
Developing and benchmarking methods for analysing transcriptomics data

Ontwikkelen en vergelijken van methoden voor transcriptoom data-analyse

Wouter Saelens

https://orcid.org/0000-0002-7114-6248
https://github.com/zouter

Supervisors: prof. dr. Yvan Saeys, prof. dr. Bart Lambrecht
Dissertation submitted in fulfillment of the requirements for the degree of
Doctor of Science: Bioinformatics

Department of Applied Mathematics, Computer science and Statistics
VIB - UGent Center for Inflammation Research

Faculty of Sciences
Ghent University

https://orcid.org/0000-0002-7114-6248
https://github.com/zouter

Part of the work in this dissertation was conducted
within the Faculty of Sciences at Ghent University.

This work was also supported by a Bijzonder
onderzoeksfonds grant from Ghent University.

Part of the work in this dissertation was conducted
within the VIB-UGent Center for Inflammation

Research.

Part of the work in this dissertation was conducted
during visit to Institute of Molecular Life Sciences at

University of Zürich.

This work was supported by an aspirant grant and a
travel grant from Fonds Wetenschappelijk Onderzoek.

Samenvatting

Het bepalen van de hoeveelheden messenger RNA (mRNA) moleculen die aanwezig
zijn in een cel laat ons toe om beter een cel zijn functie en ontwikkeling te karakteris-
eren. Deze transcriptoom data kan dan op verschillende manieren worden geanaly-
seerd, bijvoorbeeld door op zoek te gaan naar gelijkaardig geëxpresseerde genen, of
door het vinden van differentiatie paden die cellen nemen tijdens hun ontwikkeling.

In deze thesis presenteer ik drie van mijn bijdragen voor de analyse van transcrip-
toom data. Allereerst beschrijf ik een methode die het gemakkelijker maakt om het
transcriptoom van drie biologische stalen te onderzoeken. Ik gebruik deze meth-
ode om nieuwe inzichten te krijgen in de ontwikkeling van macrofagen, een type
immuuncel. Ik voer daarna een vergelijking uit tussen verschillende methoden om
gelijkaardige geëxpresseerde genen te halen uit transcriptoom data. We hebben
hierbij gevonden dat bepaalde methoden beter presenteren dan de populaire clus-
teringsmethoden, alhoewel vernieuwingen op het vlak van interpretatie noodzake-
lijk zijn om deze gebruiksvriendelijker te maken. In een laatste bijdrage presen-
teer ik een vergelijking van methoden om cellulaire differentiatie paden te achter-
halen. Deze methoden zijn nog maar zeer recent geïntroduceerd, hand in hand
met de ontwikkeling van technologie die individuele cellen kan analyseren. Ik
beschrijf de nauwkeurigheid, schaalbaarheid, stabiliteit en bruikbaarheid van 45
methoden op echt en synthetische data. Op basis van deze informatie hebbenwe een
reeks van context-afhankelijke richtlijnen opgesteld for gebruikers. We wijzen ook
op verschillende uitdagingen die in toekomstige methoden zullen moeten worden
opgelost.

Verder bouwend op deze laatste bijdrage, geef ik twee mogelijkheden voor verder
onderzoek. Ik beschrijf eerst een set van tools die gebruikt maakt van onze vergeli-
jking om het gemakkelijker voor gebruikers te maken om paden in single-cell data
te vinden. Telkens vermeld ik echter ook verschillende nieuwe methoden die ons
meer inzichten zullen kunnen verschaffen in deze cellulaire paden. Deze zullen
ons in de toekomst kunnen helpen om ziektes te bestuderen die veroorzaakt zijn
door problemen in cellulaire ontwikkeling. Ik besluit met enkele ideëen voor betere
vergelijkingen van methoden binnen de computationele biologie. Deze zullen het
toelaten dat onderzoekers beter samenwerken terwijl ze een methode ontwikkelen
en vergelijken, zodat het steeds duidelijk is welke methode het best geschikt is om
een biomedische dataset te analyseren.

Summary

Profiling whichmessenger RNA (mRNA)molecules are expressed can give us impor-
tant functional and developmental information about a cell. Computational meth-
ods are necessary to analyse the large amounts of information present in such a
transcriptome, for example by grouping similar genes into functional modules, or
by finding trajectories in the data.

In this thesis, I present three of my contributions to the analysis of transcriptomics
data. I first describe a method that makes it easier to visualise and interpret the tran-
scriptome of three biological samples. I showcase an application of this method on
transcriptomics data from macrophage progenitors. I then present a benchmark for
methods that group genes into co-expressed modules. In this benchmark study, we
found that decomposition techniques can outperform the more popular clustering
methods, although some improvements on interpretation and visualisation may be
required before they can be broadly useful. In a final contribution, I present a bench-
mark of methods that can delineate paths that cells take during development or acti-
vation. These trajectory inferencemethods have only been very recently introduced,
hand in hand with technological improvements in single-cell sequencing. I describe
a comprehensive benchmark of the accuracy, scalability, stability and usability of 45
methods on real and synthetic data. We develop a set of context-dependent guide-
lines for method users, and pinpoint several challenges which need to be addressed
in future methods.

Building further upon this last contribution, I outline two exciting avenues for future
research. I describe a toolkit that incorporates the benchmark results to make trajec-
tory inference more streamlined for the end user. To make this toolkit more useful,
I indicate several opportunities for new visualisation and interpretation methods.
These will in the end allow us to get a detailed functional insight into developmen-
tal diseases. Finally, I also present a roadmap to improve the way benchmarking is
done in computational biology, by incorporating several tools of modern software
development. These will make method evaluations more collaborative and contin-
uous, so that it is clear at any time which method is best suited to study human
diseases.

Dankwoord (Acknowledgments)

In deze thesis sta ik op de schouders van reuzen. Reuzen die mij kansen hebben
geboden om aan onderzoek te doen. Reuzen die mij hebben ondersteund terwijl het
onderzoek toch niet ging zoals verwacht. En vooral reuzen die een kleine microbe in
mij hebben gestoken die dag en nacht alles wil onderzoeken, zelfs als de zon schijnt
of België een goed WK meemaakt.

De voornaamste figuurlijke reus is natuurlijk mijn promoter, Yvan. Het is allemaal
begonnen toen hij daar stond als een enthousiaste biomedische post-doc tussen een
overwegend planten bio-informatica bij de voorstelling van master thesis projecten.
Zes jaar later is hij uitgegroeid tot een vooraanstaande professor inmachine learning
en (single-cell) bio-informatica. Doorheen die jaren ben je mij steeds mooi blijven
steunen in mijn projecten. Ik stel het heel hard op prijs dat je mijn samenwerkingen
met Robrecht, Liesbet en Robin hebt bevorderd. Ik heb een vermoeden dat ik vaak
wat eigenzinnig was in jouw ogen, maar ik hoop dat je toch tevreden bent over het
resultaat! Ik heb ook ontzettend veel geleerd van mijn co-promoter Bart, ik sta nog
steeds versteld van hoe hij zijn brede biologische expertise kan toepassen die hij
telkens toonde tijdens de monday morning meetings.

Die andere grote reus is ongetwijfeld Robrecht. Met onze verschillende achtergron-
den hebben we elkaar al heel vroeg kunnen bij staan met allerhande vragen. Uitein-
delijk vatten we het idee op om een groot gezamelijk project op te zetten. Eerst
begon dit wat aftastend, elk met onze eigen github repository en met minimale ”be-
moeienis”. Naarmate het vorderde werd de samenwerking intenser, maar wonder
boven wonder bleek die ook goed te lukken! Ik vond het prachtig hoe we elka-
ars ideëen in de praktijk konden omzetten; wanneer één persoon een goed idee had
maar de moed niet kon vinden om het te implementeren, was de andere al na enkele
dagen klaar met een prototype. Ik heb heel veel geleerd van jou: hard-skills zoals
properdere code en code structureren, maar ook soft-skills zoals samenwerken, en
leren op de tong te bijten wanneer ik het weeral niet eens was met jou idee. We
hebben samen iets mooi uit de grond gestampt!

Liesbet, je bent voor mij een reuzin op vele vlakken. Al vanaf mijn masterthesis
stond je altijd klaar om mijn vragen te beantwoorden rond het analyseren van tran-
scriptoom data. Als je zelf dan met wat vragen zat, probeerde ik je ook zo goed
mogelijk te helpen. En daar zijn meermaals mooie dingen uit voort gekomen. Je
bent voor mij een groot voorbeeld van een nauwe samenwerking tussen de compu-
tationele en experimentele biologie!

Sofie, het was altijd heel leuk om samen fouten in code op te lossen, figuren te on-
trafelen, te schilderen en over ons onderzoek en daarbuiten te babbelen. Toen je een
suggestie gaf over een bepaalde figuur was ik vaak eerst wat sceptisch, maar toen ik

het effectief toepastte was ik wel altijd heel blij met het resultaat! Robin, mooi hoe
je een idee waar ik al even mee speelde omzette naar een volledig onderzoekspro-
ject! Isaac, it was great to discuss machine learning problems with you. If you’re
still wondering: yes, I finally submitted the paper, and it was accepted. And I re-
ally like your computerphile video, and I hereby agree with the comment of fellow
youtuber hcblue: ”Oh man, more of Dr. Triguero please! :D”. Rest assured, your
legacy continues in the form of… Dani. You are really great at explaining complex
machine learning stuff to me. There are so many other giants to thank (no wonder
that we urgently needed a new office): Paco, Helena, Ruth, Annelies, Sarah, Pieter,
Maxim, Quentin, Robin, Joris, Kevin, Katrien and Jonathan.

I was also lucky to stand on the shoulder of many biological giants. Martin, you’re
honest feedback on our algorithms is really important to push our methods to the
limit! Charlie, great to have worked and pondered on so many of your datasets.
Lianne, thank you being patient when we were finalising the algorithm! And of
course all the others in Bart’s, Charlie’s and Martin’s groups: you are all awesome!

A giant thank you to all the people in Zürich as well. Mark, I really liked working in
your group. And actions say more than words of course, so I’m secretly hoping to
be able to work with your group later on in my career as well! Lukas and Charlotte,
you were my two biggest examples when it comes down to benchmarking, so while
workingwith you I felt like a beginning actor working with Leonardo Dicaprio. And
thanks to Paolo, Iza, Simone, Almut, Stephan, Katharina, Pierre-Luc, Helena, Fiona
and Stephany, for such a warm and welcome stay in Switzerland!

Dankjewel mama en papa om mijn wetenschappelijke curiositeit altijd te blijven
ondersteunen! Ik denk dat die investering in onder andere een kinder encyclopedie
wel heeft opgebracht. Ook mijn schoonouders hebben mij bij de laatste loodjes heel
mooi ondersteunt. Alleen de schoongrootvaders hebben het wat lastig gemaakt om
te blijven doctoreren. Want de passie waarmee zij nog steeds aan houtbewerking
doen: je zou bijna je doctoraat opgeven en schrijnwerker beginnen worden…

Aan mijn drie zussen ten slotte, Marieke, Anneleen en Veerle, ook een dikke merci.
Ik denk niet dat het toevallig is dat jullie met drie waren, want het is gelijk aan het
aantal reviewers dat je krijgt na submissie van een paper. All gekheid op een stokje,
ik heb heel veel aan jullie gehad!

Wouter Saelens

20 juni 2019

Copyright

The publication ”A comprehensive comparison of module detection methods for
gene expression data”, included in Chapter 3 is distributed under the terms of a
Creative Commons CC BY licence, which permits reuse in this thesis as long as the
original source is cited.

The copyright of the publication ”A comparison of single-cell trajectory inference
methods” included in Chapter 4 is held by the authors. The publisher, Springer
Nature, has been granted certain exclusive and sub-licensable rights, as determined
in the Licence to Publish. This Licence explicitly states that the author retains non-
exclusive rights to reproduce the contribution in whole in any printed volume (book
or thesis) of which they are the author(s).

List of abbreviations

AM Alveolar macrophage

BM Bone marrow

CD Cluster of differentiation

cDC Conventional dendritic cell

cDNA Complementary deoxyribonucleic acid

DC Dendritic cell

FACS Fluorescence assisted cell sorting

FL Fetal liver

IFNB1 Interferon beta 1

mRNA Messenger ribonucleic acid

MO Monocyte

NI Network inference

PCA Principal component analysis

pre-DC Precursor dendritic cell

RNA-seq Ribonucleic acid sequencing

RMA Robust multi-array average

TF Transcription factor

TI Trajectory inference

UMI Unique molecular identifier

XCR1 X-C motif chemokine receptor 1

YS Yolk sac

Table of Contents

1 Introduction 1
mRNA production and gene regulation 1
Technologies to determine the transcriptome 3

Determining the transcriptome of many cells 3
Determining the transcriptome of a single cell 4

Computational methods to analyse the transcriptome 5
Preprocessing and normalisation . 5
Differential expression . 9
Dimensionality reduction . 9
Grouping samples, cells and genes 10
Trajectory inference . 11
Network inference . 12
Other methods . 13
On the horizon . 14

Benchmarking methods in computational biology 14
Goals and problem setting . 16
References . 18

2 Analysing the transcriptome of three biological conditions 25
Introduction . 25
Triwise methodology . 26
Applying triwise to analysemacrophage progenitors before and after adop-

tive transfer . 32
A brief introduction to macrophage biology 32
Experimental approach . 32
Triwise application . 33
Implications . 37

Other applications . 37
Understanding CD103+CD11b+ dendritic cell development in the gut 38

Discussion . 38
References . 41

3 Comparing module detection methods 43
Introduction . 45
Results . 46

Evaluation workflow . 46
Overall performance . 48
Parameter tuning . 53
Sensitivity to number of samples and noise 56

Discussion . 58
Methods . 62

Regulatory networks and module definitions 62
Gene expression data . 64
Module detection methods . 65
Parameter tuning . 68
Evaluation metrics . 68
Influence of overlap . 70
Automatic parameter estimation . 71
Similarity measures . 71
Code availability . 72

Supplementary Note 1: Measures for comparing overlapping modules . . 72
Update . 81
References . 83

4 Comparing trajectory inference methods 89
Introduction . 91
Results . 92

Trajectory inference methods . 92
Accuracy . 98
Scalability . 102
Stability . 104
Usability . 105

Discussion . 109
Methods . 112

Trajectory inference methods . 112
Method wrappers . 112
Trajectory types . 117
Real datasets . 117
Synthetic datasets . 118
Dataset filtering and normalisation 125
Benchmark metrics . 126

Method execution . 128
Complementarity . 128
Scalability . 128
Stability . 129
Usability . 130
Guidelines . 131
Reporting Summary . 131

Supplementary Note 1: Metrics to compare two trajectories 131
Metric characterisation and testing 133
Metric conformity . 146
Score aggregation . 148

Update . 153
References . 154

5 Conclusion 159

6 Future perspectives -
The next milestones of trajectory inference 163
Selecting the most optimal set of methods 163
Running any method without difficulties 165
Adapting and post-processing the trajectory 165
Visualising the trajectory . 166
Comparing trajectories . 167
Multi-omics trajectories . 168
Validating a trajectory . 169
Conclusion . 169
References . 171

7 Future perspectives -
A roadmap for continuous and collaborative benchmarking 175
Introduction . 175

Data formats . 179
Module types . 180
Modules . 181
Combining modules within a benchmark 183

Possible issues . 184
Conclusion and outlook . 185
References . 187

Appendices 189

A CV 191

B Vignette of dyno, A toolkit for inferring trajectories 195

1 | Introduction

A large part of a cell’s identity is driven by the molecules it contains: the lipids,
proteins, nucleic acids and metabolites all determine how a cell fulfils its function,
and how it reacts to its environment. By determining the composition and amounts
of these molecules, it is therefore possible to better understand the inner workings
of a cell and its impact on the organism and ecosystem. This hypothesis has been
the main driving force behind -omics technologies, which try to profile and quantify
these molecules within (populations of) cells.

The focuswithinmy thesis primarily lies on one kind ofmolecules: messenger RNAs
(mRNA), and conversely on the field of transcriptomics. mRNAs are interesting
to study because they contain the information that is necessary to create proteins,
which are the main - albeit not the only - molecules that fulfil internal and external
cellular functions. To produce a particular protein, a cell first needs to produce
a certain mRNA. The amount of proteins in a cell is often driven by the amount
of corresponding mRNAs, which therefore serves as some kind proxy for protein
abundance within this cell [1]. Another reason to study mRNAs is simply because
they are relatively easy and less expensive to profile, at least compared to the more
functionally relevant proteins.

In this thesis, I use transcriptome to denote all mRNA molecules in a cell. It should
be noted however that there are many other RNA molecules within a cell that also
have a functional importance, although they do not encode for a protein.

mRNA production and gene regulation

The recipe for a particular mRNA molecule is contained in the genome of a cell,
within stretches of DNA called genes. Around and within the gene are regions of
DNA that contain information on how the gene is regulated. These DNA sequences
are detected by transcription factors (TF), which will influence the speed by which
the nearby genes are used as template for anmRNAmolecule, within a process called

2 Chapter 1 - Introduction

transcription. In this way, transcription factors are thought to be the main drivers
behind variation in gene expression within and between organisms, although many
other post-transcriptional processes also play a role.

In prokaryotes, TFs mainly bind in the promoter region, a stretch of DNA that
comes right before the position where transcription starts. Together with spe-
cific sequences in the promoter region, they help or prevent the recruitment of
the RNA polymerase complex to the promoter. TFs interact with each other and
other molecules, such as metabolites, and their activity can therefore be context-
dependent. Apart from transcription factors, some prokaryotic genes have other
means by which transcripts is regulated, for example through riboswitches.

Transcriptional regulation is more complex within eukaryotes. The DNA is packed
together with histone proteins into a high-density structure called the chromatin.
Packaging of the DNA often limits the accessibility to the RNA polymerase and of
other factors necessary for transcription [2]. Histone proteins can undergo post-
translational modifications which may enhance or limit the accessibility of DNA.
These modifications are in turn be regulated by transcription factors, through acti-
vation or inhibition of chromatin remodelling enzymes [3]. Histone modifications
can also influence the cycle of transcription, through regulation of the initiation,
RNA polymerase release , elongation and termination phases [4].

When the DNA is accessible, transcription factors assemble the pre-initiation com-
plex, which contain general transcription factors that in the end recruit the RNA
polymerase. While these transcription factors may bind sequences close to the ini-
tiation site (such as the TATA box), some TFs may bind very far away from the
promoter sequence [5]. Here, the presence of long-range enhancer-promoter inter-
actions is driven by the three-dimensional organisation of the chromosomes [6].

Transcription initiation is only the first step in the life of an mRNA, and many other
processesmay further influence its abundance. The RNApolymerasewill first create
a pre-mRNA molecule, which has to be processed in three ways: capping of the
5’ terminus, splicing of introns and polyadenylation. All these processed can be
impacted by co-factors, which in turn may affect the stability and localisation of
the resulting mRNA [7]. For example, a short poly-A tail can enhance the decay
of an mRNA, although its length is not necessarily a major determinant in mRNA
abundance [8].

The mRNA decay rate and translational efficiency can be further regulated by both
proteins and other RNAs in the cytosol. The latter occurs in the form of micro-RNAs
and small interfering RNAs, which are short RNA molecules with partial comple-
mentarity to their target mRNA and which help the recruitment of an RNA induced
silencing complex to the transcript [9].

It is important to note that although the regulation of certain genes is well studied

3

(for example the human IFNB1 gene), for most genes a detailed model of regulation
is not available. It is therefore still very difficult to predict how perturbations in
transcription factors will influence the activity of a gene. Although a lot is known
about gene regulation, it is also clear that many things are still unknown [6].

Technologies to determine the transcriptome

Because mRNAs are very unstable after cell lysis and typically only have a couple of
dozen copies per cell [10], sensitivity is perhaps one of the most challenging parts
of determining the transcriptome [11, 12]. These issues can at least be partially
overcome by first converting mRNAs into the much more stable DNA, and then
amplifying it using a polymerase chain reaction. The mRNAs are often enriched by
using a poly-T primer, which hybridises RNA molecules that contain a poly-A tail.
These complementary DNAs (cDNAs) can then be profiled by making use of their
natural tendency to bind with DNA probes, or by sequencing and counting.

I first briefly discuss techniques to study the transcriptome of many cells (”bulk”
transcriptomics), after which I will delve into miniaturised versions which work on
the level of single cells.

Determining the transcriptome of many cells

After some initial technologies using expressed sequence tags and serial analysis of
gene expression, the two technologies that really established the field of transcrip-
tomics were microarrays and RNA-sequencing (RNA-Seq).

Microarrays make use of the tendency of DNA to form a strong double-stranded
helix with a complementary DNA molecule. Pieces of cDNA are first labelled using
fluorochromes, and are then brought onto a plate in which DNA probes are fixed at
certain spots. After a washing step, the hybridised cDNA can be easily quantified
by looking at the fluorescence intensities of the individual spots. Microarrays were
the most sensitive and cost-efficient technology to measure all the mRNAs within
a sample during the 2000s. They really established transcriptomics analyses as an
important technique to study biological systems. This is exemplified by the over 1
million samples that have been submitted to the gene expression omnibus [13].

Despite its popularity, microarray analyses have several limitations, such as the
bias introduced by selecting the probes, the need for a reference genome (or tran-
scriptome) and the relatively low sensitivity. RNA-seq overcomes these limitations
and has therefore in the recent years become the standard for determining the tran-
scriptome [13]. Because it is a de novo transcriptomics technique, it is not biased

4 Chapter 1 - Introduction

towards particular probes nor does it require a reference, although one still has to
take into account biases introduced by purification and sequencing [14]. Some other
advantages of RNA-seq include the improved ability to delineate alternative splicing,
additional information on genomic differences [15, 16] and the ability to determine
the transcriptome of complex microbial communities [17].

The technology keeps on advancing. Miniaturization combined with innovations in
sequencing further decreases the cost of sequencing the transcriptome [18]. More-
over, new techniques such as long-read RNA sequencing finally makes it possible
to unambiguously assess mRNA isoform usage [19].

Determining the transcriptome of a single cell

Although RNA-seq provides an cost-effective way to determine the transcriptome
of a population of cells, such an analysis can easily hide the actual transcriptomic
heterogeneity in the sample. Even when cells are phenotypically the same, there is
no guarantee that they are transcriptionally (and functionally) homogeneous. Fur-
thermore, oftenwe’re interested in only a small subset of cells, e.g. stem cells or cells
responding to a stimulus. This highlights the importance of scaling -omics analyses
to individual cells, but introduces two main technical hurdles: labelling of mRNAs
of the same cells, and quantification of the tiny amounts of mRNAs in a sensitive
way. In essence, single-cell transcriptomics methods are thus extensions of bulk
RNA-seq methods, but with extra mRNA labelling and amplification steps.

Many techniques exist to label individual cells, and this often involves single-cell
isolation and subsequent addition of cell barcodes to the cDNAs. Isolation of single-
cells can be done by using manual picking [20], integrated fluidic circuits [21], cell
sorting into microwells [22, 23], random separation into droplets [24, 25], or random
separation into picowells [26, 27]. Recent technologies skip the isolation step alto-
gether, by first fixing the cells and performing library preparation in situ. In such
cases, cells are labelled by either many rounds of combinatorial barcoding [28], or a
transfer onto a barcoded plate [29]. Single-cell labelling is the major determinant of
the cell throughput of a particular platform, and also strongly contributes to its cost-
effectiveness. A couple of years ago the fluidigm C1 (integrated fluidic circuits) and
Smart-Seq2 (cell sorting) systems were the most popular ways of doing single-cell
transcriptomics, and were used to generate datasets of a couple of hundred up to a
few thousands of cells. Now, these have been largely superseded by droplet-based
techniques such as Drop-Seq and the Chromium system from 10X genomics, which
allow scaling up to a million of cells. Perhaps these in turn will soon be superseded
by in situ technologies that don’t need any isolation, as it is this process that can
easily induce a cell selection bias in the analysis towards relatively small cells with
a regular shape [29].

5

Even when mRNAs or cDNAs are isolated, it is still challenging to quantify them
because of the extremely small amounts of RNA present. All technologies therefore
first amplify the cDNA, for which there are two popular strategies. One uses PCR
amplification by either ligating a poly-A tail to the 3’ end of the transcripts [20]
or using template-switching adapter [30]. The other uses in vitro transcription to
produce many mRNA copies of the same transcript, after which these can be again
converted back to cDNA [31, 27].

When individual cDNAs are barcoded and amplified, the cDNAs can be brought
together and sequenced as in the bulk methods.

Many other omics technologies can also be transferred to the single-cell level, al-
though sensitivity is often the limiting factor [32]. This includes the genome [33],
chromatin accessibility [34] and the proteome [35]. What is particularly of interest
are techniques that can assess multiple modalities at once, such as the transcriptome
combined with chromatin accessibility or protein expression (Figure 1.1). These
techniques typically try to convert each molecule into a ”common molecular for-
mat”, such as a cDNA molecule [36]. At the moment, many of these techniques re-
quire some extensive technical expertise, and commercialisation or open-sourcing
[37] will be necessary to make them commonplace in biological studies.

Computational methods to analyse the transcriptome

Transcriptomics data is analysed using a variety of methods, mostly adapted from
machine learning and statistics, with some adaptations to better match the charac-
teristics of the data. Rather then delving too much into technical details, I will focus
on the main ideas, why they’re necessary, and what biological conclusions we can
make by using them. Most of the methods that I discuss here will in some form be
used in the methods that are described in the other chapters of this thesis. In each
case I discuss both bulk and single-cell tools intertwined. Although almost everyone
uses different tools for the two data types [40], the core concepts behind every type
of method remain largely the same. An overview of the different kinds of analyses
along with the most prominent methods is given in Figure 1.2.

Preprocessing and normalisation

We want to use transcriptomics data to make biological conclusions, not technical
ones. But often, the variation in a real dataset is driven by some unwanted technical
(such as temperature, sequencing depth) or biological (stress response, cell death)
differences between samples. While some of these issues can be circumvented by
good experimental design, the unwanted sources of variation that are still present

6 Chapter 1 - Introduction

Figure 1.1: Single-cell techniques that can profile other modalities next to mRNA lev-
els. Two dimensional positioning was done manually based on similarity between the differ-
ent modalities. Figure adapted from [38] with some recent additions (Licence: CC BY-NC-SA).
When converting each modality to a common ”molecular format”, the possibilities become end-
less. This is demonstrated by one recent technology that combines five different modalities [39],
which would be hard to visualise on a chart like this.

7

Figure 1.2: Overview of methods used to analyse transcriptome data. For each type of
method, the most prominent examples are given along with for which kind technology they
are most often used (although they are rarely restricted to that technology): microarray,
RNA-sequencing, Single-cell RNA-sequencing

8 Chapter 1 - Introduction

should be characterised computationally, and in some cases removed, before the
data is ready to be interpreted biologically.

Given its status as very mature technology, preprocessing and normalisation of
most microarrays is done by the de facto standard Robust Multichip Average (RMA)
method [41]. This method will first try to remove spatial differences between probe
expression on the same array. After a log transformation, the differences between
arrays are normalised using quantile normalisation, which will make the distribu-
tion between all arrays the same. This step makes the assumption that each con-
dition has about the same number of genes up- as down-regulated, which can be
easily violated depending on system under study [42].

Preprocessing of RNA-seq data is a bit more complicated, given that the output after
sequencing are short cDNA sequences. The first step is to filter and trim the raw
reads so that they contain high quality reads with no adapter sequences. The next
steps depend on the use case. If the main goal is quantification of gene expression,
alignment-free methods are the fastest option [43, 44], taking into account some
of its limitations [45]. A greater level of detail can be obtained by first mapping
the reads onto a reference transcriptome (or genome) [46], and then quantifying at
the exon, isoform or gene level [47]. If a reference transcriptome is unknown or in-
complete, de-novo assembly is an option [48, 49], although the high number of false-
positives might make the interpretation unreliable [50, 51]. Count matrices are then
normalised using a variety of approaches, making either the assumption that most
genes are not differentially expressed [52], or that the same number of genes are up-
and down-regulated [53, 54]. Common to most RNA-seq normalisation methods is
the correct modelling of the mean-variance relationship, because lowly expressed
genes tend to be overdispersed after log-transformation, which would lead to in-
flated log fold-changes if not modelled properly.

Being a technology that’s still maturing, the preprocessing of single-cell RNA-seq
is currently a topic of ongoing discussion. Similar initial steps are performed as for
RNA-seq, combined with steps that filter out cells based on likelihood of being an
actual cell [55], likelihood of being a doublet [56], and/or high expression of stress re-
lated genes [57]. There are several approaches to normalise this data. Early methods
normalised with cell-specific library sizes and log transformation, similar as with
bulk data, which may be calculated using spike-ins [58] or pooled between similar
cells [59]. Other approaches will model the expression of a cell as being sampled
from a distribution with an overdispersed Poisson and drop-out component. More
recently, there has been a shift away from these, driven by the observation that
unique molecular identifier (UMI) based data is not zero-inflated [60, 61]. This can
create artifacts when log normalising, or overfit when using zero-inflated models.
Instead, the newest studies suggest fitting a (regularised) negative binomial or multi-
nomial to better differentiate the technical variation from the biological. Because

9

this is still a very active field, it is hard to tell which normalisation methodology will
ultimately gain foothold, given that the very recent benchmarking efforts haven’t
caught up yet [62]. Nonetheless, it is clear that direct observation of actual data,
combined with empirical testing of assumptions, is the way forward.

Differential expression

Themost essential question when analysing omics data is: what is different between
samples? This is a prototypical question that can be solved by many ”classical” sta-
tistical tests such as a t-test, analysis of variance or, more general, linear models.
Because of the low number of samples in many transcriptomics studies (4 at best,
2 at worst), these tests tend to be very conservative. Moreover, they make assump-
tions regarding normality of the data, which doesn’t hold true for the count nature
of RNA-seq data. As discussed before, RNA-seq data has some other peculiarities,
such as a strong mean-variance relationship, that either have to be removed at the
normalisation step, or incorporated during the testing for differential expression.

Differential expression methods solve these issues by (1) sharing information across
similar genes, which allows a better estimate of the variance and in turn makes
the statistical testing more powerful and (2) assuming other distributions such as a
negative binomial or log-normal distribution. Themain difference between themost
popular methods such as edgeR and DEseq2 [53, 52, 63] is how these two solutions
are implemented in practice. Given the existence of a linear model under the hood,
all these methods can handle designs from the simplest pairwise models onto the
more complex models with interactions [64].

In single-cell data, differential expression is typically done between two or more
cell populations. The most popular tools for single-cell transcriptomics analysis use
surprisingly simple tests to answer this question, such as t-tests andWilcoxon rank-
sum tests [65, 66]. Benchmarking has shown that these tests do quite well compared
to tools made for bulk RNA-seq or single-cell RNA-seq, with the latter sometimes
even performing worse [67]. In the end, what most of these methods output is a
ranking of differential expression, but no clear indication of statistical signficance
across biological replicates. The latter would require replicated designs andmethods
able to handle such hierarchical data, a use case still rare in the single-cell omics field
[68, 69].

Dimensionality reduction

Omics data typically has more than a thousand features, such as genes, proteins or
genomic regions. But because a lot of information is shared between features, for

10 Chapter 1 - Introduction

example by co-regulation, the actual number of dimensions is often much lower in
the data. As an example, from a biological perspective, a couple of cell type, cell state
and cell cycle axes could be enough to understand most of the differences between
immune cells in the blood. This is why dimensionality reduction techniques are one
of the essential techniques for analysing transcriptomics data [70]. They are used
for simplifying the input data for downstreammethods, as a way to denoise the data,
and for visualisation purposes [71].

