying efficiencies in terms of hairy 
root production (Fig. 3). Arqua1 could infect all tested 
Escallonia species, while this was not the case for LMG63 
and MAFF210266.

For all experiments, the average percentage of E. illinita 
explants yielding hairy roots was not significantly different 
between leaves (39.3 ± 12.2%) and nodes (46.1 ± 14.1%), 
but the virulence of the strains was different. For example, 
the three experiments on E. illinita with Arqua1 yielded 
average hairy root percentages of 63.2 ± 13.6% for the 
leaves and 74.3 ± 9.7% for the nodes, while for the two 
experiments with LMG63 an average of respectively 
23.0 ± 0.1% and 33.8 ± 8.8% was obtained. MAFF210266 
yielded 31.7% and 38.1% hairy roots on leaves and nodes, 
respectively. Explants co-cultivated with Arqua1 showed 
a higher increase in the number of explants with hairy 
roots in the first 6 weeks after the co-cultivation, com-
pared to both LMG63 and MAFF210266 (Fig.  3a, b). 
A total number of 549 (Arqua1), 123 (LMG63) and 74 
(MAFF210266) hairy roots were harvested on E. illinita 
explants for regeneration.

For E. rosea, co-cultivation of leaf explants with 
Arqua1 resulted in on average 3.3 ± 2.5% hairy roots, 
while co-cultivation of nodal explants with Arqua1 yields 
36.7 ± 13.7% hairy roots (Fig. 3c, d). The inoculation with 
LMG63 yielded hairy roots on 0% leaves and on 23.0% 
nodes (Fig. 3c, d). Overall, for E. rosea nodal explants 
were more responsive to hairy root formation. Explants 
inoculated with Arqua1 showed a higher increase in hairy 
root production the first 6 weeks after the co-cultivation 
compared to explants inoculated with LMG63. In total 
100 (Arqua1) and 14 (LMG63) hairy roots were harvested 
for regeneration after co-cultivation of E. rosea explants.

For E. rubra, Arqua1 inoculated leaves and nodes pro-
duced on average 52.9 ± 6.7% and 33.9 ± 3.9% hairy roots, 
respectively. Leaves and nodes inoculated with LMG63 
yielded 83.9% and 73.8% hairy roots, respectively (Fig. 3e, 
f). Nodal explants inoculated with MAFF210266 did not 

Table 4  Phytohormonal supplementation of the MS-based regenera-
tion media (RM) for shoot formation on Escallonia hairy roots

Medium 6-Benzylami-
nopurine 
(mg/L)

Thidi-
azuron 
(mg/L)

Kinetin 
(mg/L)

1-Naphthale-
neacetic acid 
(mg/L)

RM00 – – – –
RM01 – 0.1 – –
RM02 – 0.5 – –
RM03 – – 0.1 –
RM04 – – 0.5 –
RM05 0.1 – – 0.1
RM06 0.5 – – 0.1
RM07 – 1.0 – –
RM08 3.0 – – –
RM09 0.3 – – –
RM10 7.0 – – –
RM11 – 3.0 – –
RM12 1.0 – – –
RM13 – 0.3 – –

Table 5  Primers for amplification of rol-genes present on the Ri plas-
mid of LMG63

Gene Sequence (5′–3′) Amplicon (bp)

rolA F: atggaactagccggaataaa 278
R: tcccgtaggtttgaattttt

rolB F: ctatctcaggcttcatcacg 233
R: cttattcgtccacttgcttg

rolC F: gatgcaatgcttctatggag 310
R: accatggcttaccaccttat

rolD F: aggctgcctatgtcaacgat 119
R: gaggtgcttgttctccttgc

Author's personal copy
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produce any hairy roots. Explants inoculated with either 
Arqua1 or LMG63 showed a high increase in hairy root 
production between 4 and 8 weeks after the co-cultiva-
tion (Fig. 3e, f). A total number of 196 (Arqua1) and 166 
(LMG63) hairy roots were harvested on E. rubra explants 
and placed on regeneration medium.

Only Arqua1 induced hairy roots on leaf and nodal 
explants of E. myrtoidea, 17.5% and 38.9% respectively. 
The hairy roots appeared between 4 and 6 weeks after the 

co-cultivation, with the highest number of roots/explant at 
6 weeks (Fig. 3g, h). In total 45 hairy roots were harvested 
and transferred to regeneration medium.

