

Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador)

Arne Deknock, Niels De Troyer, Michael Houbraken, Luis Dominguez-Granda, Indira Nolivos, Wout Van Echelpoel, Marie Anne Eurie Forio, Pieter Spanoghe, Peter Goethals

2 October 2019

- Majority of applied pesticides ends up in environment
- Biologically active
- Developing regions:
 - Non-specific application methods

Miyamoto et al. (2008)

- Majority of applied pesticides ends up in environment
- Biologically active
- Developing regions:
 - Non-specific application methods
 - Cheap products (e.g. persistent organochlorines)
 - Lack of training, technical services, regulations and control
 - Low awareness and integration of rational pest management strategies
 - Pressure by multinationals

UNIVERSITY

Miyamoto et al. (2008)

- Majority of applied pesticides ends up in environment
- Biologically active

UNIVERSITY

Developing regions:

Miyamoto et al. (2008)

Ecuador

- largest export-based banana industry
- 34,317 metric tons of active ingredients per year (2014-2017)

Guayas river basin

- 40% of national population (2002)
- 68% of national crop production (1996)
- 88% of Ecuadorean bananas (1996)

OBJECTIVES

1. Pesticide residues within the Guayas river basin?

2. Link with agricultural land use?

METHODOLOGY

- July and August 2016
- 181 sampling locations
 - 31 Daule-Peripa reservoir
 - 15 Manglares Churute natural reserve
 - Including upstream, downstream, natural and clearly affected locations
- Selection of 83 relevant products
- Solid-phase extraction (SPE)

METHODOLOGY

 Gas chromatography with electron capture detector (GC-ECD) and liquid chromatography tandem-mass spectrometry (LC-MS/MS)

LC-MS/MS

GC-ECD

Validation: spike-placebo recovery method

OBJECTIVES

1. Pesticide residues within the Guayas river basin?

2. Link with agricultural land use?

- 26 products
- 108 contaminated sites (60%)
- Highest product diversity:
 - Daule river (E-series): 8 products
 - Babahoyo river (BH-series): 7 products
- Downstream region more polluted
- No impact on biological diversity
- Note:
 - Single time point
 - Other compartments?

Pesticide	# locations	Concentration range $(\mu g \cdot L^{-1})$	Recovery (%)
Acephate	3	<loq.< td=""><td>58.21 ± 1.60</td></loq.<>	58.21 ± 1.60
Ametryn	1	<loq< td=""><td>81.49 ± 5.54</td></loq<>	81.49 ± 5.54
Boscalid	2	<loq< td=""><td>97.59 ± 4.88</td></loq<>	97.59 ± 4.88
Butachlor	21	<loq -="" 2.006<="" td=""><td>78.10 ± 21.77</td></loq>	78.10 ± 21.77
Cadusafos	62	<loq -="" 0.081<="" td=""><td>61.73 ± 6.12</td></loq>	61.73 ± 6.12
Chlorpyrifos	5	<loq -="" 0.035<="" td=""><td>62.70 ± 9.16</td></loq>	62.70 ± 9.16
Diazinon	3	<loq< td=""><td>63.10 ± 28.24</td></loq<>	63.10 ± 28.24
Fenpropimorph	15	0.022-0.241	98.27 ± 22.26
Linuron	6	<loq< td=""><td>98.50 ± 30.85</td></loq<>	98.50 ± 30.85
Malathion	12	<loq 0.687<="" td="" –=""><td>119.83 ± 6.60</td></loq>	119.83 ± 6.60
Metalaxyl	3	<loq< td=""><td>99.75 ± 6.87</td></loq<>	99.75 ± 6.87
Oxadiazon	2	0.068-0.120	108.80 ± 27.35
Parathion	1	<loq< td=""><td>105.03 ± 6.48</td></loq<>	105.03 ± 6.48
Pendimethalin	21	0.170-0.557	94.97 ± 11.40
Pyraclostrobin	1	<loq< td=""><td>44.31 ± 13.75</td></loq<>	44.31 ± 13.75
Pyrimethanil	11	<loq 0.080<="" td="" –=""><td>47.92 ± 6.41</td></loq>	47.92 ± 6.41
Spiroxamine	1	0.099	82.85 ± 7.30
Tebuconazole	1	0.316	61.34 ± 2.94
Terbutryn	1	<loq< td=""><td>76.78 ± 6.32</td></loq<>	76.78 ± 6.32
Triadimenol	1	0.092	64.50 ± 13.83

^a LOQ = $0.022 \,\mu\text{g} \cdot \text{L}^{-1}$ for all mentioned pesticides.

OBJECTIVES

1. Pesticide residues within the Guayas river basin?

2. Link with agricultural land use?

Cadusafos (62 sites)

Widely spread

UNIVERSITY

- Frequently used insecticide in banana industry
- Slow degradation: DT50 = 215 d
- Relatively mobile: S = 245 mg/L, Koc = 227 L/kg

Butachlor (21 sites)

- Concentrated in rice field areas
- Commonly used herbicide in cereal cultivation to control grassy weeds
- Very immobile: S = 20 mg/L,
 Koc = 700 L/kg

Pendimethalin (21 sites)

- Daule river
- Mainly detections in rice field areas, and few near maize and cacao
- Commonly used herbicide in cereal cultivation to control grassy weeds
- Very immobile: S = 0.33 mg/L,
 Koc = 17,491 L/kg

Fenpropimorph (15 sites)

- Upstream region near maize and cacao, infiltrated with banana plantations
- Frequently used fungicide in cereal and banana industries
 - No physicochemical data

GHENT

UNIVERSITY

Malathion (12 sites)

- Downstream region (Babahoyo river)
- Broad-spectrum insecticide
- Very fast degradation: DT50 = 0.4 d
- Slightly mobile: S = 148 mg/L,
 Koc = 1,800 L/kg

Pyrimethanil (11 sites)

- Widely spread
- Broad-spectrum fungicide
- No physicochemical data

- Pesticide residues
 agricultural land use
- Banana and rice
- High consumption rates
- Application methods
- Alternatives and solutions?
 - Ground-based spraying systems
 - Avoid monocultures (agroforestry)
 - Integrated Pest Management strategy (IPM)
 - Legal regulations + control
 - Awareness campaigns + training
 - Policy changes multinationals

renaturefoundation.nl

ecpa.eu 14

<u>CONCLUSIONS</u>

- Pesticide residues widely present in Guayas river basin
 - No impact on biological diversity
 - Only water phase: other compartments?
 - Single time point: rainy season? Production cycles?
- Frequently detected (>10 sites) were linked with agricultural land use
 - Banana and rice
 - High consumption rates + application methods
 - Alternatives: changing cultivation methods, awareness campaigns, training programs, regulatory measures, policy changes from multinationals

Arne Deknock

Doctoral student

AQUATIC ECOLOGY (AECO)

arne.deknock@ugent.be www.ugent.be

- f Universiteit Gent
- @ugent
- @ugent
- in Ghent University