The most straightforward way to reduce the dimensions of a dataset is to decom-
pose the data into a product of other matrices, each with lower dimensions then
the original. This is the approach followed by linear dimensionality reduction tech-
niques, such as principal component analysis (PCA), independent component anal-
ysis (ICA) and some forms of multi-dimensional scaling (MDS). Biological data may
also contain non-linear structures, or the number of requested dimensions may be
too low to capture the complexity of the data with a linear transformation. This
can be handled by non-linear dimensionality reduction techniques such as diffu-
sion map, t-distributed stochastic neighbour embedding (t-SNE), uniform manifold
approximation and projection (UMAP) or autoencoders [72].

Broadly speaking, linear methods are often faster and are therefore more useful for
denoising and preprocessing. Non-linear methods on the other hand can fit complex
manifold structures in the data, and are therefore more useful when a low number
of dimensions is required such as for visualisation [71].

Grouping samples, cells and genes

Instead of reducing a dataset to a couple of continuous dimensions, it is also use-
ful to simplify a dataset to a couple of discrete groups of genes, cells or samples.
This has a direct biological origin; genes often share function and/or regulators and
these modules tend to follow similar expression profiles. Similarly, cells tend to
differentiate into functionally similar cell populations with their own characteristic
expression profiles. By grouping these genes and cells into modules or populations,
the highly dimensional dataset becomes much easier to interpret, and can be func-
tionally analysed.

A clustering method typically first defines a distance or similarity measure, such
as the euclidean distance, and then tries to group similar objects such that objects
within a group have a relatively low distance [73]. Although clustering is by far
the most popular way to group objects, alternatives such as biclustering do exist
that do not require objects to be similar in all dimensions [74]. There are countless
way to cluster, and the choice of method is primarily driven by the dimensions of
the data: clustering of a few thousands of genes across hundred samples requires
different tools then clustering millions of cells across these same thousand genes

11

[75]. Another important factor in transcriptomics is the freedom in similaritymetric,
given that a correlation is often more appropriate but this is not supported by many
classical clustering algorithms.

Co-expression of genes is often, but not always, caused by co-regulation. These
common regulators can be found by looking for enrichment of motifs or ChIP peaks
in the promoter or enhancer regions associated with the gene. Similar tactics can
be employed to find enriched functions within a module by cross-linking it with
functional databases such as Gene Ontology and KEGG. This analysis can be used
to assign novel functions to genes, ultimately leading to a better understanding of
which genes are involved in a particular process [76].

Gene modules can also be used as a feature extraction method for downstream ma-
chine learning or statistical analyses. A gene in this regard is often summarised into
an average expression value or pseudogene, and this is used to predict a phenotype
including patient prognosis or survival [77]. The strength of this approach may lie
in its robustness, because the combination of many features may reduce the impact
of changes in individual genes [78].

Clusters of biological samples are useful to find new subtypes of patients, and align
themwith prognostic or phenotypic markers [79]. Conversely, cells can also be clus-
tered to find new subpopulations in a data-driven way [80]. By extracting genes
unique to these subpopulations, it then becomes possible to further characterize
them. Clustering of cells is also often used as a preprocessing step for other algo-
rithms such as trajectory inference [81] and differential abundance analysis [68].

Trajectory inference

Cells constantly change as a reaction to external or internal signals. This may cause
the cell to progress to the next stage of the cell cycle, or make it differentiate into
a functional cell type. If the single-cell experiment is designed in such a way that
the cells are sampled at random points during this dynamic process, it is possible to
reconstruct the dynamics of the transcriptome using trajectory inference (TI) meth-
ods. These methods assume that the expression of cells changes gradually, and that
it is therefore possible to position cells onto a graph structure such that similar cells
are located close to each other. Over 70 methods TI have been published since 2014
(Figure 1.3).

A prototypical TI method combines concepts from both dimensionality reduction
and clustering, often by connecting cell clusters based on their closeness in the re-
duced space [81]. Somemethods create a more probabilistic model of differentiation,
where each cell is assigned a likelihood of ultimately differentiating into a particu-
lar end state [82]. The main differences between TI methods is the type of topology

12 Chapter 1 - Introduction

Figure 1.3: Number of trajectory inference tools that have been published over time.
Preprint (blue) and peer-reviewed publications (dark blue).

they can detect: early methods mainly focused on linear or circular trajectories,
while more recent ones also detect tree or disconnected graphs [81].

TI methods connect cells within a common topology, but it does not provide a direc-
tion in which the cells are changing. To get this kind of information, it is necessary
to include some other data such as start cells [83], or marker genes that are known
to be expressed inside stem-like cells [84]. A recent alternative is to use RNA ve-
locity [85], a technique that can provide for each cell a projection of where the
transcriptome is moving in the near future. This technique is based on the idea that
single-cell transcriptomics techniques (even those profiling the 3’ end), contain both
spliced and unspliced reads. For a gene that is increasing in expression, its unspliced
reads will be relatively higher than spliced reads, relative to a per-gene ratio that
has to be estimated. This makes it possible to create a future expression profile of
each cell, and thus to get an idea of the direction that cells are going relative to each
other.

Network inference

While trajectory inference gives you relationships between cells, network inference
provides you with regulatory relationships between genes. This type of methods
will use similarities between expression profiles to find potential regulatory links
between pairs of genes. There aremanyways to infer a network based on expression

13

profiles, and this often involves the calculation of some similarity between profiles
or how predictive the expression of a regulator is for the expression of the target
[86].

Expression data on its own is often not informative enough to capture the full com-
plexity of real regulatory networks, especially those in eukaryotes. Two regulators
that are co-regulated themselves will have very similar expression patterns, and a
network inference algorithm would have a hard time distinguishing their actual tar-
get genes. Regulatory networks are so complex and context-specific that using only
expression data results in a large number of false positive regulatory links in the
data. Often, other information is therefore added to the method, such as presence
of transcription factor binding sites close to the promoter [87, 88] or temporal in-
formation coming from time series experiments or more recently also RNA velocity
[89].

Other methods

There are several other types of methods commonly used in (single-cell) transcrip-
tomics, but that are not used in this thesis and only briefly discussed here.

With complex designs, it often happens that there are unwanted biological or tech-
nical effects in the data that cannot be removed through mere normalisation. These
can be corrected through the use of batch correction methods [90] or, for single-cell
data, cell alignment methods [91, 92]. While they can certainly be useful, batch cor-
rection should only be used as a last resort, i.e. when it is impractical to control for
these confounders [93]. Cell hashing [94] or cryopreservation may reduce the need
for these methods as well.

Batch correction or alignment makes it possible to combine different datasets from
the same kind of data but from different biological samples. Related to this are data
integration methods, that combine different kinds of data, such as transcriptomics
and proteomics, from the same samples [32]. After integration, any previously de-
scribed method can be applied on the ”joint” dataset [95].

Annotating cell types is typically the first step of interpreting single-cell data, but is
now done manually. The more data becomes available, the more it becomes realistic
to do this annotation automatically. This can be done in three ways: using bulk data
as a reference [96], using single-cell data as a reference [97], or by using marker
profiles curated by experts [98]. How new cell types are identified within such an
analysis remains challenging, and may in fact turn into a philosophical discussion
about what a cell type actually is [32].

14 Chapter 1 - Introduction

On the horizon

The methods that have been described so far can be considered part of the ”basic”
toolkit for analysing and modelling transcriptomics data. These methods become
even more powerful when combined with each other. Some examples are:

• Combining cell alignment with differential expression to also analyse differ-
ential abundance [68]

• Combining TI with data integration to analyse the dependencies between dif-
ferent modalities during cellular dynamics

• Combining network inference with TI to infer dynamic networks

Many more combinations are possible, most of which are still early in development
and are not discussed here. Rather, they will be reviewed in a future perspectives
chapter (Chapter 6), with a particular focus on TI.

Benchmarking methods in computational biology

The paragraphs above have provided a very broad overview of methods available
for transcriptomics research. Once you delve into the specifics of each method, it
becomes clear that there’s often debate within a field for what the best approach is
to solve a certain problem 1. For example, most types of single-cell data analyses
have dozens of methods available [40] (Figure 1.4).

For an outsider, the availability of so many alternatives can seem daunting. A user
will then resort to choosing the method that looks most trustworthy based on proxy
metrics such as the journal in which it was published or the popularity amongst its
peers. These proxy metrics are however very prone to biases, and might stifle new
developments in a very young field because the older tools get more attention [100].
One way to address this is to have an independent comparison (or benchmark) to
assess which of the many methods has a high chance of being useful.

Benchmarks in bioinformatics take on many forms. Papers that introduce a method
(have to) compare it to previously published methods. This analysis is typically
small, showcasing where a method performs better than the current state-of-the-
art, and a quantitative comparison is often understandably lacking [101]. In some
studies the benchmark is themain story, and contain a comparison ofmanymethods
with mostly quantitative metrics.

These metrics encompass
1These discussions can sometimes be quite heated as in the kallisto versus Salmon debate [99],

further showcasing the need for independent or community-wide comparisons.

15

Figure 1.4: Number of methods that are available for a particular kind of single-cell
analysis, according to www.scrna-tools.org [40].

1. Accuracy. How close is the model to biological reality? This is the most
important metric, but also the most difficult to assess. There are many ways
to define a gold standard, all of which have imperfections [102]: computa-
tional simulations, usage of trusted technologies, or expert manual curation.
To compare models, metrics have to be created and validated [103]. Metrics
can have biases themselves, and systematic benchmarking therefore assesses
multiple metrics [104]. It is often helpful to combine a quantitative assess-
ment with a qualitative look of the results to get a hands-on feeling with how
the different metrics work.

2. RobustnessA robust method produces the same result even if the initial con-
ditions, such as input data and parameters, are slightly altered. This has many
facets: changes in the amount of noise, dimensions of input data, stability to
approximately the same input data, stability to a different pseudorandom state
and robustness to parameters. These questions are often easier to study be-
cause each type can be simulated, while making sure models of noise or batch
effects match the real life use case.

3. Scalability In a fast evolving field such as single-cell genomics, the speed
by which the dataset size increases outruns the speed by which our compu-
tational resources increase [105]. A benchmarking study therefore often as-
sesses the amount of resources a method uses for a typical dataset, and how it
will scale in the future. Running time of a method is most often included, al-
though memory usage and hard drive input/output may also be relevant. An
assessment of scalability should ideally be done inside an isolated computer
environment, as other running software may strongly affect the result.

4. Usability Due to various reasons, the quality of most software in computa-
tional biology is poor [106]. Even if such a tool would be very accuracte,

www.scrna-tools.org

16 Chapter 1 - Introduction

scalable and robust, it would be a nightmare for a user to install and run.
An unusable tool may at the basal level result in a minor annoyance for the
user, making it hard to apply on their own data. But other usability criteria,
such as code availability and unit testing, may have a large impact on the
reproducibility and correctness of the bioinformatics results. Assessing the
usability is therefore very important for a benchmark, but can be prone to
subjectivity. Studies describing best practices often focus on different aspects
[107, 108, 109], and the quality of documentation can be in the eye of the
beholder. Also, some aspects may be interesting but not essential [110].

5. Similarity Just likemany blindmen are necessary to get a complete picture of
how an elephant feels, so we needmanymethods to get a complete picture of a
particular biological system. Some benchmarks therefore assess how different
the outputs of methods are, so that users can select methods based on the
different kind of view they provide on the same dataset [111, 67].

Goals and problem setting

My main goal in this thesis was to see how I can use transcriptomics to better un-
derstand the development and function of immune cells. To answer this question,
I investigated three different aspects of transcriptomics analyses: (1) how to char-
acterise the dynamics of immune cells during development, (2) assess which genes
are different between progenitors or developmental stages and (3) group these genes
into co-expression modules to get a global overview of the main transcriptomic dif-
ferences between populations.

First, I wanted to understand how cells change during development. TI methods
provide one of the best ways to do this at the moment: single-cell RNA-seq datasets
have become readily available, and a trajectory model provides an unprecedented
overview of the dynamic changes during cell differentiation. However, the sheer
number of methods available, together with the challenging high dimensionality of
the data, make the application of these methods difficult. It is highly unclear which
of themore than 70methodswould provide themost optimalmodel on a give dataset.
This is not only problematic for me, but also for the whole community of users and
developers. In chapter 4 of the thesis, I therefore set out to develop a large-scale
evaluation of TI methods. This is further complemented with future perspectives
chapter 6, in which I try to lay out new methods that may make trajectories easier
to interpret in the future.

Secondly, I wanted to investigate which genes are different between differentiation
stages and progenitors. Differences between two populations, or through a more
complex hierarchical design, are relatively easy to analyse using differential expres-

17

sion methods. However, once there are three or more equally-important popula-
tions, the analysis becomes more complicated because of the combinatorial number
of necessary pairwise comparisons. In chapter 2, I therefore set out to develop a
method that makes it possible to analyse the transcriptomic heterogeneity between
three populations. This method is also able to assess the functional heterogeneity
of these populations, by looking at which functional gene sets are consistently up-
regulated in one or two populations.

Finally, I wanted to have a look at the main co-expression modules that drive the
differences between immune cell populations. Module detection methods provide
the ideal playing ground to do this. However, themany types of methods (clustering,
biclustering, decomposition, direct NI and iterative NI) make it difficult for me, other
users and developers to rapidly apply the most accurate method on their data. In
chapter 3, I set out to develop a comprehensive benchmark of the methods, and use
my results to develop guidelines for users and developers. I also used the experience
of the two benchmarks within this thesis to highlight my view on the future of
benchmarking in computational biology in a future perspectives chapter 7.

18 Chapter 1 - Introduction

References

[1] Yansheng Liu, Andreas Beyer, and Ruedi Aebersold. “On the Dependency of Cellular Protein
Levels on mRNA Abundance”. In: Cell 165.3 (Apr. 21, 2016), pp. 535–550. issn: 1097-4172. doi:
10.1016/j.cell.2016.03.014.

[2] John T. Lis. “A 50 Year History of Technologies That Drove Discovery in Eukaryotic Tran-
scription Regulation”. In: Nature Structural & Molecular Biology 26.9 (Sept. 2019), pp. 777–782.
issn: 1545-9985. doi: 10.1038/s41594-019-0288-9.

[3] Moyra Lawrence, Sylvain Daujat, and Robert Schneider. “LateralThinking: HowHistone Mod-
ifications Regulate Gene Expression”. In: Trends in Genetics 32.1 (Jan. 1, 2016), pp. 42–56. issn:
0168-9525. doi: 10.1016/j.tig.2015.10.007.

[4] Leah A. Gates, Charles E. Foulds, and Bert W. O’Malley. “Histone Marks in the ’Driver’s Seat’:
Functional Roles in Steering the Transcription Cycle”. In: Trends in Biochemical Sciences 42.12
(Dec. 2017), pp. 977–989. issn: 0968-0004. doi: 10.1016/j.tibs.2017.10.004.

[5] François Spitz and Eileen E. M. Furlong. “Transcription Factors: From Enhancer Binding to
Developmental Control”. In:Nature Reviews. Genetics 13.9 (Sept. 2012), pp. 613–626. issn: 1471-
0064. doi: 10.1038/nrg3207.

[6] Katherine M. Lelli, Matthew Slattery, and Richard S. Mann. “Disentangling the Many Layers
of Eukaryotic Transcriptional Regulation”. In:Annual Review of Genetics 46.1 (2012), pp. 43–68.
doi: 10.1146/annurev-genet-110711-155437.

[7] Aimee L. Jalkanen, Stephen J. Coleman, and Jeffrey Wilusz. “Determinants and Implications
of mRNA Poly(A) Tail Size - Does This Protein Make My Tail Look Big?” In: Seminars in cell
& developmental biology 0 (Oct. 2014), pp. 24–32. issn: 1084-9521. doi: 10.1016/j.semcdb.2014.
05.018.

[8] Ivano Legnini et al. “FLAM-Seq: Full-Length mRNA Sequencing Reveals Principles of Poly(A)
Tail Length Control”. In: Nature Methods 16.9 (Sept. 2019), pp. 879–886. issn: 1548-7105. doi:
10.1038/s41592-019-0503-y.

[9] Ross C. Wilson and Jennifer A. Doudna. “Molecular Mechanisms of RNA Interference”. In:
Annual Review of Biophysics 42.1 (2013), pp. 217–239. doi: 10.1146/annurev-biophys-083012-
130404.

[10] Georgi K. Marinov et al. “From Single-Cell to Cell-Pool Transcriptomes: Stochasticity in Gene
Expression and RNA Splicing”. In: Genome Research 24.3 (Jan. 3, 2014), pp. 496–510. issn: 1088-
9051, 1549-5469. doi: 10.1101/gr.161034.113.

[11] Valentine Svensson et al. “Power Analysis of Single-Cell RNA-Sequencing Experiments”. In:
Nature Methods 14.4 (Apr. 2017), pp. 381–387. issn: 1548-7105. doi: 10.1038/nmeth.4220.

[12] Comparative Performance of the BGI and Illumina Sequencing Technology for Single-Cell RNA-
Sequencing | bioRxiv. url: https://www.biorxiv.org/content/10.1101/552588v2 (visited on
05/27/2019).

[13] Zichen Wang, Alexander Lachmann, and Avi Ma’ayan. “Mining Data and Metadata from the
Gene Expression Omnibus”. In: Biophysical Reviews 11.1 (Feb. 1, 2019), pp. 103–110. issn: 1867-
2469. doi: 10.1007/s12551-018-0490-8.

[14] Marc Sultan et al. “Influence of RNA Extraction Methods and Library Selection Schemes on
RNA-Seq Data”. In: BMC genomics 15 (Aug. 11, 2014), p. 675. issn: 1471-2164. doi: 10.1186/1471-
2164-15-675.

[15] Hélène Lopez-Maestre et al. “SNP Calling from RNA-Seq Data without a Reference Genome:
Identification, Quantification, Differential Analysis and Impact on the Protein Sequence”. In:
Nucleic Acids Research 44.19 (Nov. 2, 2016), e148. issn: 0305-1048. doi: 10.1093/nar/gkw655.

[16] Marco De Simone, Grazisa Rossetti, and Massimiliano Pagani. “Single Cell T Cell Receptor
Sequencing: Techniques and Future Challenges”. In: Frontiers in Immunology 9 (July 18, 2018).
issn: 1664-3224. doi: 10.3389/fimmu.2018.01638.

https://doi.org/10.1016/j.cell.2016.03.014
https://doi.org/10.1038/s41594-019-0288-9
https://doi.org/10.1016/j.tig.2015.10.007
https://doi.org/10.1016/j.tibs.2017.10.004
https://doi.org/10.1038/nrg3207
https://doi.org/10.1146/annurev-genet-110711-155437
https://doi.org/10.1016/j.semcdb.2014.05.018
https://doi.org/10.1016/j.semcdb.2014.05.018
https://doi.org/10.1038/s41592-019-0503-y
https://doi.org/10.1146/annurev-biophys-083012-130404
https://doi.org/10.1146/annurev-biophys-083012-130404
https://doi.org/10.1101/gr.161034.113
https://doi.org/10.1038/nmeth.4220
https://www.biorxiv.org/content/10.1101/552588v2
https://doi.org/10.1007/s12551-018-0490-8
https://doi.org/10.1186/1471-2164-15-675
https://doi.org/10.1186/1471-2164-15-675
https://doi.org/10.1093/nar/gkw655
https://doi.org/10.3389/fimmu.2018.01638

19

[17] Stavros Bashiardes, Gili Zilberman-Schapira, and Eran Elinav. “Use of Metatranscriptomics
in Microbiome Research”. In: Bioinformatics and Biology Insights 10 (Apr. 20, 2016), pp. 19–25.
issn: 1177-9322. doi: 10.4137/BBI.S34610.

[18] Anne Senabouth et al. “Comparative Performance of the BGI and Illumina Sequencing Tech-
nology for Single-Cell RNA-Sequencing”. In: bioRxiv (Feb. 24, 2019), p. 552588. doi: 10.1101/
552588.

[19] TuomoMantere, Simone Kersten, and Alexander Hoischen. “Long-Read Sequencing Emerging
in Medical Genetics”. In: Frontiers in Genetics 10 (2019). issn: 1664-8021. doi: 10.3389/fgene.
2019.00426.

[20] Fuchou Tang et al. “mRNA-Seq Whole-Transcriptome Analysis of a Single Cell”. In: Nature
Methods 6.5 (May 2009), pp. 377–382. issn: 1548-7105. doi: 10.1038/nmeth.1315.

[21] Philip Brennecke et al. “Accounting for Technical Noise in Single-Cell RNA-Seq Experiments”.
In: Nature Methods 10.11 (Nov. 2013), pp. 1093–1095. issn: 1548-7105. doi: 10.1038/nmeth.2645.

[22] Simone Picelli et al. “Smart-Seq2 for Sensitive Full-Length Transcriptome Profiling in Single
Cells”. In: Nature Methods 10.11 (Nov. 2013), pp. 1096–1098. issn: 1548-7105. doi: 10 . 1038 /
nmeth.2639.

[23] Sanja Vickovic et al. “Massive and Parallel Expression Profiling Using Microarrayed Single-
Cell Sequencing”. In: Nature Communications 7 (Oct. 14, 2016), p. 13182. issn: 2041-1723. doi:
10.1038/ncomms13182.

[24] Evan Z. Macosko et al. “Highly Parallel Genome-Wide Expression Profiling of Individual Cells
Using Nanoliter Droplets”. In: Cell 161.5 (May 21, 2015), pp. 1202–1214. issn: 1097-4172. doi:
10.1016/j.cell.2015.05.002.

[25] AllonM. Klein et al. “Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic
Stem Cells”. In: Cell 161.5 (May 21, 2015), pp. 1187–1201. issn: 1097-4172. doi: 10.1016/j.cell.
2015.04.044.

[26] Sayantan Bose et al. “Scalable Microfluidics for Single-Cell RNA Printing and Sequencing”. In:
Genome Biology 16.1 (June 6, 2015), p. 120. issn: 1465-6906. doi: 10.1186/s13059-015-0684-3.

[27] Todd M. Gierahn et al. “Seq-Well: Portable, Low-Cost RNA Sequencing of Single Cells at High
Throughput”. In: Nature Methods 14.4 (Apr. 2017), pp. 395–398. issn: 1548-7105. doi: 10.1038/
nmeth.4179.

[28] Alexander B. Rosenberg et al. “Single-Cell Profiling of the Developing Mouse Brain and Spinal
Cord with Split-Pool Barcoding”. In: Science 360.6385 (Apr. 13, 2018), pp. 176–182. issn: 0036-
8075, 1095-9203. doi: 10.1126/science.aam8999.

[29] Samuel G. Rodriques et al. “Slide-Seq: A Scalable Technology for Measuring Genome-Wide
Expression at High Spatial Resolution”. In: Science 363.6434 (Mar. 29, 2019), pp. 1463–1467.
issn: 0036-8075, 1095-9203. doi: 10.1126/science.aaw1219.

[30] Grace X. Y. Zheng et al. “Massively Parallel Digital Transcriptional Profiling of Single Cells”. In:
Nature Communications 8 (Jan. 16, 2017), p. 14049. issn: 2041-1723. doi: 10.1038/ncomms14049.

[31] Diego Adhemar Jaitin et al. “Massively Parallel Single Cell RNA-Seq for Marker-Free De-
composition of Tissues into Cell Types”. In: Science (New York, N.Y.) 343.6172 (Feb. 14, 2014),
pp. 776–779. issn: 0036-8075. doi: 10.1126/science.1247651.

[32] Tim Stuart and Rahul Satija. “Integrative Single-Cell Analysis”. In: Nature Reviews Genetics
20.5 (May 2019), p. 257. issn: 1471-0064. doi: 10.1038/s41576-019-0093-7.

[33] Sarah A. Vitak et al. “Sequencing Thousands of Single-Cell Genomes with Combinatorial In-
dexing”. In: Nature Methods 14.3 (Mar. 2017), pp. 302–308. issn: 1548-7105. doi: 10.1038/nmeth.
4154.

[34] Blue B. Lake et al. “Integrative Single-Cell Analysis of Transcriptional and Epigenetic States in
the Human Adult Brain”. In: Nature Biotechnology 36.1 (Jan. 2018), pp. 70–80. issn: 1546-1696.
doi: 10.1038/nbt.4038.

[35] Harrison Specht et al. “High-Throughput Single-Cell ProteomicsQuantifies the Emergence of
Macrophage Heterogeneity”. In: bioRxiv (June 9, 2019), p. 665307. doi: 10.1101/665307.

https://doi.org/10.4137/BBI.S34610
https://doi.org/10.1101/552588
https://doi.org/10.1101/552588
https://doi.org/10.3389/fgene.2019.00426
https://doi.org/10.3389/fgene.2019.00426
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.2645
https://doi.org/10.1038/nmeth.2639
https://doi.org/10.1038/nmeth.2639
https://doi.org/10.1038/ncomms13182
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1186/s13059-015-0684-3
https://doi.org/10.1038/nmeth.4179
https://doi.org/10.1038/nmeth.4179
https://doi.org/10.1126/science.aam8999
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1126/science.1247651
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/nmeth.4154
https://doi.org/10.1038/nmeth.4154
https://doi.org/10.1038/nbt.4038
https://doi.org/10.1101/665307

20 Chapter 1 - Introduction

[36] Marlon Stoeckius et al. “Simultaneous Epitope and Transcriptome Measurement in Single
Cells”. In: Nature Methods 14.9 (Sept. 2017), pp. 865–868. issn: 1548-7105. doi: 10.1038/nmeth.
4380.

[37] A. Sina Booeshaghi et al. “Design Principles for Open Source Bioinstrumentation: The Posei-
don Syringe Pump System as an Example”. In: bioRxiv (Jan. 17, 2019), p. 521096. doi: 10.1101/
521096.

[38] Arnav Moudgil. Multimodal scRNA-Seq. Feb. 25, 2019. doi: 10.5281/zenodo.2628012.
[39] Eleni P. Mimitou et al. “Multiplexed Detection of Proteins, Transcriptomes, Clonotypes and

CRISPR Perturbations in Single Cells”. In: Nature Methods 16.5 (May 2019), p. 409. issn: 1548-
7105. doi: 10.1038/s41592-019-0392-0.

[40] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Exploring the Single-Cell RNA-Seq Anal-
ysis Landscape with the scRNA-Tools Database”. In: bioRxiv (Oct. 20, 2017), p. 206573. doi:
10.1101/206573.

[41] B. M. Bolstad et al. “A Comparison of Normalization Methods for High Density Oligonu-
cleotide Array Data Based on Variance and Bias”. In: Bioinformatics (Oxford, England) 19.2
(Jan. 22, 2003), pp. 185–193. issn: 1367-4803. doi: 10.1093/bioinformatics/19.2.185.

[42] Zhijin Wu. “A Review of Statistical Methods for Preprocessing Oligonucleotide Microarrays”.
In: Statistical methods in medical research 18.6 (Dec. 2009), pp. 533–541. issn: 0962-2802. doi:
10.1177/0962280209351924.

[43] Rob Patro et al. “Salmon: Fast and Bias-Aware Quantification of Transcript Expression Using
Dual-Phase Inference”. In: Nature methods 14.4 (Apr. 2017), pp. 417–419. issn: 1548-7091. doi:
10.1038/nmeth.4197.

[44] Nicolas L. Bray et al. “Near-Optimal Probabilistic RNA-SeqQuantification”. In: Nature Biotech-
nology 34.5 (May 2016), pp. 525–527. issn: 1546-1696. doi: 10.1038/nbt.3519.

[45] Douglas C. Wu et al. “Limitations of Alignment-Free Tools in Total RNA-Seq Quantification”.
In: BMC Genomics 19.1 (July 3, 2018), p. 510. issn: 1471-2164. doi: 10.1186/s12864-018-4869-5.

[46] Alexander Dobin et al. “STAR: Ultrafast Universal RNA-Seq Aligner”. In: Bioinformatics 29.1
(Jan. 2013), pp. 15–21. issn: 1367-4803. doi: 10.1093/bioinformatics/bts635.

[47] SimonAnders, PaulTheodor Pyl, andWolfgangHuber. “HTSeq—a Python Framework toWork
with High-Throughput Sequencing Data”. In: Bioinformatics 31.2 (Jan. 15, 2015), pp. 166–169.
issn: 1367-4803. doi: 10.1093/bioinformatics/btu638.

[48] Manfred G. Grabherr et al. “Full-Length TranscriptomeAssembly from RNA-Seq Data without
a Reference Genome”. In: Nature Biotechnology 29.7 (May 15, 2011), pp. 644–652. issn: 1546-
1696. doi: 10.1038/nbt.1883.

[49] Cole Trapnell et al. “Differential Gene and Transcript Expression Analysis of RNA-Seq Exper-
iments with TopHat and Cufflinks”. In: Nature Protocols 7.3 (), p. 562. doi: 10.1038/nprot.2012.
016.

[50] Seqc/Maqc-Iii Consortium et al. “A Comprehensive Assessment of RNA-Seq Accuracy, Re-
producibility and Information Content by the Sequencing Quality Control Consortium”. In:
Nature Biotechnology 32.9 (Sept. 2014), pp. 903–914. issn: 1546-1696. doi: 10.1038/nbt.2957.

[51] Adam H. Freedman, Michele Clamp, and Timothy B. Sackton. “Error, Noise and Bias in de
Novo Transcriptome Assemblies”. In: bioRxiv (Apr. 30, 2019), p. 585745. doi: 10.1101/585745.

[52] Michael I Love, Wolfgang Huber, and Simon Anders. “Moderated Estimation of Fold Change
and Dispersion for RNA-Seq Data with DESeq2”. In: Genome Biology 15.12 (2014). issn: 1465-
6906. doi: 10.1186/s13059-014-0550-8.

[53] Charity W. Law et al. “Voom: PrecisionWeights Unlock Linear Model Analysis Tools for RNA-
Seq Read Counts”. In:Genome Biology 15.2 (Feb. 3, 2014), R29. issn: 1474-760X. doi: 10.1186/gb-
2014-15-2-r29.

[54] Marie-Agnès Dillies et al. “A Comprehensive Evaluation of Normalization Methods for Illu-
mina High-Throughput RNA Sequencing Data Analysis”. In: Briefings in Bioinformatics 14.6
(Nov. 2013), pp. 671–683. issn: 1477-4054. doi: 10.1093/bib/bbs046.

https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1101/521096
https://doi.org/10.1101/521096
https://doi.org/10.5281/zenodo.2628012
https://doi.org/10.1038/s41592-019-0392-0
https://doi.org/10.1101/206573
https://doi.org/10.1093/bioinformatics/19.2.185
https://doi.org/10.1177/0962280209351924
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1186/s12864-018-4869-5
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1038/nbt.1883
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1038/nbt.2957
https://doi.org/10.1101/585745
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1093/bib/bbs046

21

[55] Aaron T. L. Lun et al. “EmptyDrops: Distinguishing Cells from Empty Droplets in Droplet-
Based Single-Cell RNA Sequencing Data”. In: Genome Biology 20.1 (Mar. 22, 2019), p. 63. issn:
1474-760X. doi: 10.1186/s13059-019-1662-y.