A subsample of the obtained roots for the different 
bacteria–plant species combinations were molecularly 
screened on the presence of rol-genes and in the case of 
Arqua1 also for aux-genes (Table 6). All DNA tested posi-
tive for the ITS markers, thus confirming sufficient DNA 
quality. VirD2 could not be amplified in the 103 hairy 

Fig. 2  Hairy roots (a, b) and control roots (c, d) produced on Escallonia illinita explants after co-cultivation. a Escallonia illinita leaf 
explant + Arqua1, b E. illinita nodal explant + Arqua1, c E. illinita control leaf explant and d E. illinita control nodal explant. Scale bar = 1 cm

Author's personal copy
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root samples from the different Escallonia species, indi-
cating bacteria were sufficiently eliminated after the anti-
biotic treatment. In total, 85.4% of hairy roots contained 
all four rol-genes (Table 6). A higher transformation rate 
was obtained with Arqua1 (90.0%) compared to LMG63 
(75.8%). After inoculation with LMG63, only a single root 
from E. rubra contained rol-genes, but for E. illinita all 
24 tested roots were transformed (Table 6). After inocu-
lation with Arqua1, in four roots of E. illinita, two of E. 
rosea and one of E. rubra no rol-genes were present. In 

contrast, in these E. rosea and E. rubra roots presence of 
aux-genes was confirmed, indicating that transfer of the 
 TR-DNA did occur. In case of E. illinita roots, 29.6% did 
not contain aux-genes, but rol-genes were present in 50% 
of these roots. Thus in this case only the  TL-DNA was 
transferred into the plant. A total of 59 roots derived after 
inoculation with Arqua1 contained all four rol-genes and 
both aux-genes, so both  TR- and  TL-DNA was transferred 
(Table 6).

Fig. 3  The average cumulative percentage of leaf (a, c, e, g) and 
nodal (b, d, f, h) explants with hairy roots (for repeated experi-
ments ± SE) for the different combinations of rhizogenic Agrobac-
terium strains (Arqua1 open circles, LMG63 open triangles, and 

MAFF210266 plus) and Escallonia species [E. illinita (a, b), E. rosea 
(c, d), E. rubra (e, f), E. myrtoidea (g, h)] in function of time (in 
number of weeks post co-cultivation)

Author's personal copy
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Shoot regeneration on hairy roots

A limited amount of shoots regenerated on the harvested 
hairy roots (Table 7). In total 5 Arqua1 and 4 LMG63 
shoots regenerated on a total of 890 Arqua1, 303 LMG63, 
and 74 MAFF210266 hairy roots (regeneration fre-
quencies: 0.56% for Arqua1; 1.32% for LMG63; 0% for 
MAFF210266).

For E. illinita, five shoots regenerated after Arqua1 co-
cultivation and one after LMG63 co-cultivation (Fig. 4). 
Two of these Arqua1 shoots were obtained after 5 weeks 
when using 3.0 mg/L TDZ (RM11). One Arqua1 shoot 
resulted after 6 weeks using 7.0 mg/L BAP (RM10). The 4th 
and 5th Arqua1 shoots occurred after the shock treatment 
with BAP, 4 weeks RM10 followed by 16 weeks RM12, and 
4 weeks RM08 followed by 11 weeks RM09, respectively. 
The LMG63 shoot of E. illinita appeared after 5 weeks in 
1.0 mg/L TDZ (RM07).

One E. rosea LMG63 shoot and two E. rubra LMG63 
shoots were regenerated after a shock treatment of 4 weeks 

Table 6  Presence (+) or absence (−) of the four rol- and two aux-
genes in hairy roots of different Escallonia species, induced after 
explant co-cultivation with Arqua1 or LMG63

NT not tested, genes are not present in the original bacterial strain

Bacterial strain Escallonia geno-
type

# Hairy 
roots 
tested

rol A, B, 
C and D

aux1 and 2

LMG63 E. illinita 24  + NT
E. rubra 8  − NT

1  + NT
Arqua1 E. illinita 19  +  + 

4  +  − 
4  −  − 

E. rosea 16  +  + 
2  −  + 

E. rubra 22  +  + 
1  −  + 

E. myrtoidea 2  +  + 

Table 7  Shoots regenerated from hairy roots of different Escallonia 
species, with used media and regeneration time