[56] Christopher S. McGinnis, Lyndsay M. Murrow, and Zev J. Gartner. “DoubletFinder: Doublet
Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors”. In: Cell
Systems 8.4 (Apr. 24, 2019), 329–337.e4. issn: 2405-4712. doi: 10.1016/j.cels.2019.03.003.

[57] Aaron T.L. Lun, Davis J. McCarthy, and John C. Marioni. “A Step-by-Step Workflow for Low-
Level Analysis of Single-Cell RNA-Seq Data with Bioconductor”. In: F1000Research 5 (Oct. 31,
2016), p. 2122. issn: 2046-1402. doi: 10.12688/f1000research.9501.2.

[58] Catalina A. Vallejos, John C. Marioni, and Sylvia Richardson. “BASiCS: Bayesian Analysis of
Single-Cell Sequencing Data”. In: PLOS Computational Biology 11.6 (June 24, 2015), e1004333.
issn: 1553-7358. doi: 10.1371/journal.pcbi.1004333.

[59] Aaron T. L. Lun, Karsten Bach, and John C. Marioni. “Pooling across Cells to Normalize Single-
Cell RNA Sequencing Data with Many Zero Counts”. In: Genome Biology 17.1 (Apr. 27, 2016),
p. 75. issn: 1474-760X. doi: 10.1186/s13059-016-0947-7.

[60] Justin D. Silverman et al. “Naught All Zeros in Sequence Count Data Are the Same”. In: bioRxiv
(Nov. 26, 2018), p. 477794. doi: 10.1101/477794.

[61] Valentine Svensson. “Droplet scRNA-Seq Is Not Zero-Inflated”. In: bioRxiv (Mar. 19, 2019),
p. 582064. doi: 10.1101/582064.

[62] Luyi Tian et al. “Benchmarking Single Cell RNA-Sequencing Analysis Pipelines UsingMixture
Control Experiments”. In: Nature Methods 16.6 (June 2019), p. 479. issn: 1548-7105. doi: 10 .
1038/s41592-019-0425-8.

[63] Mark D. Robinson, Davis J. McCarthy, and Gordon K. Smyth. “edgeR: A Bioconductor Package
for Differential Expression Analysis of Digital Gene Expression Data”. In: Bioinformatics 26.1
(Jan. 1, 2010), pp. 139–140. issn: 1367-4803. doi: 10.1093/bioinformatics/btp616.

[64] Nicholas J. Schurch et al. “How Many Biological Replicates Are Needed in an RNA-Seq Exper-
iment and Which Differential Expression Tool Should You Use?” In: RNA 22.6 (Jan. 6, 2016),
pp. 839–851. issn: 1355-8382, 1469-9001. doi: 10.1261/rna.053959.115.

[65] Andrew Butler et al. “Integrating Single-Cell Transcriptomic Data across Different Conditions,
Technologies, and Species”. In: Nature Biotechnology 36.5 (May 2018), pp. 411–420. issn: 1546-
1696. doi: 10.1038/nbt.4096.

[66] F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. “SCANPY: Large-Scale Single-Cell
Gene Expression Data Analysis”. In: Genome Biology 19.1 (Feb. 6, 2018), p. 15. issn: 1474-760X.
doi: 10.1186/s13059-017-1382-0.

[67] Charlotte Soneson and Mark D. Robinson. “Bias, Robustness and Scalability in Single-Cell
Differential Expression Analysis”. In: Nature Methods 15.4 (Apr. 2018), pp. 255–261. issn: 1548-
7105. doi: 10.1038/nmeth.4612.

[68] Lukas M. Weber et al. “Diffcyt: Differential Discovery in High-Dimensional Cytometry via
High-Resolution Clustering”. In: Communications Biology 2.1 (May 14, 2019), p. 183. issn: 2399-
3642. doi: 10.1038/s42003-019-0415-5.

[69] Chamith Y. Fonseka et al. “Mixed-Effects Association of Single Cells Identifies an Expanded
Effector CD4+ TCell Subset in Rheumatoid Arthritis”. In: Science Translational Medicine 10.463
(Oct. 17, 2018), eaaq0305. issn: 1946-6234, 1946-6242. doi: 10.1126/scitranslmed.aaq0305.

[70] Allon Wagner, Aviv Regev, and Nir Yosef. “Revealing the Vectors of Cellular Identity with
Single-Cell Genomics”. In:Nature biotechnology 34.11 (Nov. 8, 2016), pp. 1145–1160. issn: 1087-
0156. doi: 10.1038/nbt.3711.

[71] Shiquan Sun et al. “Accuracy, Robustness and Scalability of Dimensionality Reduction Meth-
ods for Single Cell RNAseq Analysis”. In: bioRxiv (May 17, 2019), p. 641142. doi: 10 . 1101 /
641142.

https://doi.org/10.1186/s13059-019-1662-y
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.1371/journal.pcbi.1004333
https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1101/477794
https://doi.org/10.1101/582064
https://doi.org/10.1038/s41592-019-0425-8
https://doi.org/10.1038/s41592-019-0425-8
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1261/rna.053959.115
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1038/s42003-019-0415-5
https://doi.org/10.1126/scitranslmed.aaq0305
https://doi.org/10.1038/nbt.3711
https://doi.org/10.1101/641142
https://doi.org/10.1101/641142

22 Chapter 1 - Introduction

[72] Gökcen Eraslan et al. “Single-Cell RNA-Seq Denoising Using a Deep Count Autoencoder”. In:
Nature Communications 10.1 (Jan. 23, 2019), p. 390. issn: 2041-1723. doi: 10.1038/s41467-018-
07931-2.

[73] Jeremy J Jay et al. “A Systematic Comparison of Genome-Scale Clustering Algorithms”. In:
BMC Bioinformatics 13 (Suppl 10 June 25, 2012), S7. issn: 1471-2105. doi: 10.1186/1471-2105-
13-S10-S7.

[74] Amela Prelić et al. “A Systematic Comparison and Evaluation of Biclustering Methods for
Gene Expression Data”. In: Bioinformatics (Oxford, England) 22.9 (May 1, 2006), pp. 1122–1129.
issn: 1367-4803. doi: 10.1093/bioinformatics/btl060.

[75] Christian Wiwie, Jan Baumbach, and Richard Röttger. “Comparing the Performance of
Biomedical Clustering Methods”. In: Nature Methods 12.11 (Nov. 2015), pp. 1033–1038. issn:
1548-7105. doi: 10.1038/nmeth.3583.

[76] Damien Chaussabel and Nicole Baldwin. “Democratizing Systems Immunology with Modu-
lar Transcriptional Repertoire Analyses”. In: Nature Reviews. Immunology 14.4 (Apr. 2014),
pp. 271–280. issn: 1474-1741. doi: 10.1038/nri3642.

[77] Peter Langfelder and Steve Horvath. “WGCNA: An R Package for Weighted Correlation Net-
work Analysis”. In: BMC bioinformatics 9 (Dec. 29, 2008), p. 559. issn: 1471-2105. doi: 10.1186/
1471-2105-9-559.

[78] Juan Xie et al. “It Is Time to Apply Biclustering: A Comprehensive Review of Biclustering
Applications in Biological and Biomedical Data”. In: Briefings in Bioinformatics (). doi: 10 .
1093/bib/bby014.

[79] The Cancer Genome Atlas Network. “Comprehensive Genomic Characterization of Head and
Neck Squamous Cell Carcinomas”. In: Nature 517.7536 (Jan. 2015), pp. 576–582. issn: 1476-
4687. doi: 10.1038/nature14129.

[80] Vladimir Yu Kiselev et al. “SC3: Consensus Clustering of Single-Cell RNA-Seq Data”. In:Nature
Methods 14.5 (May 2017), pp. 483–486. issn: 1548-7105. doi: 10.1038/nmeth.4236.

[81] Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. “Computational Methods for Trajectory
Inference from Single-Cell Transcriptomics”. In: European Journal of Immunology 46.11 (Nov.
2016), pp. 2496–2506. issn: 1521-4141. doi: 10.1002/eji.201646347.

[82] Tapio Lönnberg et al. “Single-Cell RNA-Seq and Computational Analysis Using Temporal Mix-
ture Modeling Resolves TH1/TFH Fate Bifurcation in Malaria”. In: Science Immunology 2.9
(Mar. 3, 2017), eaal2192. issn: 2470-9468. doi: 10.1126/sciimmunol.aal2192.

[83] Sean C. Bendall et al. “Single-Cell Trajectory Detection Uncovers Progression and Regulatory
Coordination in Human B Cell Development”. In: Cell 157.3 (Apr. 24, 2014), pp. 714–725. issn:
0092-8674. doi: 10.1016/j.cell.2014.04.005.

[84] Lars Velten et al. “Human Haematopoietic Stem Cell Lineage Commitment Is a Continuous
Process”. In: Nature Cell Biology 19.4 (Apr. 2017), pp. 271–281. issn: 1476-4679. doi: 10.1038/
ncb3493.

[85] Gioele LaManno et al. “RNAVelocity of Single Cells”. In:Nature 560.7719 (Aug. 2018), pp. 494–
498. issn: 1476-4687. doi: 10.1038/s41586-018-0414-6.

[86] Daniel Marbach et al. “Wisdom of Crowds for Robust Gene Network Inference”. In: Nature
Methods 9.8 (July 15, 2012), pp. 796–804. issn: 1548-7105. doi: 10.1038/nmeth.2016.

[87] Daniel Marbach et al. “Tissue-Specific Regulatory Circuits Reveal Variable Modular Perturba-
tions across Complex Diseases”. In: Nature Methods 13.4 (Apr. 2016), pp. 366–370. issn: 1548-
7105. doi: 10.1038/nmeth.3799.

[88] Sara Aibar et al. “SCENIC: Single-Cell Regulatory Network Inference and Clustering”. In: Na-
ture Methods 14.11 (Nov. 2017), pp. 1083–1086. issn: 1548-7105. doi: 10.1038/nmeth.4463.

[89] Xiaojie Qiu et al. “Towards Inferring Causal Gene Regulatory Networks from Single Cell Ex-
pression Measurements”. In: bioRxiv (Sept. 25, 2018), p. 426981. doi: 10.1101/426981.

https://doi.org/10.1038/s41467-018-07931-2
https://doi.org/10.1038/s41467-018-07931-2
https://doi.org/10.1186/1471-2105-13-S10-S7
https://doi.org/10.1186/1471-2105-13-S10-S7
https://doi.org/10.1093/bioinformatics/btl060
https://doi.org/10.1038/nmeth.3583
https://doi.org/10.1038/nri3642
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/bib/bby014
https://doi.org/10.1093/bib/bby014
https://doi.org/10.1038/nature14129
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1126/sciimmunol.aal2192
https://doi.org/10.1016/j.cell.2014.04.005
https://doi.org/10.1038/ncb3493
https://doi.org/10.1038/ncb3493
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1038/nmeth.3799
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1101/426981

23

[90] W. Evan Johnson, Cheng Li, and Ariel Rabinovic. “Adjusting Batch Effects in Microarray Ex-
pression Data Using Empirical Bayes Methods”. In: Biostatistics (Oxford, England) 8.1 (Jan.
2007), pp. 118–127. issn: 1465-4644. doi: 10.1093/biostatistics/kxj037.

[91] Ilya Korsunsky et al. “Fast, Sensitive, and Accurate Integration of Single Cell Data with Har-
mony”. In: bioRxiv (Nov. 5, 2018), p. 461954. doi: 10.1101/461954.

[92] Tim Stuart et al. “Comprehensive Integration of Single-Cell Data”. In: Cell 0.0 (June 6, 2019).
issn: 0092-8674, 1097-4172. doi: 10.1016/j.cell.2019.05.031.

[93] Vegard Nygaard, Einar Andreas Rødland, and Eivind Hovig. “Methods That Remove Batch Ef-
fectsWhile Retaining GroupDifferencesMay Lead to Exaggerated Confidence in Downstream
Analyses”. In: Biostatistics (Oxford, England) 17.1 (Jan. 2016), pp. 29–39. issn: 1465-4644. doi:
10.1093/biostatistics/kxv027.

[94] Marlon Stoeckius et al. “Cell Hashing with Barcoded Antibodies Enables Multiplexing and
Doublet Detection for Single Cell Genomics”. In: Genome Biology 19.1 (Dec. 19, 2018), p. 224.
issn: 1474-760X. doi: 10.1186/s13059-018-1603-1.

[95] Ricard Argelaguet et al. “Multi‐Omics Factor Analysis—a Framework for Unsupervised Inte-
gration of Multi‐omics Data Sets”. In: Molecular Systems Biology 14.6 (June 1, 2018), e8124.
issn: 1744-4292, 1744-4292. doi: 10.15252/msb.20178124.

[96] Dvir Aran et al. “Reference-Based Analysis of Lung Single-Cell Sequencing Reveals a Transi-
tional Profibrotic Macrophage”. In:Nature Immunology 20.2 (Feb. 2019), p. 163. issn: 1529-2916.
doi: 10.1038/s41590-018-0276-y.

[97] Amit Frishberg et al. “Cell Composition Analysis of Bulk Genomics Using Single-Cell Data”.
In: Nature Methods 16.4 (Apr. 2019), p. 327. issn: 1548-7105. doi: 10.1038/s41592-019-0355-5.

[98] Allen W. Zhang et al. “Probabilistic Cell Type Assignment of Single-Cell Transcriptomic Data
Reveals Spatiotemporal Microenvironment Dynamics in Human Cancers”. In: bioRxiv (Jan. 16,
2019), p. 521914. doi: 10.1101/521914.

[99] Titus Brown. Thoughts on My Salmon Review. url: http://ivory.idyll.org/blog/2017-thinking-
back-on-salmon-reviwe.html (visited on 05/29/2019).

[100] Paul P. Gardner et al. “A Meta-Analysis of Bioinformatics Software Benchmarks Reveals That
Publication-Bias Unduly Influences Software Accuracy”. In: bioRxiv (Jan. 2, 2017), p. 092205.
doi: 10.1101/092205.

[101] Lukas M. Weber et al. “Essential Guidelines for Computational Method Benchmarking”. In:
(Dec. 3, 2018).

[102] Serghei Mangul et al. “Systematic Benchmarking of Omics Computational Tools”. In: Nature
Communications 10.1 (Mar. 27, 2019), p. 1393. issn: 2041-1723. doi: 10.1038/s41467-019-09406-
4.

[103] Curtis Huttenhower et al. “The Impact of Incomplete Knowledge on Evaluation: An Experi-
mental Benchmark for Protein Function Prediction”. In: Bioinformatics (Oxford, England) 25.18
(Sept. 15, 2009), pp. 2404–2410. issn: 1367-4811. doi: 10.1093/bioinformatics/btp397.

[104] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. “The Self‐assessment Trap: Can We
All Be Better than Average?” In:Molecular Systems Biology 7.1 (Jan. 1, 2011), p. 537. issn: 1744-
4292, 1744-4292. doi: 10.1038/msb.2011.70.

[105] Valentine Svensson, Roser Vento-Tormo, and Sarah A. Teichmann. “Exponential Scaling of
Single-Cell RNA-Seq in the Past Decade”. In: Nature Protocols 13.4 (Apr. 2018), pp. 599–604.
issn: 1750-2799. doi: 10.1038/nprot.2017.149.

[106] Serghei Mangul et al. “A Comprehensive Analysis of the Usability and Archival Stability of
Omics Computational Tools and Resources”. In: bioRxiv (Oct. 25, 2018), p. 452532. doi: 10.1101/
452532.

[107] Greg Wilson et al. “Best Practices for Scientific Computing”. In: PLOS Biology 12.1 (Jan. 7,
2014), e1001745. issn: 1545-7885. doi: 10.1371/journal.pbio.1001745.

https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1101/461954
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1093/biostatistics/kxv027
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.15252/msb.20178124
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41592-019-0355-5
https://doi.org/10.1101/521914
http://ivory.idyll.org/blog/2017-thinking-back-on-salmon-reviwe.html
http://ivory.idyll.org/blog/2017-thinking-back-on-salmon-reviwe.html
https://doi.org/10.1101/092205
https://doi.org/10.1038/s41467-019-09406-4
https://doi.org/10.1038/s41467-019-09406-4
https://doi.org/10.1093/bioinformatics/btp397
https://doi.org/10.1038/msb.2011.70
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1101/452532
https://doi.org/10.1101/452532
https://doi.org/10.1371/journal.pbio.1001745

24 Chapter 1 - Introduction

[108] Morgan Taschuk and Greg Wilson. “Ten Simple Rules for Making Research Software More
Robust”. In: PLOS Computational Biology 13.4 (Apr. 13, 2017), e1005412. issn: 1553-7358. doi:
10.1371/journal.pcbi.1005412.

[109] Mehran Karimzadeh and Michael M. Hoffman. “Top Considerations for Creating Bioinformat-
ics Software Documentation”. In: Briefings in Bioinformatics (). doi: 10.1093/bib/bbw134.

[110] Greg Wilson et al. “Good Enough Practices in Scientific Computing”. In: PLOS Computational
Biology 13.6 (June 22, 2017), e1005510. issn: 1553-7358. doi: 10.1371/journal.pcbi.1005510.

[111] Daniel Marbach et al. “Wisdom of Crowds for Robust Gene Network Inference”. In: Nature
methods 9.8 (July 15, 2012), pp. 796–804. issn: 1548-7091. doi: 10.1038/nmeth.2016.

https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1093/bib/bbw134
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1038/nmeth.2016

2 | Analysing the transcrip-
tome of three biological
conditions

Contributions
The experimental work discussed in this chapter was conducted by Lianne van de
Laar and collaborators, as specified in the research paper [1]. The initial computa-
tional analysis of the gene expression data was conducted by Liesbet Martens. The
development of the triwise methods together with its application was developed by
Wouter Saelens, in a close feedback loop with Liesbet Martens, Lianne van de Laar
and Martin Guilliams.

Introduction

Transcriptome profiling can be a powerful tool to functionally characterise different
cell populations. On the one hand, differential expression coupled with functional
enrichment can be used to find the cellular functions changing when cells differ-
entiate or react to external stimuli. On the other hand, co-expression modules can
be used to create an overview of how functions change among dozens of cellular
conditions. Both approaches are now established workflows to decipher functional
diversity between two or many cell populations.

However, in some cases, researchers are only interested in comparing three condi-
tions. For example, one can have two main conditions of interest and a third ref-
erence condition. Based on pairwise differential expression alone it can be hard to
interpret what functional changes are common to both cells compared to the refer-
ence, or whether some are more specifically up- or downregulated. Other scenarios
include cell differentiation, where one progenitor can give rise to two distinct daugh-
ter cell populations, or two chemical/genetic perturbations with one common initial

26 Chapter 2 - Analysing the transcriptome of three biological conditions

condition. Some examples of this that we encountered within the department are
provided in Figure 2.1.

Figure 2.1: Different experimental setupswhere triwise can be useful. aWhen comparing
three related conditions, such as the three main progenitors of macrophages in mice: bone mar-
row monocytes (BM monocyte), yolk-sac macrophages (YS macrophage) and fetal-liver mono-
cytes (FL monocyte) bWhen one wants to compare the difference between two cell populations
in relation to a third related population: macrophages (MF) compared to two types of conven-
tional dendritic cells (cDC). c When studying the expression of two progenitor populations in
relation to its precursor: precursor dendritic cells (pre-DC) compared to the two types of conven-
tional dendritic cells (cDC). d When comparing two perturbations in relation to the expression
before the perturbation: dendritic cells (DC) before and after treatment with house-dust mite
(hdm) or flu.

To be able to handle these experimental designs, we developed triwise, a visuali-
sation and analysis workflow to simultaneously assess the functional diversity of
three biological conditions.

Triwise methodology

Let’s say we want to compare two conditions. Often, we’re not interested in how
high the expression is in either condition, but more in how much the expression
changes. This is measured as the fold-change between the two average expression
values. One way to visualise this value is to plot the log expression values as a two-
dimensional scatterplot (Figure 2.2a), and project each gene onto the line formed
by x + y = 0 (or in its alternative form, y = −x). The distance from the origin
then represents the log-fold change of this gene, and any information about the
absolute expression of a gene is removed. If we rotate this projection +45° such that
it becomes identical to the x-axis, we essentially reduced our dimensions from two
to one.

It is possible to do a similar projection and rotation for any number of conditions, by
projecting on the hyperplane formed by the equation x1+x2+ ...+xn = 0. This is

27

Figure 2.2: Illustration of the barycentric transformation of expression data in two and
three dimensions.

28 Chapter 2 - Analysing the transcriptome of three biological conditions

particularly interesting in three dimensions, because this would make it possible to
visualise the expression changes between three conditions in two dimensions. This
projection and rotation is also known as a transformation to a barycentric coordi-
nate system 1. This transformation can be done on any plane, but here we chose to
do the transformation such that points (1, 0, 0), (0, 1, 0) and (0, 0, 1) are projected
onto a equilateral triangle with base the x-axis (Figure 2.2b):

B = X ×

 1 0
cos 2

3π sin 2
3π

cos −2
3 π sin −2

3 π

For ease of interpretability, we add hexagon gridlines to the visualisation, where
points lying on such a hexagon have the same fold-change between their highest and
lowest expression values among the three conditions. The transformed expression
values can then be plotted in a 2D space on which annotations can provide informa-
tion about individual genes (Figure 2.3a) or functional gene sets (Figure 2.3b,c).

To understand how the three conditions differ in a functional way, it would be useful
if we could assess which of a set of predefined functional gene sets was upregulated
in one or more conditions. This is an analysis that is already often done, with both
gene modules (hypergeometric test, fisher’s exact test) and pairwise comparisons
(numerous tests including gene set enrichment analysis [2]). We developed two
such tests to be used together with barycentric coordinates, by using elements from
directional statistics [3]. Both tests will first calculate a mean vector of a given gene
set (with a particular direction and length), and assess the probability of observing
this mean vector given a particular null model.

The self-contained test assesses the hypothesis that the direction of differentially ex-
pressed genes within the gene set originated from a uniform distribution or whether
there is a significant trend towards the mean angle. For this purpose we use the
Rayleigh z-test, which is a test that has been previously used to analyse the direc-
tional uniformity of birds or bees. The test-statistics of the Rayleigh z-test is calcu-
lated by first normalising the vectors of each gene to the unit vector: b⃗u = b⃗

||⃗b||
, and

then taking the mean resultant length of these vectors across genes: R =
||
∑

i b⃗ui||
n .

The p-values of a Rayleigh z-test can be rapidly approximated using Rayleigh’s ap-
proximation [4]:

1Probably the most well known use case of the barycentric coordinate systems are ternary plots,
used for many applications to represent fractions between three variables such as soil composition
(Clay, Sand and Silt).

29

Figure 2.3: Application of triwise on expression data from three macrophage progeni-
tor cells (Fetal liver monocytes, bonemarrowmonocytes and yolk-sac macrophages). a:
Triwise visualises the expression differences between three conditions. Points lying on a hexag-
onal grid have the same maximal fold-change between any two conditions. (b-c): Gene sets can
be unidirectionally upregulated in one or two conditions.

30 Chapter 2 - Analysing the transcriptome of three biological conditions

p =

e−Z

[
1 +

1

2
+

2Z − Z2

4n
− 24Z − 132Z2 + 76Z3 − 9Z4

288n2

]
, if n < 50

e−Z , otherwise

This test does not take into account the strength of upregulation, nor does it consider
the underlying preference of all genes towards a particular direction. We therefore
also developed a competitive gene-set test, where we use a gene resampling proce-
dure to estimate the significance of an upregulation of a gene set towards its mean
direction. To calculate the strength and direction of upregulation, we calculate the
vector sum of the gene positions within the barycentric coordinate system, and con-
vert it to a polar coordinate with length z and average direction θ.

To make the statistical test more robust to outliers (because of genes with high log
fold-changes), it is possible to first transform the magnitude of the barycentric vec-
tors to more robust measures such as the rank of the norm or an indicator function
for differential expression of a gene.

We compare this test statistic with those obtained from random gene samples of
the same size as the gene set of interest. To let the null-distribution depend on the
direction of upregulation, we weigh each sample using a von Mises distribution [4].
This allows random samples closer to the mean angle of a gene set to have a higher
influence on the resulting p-value. Let z and θ be the test statistic and mean angle
from the gene set of interest and zi and θi those from a random sample:

Pr(Z ≥ z|H0, θ) =

∑
i|z≥zi

w(θi)∑
iw(θi)

w(θi|θ, κ) ∝ eκ cos (θ−θi)

where zi and θi are from different independent random samples of genes with the
same size as the gene set of interest. A high number of samples will lead to more
accurate estimations of the p-value, at the cost of higher computing time. κ is an ad-
ditional parameter denoting the concentration of the vonMises distribution. Higher
values of κ will make the null distribution more sensitive to local differences in the
distribution of the genes. This is illustrated in Figure 2.4.

31

Figure 2.4: Effect of parameters on the estimation of the null distribution. Shown is the
z value at which the p-value becomes lower than 0.05 for a particular gene set (of n genes, x-
axis) at a particular κ (y-axis) for the dataset in Figure 2.3. Higher concentration values provide
a more detailed estimation, but at the cost of requiring more samples.

32 Chapter 2 - Analysing the transcriptome of three biological conditions

Applying triwise to analyse macrophage progenitors be-
fore and after adoptive transfer

Triwise was initially developed for the analysing the complexity and origin of
macrophage progenitors.

A brief introduction to macrophage biology

Macrophages are ”jack-of-all-trades” immune cells. On the one hand do they per-
form many immune functions, such as clearance of pathogens, signalling to innate
and adaptive immune cells, and dampening of the immune response [5]. But they
are also important in maintaining tissue homeostasis through tissue remodelling,
by regulating the viability of cells, clearance of apoptotic cells through their phago-
cytic ability, and by acting as signalling mediators to other tissue cells [6, 7]. In
some cases, they also perform steady-state organ functions themselves, for example
by maintaining iron and lipid metabolism in liver and blood [8].

Tissue-resident macrophages are present in most tissues in mammals [7]. Given
that each type performs a very specific role in the tissue, it is perhaps not surprising
that tissue-resident macrophages have very different transcriptomes and chromatin
landscapes [9]. It is also clear that in many mice tissues, such as the brain, alveoli
and liver, macrophages are self-maintaining, and thus do not require input from
haematopoiesis to persist in the tissue. These tissue-resident macrophages have
typically an embryonic origin, coming from yolk-sac macrophages and/or fetal liver
monocytes [10]. Other tissues such as the heart, pancreas and gut do require input
from the bone marrow for maintaining macrophage populations, under the form of
bone marrow monocytes [10].

Experimental approach

There are several possible explanations of why different macrophage subsets have
a different origin. It might be that there are differences in accessibility, such as
the blood-brain barrier, that does not allow new progenitor cells to colonise the
niche. Even if the niche is still accessible, it might also be that other factors coming
from the resident macrophages or other tissue cells inhibit the differentiation of new
macrophages. If the tissue-resident macrophages have a different origin, might part
of the diversity in function and transcriptional profile be explained by a difference
in origin? In other words, could it be that part of the explanation of why an alveolar
macrophage in adult mice is so different from a dermal macrophage is because the

33

former is derived from fetal monocytes, while the latter develops from bone marrow
monocytes?

To analyse this, we developed a mouse model in which neonatal mice do not have
alveolar macrophages due to a knock-out in the Csf2rb gene. This gene encodes for
the β-chain of the GM-CSF receptor, which receives an indispensable signal from
GM-CSF to allow fetal liver monocytes to differentiate into alveolar macrophages
[11]. These mice were then injected intranasal with macrophage progenitor popula-
tions that do have functional Csf2rb copies, which allowed us to assess the capacity
of each of the progenitors to develop into AMs.

We isolated the three major macrophage progenitor populations (Yolk-sac
macrophages, fetal liver monocytes and bone marrow monocytes) through fluores-
cence assisted cell sorting (FACS) [11]. After intranasal injection in Csf2rb-/- mice,
the AM populations that originate from the injected population were also sorted
through FACS. After RNA extraction and cDNA synthesis, these samples were anal-
ysed using Affymetrix Chip Mouse Gene 1.0 ST microarrays.

The Robust Multi-array Average (RMA) procedure, as implemented in the biocon-
ductor affy package [12] was used to normalise data within arrays (probeset sum-
marization, background correction and log2-transformation) and between arrays
(quantile normalisation). Only probesets that mapped uniquely to one gene were
kept, and for each gene, the probeset with the highest average expression level was
kept. PCA plots were created using the 15% of genes with the most variable expres-
sion. Differentially expressed genes were identified as Log2 fold change > 1 or < -1,
Adjusted P value < 0.01 (limma Bioconductor package ([13], corrected for multiple
testing by the Benjamini-Hochberg method).

Triwise application

By visualising the differences between the three progenitor populations through a
triwise dotplot, it becomes immediately clear that the main differences in gene ex-
pression are between the yolk-sac macrophages and the two monocyte populations
(Figure 2.5). To get an intuitive feeling for the triwise dotplots, we highlight 4 ex-
ample genes. Ccr2 is specifically expressed in the two monocyte subsets, and thus
located between the BM-MO and FL-MO axes. Mertk on the other hand is not ex-
pressed by monocytes and is thus present directly on the YS-Mac axis. Two genes
are highlighted in the middle: a gene encoding a β-tubulin (Tubb5) is, as a typical
housekeeping gene, highly expressed in all conditions, and Siglecf, a gene that is
expressed by alveolar macrophages but not by its precursors.

To better understand how each progenitor might intrinsically differ in its capacity
to become a functional AM, we analysed the differential expression of functional

34 Chapter 2 - Analysing the transcriptome of three biological conditions

gene sets among the progenitors. We defined some landmark functions of progen-
itor cells and AMs: migration, proliferation, alveoli homeostasis, antigen presenta-
tion, pathogen clearance and pathogen recognition. For each of these functions we
defined functional gene sets by combining related gene ontology term annotations
[14].

We found that most functional sets related to anti-bacterial responses, cell move-
ment, immune responses, lipid metabolism, pattern recognition followed the same
pattern as all other genes, namely along the monocyte - yolk-sac macrophage axis
(Figure 2.5B). Chemokine recognition had a more scattered pattern (Figure 2.5C),
which might indicate a different migratory potential for the different progenitors.
While this showcases the transcriptional divergence, it does not indicate any clear
functional differences between the progenitor populations.

Other functional gene sets did show more coherent patterns. Genes related to anti-
viral immune functions were relatively downregulated in fetal liver monocytes (Fig-
ure 2.5D). Proliferation genes were strongly upregulated towards the two embryonic
cell populations, including both genes related to cell division (Cdca2 and Cenph) and
DNA replication (Mcm4 and Pola1) (Figure 2.5E). Genes related to antigen presenta-
tion, including several genes encoding major histocompatibility complex 2 subunits,
were more highly expressed in bone marrowmonocytes (Figure 2.5F). Of those mod-
ules listed here, only anti-viral and proliferation gene sets showed a significant non-
uniform trend towards a particular direction according to a Rayleigh z-test (Figure
2.5G).

35

Figure caption on next page →

36 Chapter 2 - Analysing the transcriptome of three biological conditions

Figure 2.5: Expression differences between three main macrophage progenitor popu-
lations: Yolk-sac macrophages (YS-Mac), Fetal liver monocytes (FL-MO), and Bone mar-
row monocytes (BM-MO). A Overview dotplot with genes that are differentially expressed in
any of the three possible pairwise comparisons highlighted in orange. A monocyte specific gene
(Ccr2), a Yok-sac macrophage specific gene (Mertk), a lowly expressed gene (SiglecF) and a house-
keeping gene (Tubb5). Bar plots show the average log2 normalised expression. The roseplot in
the top right indicates the directional distribution of the differentially expressed genes, indicat-
ing that most genes are differentially expressed along the monocyte - yolk-sac macrophage axis.
B-F The differential expression of different functional gene sets related to antigent presenta-
tion (APC), alveoli heomeostasis, immune regulation, migration, pathogen clearance, pathogen
recognition and proliferation. **: p < 0.01, ****: p < 0.0001, ns: not significant. G Statistical
significance of unidirectional upregulation of functional gene sets. Each dot represents a gene
set, its distance to the origin represents the adjusted p-value (corrected for multiple testing using
the benjamini-hochberg method), with the dashed line indicating an false-discovery rate of 0.01
The direction of the dot shows the average direction in which the genes are upregulated. This
figure was previously published in van de Laar et al. [1].

Six weeks after adoptive transfer of the progenitors into empty alveolar niches, the
expression profiles of the three populations nearly converged (Figure 2.6a). We
found that only 22 genes were significantly expressed between any of the AM popu-
lations after transfer, primarily up- and downregulated in bone-marrow monocyte
and yolk-sac macrophage derived AMs (Figure 2.6b). Although not perfect, it is
clear that most of these genes were already differentially expressed towards the
same progenitors before transfer (Figure 2.6b). This indicates that the progenitor
has only a very limited influence on the expression of the resulting AM, and that
all three progenitors are able to differentiate into nearly transcriptionally identical
AMs.

Figure 2.6: Gene expression differences between alveolarmacrophage populations com-
ing from three different progenitors. Bone marrow monocyte derived alveolar macrophages
(BM-MO-AM), yolk-sac macrophage derived alveolar macrophages (YS-Mac-AM) and fetal liver
monocyte derived alveolar macrophages (FL-MO-AM). A Transcriptional diversity is reduced to
some dozen differentially expressed genes after adoptive transfer. B Genes that are still differen-
tially expressed often had a similar expression pattern before transfer. Parts of this figure were
previously published in van de Laar et al. [1].

37

Implications

Could we have reached the same conclusions without triwise analyses? To some
extent yes, given that similar results are obtained by dimensionality reduction, dif-
ferential expression and heatmaps as shown in the paper [1]. Of course, the visuali-
sation onto two dimensions gives a clear and compact way of visualising the hetero-
geneity between the progenitors, and the absence thereof in the AMs. Where the
triwise analysis really shines is with the analysis of functional heterogeneity of the
progenitors. This analysis would probably have involved testing functional enrich-
ment between each pairwise comparison, and then testing whether these enriched
genes were shared between the pairs. Triwise on the other hand gives a clear and
simple representation of the enrichment, with a direction but also a visualisation of
the spread of enrichment.

In the same study we showed that in competition, more functional AMs were orig-
inating from fetal liver monocytes as compared to the other two progenitors, even
when transferred with near equal proportions. The functional gene set analysis
might shed some light why this is the case. Perhaps the higher proliferative po-
tential of fetal liver monocytes might give them and edge bone marrow monocytes.
At the same time, the higher expression of anti-viral genes in yolk-sac macrophages
might indicate some commitment towards an immune state, and conversely a higher
plasticity of the fetal liver monocyte.

Although this study was an almost ideal showcase of the triwise methodology, it
also shows the main limitation. In the ideal case, Figure 2.6 should have contained
four populations: the three progenitors and the wild-type AM. As will be discussed
in the discussion at the end of this chapter, this is an often requested feature, but
hard to implement in practice.

Other applications

After the initial publication containing triwise, we wrapped the code inside an R
package, available at github.com/saeyslab/triwise. This package contains the code
to transform into a barycentric coordinate system, visualise this using both dotplots
and roseplots, and run gene set enrichment tests using both a competitive and self-
contained test.

The package has been used to solve several other biological questions, some ofwhich
are already published [15, 16, 17]. I highlight one such study here.

https://github.com/saeyslab/triwise

38 Chapter 2 - Analysing the transcriptome of three biological conditions

Understanding CD103+CD11b+ dendritic cell development in the gut

In mice, conventional dendritic cells (cDCs) are typically divided in two subsets [18].
cDC1s are XCR1 positive (and usually CD103+) [19], and are specialised in present-
ing exogenous antigens (cross-presentation) [20] to ultimately elicit a CD8+ T-cell
response. cDC2s are defined as CD172a+ (and usually CD11b+) and are important
for activating CD4+ T-cells [21].

A unique dendritic cell subset is present in the gut, which is both CD103+ and
CD11b+. Because of its dependency on IRF4 [22], an important transcription factor
during cDC2 development, this subset has typically been classified as a cDC2. How-
ever, it is unclear how it is different from the prototypical cDC2 (CD103-CD11b+),
in relation with the prototypical cDC1 (CD103+CD11b-).

To better understand this, the transcriptome of the three different subsets was
generated and analysed using triwise dotplots. These indicated that the major
transcriptional difference lies between the cDC1 and cDC2 subsets, but with only
61 and 31 genes significantly upregulated in respectively the CD103-CD11b+ and
CD103+CD11b+ subsets.

Discussion

Once you wrap your head around the visualisation of genes within triwise plots,
it becomes a powerful tool to analyse the diversity of three biological conditions.
Nonetheless, there are a couple of issues left that could impact its usefulness and
accuracy.

The most requested feature for triwise is the visualisation of more than three con-
ditions. Given that a barycentric transformation reduces the number of dimensions
by one, a two dimensional plot will always be limited to three conditions. Although
it is possible to visualise four conditions in three dimensions, such a point cloud is
hard to interpret and may hide important information (Figure 2.7a). Still, it is possi-
ble to extend the functional enrichment tests to many dimensions. This is relatively
easy to do for the competitive test, although it may be limited by computational
complexity given to estimate the background distribution in multiple dimensions.
This may be improved by using some extensions of the Rayleigh z-test that do not
need permutations [23].

Plotting fold-changes in two dimensions works well for microarray data, but is not
ideal for RNA-seq data. This data contains a strong mean-variance relationship in
RNA-seq data [24], with lowly expressed genes typically having higher log fold-
changes than highly expressed genes. This results in a lot of genes lying at the

39

Figure 2.7: Current challenges for the usefulness of triwise. a Visualisation of four condi-
tions is difficult because a three-dimensional is hard to interpret and may hide certain patterns.
b In RNA-seq data, lowly expressed genes tend to have higher log fold-changes, which makes
the typical triwise dotplot harder to interpret. This is an dataset of dendritic cell (DC) subsets
during experimental autoimmune myocarditis. Parts of this figure were previously published in
Van der Borght et al. [16]

40 Chapter 2 - Analysing the transcriptome of three biological conditions

boundaries of the triwise dotplot, despite not being significantly expressed. To re-
solve this, it might be useful to plot shrunken log-fold changes instead [25].

A final challenge is that the current tests can only detect unidrectional enrichment.
Sometimes, it might be useful to detect other patterns as well, such as an upregula-
tion of a gene set in two conditions but not in a third. Although the current test can
detect such patterns (such as the anti-viral response in Figure 2.5d), it might not be
powerful enough in some cases (such as the antigen presentation genes in Figure
2.5f).

41

References

[1] Lianne van de Laar et al. “Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Col-
onize an Empty Niche and Develop into Functional Tissue-Resident Macrophages”. In: Immu-
nity 44.4 (Apr. 19, 2016), pp. 755–768. issn: 1074-7613. doi: 10.1016/j.immuni.2016.02.017.

[2] Henryk Maciejewski. “Gene Set Analysis Methods: Statistical Models and Methodological Dif-
ferences”. In: Briefings in Bioinformatics 15.4 (July 2014), pp. 504–518. issn: 1477-4054. doi:
10.1093/bib/bbt002.

[3] K. V.Mardia and Peter E. Jupp.Directional Statistics.Wiley, 2000. 472 pp. isbn: 978-0-471-95333-
3.

[4] N. I. Fisher. Statistical Analysis of Circular Data. Cambridge University Press, Oct. 12, 1995.
300 pp. isbn: 978-0-521-56890-6.

[5] Thomas A.Wynn, Ajay Chawla, and JeffreyW. Pollard. “Macrophage Biology in Development,
Homeostasis and Disease”. In: Nature 496.7446 (Apr. 2013), pp. 445–455. issn: 1476-4687. doi:
10.1038/nature12034.

[6] Chen Varol, Alexander Mildner, and Steffen Jung. “Macrophages: Development and Tissue
Specialization”. In: Annual Review of Immunology 33 (2015), pp. 643–675. issn: 1545-3278. doi:
10.1146/annurev-immunol-032414-112220.

[7] Yasutaka Okabe and Ruslan Medzhitov. “Tissue Biology Perspective on Macrophages”. In: Na-
ture Immunology 17.1 (Jan. 2016), pp. 9–17. issn: 1529-2916. doi: 10.1038/ni.3320.

[8] Charlotte L. Scott and Martin Guilliams. “The Role of Kupffer Cells in Hepatic Iron and Lipid
Metabolism”. In: Journal of Hepatology 69.5 (Nov. 1, 2018), pp. 1197–1199. issn: 0168-8278,
1600-0641. doi: 10.1016/j.jhep.2018.02.013.

[9] Yonit Lavin et al. “Tissue-ResidentMacrophage Enhancer Landscapes Are Shaped by the Local
Microenvironment”. In: Cell 159.6 (Dec. 4, 2014), pp. 1312–1326. issn: 1097-4172. doi: 10.1016/
j.cell.2014.11.018.

[10] Florent Ginhoux and Martin Guilliams. “Tissue-Resident Macrophage Ontogeny and Home-
ostasis”. In: Immunity 44.3 (Mar. 15, 2016), pp. 439–449. issn: 1074-7613. doi: 10.1016/j.immuni.
2016.02.024.

[11] Martin Guilliams et al. “Alveolar Macrophages Develop from Fetal Monocytes That Differen-
tiate into Long-Lived Cells in the First Week of Life via GM-CSF”. In: Journal of Experimental
Medicine 210.10 (Sept. 23, 2013), pp. 1977–1992. issn: 0022-1007, 1540-9538. doi: 10.1084/jem.
20131199.

[12] Laurent Gautier et al. “Affy—Analysis of Affymetrix GeneChip Data at the Probe Level”. In:
Bioinformatics 20.3 (Feb. 12, 2004), pp. 307–315. issn: 1367-4803. doi: 10.1093/bioinformatics/
btg405.

[13] Matthew E. Ritchie et al. “Limma Powers Differential Expression Analyses for RNA-
Sequencing and Microarray Studies”. In: Nucleic Acids Research 43.7 (Apr. 20, 2015), e47–e47.
issn: 0305-1048. doi: 10.1093/nar/gkv007.

[14] The Gene Ontology Consortium. “The Gene Ontology Resource: 20 Years and Still GOing
Strong”. In: Nucleic Acids Research 47.D1 (Jan. 8, 2019), pp. D330–D338. issn: 1362-4962. doi:
10.1093/nar/gky1055.

[15] Charlotte L. Scott et al. “The Transcription Factor Zeb2 Regulates Development of Conven-
tional and Plasmacytoid DCs by Repressing Id2”. In: The Journal of Experimental Medicine
213.6 (May 30, 2016), pp. 897–911. issn: 1540-9538. doi: 10.1084/jem.20151715.

[16] Katrien Van der Borght et al. “Myocarditis Elicits Dendritic Cell and Monocyte Infiltration in
the Heart and Self-Antigen Presentation by Conventional Type 2 Dendritic Cells”. In: Frontiers
in Immunology 9 (Nov. 21, 2018). issn: 1664-3224. doi: 10.3389/fimmu.2018.02714.

https://doi.org/10.1016/j.immuni.2016.02.017
https://doi.org/10.1093/bib/bbt002
https://doi.org/10.1038/nature12034
https://doi.org/10.1146/annurev-immunol-032414-112220
https://doi.org/10.1038/ni.3320
https://doi.org/10.1016/j.jhep.2018.02.013
https://doi.org/10.1016/j.cell.2014.11.018
https://doi.org/10.1016/j.cell.2014.11.018
https://doi.org/10.1016/j.immuni.2016.02.024
https://doi.org/10.1016/j.immuni.2016.02.024
https://doi.org/10.1084/jem.20131199
https://doi.org/10.1084/jem.20131199
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1084/jem.20151715
https://doi.org/10.3389/fimmu.2018.02714

42 Chapter 2 - Analysing the transcriptome of three biological conditions

[17] C. C. Bain et al. “TGFβR Signalling Controls CD103+CD11b+ Dendritic Cell Development in
the Intestine”. In: Nature Communications 8 (Sept. 20, 2017). issn: 2041-1723. doi: 10 .1038/
s41467-017-00658-6.

[18] Martin Guilliams et al. “Dendritic Cells, Monocytes and Macrophages: A Unified Nomencla-
ture Based on Ontogeny”. In: Nature Reviews Immunology 14.8 (Aug. 2014), pp. 571–578. issn:
1474-1741. doi: 10.1038/nri3712.

[19] Martin Guilliams et al. “Unsupervised High-Dimensional Analysis Aligns Dendritic Cells
across Tissues and Species”. In: Immunity 45.3 (Sept. 20, 2016), pp. 669–684. issn: 1074-7613.
doi: 10.1016/j.immuni.2016.08.015.

[20] Olivier P. Joffre et al. “Cross-Presentation by Dendritic Cells”. In: Nature Reviews Immunology
12.8 (Aug. 2012), pp. 557–569. issn: 1474-1741. doi: 10.1038/nri3254.

[21] S. C. Eisenbarth. “Dendritic Cell Subsets in T Cell Programming: Location Dictates Function”.
In: Nature Reviews Immunology 19.2 (Feb. 2019), p. 89. issn: 1474-1741. doi: 10.1038/s41577-
018-0088-1.

[22] Andreas Schlitzer et al. “IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Hu-
man andMouse Control Mucosal IL-17 Cytokine Responses”. In: Immunity 38.5 (May 23, 2013),
pp. 970–983. issn: 1097-4180. doi: 10.1016/j.immuni.2013.04.011.

[23] Alize E H Scheenstra et al. “The 3DMoore-Rayleigh Test for theQuantitative Groupwise Com-
parison of MR Brain Images”. In: Information Processing in Medical Imaging : Proceedings of
the … Conference. Vol. 21. Feb. 1, 2009, pp. 564–75. doi: 10.1007/978-3-642-02498-6_47.

[24] Charity W. Law et al. “Voom: PrecisionWeights Unlock Linear Model Analysis Tools for RNA-
Seq Read Counts”. In:Genome Biology 15.2 (Feb. 3, 2014), R29. issn: 1474-760X. doi: 10.1186/gb-
2014-15-2-r29.

[25] Michael I Love, Wolfgang Huber, and Simon Anders. “Moderated Estimation of Fold Change
and Dispersion for RNA-Seq Data with DESeq2”. In: Genome Biology 15.12 (2014). issn: 1465-
6906. doi: 10.1186/s13059-014-0550-8.

https://doi.org/10.1038/s41467-017-00658-6
https://doi.org/10.1038/s41467-017-00658-6
https://doi.org/10.1038/nri3712
https://doi.org/10.1016/j.immuni.2016.08.015
https://doi.org/10.1038/nri3254
https://doi.org/10.1038/s41577-018-0088-1
https://doi.org/10.1038/s41577-018-0088-1
https://doi.org/10.1016/j.immuni.2013.04.011
https://doi.org/10.1007/978-3-642-02498-6_47
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1186/s13059-014-0550-8

3 | Comparing module detec-
tion methods

Already since my master’s thesis, I have been working on methods that try to find
modules of co-expressed genes within gene expression data. Clustering methods
are most often used here, but a lot of alternatives such as biclustering have been
proposed. These have some convincing theoretical advantages, such the ability to
detect more local expression changes in a subset of samples (or cells). Despite these,
I found it difficult to find good use cases of these methods on our own datasets.
Moreover, I found only limited use cases of these methods in literature; most re-
search was focused on development of new methods and not on their application.
That’s why we set out to find out why these methods were apparently so difficult
to use, and provide some guidelines for the field to promote their use. This resulted
in a large benchmarking study, that is presented in this chapter.

I have embedded the most relevant supplementary material directly within this thesis,
including Supplementary Note 1. Other supplementary material is available at https:
//www.nature.com/articles/s41467-018-03424-4#Sec19.

At the end of this chapter, I discuss some issues that have popped up after the publication
of this paper (section Update).

https://www.nature.com/articles/s41467-018-03424-4#Sec19
https://www.nature.com/articles/s41467-018-03424-4#Sec19

44 Chapter 3 - Comparing module detection methods

A comprehensive evaluation of module detection meth-
ods for gene expression data

Published in Nature Communications, March 15 2018, doi.org/gc9x36
Wouter Saelens, Robrecht Cannoodt, Yvan Saeys

Contributions
Designed the study: Wouter Saelens and Yvan Saeys
Performed the study: Wouter Saelens
Supervised the work: Yvan Saeys
Wrote the paper: Wouter Saelens, Robrecht Cannoodt and Yvan Saeys

Abstract
A critical step in the analysis of large genome-wide gene expression datasets is the
use of module detection methods to group genes into co-expression modules. Be-
cause of limitations of classical clustering methods, numerous alternative module
detection methods have been proposed, which improve upon clustering by han-
dling co-expression in only a subset of samples, modelling the regulatory network,
and/or allowing overlap between modules. In this study we use known regulatory
networks to do a comprehensive and robust evaluation of these different methods.
Overall, decomposition methods outperform all other strategies, while we do not
find a clear advantage of biclustering and network inference-based approaches on
large gene expression datasets. Using our evaluation workflow, we also investigate
several practical aspects of module detection, such as parameter estimation and the
use of alternative similarity measures, and conclude with recommendations for the
further development of these methods.

https://doi.org/gc9x36

45

Introduction

Ever since the introduction of genome-wide gene expression profiling technologies,
module detection methods have been a cornerstone in the biological interpretation
of large gene expression compendia [1, 2, 3]. Modules in this context are defined as
groups of genes with similar expression profiles, which also tend to be functionally
related and co-regulated. Apart from allowing a more global and objective interpre-
tation of gene expression data [4, 5], co-expression modules are also frequently used
to infer regulatory relationships between transcription factors and putative target
genes [6, 7, 8]. In addition, modules can improve functional genome annotation
through the guilt-by-association principle [9] and allow a better understanding of
disease origin [10] and progression [11].

Numerous approaches and algorithms have been proposed for module detection in
gene expression data. The most popular approach, clustering, has been used since
the first gene expression datasets became available and is still the most widely used
to this day [6, 7, 8, 10]. However, in the context of gene expression, clustering
methods suffer from three main drawbacks. First, clustering methods only look
at co-expression among all samples. As transcriptional regulation is highly con-
text specific[12], clustering potentially misses local co-expression effects which are
present in only a subset of all biological samples. Second, most clustering methods
are unable to assign genes to multiple modules. The issue of overlap between mod-
ules is especially problematic given the increasing evidence that gene regulation is
highly combinatorial and that gene products can participate in multiple pathways
[13, 14]. A third limitation of clustering methods is that they ignore the regulatory
relationships between genes. As the variation in target gene expression can at least
be partly explained by variation in transcription factor expression [15], including
this information could therefore boost module detection. Several alternative mod-
ule detection approaches have therefore been developed in order to alleviate these
three limitations. Decomposition methods [16] and biclustering [17] try to handle
local co-expression and overlap. These methods differ from clustering because they
allow that genes within a module do not need to be co-expressed in all biological
samples, but that a sample can influence the expression of a module to a certain
degree (decomposition methods) or not at all (biclustering methods). Two other al-
ternative methods, direct network inference [15] (direct NI) and iterative NI [18],
use the expression data to additionally model the regulatory relationships between
the genes.

Given the importance of module detection within the transcriptomics field and the
wealth of available methods, it is critical that existing and new approaches are eval-
uated on objective benchmarks. However, we identified several shortcomings in
past evaluation studies [17, 19, 20, 21, 22], related to the use of multiple evaluation

46 Chapter 3 - Comparing module detection methods

metrics, the correct tuning of parameters, and the biological relevance of synthetic
data. In this study we therefore propose a new evaluation pipeline for module de-
tection methods for gene expression data. Central to our approach is that we use
known regulatory networks to define sets of known modules, which can be used
to directly assess the sensitivity and specificity of the different module detection
methods on real data. Using our evaluation strategy we analyse the performance
of 42 module detection methods spanning all five main approaches. We also con-
sider several practical aspects of module detection, such as the relative data require-
ments of the methods, parameter estimation, and the use of alternative similarity
measures for clustering. The purpose of this evaluation study is twofold. We first
want to provide an overview of the characteristics and performance of current mod-
ule detection methods to guide the biologist in their choice. Second, we propose a
benchmark strategy, which can be used in future studies to compare novel methods
with the current state of the art. For this purpose, we provide all gold standards,
expression datasets, and the evaluation procedure to the community.

Results

Evaluation workflow

Our evaluation procedure was structured as follows (Figure 3.1). We applied pub-
licly available module detection methods on nine gene expression compendia from
Escherichia coli, yeast, human, and in silico simulated regulatory networks (Figure
3.1a). We scored the different methods by comparing the observed modules with a
set of known modules. These known modules were extracted from known regula-
tory networks using three different module definitions (Figure 3.1b), two requiring
co-regulation by either one or all known regulators and one looking at strong inter-
connectedness within the gene regulatory network. To compare a set of observed
modules with known modules, we considered several scores described in the litera-
ture (Supplementary Note 1) and ultimately chose four scores as follows: recovery,
relevance, recall, and precision (Figure 3.2). Note that classical scores comparing
clusterings could not be used because these cannot handle overlap. As all methods
generally performed equally or worse than random on human datasets, due to the
high number of false positives in the gold standard (Supplementary Note 1), we in-
stead used a scoring system which looks at how well the observed modules cover
the targets of regulators in the dataset (Figure 3.1e). To avoid certain gold standards
and module definitions from disproportionately influencing our final score, we nor-
malised each score using random permutations of the known modules. The final
score for a method ultimately represented a fold improvement of a given module de-
tection method over the score obtained from randomly permuted known modules.

47

✓
✓
✓
✓

✓
✓✘

✘

±

±

Test Train

Train Test

≈ x

T

a

c

b

e

f

dExpression datasets

Comparing observed and known modules
(E. coli, yeast and synthetic data)

Avoiding parameter overfitting

Dataset 1 Dataset 2

P
ar

am
et

er
 1

Parameter 2

E. coli
COLOMBOS

DREAM5
GPL2529 (GEO)

DREAM5
Yeast

Human

TCGA

GTEX

SEEK GPL5175

Synthetic
Simulated regulatory networks

Yeast

E. coli

Strict
coregulation

Minimal
coregulation

Interconnected
subgraphs

Training score = score at best parameter setting

Test score = score at best parameter setting of different dataset

Grid-based
parameter
exploration

Score

Module detection

Gold standard regulatory networks

MacIsaac et al.

Ma et al.

Direct physical
evidence

Conserved
binding sites

ChIP-Seq and
knock-out data

Coverage of regulators
(human datasets)

Binding motifs in
active enhancers

Regulatory circuits

Known Observed

Known regulatory network

G
en

es

Samples

Observed modules

Gene expression

Scoring

Co
ve

ra
ge

Enrichment strength
(odds ratio)

Clustering (22) Biclustering (9)

Decomposition (5)

Direct NI (4)

Iterative NI (2)

Gene
contributions

Sample
contributions

RegulonDB

Figure 3.1: Overview of our evaluation methodology. a)The nine different datasets used in
this evaluation. b) We used three different module definitions to extract known modules from
known regulatory networks for the evaluation on E. coli, yeast and synthetic data. c) To avoid
parameter overfitting on characteristics of particular datasets, we first optimised the parameters
on every dataset using a grid search, and then used the optimal parameters on one dataset (train-
ing score) to assess the performance of a method on another dataset (test score). d)We evaluated
a total of 42 methods, which can be classified in 5 categories: clustering, biclustering, direct net-
work inference (NI), decomposition, and iterative NI. e) For the evaluation on human data, we
compared howwell the targets of each regulator is enriched in at least one of the modules. f)We
used four different regulatory networks in our evaluation, each generated from different types
of data.

48 Chapter 3 - Comparing module detection methods

3versus

0
1 2

3
4

5 6
7
8

9

0
1 2

3
4

5 6
7
8

9

Recall and PrecisionRecovery and Relevance
Observed modules

Known modules

Take a pair of genes (e.g. and)

0 1

23 4
5 6
7 8

9

Jaccard index
How strongly do the modules overlap?

For every combination of known and
observed modules

Recovery: how well are the known modules
recovered by the observed modules

Relevance: How well are the observed modules
already known In the CICE-BCubed score these are adjusted so that

the perfect score of 1 can only be reached when
the known and observed modules perfectly match

2 3

2 3
Shared

known modules

2 3 2 3

= 2 = 1

0
1
2
3
4

0 1 2 3 4

Take a pair of modules (e.g. and)
Shared

observed modules

How strongly do the # of
shared modules match?

For every pair of genes

Number of modules
containing both genes

Recall: Are gene pairs present in the same
number of observed modules as in the
known modules?

Precision: Are gene pairs present in the same
number of known modules as in the
observed modules?

6 =
1 + 1 + 6

6/8
min(2, 1)

2
= 0.5

min(2, 1)
1

= 1

6/8 4/10

7/85/8

6/8 7/8

6/8

7/8

6/8 4/10

7/85/8

6.5/8
= Recovery

6.5/8
= Relevance

0
0
0
0

1
1
1

0.5
0.5 1

0.58
= Recall

0
1
2
3
4

0 1 2 3 4

-
-
-
-

1
1
1

1
1 1

0.50
= Precision

0
1
2
3
4

0 1 2 3 4

0
0
0
0

1
1
1

0.5
0.5 1

0
1
2
3
4

0 1 2 3 4

-
-
-
-

1
1
1

1
1 1

(average)

(max) (average)

Figure 3.2: Illustration of the four main scores used in this study.
Each score assesses the similarity between a set of knownmodules and a set of observedmodules.
The recovery and relevance will try to match individual modules between the two sets using the
Jaccard index, a measure of overlap between two mathematical sets. The recovery tries to match
known modules with observed modules, while the relevance tries to match observed modules
with known modules. The recall and precision scores will compare the number of times a pair
of genes is together present in observed modules versus those in known modules. The recall
determines whether a pair of genes is present in at least the same number of modules in the
known modules as in the observed modules, and vice-versa for the precision.

Parameter tuning is a necessary but often overlooked challenge with module detec-
tion methods. Although good performance generally depends on the correct choice
of parameters, this also increases the risk of overfitting on specific characteristics of
one dataset, as such parameters will lead to suboptimal results when generalizing
the parameter settings to other datasets. To address both problems, we optimised the
parameters for every method with a grid search (Supplementary Note 2) and used
an approach akin to cross-validation where the optimal parameter settings from one
dataset were used to assess the performance of a method on another dataset (Figure
3.1c). For every method we give two scores: the training score represents the score
at the optimal parameter settings, whereas the test score denotes the performance
when parameters were estimated on an alternative dataset (Figure 3.1c).

Overall performance

We evaluated a total of 42 module detection algorithms covering all 5 approaches
(clustering, decomposition, biclustering, direct NI, and iterative NI) using the de-
scribed methodology (Table 3.1 and Supplementary Note 2). Overall, our results in-
dicate that decomposition methods detect the modules which best correspond to the

49

knownmodular structurewithin the gene regulatory network (Figure 3.3a). The best
decomposition methods are all variations of independent component analysis (ICA)
with different post-processing methods [16, 23]. Surprisingly, neither biclustering
nor direct NI, nor iterative NI methods outperform clustering methods, although in
theory they should offer several advantages by allowing overlap, modelling tran-
scriptional regulation and/or looking for local co-expression effects (Figure 3.3b).

Clustering: grouping genes based on a global similarity in gene expression profiles
A FLAME: fuzzy clustering by selecting cluster supporting objects based on the K-nearest

neighbour density estimation
B K-medoids: iteratively refines the centers (which are individual genes) and the average

dissimilarity within the cluster
C K-medoids (see B) but with automatic module number estimation
D Fuzzy c-means: similar to k-means (see F), but using fuzzy instead of crisp cluster

memberships
E Self-organizingmaps: maps each gene on a node embedded in a two dimensional graph

structure
F K-means: iteratively refines the mean expression with a cluster and the within-cluster

sum of squares
G MCL: simulates random walks within the co-expression graph by alternative steps of

expansion and inflation
H Spectral clustering: applies K-means in the subspace defined by the eigenvectors of the

Pearson correlation affinity matrix
I Affinity propagation: clustering by exchange of messages between genes
J Spectral clustering: applies K-means in the subspace defined by the eigenvectors of the

K-nearest neighbour graph
K Transitivity clustering: tries to find the transitive co-expression graph in which the

total cost of added and removed edges is minimised
L WGCNA: agglomerative hierarchical clustering (see M), but using the topological over-

lap measure and a dynamic tree cutting algorithm to implicitly determine the number
of modules

M Agglomerative hierarchical clustering: generates a hierarchical structure by progres-
sively grouping genes and clusters based on their similarity

N Hybrid hierarchical clustering: combination of agglomerative and divisive hierarchical
clustering

O Divisive hierarchical clustering: generates a hierarchical structure by progressively
splitting the genes into clusters

P Agglomerative hierarchical clustering (see M), but with automatic module number es-
timation

Q SOTA: combination of self-organizing maps and divisive hierarchical clustering
R First finds cluster centers by searching for high density, each gene is then assigned to

the cluster of its nearest neighbour of higher density
S CLICK : uses density estimation to find tight groups of similar genes, after which these

are expanded into modules
T DBSCAN : groups genes within core, non-core and outlier genes based on the number

of nearest neighbours

50 Chapter 3 - Comparing module detection methods

U Clues: first applies a shrinking procedure which moves each gene towards nearby high
density regions, afterwhich the genes are partitioned into an automatically determined
number of clusters using the silhouette width

V Mean shift: moves each gene towards nearby high density regions until convergence
Decomposition: extracting the components corresponding to co-expressionmodules
by decomposing the expression matrix in a product of smaller matrices

A Independent component analysis: decomposes the expression matrix into a set of in-
dependent components using the FastICA algorithm, detects potentially overlapping
modules within each source signal using false-discovery rate (FDR) estimation

B Similar to A, but detects two modules per independent component depending on
whether genes have positive or negative weights

C Similar to A, but detects modules within each source signal using z-scores
D Combination of principal component analysis and independent component analysis,

uses FDR estimation to find modules
E Principal component analysis: decomposes the expression matrix into a set of linearly

uncorrelated components, detects potentially overlapping modules within each com-
ponent using FDR estimation
Biclustering: simultaneous grouping of genes and samples in biclusters based on
similar local behavior in expression

A Spectral biclustering: detecting checkerboard patterns within the gene expression ma-
trix

B ISA: iteratively refines a set of genes and samples based on high or low expression in
both the gene and sample dimension

C QUBIC: finds biclusters in which the genes have similar high or low expression levels
in a discretised expression matrix

D Bi-Force: finds biclusters with over- or under-expression by solving the bicluster edit-
ing problem

E FABIA: builds a multiplicative model of the expression matrix layer by layer. Every
layer represents a bicluster

F Plaid: builds an additive model of the expression matrix layer by layer. Every layer
represents a bicluster

G MSBE: finds additive biclusters starting from randomly sampled reference genes and
conditions

H Cheng & church: minimises the mean squared residue within every bicluster
I OPSM: searches for biclusters where the expression changes in the same direction be-

tween genes and samples
Iterative network inference: iterative optimisation of an inferred network and a set
of clusters

A MERLIN : iteratively refines a direct regulatory network and modules within a proba-
bilistic graphical network framework

B Genomica: starts from an initial hierarchical clustering and iteratively refines this clus-
tering and an inferred module network using a model based on Bayesian regression
trees
Direct network inference: inference of a regulatory network based on gene expres-
sion similarity between regulators and target genes

A GENIE3: predicts the expression of each target gene based on random forest regression

51

B CLR: calculates the likelihood of mutual information estimations based on the network
neighbourhood

C Pearson’s correlation between regulator and target gene
D TIGRESS: network inference using a combination of Lasso sparse regression and sta-

bility selection

Table 3.1: Module detection methods evaluated in this study Within each cate-
gory, methods are ranked according to their average test score (Figure 3.3). We refer
the reader to Supplementary Note 2 for details regarding the implementation and pa-
rameters

Note that decomposition methods not only perform well when the gold standard
modules contains overlap, in the case of minimally co-regulated modules, but also
when no overlap is present in the known modules (Figure 3.3d). To further inves-
tigate this, we calculated separate scores for genes within one or multiple modules.
This analysis showed that both clustering and decomposition methods are better at
grouping genes that are present in one module, whereas biclustering and direct NI
methods are slightly biased toward genes present in more than one module (Sup-
plementary Fig. 2). These results indicate that the higher performance of decom-
position methods over clustering is not exclusively caused by their ability to detect
overlapping modules, but that also other factors such as local co-expression could
have a role.