Escallonia 
genotype

Number of 
shoots

Medium Regeneration 
time (weeks)

Arqua1 LMG63

E. illinita 2 RM11 5
1 RM10 6
1 RM10 → RM12 4 + 12
1 RM08 → RM09 4 + 11

1 RM07 5
E. rosea 1 RM07 → RM01 4 + 4
E. rubra 2 RM07 → RM01 4 + 4

Fig. 4  Shoot regeneration from Escallonia illinita hairy root tissue obtained by co-cultivation using LMG63. a Induction of shoot primordia on a 
hairy root and b developing shoot 1 month after being separated from the hairy root. Scale bar = 1 cm
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in 1.0 mg/L TDZ (RM07) followed by 4 weeks in 0.1 mg/L 
TDZ (RM01).

In all the regenerated shoots virD2 was not amplified, 
consistent to the hairy root screening. However, none of the 
regenerated shoots contained any of the rol- and aux-genes.

Discussion

T-DNA transfer into the plant host cell requires a complex 
interaction of proteins of both the rhizogenic Agrobacterium 
strain and the host plant (Lacroix and Citovsky 2016). As 
a result strains can display different degrees of virulence 
depending on the plant genotypes. In our study, hairy roots 
upon inoculation of plant material with rhizogenic bacteria 
were successfully obtained. However, the rhizogenic Agro-
bacterium strains showed clear differences with regard to 
hairy root induction efficiency in the different Escallonia 
species. The most infectious strain for Escallonia was 
Arqua1, capable of inducing hairy roots with confirmed 
presence of rol-genes in all four species. This strain has 
successfully transformed other woody species e.g. avocado 
(Prabhu et al. 2017). LMG63 and MAFF210266 are effec-
tive in three and one out of the four species, respectively. 
With regard to infection of woody species, MAFF210266 
previously demonstrated its effectiveness, e.g. in Lavan-
dula (Tsuro and Ikedo 2011) whereas the successful appli-
cation of LMG63 is not reported in literature. In addition, 
we observed plant and strain genotype specific interactive 
effects: Arqua1 induced more hairy roots in E. illinita and 
E. rosea than LMG63, while this was the other way around 
in E. rubra. E. myrtoidea displays a high degree of recal-
citrance for LMG63. MAFF210266 induces efficient hairy 
root formation in E. illinita only. These effects are reminis-
cent of the genotype specific patterns of virulence described 
previously by Porter and Flores (1991) and indicate the 
importance of the plant–strain interaction (Pitzschke 2013). 
Similar differences in host-strain reactions are described in 
poplar (Neb et al. 2017) and in Coffea (Alpizar et al. 2006).

Overall, the hairy root induction efficiencies obtained 
for Escallonia are consistent with efficiencies published 
for other woody species. Both Arqua1 and LMG63 
induced hairy roots in up to about 80% of the explants. For 
MAFF210266 the efficiency was lower, reaching a maxi-
mum of 38% explants with hairy roots. Optimum hairy root 
induction efficiencies reported for other woody species are 
61% in Semecarpus (Panda et al. 2017), 95% in Rauwolfia 
(Mehrotra et al. 2013), and 60% in Hibiscus (Christensen 
et al. 2009). Other bacterial strains could be investigated 
to reveal highly compatible plant–strain genotype combina-
tions. Also, the application of a strain specific co-cultivation 

protocol could lead to higher transformation efficiencies 
(Desmet et al. 2019).