We further classified clustering algorithms into four categories: graph-based clus-
tering, representative-based clustering, hierarchical clustering, and density-based
clustering. We found that graph-based, representative-based, and hierarchical clus-
tering all performed equally well, with the clustering method FLAME (Fuzzy cluster-
ing by Local Approximation of Memberships) [24], one of the only clustering meth-
ods able to detect overlap, slightly outperforming other clustering methods. Among
hierarchical clustering methods, agglomerative methods provide the highest perfor-
mance compared with the intermediate and low scores of respectively hybrid and
divisive methods. Density-based clustering methods on the other hand had much
lower performance, which can be partly explained by a higher parameter sensitivity
for some density-based methods. Although the overall performance of biclustering
methods was low, we also made a similar categorization of these methods based
on the type of biclusters they detect. Methods that detect constant or extreme bi-
clusters generally outperformed other methods detecting more complex bicluster
patterns. In fact, except for FABIA (Factor Analysis for Bicluster Acquisition), the
performance of the latter methods was generally not much better or even worse
than random permutations of the known modules.

Although the relative ranking of the main methods is remarkably stable across
datasets (Figure 3.3c and Supplementary Fig. 3a), individual methods can still per-
form well in one setting even though their overall performance is poor (Supplemen-

52 Chapter 3 - Comparing module detection methods

a

b

c

d

0 Best

Average score
(fold)

Test score
Training score

7.5
7.9
3.9

3.5
4.5
4.6
3.6

15.2
15.1

0

2

4

6

8

F
L

A
M

E

k-
m

e
d

o
id

s

k-
m

e
d

o
id

s*

F
u

zz
y

c-
m

e
a

n
s

S
O

M

k-
m

e
a

n
s

M
C

L

S
p

e
ct

ra
l 1

A
ff

in
ity

 p
ro

p
g

a
tio

n

S
p

e
ct

ra
l 2

T
ra

n
si

tiv
ity

W
G

C
N

A

A
g

g
lo

m
e

ra
tiv

e

H
yb

ri
d

D
iv

is
iv

e

A
g

g
lo

m
.*

S
O

T
A

D
cl

u
st

C
L

IC
K

D
B

S
C

A
N

IC
A

 F
D

R
 1

IC
A

 F
D

R
 2

IC
A

 z
-s

co
re

IP
C

A

S
p

e
ct

ra
l 3

IS
A

Q
U

B
IC

F
A

B
IA

M
E

R
L

IN

G
e

n
o

m
ic

a

G
E

N
IE

3

C
L

R

C
o

rr
e

la
tio

n

T
IG

R
E

S
S

A B C D E F G H I J K L M N O P Q R S T U V A B C D E A B C D E F G H I A B A B C D

Overlap
Local co-expression

Network inference
Module number estimation

Running time (minutes)

+ − − + − − − − − − + − − − − − − − − − − − + + + + + − + + − + + + + + − − + + + +
− + + + + + + + + + + + + + + − − − − − −
− + + + + + +
± − + − − − ± − ± − ± ± − − − + ± ± ± ± + ± − − − − − − ± ± ± − − ± ± ± ± ± ± ± ± ±
6 25 12 57 74 4 <1 1 4 4 4 24 <1 35 4 <1 52 1 3 1 408 16 10 5 9 37 3 14 131 5 21 364 65 59 145 974 364 244 >1d 39 <1 >1d

Minimal coregulation
Strict coregulation

Interconnected subgraphs

9.5
9.1
7.8

GraphRepresentative Hierarchical Density
Clustering Decomposition Biclustering Direct NIIterative NI

Extreme Pattern

Average test score (fold)

C
on

st
an

t Random

S
tic

ky
 n

et
w

or
k

P
er

m
ut

ed
 m

od
ul

es

S
ca

le
-f

re
e

ne
tw

or
k

E. coli

Yeast

Human

Synthetic

Figure 3.3: Overall performance of 42 module detection methods (Table 3.1)) based on
the agreement between observed modules and known modules in gene regulatory net-
works. The methods can be divided in five categories: clustering, decomposition, bicluster-
ing, direct network inference (direct NI) and iterative network inference (iterative NI) methods.
Clustering and biclustering methods were further classified in subcategories (see Methods). a
Average test and training scores across datasets and module definitions. The score represents a
fold improvement over permutations of the known modules. *Automatic estimation of number
of modules. b Different properties of the module detection methods (see Supplementary Note
2). A + (green background) denotes that a method can handle a certain property listed on the
left. We distinguish between explicit µ (−), implicit (±), and automatic (+) module number es-
timation. Note that running times strongly depend on the implementation, hardware, dataset
dimensions, and parameter settings, and are therefore only indicative. c Test scores at each of
the four datasets, averaged over module definitions. d Test scores on each of the three module
definitions, averaged over different datasets

53

tary Fig. 4). Most profoundly is the higher performance of certain biclusteringmeth-
ods, such as ISA (Iterative Signature Algorithm), QUBIC (Qualitative Biclustering),
and FABIA, and direct NI methods, primarily GENIE3, on human and/or synthetic
data, where these methods can in some cases compete with clustering and decompo-
sition methods. Performance was generally very consistent across different module
definitions (Figure 3.3d and Supplementary Fig. 3b), despite limited similarity be-
tween the sets of known modules (Supplementary Fig. 5). We also found that the
overall ranking of the methods remained similar when we used different random-
ization procedures to normalise our scores (Supplementary Fig. 6). The relative
performance of individual methods was more variable when we compared different
scores, especially for scores which can handle overlapping modules, although the
overall ranking of the different module detection approaches remained stable (Fig-
ure 3.4 and Supplementary Fig. 8). Together, this again highlights the importance
of using multiple datasets and scoring metrics for a robust and unbiased evaluation
of bioinformatics methods [25, 26].

F-measure (Score 2 and 6)

F-measure (Score 1) [5]

F-measure (Score 2) [6]

Consensus (Score 3) [7]

F-measure (Score 6) [8]

F-measure [1]

F-measure [2]

V-measure [3]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

3 4 8 9 1 6 5 16 7 11 20 2 14 26 23 12 10 13 25 28 21 19 22 29 32 15 27 17 24 18 31 34 30 36 33 37 42 39 38 41 40 35

1 2 3 4 6 5 7 8 10 9 11 12 13 14 17 19 15 24 20 23 22 18 21 25 16 27 26 30 31 29 28 32 34 33 35 38 37 39 41 36 40 42

1 2 3 4 5 7 8 6 13 9 10 11 24 12 21 23 14 18 16 19 22 25 17 15 20 27 26 30 29 28 35 31 34 32 33 41 36 38 37 40 39 42

1 2 4 8 3 5 7 9 6 12 11 13 19 17 10 15 20 22 27 18 16 28 14 21 32 24 23 26 29 31 30 34 25 33 35 36 37 39 38 41 40 42

2 1 3 4 5 11 8 6 20 7 9 12 29 14 24 17 16 26 27 23 25 19 10 28 30 18 13 21 22 32 15 34 33 31 36 37 40 39 41 35 38 42

2 1 3 4 9 20 5 6 27 8 7 11 10 14 15 21 22 33 13 19 17 12 23 16 18 26 25 32 24 29 28 30 35 31 37 38 40 39 36 34 41 42

9 14 4 19 16 5 7 3 13 25 10 17 1 26 31 27 2 30 11 20 8 15 33 21 23 22 12 29 24 18 37 6 32 28 35 40 36 39 34 38 41 42

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x x

x

x

x

x

x

x

x

x

A B C D A L M H G I B J C D K P E B N O A A E F B B A C D R C Q S E T U V D H G F I
Non-exhaustive

Overlapping modules

Rank1 42

Figure 3.4: Comparison of method ranks across different scoring metrics.
Each score (y-axis) assesses the correspondence between a set of observed and known modules.
Some scores have some difficulties with handling overlapping and/or non-exhaustive module
assignment. Ranks which are potentially unreliable, if also the method detects non-exhaustive
and/or overlapping modules (bottom), are therefore shown in a smaller font. Despite this, we
found that the overall ranking of most methods was similar between most scores.

Parameter tuning

The need to tune parameters on individual datasets varied greatly among methods,
which we quantified by comparing training and test scores. Some methods, such as
FLAME, WGCNA (Weighted Gene Co-expression Network Analysis), and MERLIN
(Modular regulatory network learning with per gene information) were relatively
insensitive to parameter tuning, despite requiring the optimisation of two or more
parameters (Figure 3.3a). On the other hand, methods such as fuzzy c-means, self-
organizing maps, and agglomerative hierarchical clustering performed very differ-
ently between test and training parameters. Nonetheless, the overall ranking of the

54 Chapter 3 - Comparing module detection methods

different module detection approaches does not change drastically between training
and test scores. The top decomposition methods for instance outperform clustering
methods both before and after controlling for parameter overfitting (Figure 3.3a and
Supplementary Fig. 4).

The most central parameters in module detection (and unsupervised data analysis
in general) are those affecting the number of clusters detected within a dataset. We
distinguish three different ways a method determines the number of modules (Fig-
ure 3.3b). Explicit methods, such as k-means and all decomposition methods, re-
quire that the number of modules is specified by the user. Implicit methods, such
as affinity propagation, adapt the module number on each dataset based on other
parameters supplied by the user. Finally, automatic methods determine the number
of modules completely automatically, usually by iterating over several parameter
settings and selecting the one that optimises some criterion of cluster quality. Mea-
sures for cluster quality can range from the stability of clusters among several resam-
plings of the dataset [27], the balance between cluster tightness and separateness
(as measured by cluster validity indices [28]), or the optimal functional enrichment
of the modules [22]. Although the top method within each clustering subcategory
estimate the number of modules implicitly (coinciding with a relatively low param-
eter sensitivity) (Figure 3.3b), we found that implicit or automatic estimation of the
number of modules is not a prerequisite for a high performance (Figure 3.5). Indeed,
the top decomposition methods all require the number of modules to be specified
beforehand. Interestingly, the performance of iterative NI methods depended only
little on the initial parameters, possibly because these methods adapt the number of
modules depending on the inferred regulatory network.

Apart from those parameters influencing the number of clusters, most module de-
tection methods also have other parameters, frequently affecting the compactness
of the modules, the way local co-expression is defined or the minimal number of
genes within a module. As all these parameters can have significant effects on the
resulting modules (and thus the performance of a method), we assessed how well
automatic parameter estimation can improve method performance. Automatic pa-
rameter estimation can be seen as an alternative to determining the optimal param-
eters on one or more training datasets and using these parameters on a test dataset
to assess performance. Based on a previous evaluation study [28] we chose four of
the most promising cluster validity indices, and found that the benefits of cluster
validity indices were mostly confined to clustering methods (Figure 3.6). Notably,
spectral clustering, affinity propagation, and k-medoids frequently increased in test
score when their parameters were automatically estimated using the average sil-
houette width and the Davis–Bouldin index (Supplementary Fig. 10). On the other
hand, the performance of FLAME clustering and decomposition methods generally
decreased when using cluster validity indices, usually performing even worse than
randomly selecting parameters within the parameter grid (Supplementary Fig. 11).

55

0 1 2 3 4 5 6 7 8
Average test score (fold)

Explicit

Implicit

Automatic

F

I

U

E

H

P

−

±

+

E

G

C

A

D

F

V

O

T

N

S

E

R

D

Q

J

C

M

D

B

C

H

B

D

B

C

A

B

B

A

A K I GL A

Figure 3.5: Comparison between different ways of estimating the number of modules.
One of the most important parameters for most module detection methods are those influencing
the number of modules found in the dataset. There are three ways a method can determine the
number of modules: (i) explicitly, by retrieving a fixed number of modules determined by the
user, (ii) implicitly, by using other parameters determined by the user to estimate the number
of modules and (iii) automatically, by determining the number of modules independent of pa-
rameters. Implicitly or automatically determining the number of methods can therefore allow
methods to better adapt to individual characteristics of a dataset, although it can also lead to
a suboptimal number of modules when compared with a given gold standard. We found that
among clustering methods those that implicitly estimated the number of methods performed
better than their explicit counterparts. However, implicit or automatic module number estima-
tion is (among current methods) not mandatory for optimal performance, as all decomposition
methods have a user parameter for the number of components (and thus the number of modules)
within the data.

It is important to note here that all four cluster validity indices have been devel-
oped in the context of clustering methods and were therefore never really designed
with overlap and local co-expression in mind, which could explain their low perfor-
mance with these methods. We also analysed two alternative measures, which try
to estimate the number of clusters based on the optimal enrichment of functional
terms or pathways within the modules. We found that a measure that assesses both
the coverage of all functional terms as well as the strong individual enrichment of
every module (F-aucodds) performed very well, in a large majority of cases perform-
ing better than using the optimal parameters of another dataset (Supplementary Fig.
10) and random parameter settings (Supplementary Fig. 11).

Another important parameter for most clustering methods is the distance or simi-
larity measure for comparing gene expression profiles. The most popular metric for
gene expression data is undoubtedly the Pearson’s correlation coefficient, which
measures the extent of the linear dependence between two expression profiles re-
gardless of differences in absolute expression levels. Several authors have criticised
this measure [29, 30, 31], mainly due to three limitations: (i) it ignores inverse re-
lations between genes (Figure 3.7a), (ii) it is unable to capture non-linear relation-
ships (Figure 3.7b), and (iii) it is not robust to outliers and skewed distributions
(Figure 3.7c). Several alternative measures have therefore been proposed, which try
to tackle some of these limitations (Supplementary Note 3).

56 Chapter 3 - Comparing module detection methods

0

2

4

6

B A C A D H L I G B D J E K M B N A A F A O D C Q B S B R C T E D V F G I E H

Davis-Bouldin index

Cluster validity indices
Calinski-Harabasz index
Average silhouette width

Kim-Ramakrishna

Functional enrichment
F-aucodds
Biological Homogeneity Index

A
ve

ra
ge

 s
co

re
 (

fo
ld

)

Training score

Test score

Figure 3.6: Effect of automatic parameter estimation using four different cluster valid-
ity indices and two measures based on functional enrichment on the performance of
top module detection methods. Shown are changes in test scores after parameter estimation
(either using measures based on functional enrichment in blue or cluster validity indices in red–
orange), averaged over datasets and module definitions, of the top module detection methods in
every category

To investigate whether these alternatives are able to improve the module detection,
we used 15 such measures as the input for four of the top clustering methods which
require having a similarity or distance measure as parameter. Surprisingly, none of
the alternative similarity metrics are able to improve performance of any of the four
top clustering methods (Figure 3.7d). When investigating this further, we found sev-
eral cases where these alternative measures can indeed retrieve known co-regulated
genes which were ranked lower than Pearson’s correlation, as illustrated with three
case examples (Figure 3.7a–c, e). However, when comparing the top 10% gene pairs
between Pearson’s correlation and alternative measures, more known co-regulated
gene pairs are removed than there are gained (Figure 3.7f).

Sensitivity to number of samples and noise

We next tested the influence of the number of samples within an expression dataset
on the relative performance of the top module detection methods within every cat-
egory. Although, as expected, the performance of every method declined with de-
creasing dataset size, the magnitude and timing of this decline varied strongly per
method. Notably, ICA-based decomposition methods (decomposition methods A
and B) seem to be much more sensitive to the number of samples in the dataset
compared with other methods (Figure 3.8 and Supplementary Fig. 13). On the other
hand, the performance of several network inference based methods, such as Genom-
ica (iterative NI method A) and GENIE3 (direct NI method A), remained relatively
stable with decreasing number of samples. Together, this indicates that despite its
better performance on large datasets, current matrix decomposition methods are
unable to meet the performance of clustering methods when a smaller number of
biological conditions are being considered.

57

RobustnessNon-linear relationInverse relation

10 5 0 5

Relative to Pearson correlation

(% of all known co-regulated gene pairs)
Novel pairsLost pairs

2.5 3.0 3.5 4.0
Average test score

Topological overlap measure

Mutual information (1)

Mutual information (2)

Mutual information (3)

Percentage bend correlation

Absolute Spearman's ρ

Biweight midcorrelation

Spearman's ρ

Absolute Pearson correlation

Pearson correlation

In
ve

rs
e

N
on

-li
ne

ar

R
ob

us
t

+
+
+
+
−
+
−
−
+
−

−
+
+
+
−
±
−
±
−
−

−
+
+
+
+
+
+
+
−
−

Correlation

Mutual
information

Other

a b c

d e f

Figure 3.7: Effect of alternative similarity metrics on the performance of clustering
methods. One of the most important parameters for some clustering methods is the similarity
or distance measure used to compare genes. The most popular measure, the Pearson correlation,
assesses the extent towards which the expression of two genes is linearly correlated among all
samples. Several alternative measures have been proposed, for handling inverse relationships,
non-linear effects or improve the robustness of the measure. Here we evaluated these alternative
measures on four of the top clustering methods which require a similarity or distance matrix as
input. a Example of an inverse relation between two known co-regulated genes (RLI1 and RMR1)
in the DREAM5 yeast dataset. b Example of a non-linear relation between two known coregu-
lated genes (gltA and ackA) in the DREAM5 E. coli dataset. c Example of a relation between two
known co-regulated genes (TRP4 and HIS3) with a skewed distribution and outliers. d Perfor-
mance of four clustering methods with different similarity measures, averaged over datasets and
module definitions. e For every limitation of the Pearson correlation we assessed whether alter-
native measures can handle it theoretically (+,± and -). Can the metric handle inverse relations
(+)? Can the metric detect non-linear monotonic relations (±) or more complex non-linear rela-
tions (+)? Can the method either handle outliers and/or skewed distributions (+)? Shown next to
the theoretical properties are three case studies from a, b and c. Given are the rank percentages
of every case study among all gene pairs in the datasets (higher is better). f Percentage of known
co-regulated gene pairs removed (red) and gained (blue) between the Pearson correlation and an
alternative metric within the top 10% of all gene pairs.

58 Chapter 3 - Comparing module detection methods

100 50 20 10 5 2 1 0.5
Dataset size (% of original samples)

0

2

4

6

8

T
ra

in
in

g
 s

co
re

 (
fo

ld
)

100 50 20 10 5 2 1 0.5
Dataset size (% of original samples)

0

2

4

6

8

T
e

st
 s

co
re

 (
fo

ld
)

A

A

A

A

A

Decomposition

Clustering

Biclustering

A
A

A

A
AIterative NI

Direct NI

Figure 3.8: Influence of the number of samples on the performance of the top module
detection methods. Shown are average training scores (left) and test scores (right) over all
datasets and module definitions at different levels of random subsampling (five repeats)

We also analysed the noise sensitivity of the different methods by applying different
levels of noise on the synthetic datasets. Although we saw that most methods were
similarly sensitive to noise compared with their overall performance, we found that
some methods, notably WGCNA and fuzzy c-means, were more sensitive (Supple-
mentary Fig. 14).

Discussion

Unsupervised data analysis has the potential to provide an unbiased and global
overview of biological datasets. Compared with other unsupervised clustering tasks
in biology (extensively evaluated elsewhere [26]), module detection in gene expres-
sion data is unique, because the complexity of the underlying gene regulatory net-
work poses particular challenges, such as local co-expression and overlap. These
challenges led to the development of numerous algorithms and tools specifically
dedicated to gene expression data; however, so far the comparative performance of
these methods was unclear. In this work we therefore introduced a general frame-
work for evaluating module detection methods and used it to provide a first com-
prehensive evaluation of state-of-the-art module detection methods for gene expres-
sion data. Based on this evaluation we analysed several practical aspects of module
detection, such as the choice of methods and parameter estimation, which are sum-
marised in Figure 3.9 and will be further discussed here. Moreover, we also provide
several guidelines for further development of these methods combined with what
in our view has already been accomplished, as summarised in Figure 3.10.

Module detection in gene expression data can serve a variety of roles and different
methods are better suited for particular roles (Figure 3.9a,b). Owing to the ease of
visualisation and interpretation, non-overlapping clustering methods can quickly
generate a global overview of the dataset, revealing the main expression and func-
tional effects among the different biological samples in the dataset [2]. Our analysis

59

Module detection Functional interpretationModule visualizationParameter estimation

Functional enrichment
What biological functions are over-

represented in the module?

Pathway analysis
What pathways are overrepresented
in the module, and what downstream

pathways do these induce?

Disease associations
Which modules are associated with a

particular disease?

Extracting the main
functions/pathways/diseases

Reducing redundancy

Functional
enrichment

Pathway
analysis

Disease
associations R

ea
ct

om
eP

A

gi
to

ol
s

D
A
V
ID

E
nr

ic
hr

Balancing tightness and separateness

Balancing functional coverage and
module enrichment

Supplementary Table 1 Supplementary Table 2 Supplementary Table 4Supplementary Table 3

Enrichment map, ReViGO, FGNet

B H

I L

G

E

A

B

A B

A

A

B

+ network
inference

C

A D

A

A

Relations between modules: Furby, BicOverlapper

Additional
annotations:
pheatmap
gitools
...

Interactivity: d3heatmap, plotly, gitools

Alternatives visualizations:

Interactivity:
Furby,
BicOverlapper,
ExpressionView

Parallel coordinates
Co-expression network

Alternative visualizations: Parallel coordinates

Cell cycle

DNA metabolism Development

Cell cycle

DNA
metabolism

Development

Chemotaxis

Additional
annotations:
Furby

Module 1

Module2

Module3

Connections
between modules
Cytoscape

Regulatory programs:
Genomica

Lemon-tree

nbclust, clValid, clusterCrit

Module 1 Module2

Module3

Module 1

Module2

Module3

Modules Functional terms

✓

✓

✗

Module 1

✓

✓

✗

✓

2/3 3/4

Global unsupervised
overview of the data

Modules to unravel
function and disease

Inferring regulatory
module networks

Methods should focus on:

Ease of interpretation
Ease of visualization

Methods should model:

Local co-expression
Overlap

Methods should focus on:

Accuracy of inferred network

a b c d e

Figure 3.9: Practical guidelines for module detection in gene expression data. Module
detection in gene expression data has three main applications (left; panel a). For each application,
we suggest different module detection methods (b), which in turn influences the way parameters
are estimated (c), how the modules can be visualised (d), and how they can be functionally
interpreted (e)

showed that FLAME, WGCNA, Affinity Propagation, Markov clustering (MCL), and
Spectral clustering are particularly suited for such an analysis, outperforming other
clustering methods on most datasets. However, because clustering methods do not
detect local co-expression effects, they could potentially miss relevant modules or
exclude important genes from a module. In use cases where it can be desirable
that all modules are discovered in a dataset, e.g., to generate signatures for disease,
therapy and prevention [4, 11, 32], or to find a set of genes responsible for a bio-
logical function, methods that detect such local co-expression and/or overlapping
modules could therefore provide a substantial advantage. Consistent with this, we
found that decomposition methods based on ICA were better at recovering known
modules consistently across datasets. Although a handful of studies have already
shown the potential of these methods in true biological settings [16, 23, 32], this
was never shown in direct comparison to alternative methods and/or based on ob-
jective benchmarks. Finally, a third major application of co-expression modules is
in the inference of gene regulatory networks, where modules can be used to im-
prove the network by combining information from several genes [33] but can also
improve the ease of interpretation. When we assessed the accuracy of the inferred
network by combining a state-of-the-art network inference methods with different
module detection methods, we found that ICA-based decomposition methods lead
to the highest improvement in accuracy (primarily on yeast and synthetic datasets),
closely followed by clustering and graph clustering methods (Supplementary Fig.
16). For most methods, free implementations are available either with a graphical

60 Chapter 3 - Comparing module detection methods

or programming interface, of which we give an overview in Supplementary Table
1.

The choice of method influences subsequent steps of parameter estimation, visu-
alisation, and functional interpretation (Figure 3.9c–e). For parameter estimation
we found that cluster validity indices, the Davis–Bouldin and Kim–Ramakrishna in-
dices in particular, are sufficient to estimate the parameters for most top clustering
methods. However, the performance of these measures on alternative module detec-
tion methods was generally worse than randomly selecting parameters. For these
methods, biclustering, decomposition, and direct NI in particular, we found that a
measure based on functional enrichment provides a better alternative (Figure 3.9c).
The kind of visualisation of the modules also heavily depends on the method. Al-
though the results of a non-overlapping clustering analysis can be readily visualised
using heat maps or networks [34], visualising overlapping modules requires more
complex and hierarchical visualisations (which, e.g., indicate the overlap between
modules) and is still an active research field [35, 36] (Figure 3.9d). In both cases,
additional annotations can be added to the visualisation to improve interpretation
of the modules, e.g., to indicate the functional annotation of the genes, and interac-
tivity can be used to accelerate the exploration of the modules. Finally, several tools
and databases can be used to functionally interpret the modules, to analyse what bi-
ological functions and pathways are enriched within the modules or to find whether
the module could be associated with certain diseases. To reduce redundancy in the
results of such enrichment analysis, alternative visualisation and trimming methods
can be used to extract the main biological functions, pathways, or diseases associ-
ated with particular modules (Figure 3.9e). We give an overview of freely available
methods that can be used to interpret co-expression modules in Supplementary Ta-
bles 2–5.

Apart from those listed in Figure 3.3b, there are also several other characteristics
of module detection methods, which are important to consider in practice. Non-
exhaustive module detection methods, which include some clustering methods such
as FLAME and WGCNA, do not necessarily assign every gene to at least one mod-
ule. Although this has the advantage that the method itself detects noisy expression
profiles, users should be aware that it can also remove a lot of relevant expression
profiles if the parameter values are too stringent. Network inference-based methods
are unique among the different approaches, because they also generate hypotheses
that can explain molecularly why certain genes are grouped in a module. Despite
their lower performance according to our evaluation, they could therefore still be
advantageous in certain use cases. Finally, we note that some methods are stochas-
tic, and to assure the robustness of the results users should consider re-running
the methods several times in different random states. We list these different prop-
erties of a method in Supplementary Note 2, along with a brief discussion about

61

their algorithmic approach, important parameters, and directions to freely available
implementations.

As most of the evaluation studies in the past focused only on a limited number of
methods, a direct comparison with our evaluation study is difficult [17, 19, 20, 21,
22]. Furthermore, in these evaluations major conclusions frequently rely on syn-
thetic datasets, and although it can certainly give insights into assumptions made
by certain algorithms, it cannot be used to make conclusions about the usefulness of
a particular algorithm on real datasets. Still, we acknowledge two noteworthy differ-
ences as follows: most studies find that biclustering methods outperform clustering
[19, 20] or observe substantial performance differences between graph-based, hier-
archical, and representative-based clustering methods [21, 22]. We relate these dif-
ferences mainly to issues with parameter estimation, reliance on synthetic datasets
and use of a limited number of evaluation metrics. In Supplementary Note 4 we give
an overview of past evaluation studies, the methods they evaluated, and the evalu-
ation aspects where we believe these studies are lacking. Similar to a recent study
evaluating clustering methods on several biological datasets [26], we found that no
single clustering is the best performer on all datasets, although certain methods are
certainly better than others at retrieving the known modular structure within the
data.

Nonetheless, we acknowledge that our evaluation workflow still has some limita-
tions for particular applications. As we wanted to make sure that most of the mod-
ules present in our gold standard were also differentially expressed in the expression
data, we used large expression compendia from very different biological conditions.
However, this means that when expression differences are very subtle, other meth-
ods such as biclustering could perform better. Indeed, some biclustering methods
such as FABIA are frequently used in drug discovery[37]. An evaluation focusing
on these kind of subproblems is still a possibility for future research.

The detection of overlapping and locally co-expressedmodules has been a longstand-
ing challenge in transcriptomics research. Despite great efforts towards the develop-
ment of these methods, their application on real biological data has been hampered
because of several practical challenges. Foremost, the visualisation and interpre-
tation of overlapping and locally co-expressed modules is more difficult. Despite
some efforts [35, 36], current visualisation tools, e.g., do not directly show why cer-
tain genes are grouped in a module, which can make the module detection methods
seem like a black box with unclear biological relevance. Moreover, decomposition
and biclustering methods usually have several parameters, which need to be tuned
on a dataset and which can affect the biological interpretation. Although we found
that external functional information can be used to estimate the parameters of these
methods on most datasets, the requirement for such external information can limit
their applicability on well-studied organisms. Parameter estimation of biclustering

62 Chapter 3 - Comparing module detection methods

and decomposition methods, which uses only the expression matrix itself, therefore
remains an open issue. Finally, our evaluation also indicates that the top perform-
ing decomposition methods are much more sensitive to the number of samples in a
dataset and are outperformed by clustering methods when the number of samples
is limited. We anticipate that improvements on these points (visualisation, parame-
ter estimation, and data requirements), will allow these advanced module detection
methods to gain more traction in biological research. We list some past accomplish-
ments and points for future research in Figure 3.10.

Module detection Functional interpretationModule visualizationParameter estimation

✓

±

!

Although free implementations
are available for all methods,

most are not implemented in a
graphical interface

Decomposition methods which
also perform well with less

samples are a possibility for
future research

!

Top clustering, decomposition
and biclustering methods

could be linked with top net-
work inference methods for a
seamless module detection

and network inference

✓

±
Automatic parameter estimation

could be better integrated in
graphical tools for module detec-

tion

!
Cluster validity indices for over-

lapping and/or locally co-ex-
pressed modules could be

developed, so that no external
information is necessary

±
Automatic parameter estimation

could be better integrated in
graphical tools for module detec-

tion

✓Methods to estimate parameters
for clustering methods are freely

available
Free and graphical tools of
the top clustering methods

are available

Free tools to visualize modules using heatmaps
and networks are widely available

±
Tools could combine interactivity and additional
annotations to allow an easier exploration of the

modules

±
Tools to visualize locally co-expressed modules
and their relationships are available, although

they could be better integrated with the module
detection tools themselves

!
Visualization could be used to improve the inter-

pretability of local co-expression. The reason why
genes are grouped together in a module is in some

cases difficult to answer.

±
Tools to visualize networks are available,

although visualization of a regulatory network
between individual regulators and modules is

usually difficult

!

Tools to visualize functional inter-
pretation now usually focus on
differential expression. It would

be nice if similar tools existed for
co-expression modules, for

example to get a general over-
view of the different enrichments

between the modules

!
Comparing functional enrich-
ment between modules is still

limited, eg. to find multiple
co-expression modules regulat-

ing a particular function

✓
Several free tools are available
to assess the functional rele-

vance of modules

Global unsupervised
overview of the data

Modules to unravel
function and disease

Inferring regulatory
module networks

Ease of interpretation
Ease of visualization

Local co-expression
Overlap

Accuracy of inferred network

Figure 3.10: Recommendations for future development for the detection and interpre-
tation of modules in gene expression data.
Counterpart of Figure 4.8 for developers of module detection methods. We list some aspects for
developers of methods which have already been accomplished (green), primarily with regards
to generating a global unsupervised overview of the data using clustering methods. In addition,
we list some ongoing challenges, primarily with the parameter estimation, visualisation and in-
terpretation of biclustering and decomposition methods (orange and red).

Methods

Regulatory networks and module definitions

For E. coli datasets, we used a regulatory network from the RegulonDB database ver-
sion 8 (regulondb.ccg.unam.mx, accessed 03/06/2015), a database integrating both
small-scale experimental evidence as well as genome-wide data of transcriptional
regulation [38]. We only included interactions with at least one strong evidence
type (APPH, BPP, FP, IDA, SM, TA, CHIP-SV, GEA, ROMA, and gSELEX). We did
not group the regulatory interactions at operon level, as we found that this has

regulondb.ccg.unam.mx

63

only minimal impact on the overall ranking of the different methods (Supplemen-
tary Fig. 17a). We also did not include sigma factor regulations as we found that
this would have a negligible effect on performance (Supplementary Fig. 17b). For
the yeast datasets we used two regulatory networks. One network was generated
from an integration of chromatin immunopurification-on-chip data and conserved
binding motifs as described by MacIsaac et al. [39]. Another regulatory network
was generated by combining genome-wide transcription factor binding data, knock-
out expression data, and sequence conservation [40]. We used the most stringent
dataset, which required evolutionary conservation in at least two species. For the
human datasets we used the ‘regulatory circuits’ generated by Marbach et al. [41]
in which regulators were linked with target genes through a series of steps starting
from binding motifs in active enhancers using FANTOM5 project data.

For every gold standard, we obtained sets of known modules based on three differ-
ent module definitions. We defined minimally co-regulated modules as overlapping
groups of genes that shared at least one regulator. Strictly co-regulated modules
were defined as groups of genes known to be regulated by exactly the same set
of regulators. Strongly interconnected known modules, on the other hand, were de-
fined as groups of genes that are strongly interconnected, and this does therefore not
necessarily reflect co-regulation. We used three different graph cluster algorithms
(markov clustering, transitivity clustering, and affinity propagation) with in every
case three different parameter settings representing different levels of cluster com-
pactness. For the Markov Clustering Algorithm [42] we used inflation parameters
2, 10, and 50. For transitivity clustering [43] we used two different cutoff param-
eters for the fuzzy membership 0.1 and 0.9. These two parameter settings allowed
the modules to overlap (Supplementary Fig. 18). In the third parameter setting for
transitivity clustering, we assigned every gene to the module with the highest fuzzy
membership value. For affinity propagation[44] we varied the preference value be-
tween 0.5, 2, and an automatically estimated value (see Supplementary Note 2). All
known modules were then filtered for the genes present in the expression matrix.
Finally, we filtered strongly overlapping known modules by merging two modules
if they overlapped strongly (Jaccard coefficient > 0.8) and removed small modules
by requiring at least five genes. The latter cutoff was defined based on where the
average optimal performance of all methods reached a maximum.

To further validate the knownmodules, we assessed the extent to which themodules
are co-expressed in our expression datasets. We found that all three main module
definitions generate modules which are both more globally and more locally (ac-
cording to extreme expression biclustering definition, see Supplementary Note 2)
co-expressed compared with permuted modules (Supplementary Fig. 19). Certain
module definitions, strict coregulation in particular, and datasets, E. coli, and syn-
thetic data generate modules that are better co-expressed within the expression data,
which could explain why module detection methods generally also perform better

64 Chapter 3 - Comparing module detection methods

on these datasets and module definitions (Figure 3.3c,d). We further confirmed the
biological relevance of the known modules by investigating their functional enrich-
ment. We found that on the E. coli datasets, 50–70% of all functional terms (both for
Gene Ontology (GO) [45] and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways [46]) were enriched in at least one known module, and that 60–80% of all
known modules were enriched in at least one functional term (Supplementary Fig.
20). The coverage of the whole functional space was much less on the yeast data,
with about 5–15% GO terms and 10–30% KEGG pathways covered (Supplementary
Fig. 20a). On the other hand, a substantial number of all known modules were en-
riched in at least one functional term, ranging from 30% to 60% on GO terms and
30% to 50% on KEGG pathways (Supplementary Fig. 20b). Compared with known
modules, observed modules covered the functional space in most cases a little bit
better for the top methods (Supplementary Fig. 21).

Gene expression data

We used a total of nine expression datasets for the study, two from E. coli, two from
Saccharomyces cerevisae, three human datasets, and two synthetic datasets. Datasets
consisted of hundreds of samples in various genomic and/or environmental pertur-
bational settings.

We obtained a first E. coli dataset from the Colombos database (version 2.0, www.
colombos.net) [47]. This dataset is unique among the four because it does not con-
tain raw expression values from one sample but instead contains log ratios between
test and reference conditions, which allowed the authors to integrate across dif-
ferent microarray platforms and RNA-sequencing experiments. A second E. coli
dataset was downloaded from the DREAM5 network inference challenge [15] web-
site (https://www.synapse.org/#!Synapse:syn2787209/wiki/70349).

For S. cerevisiae, we aggregated an expression compendium by integrating data
from 127 experiments (filtered on S. cerevisae samples) using the GPL2529 plat-
form from Gene Expression Omnibus (https://ncbi.nlm.nih.gov/geo). Raw expres-
sion data were normalised using Robust Multichip Average as implemented in the
Bioconductor affy package. A second yeast dataset was obtained from the DREAM5
website (https://www.synapse.org/#!Synapse:syn2787209/wiki/70349).

We obtained the human TCGA datasets from a pan-cancer study of 12 cancer types
(https://www.synapse.org/#!Synapse:syn1715755) [48]. The human GTEX dataset,
which contains expression profiles from different organs from hundreds of donors
[49], was downloaded from the GTEX website (https://www.gtexportal.org). The
SEEK GPL5175 dataset is an aggregation of public datasets using the GPL5175 mi-
croarray platform and was retrieved from https://seek.princeton.edu.

www.colombos.net
www.colombos.net
https://www.synapse.org/#!Synapse:syn2787209/wiki/70349
https://ncbi.nlm.nih.gov/geo
https://www.synapse.org/#!Synapse:syn2787209/wiki/70349
https://www.synapse.org/#!Synapse:syn1715755
https://www.gtexportal.org
https://seek.princeton.edu

65

We generated two synthetic datasets starting from the E. coli regulondb network
and yeast MacIsaac network (both described above) using GeneNetWeaver. This net-
work simulator models the gene regulation using a detailed thermodynamic model
and simulates this model using ordinary differential equations [50]. Different exper-
imental conditions were simulated using the ‘Multifactorial Perturbations’ setting,
where transcription rates for a subset of genes are randomly perturbed.

For all expression datasets we filtered out the least variable genes by requiring a
minimal standard deviation in expression of 0.5 (for yeast and E. coli) and 1 (for
human datasets). Heatmaps for every dataset can be found at Supplementary Fig.
21.

Each dataset has its own advantages and disadvantages. Real datasets better fit the
real use case and are thus the most biologically relevant, although limited availabil-
ity of gold standard can make an evaluation on real data challenging. Although our
knowledge of the regulatory networks of model micro-organisms, primarily E. coli,
is already substantial, it is still far from complete [51]. While evaluating on data
with more complex regulatory networks such as humans is certainly necessary to
ensure the broad relevance of the evaluation, the definition of gold standards on
these datasets can be even more problematic because of the broad prevalence of
false-positive and false-negative interactions due to a variety of reasons, such as
cellular context [12] and non-functional binding [52]. We therefore also included
synthetic datasets where the known regulatory network is completely given and
thus estimates of both sensitivity and precision of a method can be accurately es-
timated. Together, we believe these datasets give complementary support to our
evaluation strategy and assure its broad relevance.

Similar to a previous evaluation study of biclustering methods [53], our datasets can
contain both large differences between samples, as well as small differences, as in-
dicated by the distribution of all log-fold changes between samples (Supplementary
Fig. 22).

Module detection methods

We chose a total of 42 module detection methods based on (i) a freely available im-
plementation, (ii) performance within previous evaluation studies [17, 19, 20, 21],
and (iii) novelty of the algorithm. See Supplementary Note 2 for a brief overview of
every method and Supplementary Table 1 for an overview of the implementations
used in this study and alternative implementations. We classified all module detec-
tion methods in five major categories. We acknowledge however that the bound-
aries between the different categories are not always clear, as certain clustering and
biclustering methods, e.g., also use a matrix decomposition step within their algo-
rithm. The common theme of clustering methods is that they group genes according

66 Chapter 3 - Comparing module detection methods

to a global similarity in gene expression. Even if clusteringmethods can detect (after
some post-processing) overlapping clusters, this overlap is detected only because a
certain gene is still globally similar to both two clusters, and not necessarily because
of a local co-expression. Decomposition methods try to approximate the expression
matrix using a product of smaller matrices. Two of these matrices contain the indi-
vidual contributions of respectively genes and samples to a particular module. As
samples are allowed to contribute to a particular module only to a certain degree, de-
composition methods can detect local co-expression. Related to these methods are
biclustering methods, which detect groups of genes, and samples, which show some
local co-expression only within the bicluster. In biclustering, samples either con-
tribute to a particular module or not, in contrast to decomposition methods where
all samples contribute to a certain extent. Modules detected by biclusteringmethods
can therefore be easier to interpret compared with those of decomposition methods,
as the exact origin of the local co-expression is better defined. In some cases, a bi-
clustering method is simply an extension of an existing decomposition method but
with an extra requirement that the contribution of a gene and sample to a module
is sparse (i.e., contains lots of zeros). Direct NI methods try to generate a simple
model of gene regulation, in most cases by using the expression matrix to assign
a score to every regulator-gene pair [15]. Although their primary application is to
predict novel regulatory relationships between genes, some studies have also used
the resulting weighed regulatory network to detect gene modules [54, 55]. A list
of regulators was generated for E. coli by looking for genes annotated by GO with
either “transcription, DNA-templated,” or “DNA binding,” and for yeast and human
with “sequence-specific DNA-binding RNA polymerase II transcription factor activ-
ity.” The same list was also used for iterative NI methods, which start from an initial
clustering, and iteratively refine this clustering and an inferred regulatory network.

We further classified clustering methods according to their “induction principle,” a
classification that does not use the way clusters are represented in the algorithm (the
model), but rather looks at the optimization problem underlying the clustering al-
gorithm [56]. Graph-based clustering algorithms make use of graph-like structures,
such as K-nearest-neighbour graphs and affinity graphs, and group genes if they are
strongly connected within this graph-like structure. Representation-based methods
iteratively refine a cluster assignment and representative (such as the centroid) of
the cluster. Hierarchical clustering methods construct a hierarchy of all the genes
within the expression matrix. Finally, density-based methods detect modules by
looking at contiguous regions of high density. It should also be noted that some clus-
tering methods use elements from multiple categories. FLAME (clustering method
A), e.g., uses elements from graph-based, representative-based, and density-based
clustering, whereas affinity propagation contains both elements from graph-based
and representative-based methods. In cases like this, we ultimately classified an al-
gorithm based on which aspect of the algorithm we believe has the major impact on

67

the final clustering result. Biclustering methods were further classified according to
the type of biclusters they detect. The expression within constant biclusters remains
relatively stable, whereas the genes within extreme biclusters have a relatively high
expression in a subset of conditions compared with other genes. The expression
within pattern-based biclusters follow more complex models such as additive mod-
els [57], multiplicative models [53], and coherent evolution [58].

Post-processing steps were required for certain methods to get the results in a cor-
rect format for comparison with the known modules. All parameters for these post-
processing steps were optimised within the grid search approach (as described in
Supplementary Note 2 for every method). For fuzzy clustering methods, we ob-
tained crisp but potentially overlapping modules by placing a cutoff on the mem-
bership values. For direct NI methods, we first used a cutoff to convert the weighed
to an unweighted network, and then detected modules using the same module def-
initions as previously described. For decomposition methods we explored several
post-processing steps in literature (see Supplementary Note 2).

As gene regulatory networks, even in these model organisms, are still very incom-
plete [51], a small majority of the genes was not included in any known module
(Supplementary Fig. 23). Although we did retain these genes in the expression
matrix before module detection, we removed these genes in the observed modules
before scoring. This was to avoid a strong overestimation of the number of false
positives in the observed modules, as most of these genes probably belong to one
or more co-regulated modules, which we do not yet know. Finally, similar to the
known modules, we filtered the observed modules so that each module contained
at least five genes.

Similar to our analysis with known modules, we assessed the extent to which the
genes detected by each of the methods are co-expressed in the datasets based on
three co-expression metrics inspired by the three types of biclustering metrics (Sup-
plementary Fig. 24). (1) An overall co-expression metric using the average corre-
lation, (2) an extreme expression metric by looking at the top 5% average z-scores
for every gene in the module, and (3) the root mean-squared deviation within the
expression values of each module. For each metric, we compared the distribution
of the real modules with permuted modules by calculating the median difference
using the wilcox.test function in R. We found that every module detection method
found modules which were more strongly co-expressed than permuted modules.
Compared with the co-expression of known modules, the module detection meth-
ods also produced modules that are more strongly co-expressed. Specifically for
biclustering methods, we also investigated the co-expression only in those samples
within each bicluster. Here we found that, except for some pattern-based bicluster-
ing methods, most biclustering methods detected the type of modules, which they
are designed to detect (Supplementary Fig. 24).

68 Chapter 3 - Comparing module detection methods

Parameter tuning

Parameter tuning is a necessary but often overlooked challenge with module detec-
tion methods. All too often, evaluation studies use default parameters which were
optimized for some specific test cases by the authors. This does not correspond well
with the true biological setting, where some parameter optimization is almost al-
ways necessary to make sense of the data. Therefore, to make sure an evaluation
is as unbiased as possible, some parameter optimization is always required. How-
ever, one should be careful of overfitting parameters on specific characteristics of
one dataset, as such parameters will lead to suboptimal results when generalizing
the parameter settings to other datasets. This could again introduce a bias in the
analysis, where methods with a lot of parameters would better adapt on particular
datasets, but would not generalise well on other datasets. In this studywe tried to ad-
dress both problems as follows. We first used a grid search to explore the parameter
space of every method and determine their most optimal parameters given a certain
dataset and module definition, which resulted in a training scores. Next, in a pro-
cess akin to cross-validation, we used the optimal parameters of one training dataset
from another organism to score the performance on another test dataset, which re-
sulted in a test scores for every training dataset. As we saw that optimal parameters
were in most cases very different between synthetic and real datasets, we only used
real datasets to train parameters for other real datasets and synthetic datasets for
other synthetic datasets. We refer to Supplementary Note 2 for an overview of what
parameters were varied for every method.

Evaluation metrics

We used four different scores to compare a set of known modules with a set of ob-
served modules and, after normalisation, combined them in one overall score. Note
that classical scores comparing clusterings, such as the Rand index, the F1, or the
normalised mutual information, could not be used as these scores are unable to han-
dle overlap and/or overlap [59] (Supplementary Note 1). The recall and specificity
within the recently proposed CICE-BCubed scoring system measure whether the
number of modules containing a certain pair of genes is comparable between the
known and observed modules[60]. It is based on the Extended BCubed [59], but
reaches the perfect score of 1 only when both known and observed overlapping
clusterings are equal. If G represents all genes, M a set of known modules, M’ a set
of observed modules, M(g) the modules that contain g, and E(g, M) the set of genes
that are together with g in at least one module of M (including g itself), the precision
is defined as:

69

Precision =
1

|G|
∑
g∈G

1

|E(g,M ′)|
∑

g′∈E(g,M′)

min(|M ′(g) ∩M ′(g′)|, |M(g) ∩M(g′)|) · Φ(g, g′)
|M ′(g) ∩M ′(g′)|

where

Φ(g, g′) =
1

|M ′(g, g′)|
∑

m′∈M′(g,g′)

max
m∈M(g,g′)

Jaccard(m′,m)

Recall is calculated in the same way but with M’ and M switched. The recovery and
relevance scores, which have been previously used in evaluation studies of bicluster-
ing methods, assess whether each observed module can be matched with a known
module and vice versa [17, 19]. Relevance is defined as

Relevance = 1

|M ′|
∑

m′∈M ′

max
m∈M

Jaccard(m′,m)

Recovery is calculated in the same way but with M’ and M switched.

Before combining scores across different datasets and module definitions, we first
normalised every score by dividing it by an average score of 500 permuted versions
of the known modules (Supplementary Fig. 25). The goal of this step was to prevent
easier module structures (small modules, low number of modules, and no overlap)
of certain module definitions and datasets from disproportionally influencing the
final score. Permuted modules were generated by randomly mapping the genes of
a dataset to a random permutation of the genesand replacing every occurrence of
a gene in a known module with its mapped version. Based on this random model,
module structure (size, number, and overlap) remained the same, while only the as-
signment changed. We also tested two alternative randommodels. The STICKY ran-
dom model has been previously described [61]. We adapted this model for directed
networks by calculating the stickiness index separately for incoming and outgoing
edges. For the scale-free network [62], we used the networkx Python package with
default parameters.

We finally calculated the harmonicmean between the normalised versions of all four
scores to obtain a final score representing the performance of a particular method
on a given dataset and module definition.

For human data we used an alternative score that assesses the extent to which the
targets of every regulator are enrichedwith at least onemodule of the dataset. As de-
scribed earlier, we used the clustered version of the regulatory circuits dataset [41],
which contains weights for every regulator and target gene combination across 32

70 Chapter 3 - Comparing module detection methods

tissue and cell-type contexts. For every combination of target genes and observed
module we calculated a p-value of enrichment using a right-tailed Fisher’s exact
test (corrected for multiple testing using the Holm–Šídák procedure [63]) and the
strength of this enrichment using the odds ratio. Although we calculated these
values within every cell type and tissue context separately, we retained for every
regulator its minimal p-value and the corresponding odds ratio across the different
contexts, as we do not know the exact cell-type and tissue context inwhich the genes
of the observed modules are co-expressed. We then extracted for every regulator its
maximal odds ratio across the observed modules where the targets of the regulators
were enriched (corrected p-value < 0.1). The aucodds score was then calculated by
measuring the area under the curve formed by the percentage of regulators with an
odds ratio equal or larger than a particular cutoff and the log10 odds ratioswithin the
interval 1 and 1000-fold enrichment. To work in a cutoff-independent manner we
averaged the aucodds scores over a range of weight cutoffs. Performance generally
decreased with more stringent cutoffs (Supplementary Fig. 26a,b) although some bi-
clustering methods and direct NI methods remained more stable across a wide range
of cutoff values (Supplementary Fig. 26c,d). This score was normalised in a similar
way as previously described, where the initial known modules were defined using
the minimal co-regulation module definition and subsequently randomly permuted
by mapping the genes within the modules to a random permutation.

We reweighted the scores between datasets andmodule definitions using a weighted
mean so that module definitions (minimal co-regulation, strict co-regulation, and
interconnected subgraphs) and each organism (E. coli, yeast, human, and synthetic)
had equal influence on the final score.

Influence of overlap

We split the genes of every datasets based on whether they belonged to only one or
multiple modules using the minimal co-regulation module definition. If G* denotes
such a subset of genes in the expression matrix, we calculated a precision* score
specifically for this subset using:

Precision =
1

|G ∗ |
∑
g∈G∗

1

|E(g,M ′)|
∑

g′∈E(g,M′)

min(|M ′(g) ∩M ′(g′)|, |M(g) ∩M(g′)|) · Φ(g, g′)
|M ′(g) ∩M ′(g′)|

A Recall* score was calculated similarly but with M’ and M switched. A final score
for a particular set of genes was obtained by taking the harmonic mean between the
normalised versions of the Recall* and Precision*.

71

Automatic parameter estimation

The four cluster validity indices evaluated in this study all performedwell in a recent
evaluation study and are defined there [28]. Most indices try to optimise the balance
between tightness (the expression variability within a module) and separation (the
expression differences between modules). For metrics requiring a distance matrix,
we subtracted the absolute Pearson’s correlation from one.

We also investigated two metrics to assess the functional coherence of the modules
according to the GO database [45] and the KEGG pathways database [46]. We fil-
tered redundant gene sets by, starting from the largest gene set, removing gene sets
if they overlap too much with larger non-removed gene sets (Jaccard index > 0.7).
The biological homogeneity index measures the proportion of gene pairs within a
module which are also matched within a functional class [22]. For the F-aucodds
score we calculated an aucodds score as described earlier in both the dimension of
the gene sets (denoting how well all functional sets are covered by the observed
modules) and the dimension of the observed modules (denoting how well the mod-
ules are enriched in at least one function gene set), and combined both scores by
calculating its harmonic mean.

As automatic parameter estimation performed very poorly on non-exhaustive mod-
ule detection methods (which include some clustering methods, see Supplementary
Note 2), we assigned every unassigned gene to the module with which the average
correlation was the highest prior to calculating the cluster validity indices.

Similarity measures

For clustering methods requiring a similarity matrix as input, we used the Pearson’s
correlation in our initial evaluation. For methods requiring a dissimilarity matrix,
we subtracted the Pearson’s correlation values from two. For the comparison of
different similarity measures, we selected four top clustering methods that require
a similarity measure as input. We compared a total of 10 alternative measures that
are briefly described in Supplementary Note 3 along with directions to implemen-
tations. We did not evaluate the distance correlation, percentage bend correlation,
Hoeffding’s D, and maximal information coefficient [64], because they required ex-
cessive amounts of computational time and/or memory, which would be impractical
for module detection in general use cases. To convert a similarity matrix to a dis-
similarity matrix or vice versa, we subtracted the values from the maximal value
between all gene pairs on a given dataset. To determine the influence of an alter-
native similarity measure on the performance of clustering methods, we re-ran all
parameter optimization steps for every alternativemeasure and again calculated test
scores as described earlier.

72 Chapter 3 - Comparing module detection methods

Code availability

Code to evaluate module detection methods and further expand the evaluation are
available as Jupyter Notebooks [65, 66] (https://www.jupyter.org) at https://www.
github.com/saeyslab/moduledetection-evaluation.

Supplementary Note 1: Measures for comparing overlap-
ping modules

Numerous scores have been proposed to compare clusterings of data [67, 26, 68,
59], but most of these scores have problems with handling overlap1 and/or non-
exhaustive cluster assignment2, which has already been discussed elsewhere [59]
and which we here further illustrate using 12 small test cases (Figure 3.11). We
define two different sets of known modules, without overlap (1-6) and with overlap
(7-12). A perfect match between the observed modules and known modules is given
in case 1 and 7. In every other test case the observed modules do not perfectly cor-
respond with the known modules, and therefore the score of these test cases should
become worse compared to case 1 or 7. However, as shown in Table 3.2, none of
the classical clustering scoring metrics fulfill this criterion. Most scores have issues
when the known modules and/or observed modules overlap with each other, as the
performance on cases 4-6 and 11-12 stays the same or even increases compared to
the perfect case. Only one score can perfectly handle overlap (F-measure [26]), but
it has problems handling non-exhaustive cluster assignment, as evidenced by its
perfect score on cases 2 and 9.

Several alternative scores have been proposed in literature to better handle poten-
tial overlap between clusters/modules. In the following formulas, we use these con-
ventions: G represent all genes, M a set of known modules, M ’ a set of observed
modules, M(g) the modules which contain g and E(g,M) the set of genes which
are together with g in at least one module of M (including g itself).

One family of measures, which includes the recovery and relevance scores used in
this study, have already been extensively applied within the biclustering literature
[19, 17]. Similar scores have also independently been described elsewhere [69, 70].
These scores are calculated in two steps. First a similarity/distance matrix is calcu-
lated between the two sets of modules. There are several possibilities for this similar-
ity score, such as the Jaccard index [19] or entropy based measures [69]. In the next
step the similarity values are summarised in one number by mapping known mod-
ules to observed modules and vice versa. A score quantifying the false positives (S1)

1Defined as at least one gene belonging to multiple modules
2Defined as certain genes not included in any modules

https://www.jupyter.org
https://www.github.com/saeyslab/moduledetection-evaluation
https://www.github.com/saeyslab/moduledetection-evaluation

73

1 3 4 5 6

7

2

8 9 10 11 12

Observed modules Known modules

Known modules without overlap

Known modules with overlap

Perfect solution

Figure 3.11: 12 test cases to assess scores for comparing two sets of potentially overlap-
ping modules.

is calculated by summing/averaging the similarities for every observed modules by
selecting the best representative in the known modules. Similarly, a score quantify-
ing the false negatives (S2) is calculated by summing/averaging the similarities for
every known modules by selecting the best representative in the observed modules.
These two scores can then be combined in a final score giving the trade-off between
false positives and false negatives by summing or averaging S1 and S2.

[71] used an asymmetric measure for module similarity:

S1 = Sensitivity =
1

|M ′|
∑

m′∈M ′

max
m∈M

|m′ ∩m|
|m|

S2 = Precision =
1

|M |
∑
m∈M

max
m′∈M ′

|m′ ∩m|
|m′|

S =
2

1
S1

+ 1
S2

(Score 1)

The ”Precision” score was originally named the ”Specificity” in this study, but the
actual meaning relates more closely to the common usage of precision as it estimates
how well the observed modules are also known.

[19] used a symmetric measure for module similarity, the Jaccard index:

74 Chapter 3 - Comparing module detection methods

Known modules without overlap Known modules with overlap

F-measure [67] 1.00 0.75 0.50 1.11 1.21 1.33 1.25 0.90 0.75 0.73 1.57 2.06

F-measure [26] 1.00 1.00 0.77 0.89 0.81 0.77 1.00 0.89 1.00 0.67 0.96 0.97
1-FDR [26] 1.00 0.94 0.25 1.00 1.00 1.00 1.00 0.60 0.75 0.40 1.00 1.00
1-FPR [26] 1.00 0.92 0.50 1.00 1.00 1.00 1.00 0.50 0.62 0.40 1.00 1.00
FMI [26] 1.00 0.97 0.50 0.83 1.00 0.89 1.00 0.77 0.87 0.63 1.00 0.91

Jaccard [26] 1.00 0.94 0.25 0.70 1.00 0.80 1.00 0.60 0.75 0.40 1.00 0.83
Rand [26] 1.00 0.96 0.57 0.75 1.00 0.86 1.00 0.71 0.82 0.57 1.00 0.86

Sensitivity [26] 1.00 1.00 1.00 0.70 1.00 0.80 1.00 1.00 1.00 1.00 1.00 0.83
Specificity [26] 1.00 0.92 0.50 1.00 1.00 1.00 1.00 0.50 0.62 0.40 1.00 1.00
V-measure [26] 1.00 0.00 1.00 0.22 0.67 0.49 0.13 0.43 0.00 0.46 0.12 0.07

Purity [68] 1.00 0.75 0.62 1.00 1.38 1.25 1.25 1.00 0.75 1.00 1.62 2.00
Entropy [68] 0.56 0.00 0.67 0.61 1.17 1.01 0.68 0.67 0.00 1.05 1.06 1.09

Table 3.2: Comparison of different measures for comparing two sets of mod-
ules, based on the test cases described in Figure 3.11.
These metrics are frequently used to compare different non-overlapping and exhaus-
tive clusterings. Compared with the score on test cases 1 and 7 (grey), a good measure
should consequently score lower on cases 2-6 and 8-12 (green). This condition is not
satisfied by any of the measures.

S1 = Recovery =
1

|M |
∑
m∈M

max
m′∈M ′

Jaccard(m′,m)

S2 = Relevance = 1

|M ′|
∑

m′∈M ′

max
m∈M

Jaccard(m′,m)

Jaccard(m′,m) =
|m′ ∩m|
|m′ ∪m|

S =
2

1
S1

+ 1
S2

(Score 2)

[53] proposed a slightly modified version of the Recovery and Relevance. They
added an additional constraint so that every known module can only be mapped
to one observed module and vice versa. If pi = {mi,m

′
i} represents a pair of a

known module m and observed modules m′, the consensus score is defined as

Consensus = 1

max (|M |, |M ′|)
∑
pi∈P

Jaccard(m′,m) (Score 3)

The known modules and observed modules are matched with each other so that the
consensus score is maximised using the Hungarian algorithm (Score 3).

75

[70] proposed the Best Match scores, using the edit distance, jaccard index and an
entropy based measure (based on earlier work by [69]) as similarity measures.

S1 =
1

|M |
∑
m∈M

max
m′∈M ′

Jaccard(m′,m)

S2 =
1

|M ′|
∑

m′∈M ′

max
m∈M

Jaccard(m′,m)

S =S1 + S2 (Score 4)

S1 =
1

|M |
∑
m∈M

max
m′∈M ′

H(m′|m)

S2 =
1

|M ′|
∑

m′∈M ′

max
m∈M

H(m|m′)

S =S1 + S2 (Score 5)

Although Score 2 and Score 4 have the same S1 and S2, they differ in the way these
two scores are aggregated, i.e. a harmonic mean (Score 2) and a summation (Score
4). We did not consider the other scores proposed by [70] because they require one
or more parameters and would add another source of potential bias in the analysis.

Another family of measures is based on the BCubed measure. First proposed in [72]
to compare non-overlapping clustering, [59] extended this measure to also handle
overlap. [60] adapted the metric to make sure it can only reach the optimal value of
1 when the observed modules are the same as the known modules:

S1 = Recall = 1

|G|
∑
g∈G

1

|E(g,M)|
∑

g′∈E(g,M)

min(|M ′(g) ∩M ′(g′)|, |M(g) ∩M(g′)|) · Φ(g, g′)
|M(g) ∩M(g′)|

Φ(g, g′) =
1

|M ′(g, g′)|
∑

m′∈M′(g,g′)

max
m∈M(g,g′)

Jaccard(m′,m)

S2 = Precision =
1

|G|
∑
g∈G

1

|E(g,M ′)|
∑

g′∈E(g,M′)

min(|M ′(g) ∩M ′(g′)|, |M(g) ∩M(g′)|) · Φ(g, g′)
|M ′(g) ∩M ′(g′)|

Φ(g, g′) =
1

|M(g, g′)|
∑

m∈M(g,g′)

max
m′∈M′(g,g′)

Jaccard(m′,m)

S =
2

1
S1

+ 1
S2

(Score 6)

76 Chapter 3 - Comparing module detection methods

While we also considered including ”module preservation statistics” as proposed by
Langfelder and colleagues [73], we found that these measures are primarily useful to
assess whether individual modules are preserved within a network, but not whether
all (or most) modules present within a network are found by a particular module
detection method.