Shoots can spontaneously regenerate on hairy roots or 
directly on the inoculated explants (Subotić et al. 2003; 
Christensen and Müller 2009; Kim et al. 2012; Mehrotra 
et al. 2013). Regeneration of Escallonia hairy roots however 
remains a bottleneck, even after supplementing regeneration 
media with various phytohormones. In total, only 9 shoots 
regenerated on 1278 hairy roots. Woody species in general 
are known for their recalcitrance in vitro (Rugini et al. 1991; 
Rastogi et al. 2008). Furthermore, also genotype effects on 
regeneration potential are reported (Hegelund et al. 2017). 
We already observed differences in effectiveness of in vitro 
initiation and multiplication media between Escallonia spe-
cies (Denaeghel et al. 2018), so most likely, also the shoot 
regeneration procedure will have to be optimized for each 
species. The shoot induction capacity can be improved by 
searching for an appropriate cytokinin (type and/or concen-
tration) (Amoo et al. 2011). Additionally, crucial steps in 
the shoot regeneration process, such as callus induction and 
shoot induction, could be investigated in order to increase 
regeneration efficiency (Motte et al. 2014).

None of the Escallonia hairy roots induced after co-cul-
tivation with rhizogenic agrobacteria regenerated into rol-
gene positive shoots. The lack of regeneration of hairy roots 
after co-cultivation with Arqua1 could be attributed to the 
transfer of  TR-DNA auxin genes into the plant DNA (White 
et al. 1985; Jouanin et al. 1987). These aux1 and aux2 genes 
can influence the formation of adventitious roots (Camill-
eri and Jouanin 1991) which could result in hairy root-like 
roots without the actual transfer of rol-genes, decreasing 
the relative yield of regenerants containing rol-genes. The 
confirmed presence of auxin genes in Arqua1-hairy roots 
can also influence potential shoot regeneration capacity by 
changing the auxin/cytokinin ratio. In Campanula, shoots 
only regenerated on hairy roots that did not contain auxin 
genes (Hegelund et al. 2017). The rol-genes themselves also 
play a role in shoot regeneration by influencing hormone 
sensitivity and hormone pathways and thus shoot regenera-
tion capacity. The protein of rolA can influence the auxin 
content (Bettini et al. 2016), rolB influences the auxin signal 
transduction pathway (Maurel et al. 1994), and rolC proteins 
can change the auxin sensitivity (Zuker et al. 2001; Koshita 
et al. 2002).

The absence of the virD2 gene in the hairy roots indicates 
that the applied treatment with antibiotics was sufficient to 
remove all bacteria. Moreover, in all four species of Escal-
lonia, hairy roots were recovered which contain both rol 
(Arqua1 and LMG63) and aux genes (Arqua1). The rol posi-
tive roots of both Arqua1 and LMG63 always contained all 
four rol-genes. Similarly aux positive roots always contained 
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both aux1 and aux2. This indicates that independent trans-
fer of the  TL-DNA and/or  TR-DNA to the plant occurs as 
non-fragmented sequences which is reported to be the gen-
eral mechanism of T-DNA transfer and integration (Choi 
et al. 2004; Kang et al. 2006; He-Ping et al. 2011; Kim et al. 
2012; Petrova et al. 2013). Only a few studies report on the 
fragmentation of the T-DNA e.g. in Chrysanthemum ciner-
ariaefolium, where hairy root lines contained either rolABC 
or rolBC, the presence of rolD in this study was however 
not investigated (Khan et al. 2017). In Bacopa monnieri 3 
regenerants, containing either rolAB, rolABC or only rolC, 
were obtained (Majumdar et al. 2011).

For E. rosea and E. rubra, several hairy roots were 
obtained that carry the aux genes but not any of the rol 
genes. Piispanen et al. (2003) found that the presence of 
aux genes in plants resulted in an alleviated version of the 
Ri phenotype, in which some negative rol gene effects such 
as wrinkled leaves are less pronounced. Therefore, these aux 
containing roots could be very valuable in the creation of 
unique phenotypes.

In conclusion for this study, we showed the potential of 
rol-gene introduction as a breeding tool for Escallonia, and 
in extension for woody plants in general. We obtained a pro-
tocol for hairy root induction in several Escallonia species 
and we developed a screening method enabling to screen for 
the presence of rol-genes and aux-genes separately. Hairy 
roots containing rol-genes were induced for all Escallonia 
genotypes in our study. We were able to regenerate few 
roots, but shoot regeneration from hairy roots remains a 
bottleneck and the search for an optimal shoot regeneration 
protocol continues. However, although there were no trans-
formed plants among the regenerants, the regeneration of 
roots is a step forward in the breeding research of Escallonia 
in particular and woody plants in general.
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