The structure and size of modules detected by module detection methods can vary
wildly between methods and parameter settings. For instance, some parameter set-
tings of decomposition methods will only assign a small number of genes to any
module. Other parameter settings will assign all genes multiple times to several
large modules. A good score should be robust against such extreme cases as they
could be produced by certain methods during the parameter optimization proce-
dure. We tested this based on an empirical experiment wherewe used a set of known
modules (from the E. coli COLOMBOS dataset using the minimal co-regulation mod-
ule definition) and compared them with several extreme cases of observed modules
(Figure 3.12):

• Two trivial clustering examples. Putting all genes together in one large mod-
ule had bad performance for all scores except for Score 5. Putting all genes in
their own separate module resulted in bad performance for all scores except
for Score 4.

• Permutations of the known modules. A certain percentage of all genes is
mapped to a permuted version of these genes, and all instances of a gene
within the known modules are replaced by the mapped version. As expected,
in all cases permuting the known modules had severe effects on performance.

• Effect of using only a subset of all known modules. Again, performance de-
creased consistently between all scores.

• Effect of randomly adding extra genes to the known modules. Score 5 re-
sponded very strongly to this relative to other perturbations.

• Effect of randomly removing genes from known modules. Again, perfor-
mance decreased in all scores, although the effect was relatively weak for
Score 5.

• Randomly sampling modules from the full solution set (all possible modules).

Overall we concluded that Score 4 and 5 respond inconsistently in certain pertur-
bational settings, while the other scores are more robust.

Finally, we tested whether these scores can better handle both overlap and non-
exhaustive cluster assignment using the test cases from Figure 3.11. We found that
only Score 1 still had problems regarding overlap in a subset of cases. The other

77

scores (Score 2, 3 and 6) all performed well according to our test cases. Together
with the strong theoretical background of Score 6 [59] and several examples of stud-
ies where Score 2 has been successfully applied to compare biclustering methods
[19, 74, 17], we chose Score 2 and Score 6 for the main evaluation study. The score
on the other metrics, together with the three most popular classical clustering eval-
uation measures are given in Supplementary Figure 8.

Known modules without overlap Known modules with overlap

Sensitivity (Score 1a) [71] 1.00 0.50 0.75 1.00 1.00 1.00 1.00 0.83 0.75 0.58 1.00 1.00
Specificity (Score 1b) [71] 1.00 1.00 1.00 0.76 1.00 0.83 1.00 1.00 1.00 1.00 1.00 0.95
F-measure (Score 1) [71] 1.00 0.67 0.86 0.86 1.00 0.91 1.00 0.91 0.86 0.74 1.00 0.98

Recovery (Score 2a) [19] 1.00 0.50 0.75 0.76 1.00 1.00 1.00 0.83 0.62 0.58 1.00 1.00
Relevance (Score 2b) [19] 1.00 1.00 0.75 0.76 0.71 0.83 1.00 0.83 1.00 0.56 0.92 0.95
F-measure (Score 2) [19] 1.00 0.67 0.75 0.76 0.83 0.91 1.00 0.83 0.77 0.57 0.96 0.98

Consensus (Score 3) [53] 1.00 0.50 0.75 0.76 0.50 0.67 1.00 0.83 0.50 0.39 0.67 0.67

Recall (Score 6a) [60] 1.00 0.75 0.34 0.81 1.00 1.00 1.00 0.56 0.64 0.30 1.00 1.00
Precision (Score 6b) [60] 1.00 0.75 0.44 0.60 0.91 0.70 1.00 0.83 0.75 0.58 0.87 0.50
F-measure (Score 6) [60] 1.00 0.75 0.39 0.69 0.95 0.82 1.00 0.67 0.69 0.40 0.93 0.67

F-measure (Score 2 and 6) 1.00 0.71 0.51 0.73 0.89 0.86 1.00 0.74 0.73 0.47 0.94 0.80

Table 3.3: Comparison of different measures for comparing two sets of mod-
ules, based on the test cases described in Figure 3.11.
Unlike the metrics in Table 3.2, all metrics have been developed for overlapping and
non-exhaustive sets of modules. Compared with the score on test cases 1 and 7 (grey),
a good score should consistently score lower on cases 2-6 and 8-12 (green).

78 Chapter 3 - Comparing module detection methods

0 1 0 1 0 1

0 900

951

1391

1829

2267

2708

0 70

259

495

750

1001

1259

1517

0 1

Score 2
Recovery/Relevance

Score 3
Consensus score

Score 1
Sensitivity/Precision

Score 4
Best match - Jaccard

Score 5
Best match - Entropy

Score 6
Recall/Precision

Higher is better Higher is betterHigher is better

Lower is better Lower is better Higher is better

Known modules
Permuted known modules

Observed modules
Permuted observed modules

Trivial: every gene in its own module
Trivial: all genes in one big module

0%
20%
40%
60%
80%

100%
100%

80%
60%
40%
20%

0%
4%
8%

12%
16%

100%
80%
60%
40%
20%
500

1000
1500
2000
2500
3000

Known modules
Permuted known modules

Observed modules
Permuted observed modules

Trivial: every gene in its own module
Trivial: all genes in one big module

0%
20%
40%
60%
80%

100%
100%

80%
60%
40%
20%

0%
4%
8%

12%
16%

100%
80%
60%
40%
20%
500

1000
1500
2000
2500
3000

Permuted known modules
(% permuted genes)

Subset of known modules

Genes added to
known modules

Genes removed
from known modules

Random modules
from full solution set

Permuted known modules
(% permuted genes)

Subset of known modules

Genes added to
known modules

Genes removed
from known modules

Random modules
from full solution set

Figure 3.12: Empirical study of the robustness of several scores comparing overlapping
clusters (as defined in Supplementary Note 1) in perturbational settings.
In every case, known modules (from the E. coli COLOMBOS dataset using the minimal co-
regulation module definition) were compared to a different set of modules given in the y-axis,
usually derived from the known modules but with a subset of genes permuted, a subset of mod-
ules selected or some random genes added or removed from the modules. As a reference we also
give the performance of the modules detected by affinity propagation (clustering methods I) at
optimal parameter settings.

79

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 te
st

 s
co

re

 (
re

co
ve

ry
 a

nd
 r

el
ev

an
ce

)

HMD H SU DT R PE A BBCA D OA BC DB FBGV A GI EFC EQA K IJ L

Figure 3.13: Comparing known and observed modules on human datasets.
Shown are the distribution of normalised test scores when comparing known modules with ob-
served modules on three human datasets (GTEX, TCGA and SEEK GPL) using the Recovery and
Relevance scores. Known modules were extracted from the regulatory circuits networks [41] at
different cutoffs using the minimal coregulation definition (as described in the Methods). We
found that none of the module detection methods consistently outperformed permuted known
modules across the different datasets and cutoffs.

While almost all module detection methods performed better than permutations of
the known modules on E. coli, yeast and synthetic data, we found that the perfor-
mance was generally very low on human datasets, rarely reaching the performance
levels of permuted modules (Figure 3.13). We reasoned that this was mainly be-
cause of the extremely high number of false positive interactions in current large-
scale human regulatory networks due to (i) promiscuous binding, (ii) context specific
regulation, (iii) the difficulty of linking binding events to the activity of a promoter
and (iv) the degeneracy of binding specificity.

We therefore developed a new score (aucodds) which, instead of looking at the exact
overlap between known and observed modules, will use the enrichment of known
targets of a particular transcription factor within the observedmodules. To calculate
the aucodds score given a regulatory network and observed modules, first the en-
richment of target genes is calculated for every observedmodule and transcriptional
regulator using a Fisher’s exact test. Next, after correction for multiple testing, we
calculate for every regulator the best odds ratio in themodules where the regulator’s
target genes are enriched (q-value < 0.1). Finally, for a range of odds-ratio cutoff
values the percentage of regulators with an equal or larger odds-ratio are calculated
and these values are combined within a final score by calculating the area under the
curve formed by the log10-cutoff values and the percentage of enriched regulators.
The score therefore not only looks at whether the targets of a regulator are enriched
in any of the modules, but also how strongly they are enriched.

We found the aucodds score to be more stable when false-positive interactions are
added to the gold standard (Figure 3.14a), while Scores 2 and 6 quickly converged
to the levels of permuted modules. Although this score is therefore much more ro-
bust against large number of false positive regulatory interactions, it conversely also
makes the score less sensitive to false positive genes in the observed modules com-
pared with previously described measures (Figure 3.14b). Nonetheless, we found

80 Chapter 3 - Comparing module detection methods

the aucodds score to be highly correlated with other scores for overlapping modules
on the E. coli, yeast and synthetic datasets across parameter settings and methods
(Figure 3.14c).

0 1

Known modules
Permuted known modules

Observed modules
Permuted observed modules

Trivial: every gene in its own module
Trivial: all genes in one big module

0%
20%
40%
60%
80%

100%
100%

80%
60%
40%
20%

0%
4%
8%

12%
16%

100%
80%
60%
40%
20%
500

1000
1500
2000
2500
3000

Permuted known modules
(% permuted genes)

Subset of known modules

Genes added to
known modules

Genes removed
from known modules

Random modules
from full solution set

0% 10% 20% 30% 40% 50% 60% 70% 80%
False positive known interactions (% of all possible interactions)

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

F-measure (Score 6)
F-measure (Score 2)
Aucodds (Score 7)

a b
Spearman’s rank correlation

E. coli

Yeast

Synthetic

c

Figure 3.14: (a) The aucodds score (Score 7) decreases more slowly than other scores with in-
creasing number of false positive regulatory interactions. (b) Empirical study of the robustness
of aucodds score (Score 7) (as defined in Supplementary Note 1) in perturbational settings.
See Figure 3.12 (c) Spearman correlation between the aucodds score and other scores on all
perturbational settings in (b).

.

81

Update

Since this paper was published in 2018, several other researchers have contacted me
with questions on how to apply the evaluation to their own methods. This includes
new (bi)clusteringmethods, but also alternative similaritymeasures or parameter es-
timation methods. Of note here is the QUBIC2 paper [75], that uses our benchmark-
ing workflow to compare against alternative biclustering algorithms. The QUBIC2
method has some modifications to work on single-cell data. In hindsight, I could
have focused much more on making the benchmark easier to extend, for example
by using conda environments and some refactoring of my code. This especially in
light of the other benchmarking study that I performed (Chapter 4).

Even though this study included only bulk transcriptomics datasets (and also still
a lot of microarray data), its results might still be highly relevant for single-cell
data. The current interest in the field mainly centers around finding and annotating
(novel) cell populations, as exemplified by the numerous cell atlas paper [76, 77].
Even for such a purpose module detection methods could still be useful, because
pooling across similarly expressed genes might be adventitious given the high levels
of noise - and in some cases zero-inflation [78]. Whether this is truly the case should
still be assessed.

In this evaluation we found that decomposition methods in particular are suitable
for capturing the modular structure of a gene expression dataset. But what then
might the future hold for these kind of methods? I think one interesting possibility
is the use of deep generative models [79, 80]. These methods learn a representation
of a dataset by creating a generative model from a deep learning network. In the
case of expression data, the expression is modelled as coming from a limited number
of cell cluster nodes and gene module nodes. As noted by the scVI/scANVI preprint,
probably the most state-of-the-art deep generative model of single-cell expression
data [81]:

Future principled efforts may focus on putting a suitable prior such as
sparsity on neural networks weights. That way, individual neurons of

the last hidden layer of the generative model would correspond to
individual gene modules, directly readable from the weight sparsity

motifs.

82 Chapter 3 - Comparing module detection methods

Indeed, one recent paper [82] proposes such a method.

Finally, as a meta-research side note, this paper really exemplifies the importance
of preprints. Although I generated the main results already within one year of my
PhD in 2015, it was only after several rounds of appeals, revisions, journal changes
and final journal editing, that the study was finally public March 2018. This was
after I was already finishing up the other large benchmarking study (which was put
on bioRxiv at the start of March 2018, Chapter 4). During these rounds of revisions,
several other studies were published that could have used some of the results of
this paper, such as new biclustering methods [83, 84], other evaluation studies [85],
applications of methods [86], and reviews [87].

83

References

[1] M. B. Eisen et al. “Cluster Analysis and Display of Genome-Wide Expression Patterns”. In:
Proceedings of the National Academy of Sciences of the United States of America 95.25 (Dec. 8,
1998), pp. 14863–14868. issn: 0027-8424. doi: 10.1073/pnas.95.25.14863.

[2] Patrik D’haeseleer. “How Does Gene Expression Clustering Work?” In: Nature Biotechnology
23.12 (Dec. 2005), pp. 1499–1501. issn: 1087-0156. doi: 10.1038/nbt1205-1499.

[3] Damien Chaussabel and Nicole Baldwin. “Democratizing Systems Immunology with Modu-
lar Transcriptional Repertoire Analyses”. In: Nature Reviews. Immunology 14.4 (Apr. 2014),
pp. 271–280. issn: 1474-1741. doi: 10.1038/nri3642.

[4] Irina Voineagu et al. “Transcriptomic Analysis of Autistic Brain Reveals ConvergentMolecular
Pathology”. In: Nature 474.7351 (May 25, 2011), pp. 380–384. issn: 1476-4687. doi: 10.1038/
nature10110.

[5] Luke Jostins et al. “Host-Microbe Interactions Have Shaped the Genetic Architecture of In-
flammatory Bowel Disease”. In: Nature 491.7422 (Nov. 1, 2012), pp. 119–124. issn: 1476-4687.
doi: 10.1038/nature11582.

[6] Nir Yosef et al. “Dynamic Regulatory Network Controlling TH17 Cell Differentiation”. In: Na-
ture 496.7446 (Apr. 25, 2013), pp. 461–468. issn: 1476-4687. doi: 10.1038/nature11981.

[7] Vladimir Jojic et al. “Identification of Transcriptional Regulators in the Mouse Immune Sys-
tem”. In: Nature Immunology 14.6 (June 2013), pp. 633–643. issn: 1529-2916. doi: 10.1038/ni.
2587.

[8] Franziska Paul et al. “Transcriptional Heterogeneity and Lineage Commitment in Myeloid
Progenitors”. In: Cell 164.1-2 (Jan. 14, 2016), p. 325. issn: 1097-4172. doi: 10.1016/j.cell.2015.
12.046.

[9] Qian Zhu et al. “Targeted Exploration and Analysis of Large Cross-Platform Human Tran-
scriptomic Compendia”. In: Nature Methods 12.3 (Mar. 2015), 211–214, 3 p following 214. issn:
1548-7105. doi: 10.1038/nmeth.3249.

[10] Laia Alsina et al. “A Narrow Repertoire of Transcriptional Modules Responsive to Pyogenic
Bacteria Is Impaired in Patients Carrying Loss-of-Function Mutations in MYD88 or IRAK4”.
In: Nature Immunology 15.12 (Dec. 2014), pp. 1134–1142. issn: 1529-2916. doi: 10.1038/ni.3028.

[11] Damien Chaussabel et al. “A Modular Analysis Framework for Blood Genomics Studies: Ap-
plication to Systemic Lupus Erythematosus”. In: Immunity 29.1 (July 18, 2008), pp. 150–164.
issn: 1097-4180. doi: 10.1016/j.immuni.2008.05.012.

[12] Shane Neph et al. “Circuitry and Dynamics of Human Transcription Factor Regulatory Net-
works”. In: Cell 150.6 (Sept. 14, 2012), pp. 1274–1286. issn: 1097-4172. doi: 10.1016/j.cell.2012.
04.040.

[13] Mark B. Gerstein et al. “Architecture of the Human Regulatory Network Derived from EN-
CODE Data”. In: Nature 489.7414 (Sept. 6, 2012), pp. 91–100. issn: 1476-4687. doi: 10 .1038/
nature11245.

[14] Andrea Oeckinghaus, Matthew S. Hayden, and Sankar Ghosh. “Crosstalk in NF-κB Signaling
Pathways”. In: Nature Immunology 12.8 (July 19, 2011), pp. 695–708. issn: 1529-2916. doi: 10.
1038/ni.2065.

[15] Daniel Marbach et al. “Wisdom of Crowds for Robust Gene Network Inference”. In: Nature
Methods 9.8 (July 15, 2012), pp. 796–804. issn: 1548-7105. doi: 10.1038/nmeth.2016.

[16] Maxime Rotival et al. “Integrating Genome-Wide Genetic Variations and Monocyte Expres-
sion Data Reveals Trans-Regulated Gene Modules in Humans”. In: PLoS genetics 7.12 (Dec.
2011), e1002367. issn: 1553-7404. doi: 10.1371/journal.pgen.1002367.

[17] Kemal Eren et al. “A Comparative Analysis of Biclustering Algorithms for Gene Expression
Data”. In: Briefings in Bioinformatics 14.3 (May 2013), pp. 279–292. issn: 1477-4054. doi: 10 .
1093/bib/bbs032.

https://doi.org/10.1073/pnas.95.25.14863
https://doi.org/10.1038/nbt1205-1499
https://doi.org/10.1038/nri3642
https://doi.org/10.1038/nature10110
https://doi.org/10.1038/nature10110
https://doi.org/10.1038/nature11582
https://doi.org/10.1038/nature11981
https://doi.org/10.1038/ni.2587
https://doi.org/10.1038/ni.2587
https://doi.org/10.1016/j.cell.2015.12.046
https://doi.org/10.1016/j.cell.2015.12.046
https://doi.org/10.1038/nmeth.3249
https://doi.org/10.1038/ni.3028
https://doi.org/10.1016/j.immuni.2008.05.012
https://doi.org/10.1016/j.cell.2012.04.040
https://doi.org/10.1016/j.cell.2012.04.040
https://doi.org/10.1038/nature11245
https://doi.org/10.1038/nature11245
https://doi.org/10.1038/ni.2065
https://doi.org/10.1038/ni.2065
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1371/journal.pgen.1002367
https://doi.org/10.1093/bib/bbs032
https://doi.org/10.1093/bib/bbs032

84 Chapter 3 - Comparing module detection methods

[18] Sushmita Roy et al. “Integrated Module and Gene-Specific Regulatory Inference Implicates
Upstream Signaling Networks”. In: PLoS computational biology 9.10 (2013), e1003252. issn:
1553-7358. doi: 10.1371/journal.pcbi.1003252.

[19] Amela Prelić et al. “A Systematic Comparison and Evaluation of Biclustering Methods for
Gene Expression Data”. In: Bioinformatics (Oxford, England) 22.9 (May 1, 2006), pp. 1122–1129.
issn: 1367-4803. doi: 10.1093/bioinformatics/btl060.

[20] Ali Oghabian et al. “Biclustering Methods: Biological Relevance and Application in Gene Ex-
pression Analysis”. In: PloS One 9.3 (2014), e90801. issn: 1932-6203. doi: 10.1371/journal.pone.
0090801.

[21] Anbupalam Thalamuthu et al. “Evaluation and Comparison of Gene Clustering Methods in
Microarray Analysis”. In: Bioinformatics (Oxford, England) 22.19 (Oct. 1, 2006), pp. 2405–2412.
issn: 1367-4811. doi: 10.1093/bioinformatics/btl406.

[22] Susmita Datta and Somnath Datta. “Methods for Evaluating Clustering Algorithms for Gene
Expression Data Using a Reference Set of Functional Classes”. In: BMC bioinformatics 7
(Aug. 31, 2006), p. 397. issn: 1471-2105. doi: 10.1186/1471-2105-7-397.

[23] Andrew E. Teschendorff et al. “Elucidating the Altered Transcriptional Programs in Breast
Cancer Using Independent Component Analysis”. In: PLoS computational biology 3.8 (Aug.
2007), e161. issn: 1553-7358. doi: 10.1371/journal.pcbi.0030161.

[24] Limin Fu and Enzo Medico. “FLAME, a Novel Fuzzy Clustering Method for the Analysis of
DNA Microarray Data”. In: BMC bioinformatics 8 (Jan. 4, 2007), p. 3. issn: 1471-2105. doi:
10.1186/1471-2105-8-3.

[25] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. “The Self-Assessment Trap: Can
We All Be Better than Average?” In: Molecular Systems Biology 7 (Oct. 11, 2011), p. 537. issn:
1744-4292. doi: 10.1038/msb.2011.70.

[26] Christian Wiwie, Jan Baumbach, and Richard Röttger. “Comparing the Performance of
Biomedical Clustering Methods”. In: Nature Methods 12.11 (Nov. 2015), pp. 1033–1038. issn:
1548-7105. doi: 10.1038/nmeth.3583.

[27] Stefano Monti et al. “Consensus Clustering: A Resampling-Based Method for Class Discovery
and Visualization of Gene Expression Microarray Data”. In: Machine Learning 52.1 (July 1,
2003), pp. 91–118. issn: 1573-0565. doi: 10.1023/A:1023949509487.

[28] Olatz Arbelaitz et al. “An Extensive Comparative Study of Cluster Validity Indices”. In: Pattern
Recognition 46.1 (Jan. 1, 2013), pp. 243–256. issn: 0031-3203. doi: 10.1016/j.patcog.2012.07.021.

[29] Ido Priness, Oded Maimon, and Irad Ben-Gal. “Evaluation of Gene-Expression Clustering via
Mutual Information Distance Measure”. In: BMC bioinformatics 8 (Mar. 30, 2007), p. 111. issn:
1471-2105. doi: 10.1186/1471-2105-8-111.

[30] Andy M. Yip and Steve Horvath. “Gene Network Interconnectedness and the Generalized
Topological Overlap Measure”. In: BMC bioinformatics 8 (Jan. 24, 2007), p. 22. issn: 1471-2105.
doi: 10.1186/1471-2105-8-22.

[31] Lin Song, Peter Langfelder, and Steve Horvath. “Comparison of Co-Expression Measures: Mu-
tual Information, Correlation, and Model Based Indices”. In: BMC bioinformatics 13 (Dec. 9,
2012), p. 328. issn: 1471-2105. doi: 10.1186/1471-2105-13-328.

[32] Konrad J. Karczewski et al. “Coherent Functional Modules Improve Transcription Factor Tar-
get Identification, Cooperativity Prediction, and Disease Association”. In: PLoS genetics 10.2
(Feb. 2014), e1004122. issn: 1553-7404. doi: 10.1371/journal.pgen.1004122.

[33] Riet De Smet and Kathleen Marchal. “Advantages and Limitations of Current Network Infer-
ence Methods”. In: Nature Reviews. Microbiology 8.10 (Oct. 2010), pp. 717–729. issn: 1740-1534.
doi: 10.1038/nrmicro2419.

[34] Peter Langfelder and Steve Horvath. “WGCNA: An R Package for Weighted Correlation Net-
work Analysis”. In: BMC bioinformatics 9 (Dec. 29, 2008), p. 559. issn: 1471-2105. doi: 10.1186/
1471-2105-9-559.

https://doi.org/10.1371/journal.pcbi.1003252
https://doi.org/10.1093/bioinformatics/btl060
https://doi.org/10.1371/journal.pone.0090801
https://doi.org/10.1371/journal.pone.0090801
https://doi.org/10.1093/bioinformatics/btl406
https://doi.org/10.1186/1471-2105-7-397
https://doi.org/10.1371/journal.pcbi.0030161
https://doi.org/10.1186/1471-2105-8-3
https://doi.org/10.1038/msb.2011.70
https://doi.org/10.1038/nmeth.3583
https://doi.org/10.1023/A:1023949509487
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1186/1471-2105-8-111
https://doi.org/10.1186/1471-2105-8-22
https://doi.org/10.1186/1471-2105-13-328
https://doi.org/10.1371/journal.pgen.1004122
https://doi.org/10.1038/nrmicro2419
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559

85

[35] Marc Streit et al. “Furby: Fuzzy Force-Directed Bicluster Visualization”. In: BMC bioinformatics
15 Suppl 6 (2014), S4. issn: 1471-2105. doi: 10.1186/1471-2105-15-S6-S4.

[36] Rodrigo Santamaría, Roberto Therón, and Luis Quintales. “BicOverlapper 2.0: Visual Analysis
for Gene Expression”. In: Bioinformatics (Oxford, England) 30.12 (June 15, 2014), pp. 1785–1786.
issn: 1367-4811. doi: 10.1093/bioinformatics/btu120.

[37] Bie Verbist et al. “Using Transcriptomics to Guide Lead Optimization in Drug Discovery
Projects: Lessons Learned from the QSTAR Project”. In: Drug Discovery Today 20.5 (May 2015),
pp. 505–513. issn: 1878-5832. doi: 10.1016/j.drudis.2014.12.014.

[38] Heladia Salgado et al. “RegulonDB v8.0: Omics Data Sets, Evolutionary Conservation, Regu-
latory Phrases, Cross-Validated Gold Standards and More”. In: Nucleic Acids Research 41.D1
(Jan. 1, 2013), pp. D203–D213. issn: 0305-1048. doi: 10.1093/nar/gks1201.

[39] Sisi Ma et al. “De-Novo Learning of Genome-Scale Regulatory Networks in S. Cerevisiae”. In:
PloS One 9.9 (2014), e106479. issn: 1932-6203. doi: 10.1371/journal.pone.0106479.

[40] Kenzie D.MacIsaac et al. “An ImprovedMap of Conserved Regulatory Sites for Saccharomyces
Cerevisiae”. In: BMC bioinformatics 7 (Mar. 7, 2006), p. 113. issn: 1471-2105. doi: 10.1186/1471-
2105-7-113.

[41] Daniel Marbach et al. “Tissue-Specific Regulatory Circuits Reveal Variable Modular Perturba-
tions across Complex Diseases”. In: Nature Methods 13.4 (Apr. 2016), pp. 366–370. issn: 1548-
7105. doi: 10.1038/nmeth.3799.

[42] S.M. van Dongen et al. “Graph Clustering by Flow Simulation”. In: (Feb. 2001).
[43] Tobias Wittkop et al. “Partitioning Biological Data with Transitivity Clustering”. In: Nature

Methods 7.6 (June 2010), pp. 419–420. issn: 1548-7105. doi: 10.1038/nmeth0610-419.
[44] Brendan J. Frey and Delbert Dueck. “Clustering by Passing Messages between Data Points”.

In: Science (New York, N.Y.) 315.5814 (Feb. 16, 2007), pp. 972–976. issn: 1095-9203. doi: 10.1126/
science.1136800.

[45] “Gene Ontology Consortium: Going Forward”. In: Nucleic Acids Research 43.D1 (Jan. 28, 2015),
pp. D1049–D1056. issn: 0305-1048. doi: 10.1093/nar/gku1179.

[46] Minoru Kanehisa et al. “KEGG as a Reference Resource for Gene and Protein Annotation”. In:
Nucleic Acids Research 44.D1 (Jan. 4, 2016), pp. D457–462. issn: 1362-4962. doi: 10.1093/nar/
gkv1070.

[47] Pieter Meysman et al. “COLOMBOS v2.0: An Ever Expanding Collection of Bacterial Expres-
sion Compendia”. In: Nucleic Acids Research 42 (Database issue Jan. 2014), pp. D649–653. issn:
1362-4962. doi: 10.1093/nar/gkt1086.

[48] Katherine A. Hoadley et al. “Multiplatform Analysis of 12 Cancer Types Reveals Molecular
Classification within and across Tissues of Origin”. In: Cell 158.4 (Aug. 14, 2014), pp. 929–944.
issn: 1097-4172. doi: 10.1016/j.cell.2014.06.049.

[49] “The Genotype-Tissue Expression (GTEx) Pilot Analysis: Multitissue Gene Regulation in Hu-
mans”. In: Science (New York, N.Y.) 348.6235 (May 8, 2015), pp. 648–660. issn: 0036-8075. doi:
10.1126/science.1262110.

[50] Thomas Schaffter, Daniel Marbach, and Dario Floreano. “GeneNetWeaver: In Silico Bench-
mark Generation and Performance Profiling of Network Inference Methods”. In: Bioinformat-
ics (Oxford, England) 27.16 (Aug. 15, 2011), pp. 2263–2270. issn: 1367-4811. doi: 10 . 1093 /
bioinformatics/btr373.

[51] Richard Röttger et al. “How Little Do We Actually Know? On the Size of Gene Regulatory
Networks”. In: IEEE/ACM transactions on computational biology and bioinformatics 9.5 (2012),
pp. 1293–1300. issn: 1557-9964. doi: 10.1109/TCBB.2012.71.

[52] François Spitz and Eileen E. M. Furlong. “Transcription Factors: From Enhancer Binding to
Developmental Control”. In:Nature Reviews. Genetics 13.9 (Sept. 2012), pp. 613–626. issn: 1471-
0064. doi: 10.1038/nrg3207.

https://doi.org/10.1186/1471-2105-15-S6-S4
https://doi.org/10.1093/bioinformatics/btu120
https://doi.org/10.1016/j.drudis.2014.12.014
https://doi.org/10.1093/nar/gks1201
https://doi.org/10.1371/journal.pone.0106479
https://doi.org/10.1186/1471-2105-7-113
https://doi.org/10.1186/1471-2105-7-113
https://doi.org/10.1038/nmeth.3799
https://doi.org/10.1038/nmeth0610-419
https://doi.org/10.1126/science.1136800
https://doi.org/10.1126/science.1136800
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/gkt1086
https://doi.org/10.1016/j.cell.2014.06.049
https://doi.org/10.1126/science.1262110
https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1109/TCBB.2012.71
https://doi.org/10.1038/nrg3207

86 Chapter 3 - Comparing module detection methods

[53] Sepp Hochreiter et al. “FABIA: Factor Analysis for Bicluster Acquisition”. In: Bioinformat-
ics (Oxford, England) 26.12 (June 15, 2010), pp. 1520–1527. issn: 1367-4811. doi: 10 . 1093 /
bioinformatics/btq227.

[54] Vanessa Vermeirssen et al. “Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Net-
work Discloses Interconnected Transcription Factors in Oxidative Stress”. In: The Plant Cell
26.12 (Dec. 2014), pp. 4656–4679. issn: 1532-298X. doi: 10.1105/tpc.114.131417.

[55] Archana Ramesh et al. “Clustering Context-Specific Gene Regulatory Networks.” In: Pacific
Symposium on Biocomputing. Pacific Symposium on Biocomputing (Jan. 2010), pp. 444–55. issn:
2335-6936.

[56] Vladimir Estivill-Castro. “Why so Many Clustering Algorithms”. In: ACM SIGKDD Explo-
rations Newsletter 4.1 (June 2002), pp. 65–75. issn: 19310145. doi: 10.1145/568574.568575.

[57] L Lazzeroni and A Owen. “Plaid Models for Gene Expression Data”. In: Statistica sinica (2002).
[58] Amir Ben-Dor et al. “Discovering Local Structure in Gene Expression Data: The Order-

Preserving Submatrix Problem”. In: Journal of Computational Biology: A Journal of Compu-
tational Molecular Cell Biology 10.3-4 (2003), pp. 373–384. issn: 1066-5277. doi: 10 . 1089 /
10665270360688075.

[59] Enrique Amigó et al. “A Comparison of Extrinsic Clustering Evaluation Metrics Based on
Formal Constraints”. In: Information Retrieval 12.4 (July 2008), pp. 461–486. issn: 1386-4564.
doi: 10.1007/s10791-008-9066-8.

[60] Henry Rosales-Méndez and Yunior Raḿırez-Cruz. “CICE-BCubed: A New EvaluationMeasure
for Overlapping Clustering Algorithms”. In: Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Application. Vol. 8258. Lecture Notes in Computer Science. Springer,
Heidelberg, Germany, 2013, pp. 157–164. isbn: 978-3-642-41821-1. doi: 10.1007/978- 3- 642-
41822-8\{_\}20.

[61] Natasa Przulj and Desmond J. Higham. “Modelling Protein-Protein Interaction Networks via
a Stickiness Index”. In: Journal of the Royal Society, Interface 3.10 (Oct. 22, 2006), pp. 711–716.
issn: 1742-5689. doi: 10.1098/rsif.2006.0147.

[62] B Bollobás et al. “Directed Scale-Free Graphs”. In: Proceedings of the (2003).
[63] Stanton A. Glantz. Primer of Biostatistics. McGraw-Hill Medical Pub, 2005. 520 pp. isbn: 0-07-

143509-3.
[64] David N. Reshef et al. “Detecting Novel Associations in Large Data Sets”. In: Science (New York,

N.Y.) 334.6062 (Dec. 16, 2011), pp. 1518–1524. issn: 1095-9203. doi: 10.1126/science.1205438.
[65] Helen Shen. “Interactive Notebooks: Sharing the Code”. In: Nature 515.7525 (Nov. 6, 2014),

pp. 151–152. issn: 1476-4687. doi: 10.1038/515151a.
[66] F. Perez and B. E. Granger. “IPython: A System for Interactive Scientific Computing”. In: Com-

puting in Science Engineering 9.3 (May 2007), pp. 21–29. issn: 1521-9615. doi: 10.1109/MCSE.
2007.53.

[67] Nima Aghaeepour et al. “Critical Assessment of Automated Flow Cytometry Data Analysis
Techniques.” In: Nature methods 10.3 (Mar. 2013), pp. 228–38. issn: 1548-7105. doi: 10.1038/
nmeth.2365.

[68] E Rendón and I Abundez. “Internal versus External Cluster Validation Indexes”. In: Interna-
tional Journal of … (2011).

[69] A Lancichinetti, S Fortunato, and J Kertész. “Detecting the Overlapping and Hierarchical Com-
munity Structure in Complex Networks”. In: New Journal of Physics (2009).

[70] MK Mark K. Goldberg, Mykola Hayvanovych, and Malik Magdon-Ismail. “Measuring Simi-
larity between Sets of Overlapping Clusters”. In: 2010 IEEE Second International Conference
on Social Computing. IEEE, Aug. 2010, pp. 303–308. isbn: 978-1-4244-8439-3. doi: 10 . 1109 /
SocialCom.2010.50.

[71] Heather Turner, Trevor Bailey, andWojtek Krzanowski. “Improved Biclustering of Microarray
Data Demonstrated through Systematic Performance Tests”. In: Comput. Stat. Data Anal. 48.2
(2005), pp. 235–254.

https://doi.org/10.1093/bioinformatics/btq227
https://doi.org/10.1093/bioinformatics/btq227
https://doi.org/10.1105/tpc.114.131417
https://doi.org/10.1145/568574.568575
https://doi.org/10.1089/10665270360688075
https://doi.org/10.1089/10665270360688075
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1007/978-3-642-41822-8\{_\}20
https://doi.org/10.1007/978-3-642-41822-8\{_\}20
https://doi.org/10.1098/rsif.2006.0147
https://doi.org/10.1126/science.1205438
https://doi.org/10.1038/515151a
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1038/nmeth.2365
https://doi.org/10.1038/nmeth.2365
https://doi.org/10.1109/SocialCom.2010.50
https://doi.org/10.1109/SocialCom.2010.50

87

[72] Breck Baldwin Amit Bagga. “Entity-Based Cross-Document Coreferencing Using the Vector
Space Model”. In: Proceedings of the 17th International Conference on Computational Linguistics.
Association for Computational Linguistics, 1998, pp. 79–85. doi: 10.3115/980451.980859.

[73] Peter Langfelder et al. “Is My Network Module Preserved and Reproducible?” In: PLoS compu-
tational biology 7.1 (Jan. 2011), e1001057. issn: 1553-7358. doi: 10.1371/journal.pcbi.1001057.

[74] Guojun Li et al. “{QUBIC}: A Qualitative Biclustering Algorithm for Analyses of Gene Expres-
sion Data”. In: Nucleic Acids Res. 37.15 (Aug. 2009), e101.

[75] Juan Xie et al. “QUBIC2: A Novel Biclustering Algorithm for Large-Scale Bulk RNA-
Sequencing and Single-Cell RNA-Sequencing Data Analysis”. In: bioRxiv (Sept. 7, 2018),
p. 409961. doi: 10.1101/409961.

[76] Aviv Regev et al. “Science Forum: The Human Cell Atlas”. In: eLife 6 (Dec. 5, 2017), e27041.
issn: 2050-084X. doi: 10.7554/eLife.27041.

[77] Xiaoping Han et al. “Mapping the Mouse Cell Atlas by Microwell-Seq”. In: Cell 172.5 (Feb. 22,
2018), 1091–1107.e17. issn: 1097-4172. doi: 10.1016/j.cell.2018.02.001.

[78] Justin D. Silverman et al. “Naught All Zeros in Sequence Count Data Are the Same”. In: bioRxiv
(Nov. 26, 2018), p. 477794. doi: 10.1101/477794.

[79] Romain Lopez et al. “Deep Generative Modeling for Single-Cell Transcriptomics”. In: Nature
Methods 15.12 (Dec. 2018), p. 1053. issn: 1548-7105. doi: 10.1038/s41592-018-0229-2.

[80] Jiarui Ding, Anne Condon, and Sohrab P. Shah. “Interpretable Dimensionality Reduction of
Single Cell Transcriptome Data with Deep Generative Models”. In: Nature Communications
9.1 (May 21, 2018), p. 2002. issn: 2041-1723. doi: 10.1038/s41467-018-04368-5.

[81] Chenling Xu et al. “Harmonization and Annotation of Single-Cell Transcriptomics Data with
Deep Generative Models”. In: bioRxiv (Jan. 29, 2019), p. 532895. doi: 10.1101/532895.

[82] Tian Tian et al. “Clustering Single-Cell RNA-Seq Data with a Model-Based Deep Learning
Approach”. In: Nature Machine Intelligence 1.4 (Apr. 2019), p. 191. issn: 2522-5839. doi: 10 .
1038/s42256-019-0037-0.

[83] Anindya Bhattacharya and Yan Cui. “A GPU-Accelerated Algorithm for Biclustering Analysis
and Detection of Condition-Dependent Coexpression Network Modules”. In: Scientific Reports
7.1 (June 23, 2017), p. 4162. issn: 2045-2322. doi: 10.1038/s41598-017-04070-4.

[84] Peng Qiu. “Embracing the Dropouts in Single-Cell RNA-Seq Data”. In: bioRxiv (Nov. 17, 2018),
p. 468025. doi: 10.1101/468025.

[85] Victor A. Padilha and Ricardo J. G. B. Campello. “A Systematic Comparative Evaluation of
Biclustering Techniques”. In: BMC Bioinformatics 18.1 (Jan. 23, 2017), p. 55. issn: 1471-2105.
doi: 10.1186/s12859-017-1487-1.

[86] Amit Zeisel et al. “Brain Structure. Cell Types in theMouse Cortex andHippocampus Revealed
by Single-Cell RNA-Seq”. In: Science (New York, N.Y.) 347.6226 (Mar. 6, 2015), pp. 1138–1142.
issn: 1095-9203. doi: 10.1126/science.aaa1934.

[87] Juan Xie et al. “It Is Time to Apply Biclustering: A Comprehensive Review of Biclustering
Applications in Biological and Biomedical Data”. In: Briefings in Bioinformatics (). doi: 10 .
1093/bib/bby014.

https://doi.org/10.3115/980451.980859
https://doi.org/10.1371/journal.pcbi.1001057
https://doi.org/10.1101/409961
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1101/477794
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41467-018-04368-5
https://doi.org/10.1101/532895
https://doi.org/10.1038/s42256-019-0037-0
https://doi.org/10.1038/s42256-019-0037-0
https://doi.org/10.1038/s41598-017-04070-4
https://doi.org/10.1101/468025
https://doi.org/10.1186/s12859-017-1487-1
https://doi.org/10.1126/science.aaa1934
https://doi.org/10.1093/bib/bby014
https://doi.org/10.1093/bib/bby014

4 | Comparing trajectory infer-
ence methods

The idea behind trajectory inference methods is simple: if the expression of a cell
changes gradually during a dynamic process (such as differentiation), we can find
common paths that cells take by connecting cells with similar expression profiles.
When I first read the landmark papers describing these methods, I was primarily im-
pressed by the possibilities they may offer in immunology. Immune cells constantly
change and adapt, both while differentiating, steady-state and during an immune
response. If you could reconstruct these dynamics, it would give us tremendous
insights into their development and function, and what happens during diseases.

However, we quickly found out that this was easier said then done. Methods often
required prior information such as a starting cell, which would introduce a bias.
Moreover, a lot of methods performed poorly on our datasets, or were too sensitive
to outliers for them to be useful. Together with a colleague PhD student, Robrecht
Cannoodt, we thus began developing a benchmarking pipeline to compare these
methods, and try to improve them along the way.

I have embedded the most relevant supplementary material directly within this thesis,
including Supplementary Note 1. Other supplementary material is available at https:
//www.nature.com/articles/s41587-019-0071-9#Sec34

At the end of this chapter, I discuss some issues that have popped up after the publication
of this paper (section Update).

https://www.nature.com/articles/s41587-019-0071-9#Sec34
https://www.nature.com/articles/s41587-019-0071-9#Sec34

90 Chapter 4 - Comparing trajectory inference methods

A comparison of single-cell trajectory inference methods

Published in Nature Biotechnology, March 15 2018, doi.org/gfxsgd
Wouter Saelens*, Robrecht Cannoodt*, Helena Todorov, Yvan Saeys
*: Equal contribution

Contributions
The design, execution and writing of this work was completely shared with Ro-
brecht Cannoodt. Given the intense collaboration, it is difficult to say which parts
of the work were done by me, because of frequent redesigning of each other’s fig-
ures, refactoring of each other’s code and implementation of each other’s ideas.

Designed the study: Wouter Saelens, Robrecht Cannoodt, Helena Todorov and
Yvan Saeys
Performed the experiments and analysed the data: Wouter Saelens and Robrecht
Cannoodt
Implemented software packages: Wouter Saelens, Robrecht Cannoodt and Helena
Todorov
Prepared the manuscript: Wouter Saelens, Robrecht Cannoodt, Helena Todorov
and Yvan Saeys
Supervised the work: Yvan Saeys

Abstract
Trajectory inference approaches analyse genome-wide omics data from thousands
of single cells and computationally infer the order of these cells along developmental
trajectories. Although more than 70 trajectory inference tools have already been
developed, it is challenging to compare their performance because the input they
require and output models they produce vary substantially. Here, we benchmark
45 of these methods on 110 real and 229 synthetic datasets for cellular ordering,
topology, scalability and usability. Our results highlight the complementarity of
existing tools, and that the choice of method should depend mostly on the dataset
dimensions and trajectory topology. Based on these results, we develop a set of
guidelines to help users select the best method for their dataset. Our freely available
data and evaluation pipeline (benchmark.dynverse.org) will aid in the development
of improved tools designed to analyse increasingly large and complex single-cell
datasets.

doi.org/gfxsgd
https://benchmark.dynverse.org

91

Introduction

Single-cell omics data, including transcriptomics, proteomics and epigenomics data,
provide new opportunities for studying cellular dynamic processes, such as the cell
cycle, cell differentiation and cell activation [1, 2]. Such dynamic processes can be
modeled computationally using trajectory inference (TI) methods, also called pseu-
dotime analysis, which order cells along a trajectory based on similarities in their
expression patterns [3, 4, 5]. The resulting trajectories are most often linear, bifurcat-
ing or tree-shaped, but more recent methods also identify more complex trajectory
topologies, such as cyclic [6] or disconnected graphs [7]. TI methods offer an un-
biased and transcriptome-wide understanding of a dynamic process [1], thereby al-
lowing the objective identification of new (primed) subsets of cells [8], delineation of
a differentiation tree [9, 10] and inference of regulatory interactions responsible for
one or more bifurcations [11]. Current applications of TI focus on specific subsets of
cells, but ongoing efforts to construct transcriptomic catalogs of whole organisms
[12, 13, 14] underline the urgency for accurate, scalable [11, 15] and user-friendly
TI methods.

A plethora of TI methods has been developed over the past few years and even more
are being created every month (Supplementary Table 1). Indeed, in several reposito-
ries listing single-cell tools, such as omictools.org [16], the ‘awesome-single-cell’ list
[17] and scRNA-tools.org [18], TI methods are one of the largest categories. While
each method has its own unique set of characteristics in terms of underlying algo-
rithm, required prior information and produced outputs, two of the most distinctive
differences between TI methods are whether they fix the topology of the trajectory
and what type(s) of graph topologies they can detect. Early TI methods typically
fixed the topology algorithmically (for example, linear [19, 8, 20, 21] or bifurcat-
ing trajectories [22, 23]) or through parameters provided by the user [24, 25]. These
methods therefore mainly focus on correctly ordering the cells along the fixed topol-
ogy. More recent methods also infer the topology [26, 27, 7], which increases the
difficulty of the problem at hand, but allows the unbiased identification of both the
ordering inside a branch and the topology connecting these branches.

Given the diversity in TI methods, it is important to quantitatively assess their per-
formance, scalability, robustness and usability. Many attempts at tackling this issue
have already been made [22, 28, 29, 25, 30, 31, 32, 33, 7], but a comprehensive com-
parison of TI methods across a large number of different datasets is still lacking.
This is problematic, as new users to the field are confronted with an overwhelm-
ing choice of TI methods, without a clear idea of which would optimally solve their
problem. Moreover, the strengths and weaknesses of existing methods need to be
assessed, so that new developments in the field can focus on improving the current
state-of-the-art.

92 Chapter 4 - Comparing trajectory inference methods

In this study, we evaluated the accuracy, scalability, stability and usability of 45
TI methods (Figure 4.1a). We found substantial complementarity between current
methods, with different sets of methods performing most optimally depending on
the characteristics of the data. For method users, we created an interactive set of
guidelines (available at guidelines.dynverse.org), which gives context-specific rec-
ommendations for method usage. Our evaluation also highlights some challenges
for current methods, and our evaluation strategy can be useful to spearhead the de-
velopment of new tools that accurately infer trajectories on ever more complex use
cases.

Results

Trajectory inference methods

To make the outputs from different methods directly comparable to each other, we
developed a common probabilistic model for representing trajectories from all pos-
sible sources (Figure 4.1b). In this model, the overall topology is represented by a
network of ‘milestones’, and the cells are placed within the space formed by each
set of connected milestones. Although almost every method returned a unique set
of outputs, we were able to classify these outputs into seven distinct groups (Figure
4.2) and we wrote a common output converter for each of these groups (Figure 4.3a).
When strictly required, we also provided prior information to the method. These
different priors can range from weak priors that are relatively easy to acquire, such
as a start cell, to strong priors, such as a known grouping of cells, that are much
harder to know a priori, and which can potentially introduce a large bias into the
analysis (Figure 4.3a).

http://guidelines.dynverse.org

93

Guidelines app
Benchmarking pipeline

Method wrappers

45 trajectory
inference
methods

4 metrics
110 real

& 229 synthetic
datasets

Accuracy Scalability Usability

User guidelines
New possibilities
for developers

+ +

+ +

+

+Stability

a b

c

Common probabilistic trajectory model

Milestone
network

Branch
assignment

Topology

Cell positions

a b

c

d e

a
b

c

d e

Multi-
layered

Region of
delayed commitment

Lengths

Topology: HIM

Benchmarking metricsd

Trajectory types

Cycle TreeLinear Bifurcation Multifurcation Disconnected
Graph

Connected
graph

Branch assignment: F1branches Cell positions: cordist Features (genes): wcorfeatureimp

1

2
3

1
2

3

Match branches

Magnitude of overlap

Reference Prediction Geodesic distances between
all pairs of cells

Correlation of distances Correlation of importances

Feature importance

2
3 3 1 1

2

G1
G2
G3

G2
G1

G3
G2

G1

G3+

Difference in relative
edge lengths

Difference in degree
distributions

1
2

3

methods

benchmark
guidelines

.dynverse.org

.dynverse.org

.dynverse.org

3 4

2

Cells

Figure 4.1: Overview of several key aspects of the evaluation. a, A schematic overview
of our evaluation pipeline. b, To make the trajectories comparable to each other, a common tra-
jectory model was used to represent reference trajectories from the real and synthetic datasets,
as well as any predictions of TI methods. c, Trajectories are automatically classified into one of
seven trajectory types, with increasing complexity. d, We defined four metrics, each assessing
the quality of a different aspect of the trajectory. The HIM score assesses the similarity between
the two topologies, taking into account differences in edge lengths and degree distributions. The
F1branches assesses the similarity of the assignment of cells onto branches. The cordist quantifies the
similarity in cellular positions between two trajectories, by calculating the correlation between
pairwise geodesic distances. Finally, wcorfeatures quantifies the agreement between trajectory dif-
ferentially expressed features from the known trajectory and the predicted trajectory.

94 Chapter 4 - Comparing trajectory inference methods

Common probabilistic
trajectory model

- Visualise trajectory
- Visualise expression
- Trajectory comparison
- Evaluation
- ...

Apply common
analyses

Input

- Raw counts
- Normalised counts
- Default parameters
- Start cell(s)
- End cell(s)
- Cell groups
- Timecourse
- # of end states
- # of branches
- Marker genes

Output

- Branch network
- Branch assignment
- Branch pseudotime
- Global pseudotime
- End state probabilities
- Cluster assignment
- Cluster network
- Dimensionality reduction
- Cell graph

1

3
4
5
6
7

2

Wrap

required or
optional prior
information

outputs
subset of

TI method

Trajectory
inference

Potential cell
space

Cell positions

Milestones

Edges

Delayed
commitment

a)

b) Wrapper type 6:
orthogonal projection

Wrapper type 5:
cluster assignment

Wrapper type 7:
cell graph

Wrapper type 1:
direct

Wrapper type 2:
linear pseudotime

Wrapper type 4:
end state probability

P(A)

P(B)

Pseudotime

Wrapper type 3:
cyclical pseudotime

Figure 4.2: A common interface for TI methods. a The input and output of each TI method
is standardised. As input, each TI method receives either raw or normalised counts, several
parameters, and a selection of prior information. After its execution, a method uses one of the
seven wrapper functions to transform its output to the common trajectory model. This common
model then allows to perform common analysis functions on trajectory models produced by any
TI method. b Illustrations of the specific transformations performed by each of the wrapper
functions.

95

PAGA

RaceID / StemID

SLICER

Slingshot

PAGA Tree

MST

pCreode

SCUBA

Monocle DDRTree

Monocle ICA

cellTree maptpx

SLICE

cellTree VEM

ElPiGraph

Sincell

URD

CellTrails

Mpath

CellRouter

STEMNET

FateID

MFA

GPfates

DPT

Wishbone

SCORPIUS

Component 1

Embeddr

MATCHER

TSCAN

Wanderlust

PhenoPath

topslam

Waterfall

ElPiGraph linear

ouijaflow

FORKS

Angle

ElPiGraph cycle

reCAT

✕

✕

✕

✕

✕

✖

✕

✖

✖

✕

✕

✕

✕

✕

Direct

Proj

Cell

Direct

Direct

Proj

Proj

Cluster

Cell

Cell

Cell

Direct

Cell

Direct

Cell

Direct

Cell

Cluster

Cell

Prob

Prob

Prob

Prob

Direct

Direct

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Direct

Linear

Linear

Cycle

Direct

Cycle

Python

R

R

R

Python

R

Python

Python

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Python

R

Python

R

R

R

Python

R

Python

R

Python

R

R

Python

Python

R

R

R

Free

Free

Free

Free

Free

Free

Free

Free

Free

Param

Free

Free

Free

Free

Free

Free

Free

Free

Free

Param

Param

Param

Param

Fixed

Param

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Off-the-shelf

Off-the-shelf

Off-the-shelf

Bifurcation methods

Cyclic methods

Graph methods

Linear methods

Multifurcation methods

Tree methods

Aggregated scores per experimentInferrable trajectory types

Method Summarya) b)

Prio
rs re

quire
d

Wrapper ty
pe

Platfo
rm

Topology in
ference

Cycle
Linear

Bifu
rcatio

n

Multifu
rcatio

n

Tree
Connected

Disconnected

Ove
rall

Accuracy

Scalability

Stability

Usability

Prior information required

✕
✖

None

Weak: Start or end cells

Strong: Cell grouping or time course

Not shown, insufficient data points

CALISTA

cellTree Gibbs

GrandPrix

MERLoT

ouija

pseudogp

SCIMITAR

SCOUP

Figure caption on next page →

96 Chapter 4 - Comparing trajectory inference methods

Figure 4.3: A characterization of the 45 methods evaluated in this study and their over-
all evaluation results. a, We characterised the methods according to the wrapper type, their
required priors, whether the inferred topology is constrained by the algorithm (fixed) or a param-
eter (param), and the types of inferable topologies. The methods are grouped vertically based
on the most complex trajectory type they can infer. b, The overall results of the evaluation on
four criteria: accuracy using a reference trajectory on real and synthetic data, scalability with
increasing number of cells and features, stability across dataset subsamples and method usability.
Methods that errored on more than 50% of the datasets are not included in this figure and are
shown instead in Supplementary Fig. 2.

The largest difference between TI methods is whether a method fixes the topology
and, if it does not, what kind of topology it can detect. We defined seven possible
types of topology, ranging from very basic topologies (linear, cyclical and bifurcat-
ing) to the more complex ones (connected and disconnected graphs). Most methods
either focus on inferring linear trajectories or limit the search to tree or less com-
plex topologies, with only a selected few attempting to infer cyclic or disconnected
topologies (Figure 4.3a).

We evaluated each method on four core aspects: (1) accuracy of a prediction, given
a gold or silver standard on 110 real and 229 synthetic datasets; (2) scalability with
respect to the number of cells and features (for example, genes); (3) stability of the
predictions after subsampling the datasets; and (4) the usability of the tool in terms
of software, documentation and the manuscript. Overall, we found a large diversity
across the four evaluation criteria, with only a few methods, such as PAGA, Sling-
shot and SCORPIUS, performing well across the board (Figure 4.3b). We will discuss
each evaluation criterion in more detail (Figure 4.4 and Supplementary Fig. 2), after
which we conclude with guidelines for method users and future perspectives for
method developers.

97

PAGA

RaceID / StemID

SLICER

Slingshot

PAGA Tree

MST

pCreode

SCUBA

Monocle DDRTree

Monocle ICA

cellTree maptpx

SLICE

cellTree VEM

ElPiGraph

Sincell

URD

CellTrails

Mpath

CellRouter

STEMNET

FateID

MFA

GPfates

DPT

Wishbone

SCORPIUS

Component 1

Embeddr

MATCHER

TSCAN

Wanderlust

PhenoPath

topslam

Waterfall

ElPiGraph linear

ouijaflow

FORKS

Angle

ElPiGraph cycle

reCAT

1h

>7d

>7d

>7d

2h

56m

>7d

>7d

1h

>7d

>7d

>7d

>7d

12h

>7d

>7d

>7d

>7d

>7d

1h

1d

5h

>7d

24m

1d

13h

34s

>7d

2h

24m

1d

1h

>7d

47m

2h

>7d

4m

35s

2h

13h

7m

1d

>7d

11h

8m

8m

1d

3d

26m

2d

>7d

>7d

23h

1d

>7d

1d

>7d

>7d

1d

36m

6h

9h

>7d

36m

2h

1h

2m

2d

3h

7m

2h

5h

>7d

8m

2h

>7d

5m

2m

2h

1d

55s

1h

2h

56m

1m

12m

2h

4h

2h

1h

6h

1h

39m

6h

2h

2h

2d

8h

1h

12m

1h

9h

4d

40m

17m

4m

11m

33m

1h

9m

16m

9h

1d

13m

1h

20h

25m

10m

1h

9h

19s

1h

31s

2m

20s

2m

3m

10m

14h

1h

1h

51m

10m

20m

5m

10m

7h

4h

9m

7m

26m

9h

2h

7m

6m

4m

3m

2m

16m

7m

5m

4d

4h

2m

8m

>7d

5m

3m

8m

1d

25s

14h

<1s

52s

15s

52s

58s

3m

2d

1d

24m

1d

15m

7m

2m

1m

4h

1d

9m

6m

20m

7h

13m

56s

7m

4m

51s

34s

3m

11m

7m

>7d

8h

51s

5m

3d

2m

54s

5m

>7d

0.82

0.77

0.99

0.98

0.88

0.90

0.89

0.86

0.86

0.95

0.51

0.78

0.78

0.93

0.97

0.68

0.76

0.90

0.24

0.64

0.71

0.86

0.75

0.76

0.66

0.96

0.92

0.93

0.91

0.96

0.73

0.83

0.99

0.89

0.92

0.80

0.04

0.96

0.92

0.92

Off-the-shelf

Off-the-shelf

Off-the-shelf

Bifurcation methods

Cyclic methods

Graph methods

Linear methods

Multifurcation methods

Tree methods

Per dataset sourcePer metric Per trajectory type
Predicted time

(#cells × #features)

Quality of

software and paper

Similarity

between runs

AccuracyMethod Scalability Stability Usabilitya) b) c) d) e)

Topology

Branch assignment

Cell p
ositio

ns

Features

Gold
Silve

r
Dyngen

Dyntoy

PROSSTT

Splatte
r

Cycle
Linear

Bifu
rcatio

n

Conve
rgence

Multifu
rcatio

n

Tree
Acyclic

Connected

Disconnected

1m × 100

100k × 1k

10k × 10k

1k × 100k

100 × 1m

Cor. p
red. v

s. re
al

Topology

Branch assignment

Cell p
ositio

ns

Features

Availa
bility

Behaviour

Code assurance

Code quality

Documentatio
n

Paper

Score

0 0.2 0.4 0.6 0.8 1

Not shown, insufficient data points

CALISTA

cellTree Gibbs

GrandPrix

MERLoT

ouija

pseudogp

SCIMITAR

SCOUP

Figure caption on next page →

98 Chapter 4 - Comparing trajectory inference methods

Figure 4.4: Detailed results of the four main evaluation criteria: accuracy, scalability,
stability and usability. a, The names of the methods, ordered as in Figure 4.3. b, Accuracy of
trajectory inference methods across metrics, dataset sources and dataset trajectory types. The
performance of a method is generally more stable across dataset sources, but very variable de-
pending on the metric and trajectory type. c, Predicted execution times for varying numbers of
cells and features (no. of cells × no. of features). Predictions were made by training a regression
model after running each method on bootstrapped datasets with varying numbers of cells and
features. k, thousands; m, millions; cor, correlation. d, Stability results by calculating the av-
erage pairwise similarity between models inferred across multiple runs of the same method. e,
Usability scores of the tool and corresponding manuscript, grouped per category. Off-the-shelf
methods were directly implemented in R and thus do not have a usability score.

Accuracy

We defined several metrics to compare a prediction to a reference trajectory (Sup-
plementary Note 1). Based on an analysis of their robustness and conformity to a
set of rules (Supplementary Note 1), we chose four metrics each assessing a differ-
ent aspect of a trajectory (Figure 4.1d): the topology (Hamming–Ipsen–Mikhailov,
HIM), the quality of the assignment of cells to branches (F1branches), the cell positions
(cordist) and the accuracy of the differentially expressed features along the trajectory
(wcorfeatures). The data compendium consisted of both synthetic datasets, which of-
fer the most exact reference trajectory, and real datasets, which provide the highest
biological relevance. These real datasets come from a variety of single-cell tech-
nologies, organisms and dynamic processes, and contain several types of trajectory
topologies (Supplementary Table 2). Real datasets were classified as ‘gold standard’
if the reference trajectory was not extracted from the expression data itself, such
as via cellular sorting or cell mixing [34]. All other real datasets were classified as
‘silver standard’. For synthetic datasets we used several data simulators, including
a simulator of gene regulatory networks using a thermodynamic model of gene reg-
ulation [35]. For each simulation, we used a real dataset as a reference, to match
its dimensions, number of differentially expressed genes, drop-out rates and other
statistical properties [36].

We found that method performance was very variable across datasets, indicating
that there is no ‘one-size-fits-all’ method that works well on every dataset (Figure
4.5a). Even methods that can detect most of the trajectory types, such as PAGA,
RaceID/StemID and SLICER were not the best methods across all trajectory types
(Figure 4.4b). The overall score between the different dataset sourceswasmoderately
to highly correlated (Spearman rank correlation between 0.5–0.9) with the scores on
real datasets containing a gold standard (Figure 4.5b), confirming both the accuracy
of the gold standard trajectories and the relevance of the synthetic data. On the other

99

hand, the different metrics frequently disagreed with each other, with Monocle and
PAGA Tree scoring better on the topology scores, whereas other methods, such
as Slingshot, were better at ordering the cells and placing them into the correct
branches (Figure 4.4b).

100 Chapter 4 - Comparing trajectory inference methods

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●
●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●
●●
●
●●

●●

●

●●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●
●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●
● ●

●

●
● ●

●

●

●

● ●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

● ●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●●

●

●●

●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●●
●

●

●●

●

●

●
●

●

●

●●
●

●

●
●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●
●

●
● ●

●

●
●●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

● ●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
● ●

●

●
● ●

● ●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●● ●

●

●

●

●

●

●

●●
●

●

● ●

●●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●
●

●●

●
●●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●●
●
●

●

●●
●●●

●

●

●

●
●

●

● ●

●

●
●
●

●●

●

●
● ●

●●

●

●
●

●
●

●

●
●

●

●
●
●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

●

●●●

●

●
●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●
●

●

●●●

●

●
●

●

●
●

●●
●

●

●
●

●

●

● ●●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●●

● ●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●●

● ●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●

●

●● ●

●

●
●

●

●

●
●●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●
●

●

● ● ●

●

●
●

●

●
●

● ●
●

●

●
●

●

●

● ●●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●
●●

●

●●
●

●

●

●●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●●

● ●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●● ●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

● ●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●●
●

●

●
●

●

●

●●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●
●●

●

●

●

●

●

● ●

●

●

●
●
●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●●

●●● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●●
● ●

●

●

●

●

●
●

●

● ●

●

●
●

●
● ●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●● ●
●

●●●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●
●

●● ●● ●●
● ●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

● ●
●

●

●
●
●

●

●

●

●
●

●

●
●●

●
● ●●

●

●●

●

●
●

●●

●

●●

●

●● ●●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●
● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●●

●●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●
● ●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●● ●

●● ●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
●

●●

●●
● ●

●

● ●
●
●●●

●

●

●
●

●
●

●
●

●
●

● ●●●
● ●

●

●
●

●

●

●

●
●●

●●● ●
●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

● ●
●

●● ●
●

●

●
●●

●● ●
●

●

●

●
●

●

● ●

●

●
●
●

●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●
●

●

●●
●

●
●

●
●

●●
●●

●

●

●
●●

●

●●

●

●
●●● ●

●

●●

●

●

●

● ●●
●

● ●●

●

● ●

● ●
●

●

●● ●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

● ●

●

●

●

●

●
●

●●●

●

●
●

●●

●●

●●

●
●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●●

●
●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

● ●●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

● ●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●●

●

●

●●
●

● ●●
●

●

●
●●

● ● ●

●

●

●

●
●

●

● ●

●

●
●

●
●●

●

●
●●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●●
●●
●

●

●
● ●
●

●●
●

●
●●●

●

●
● ●

●

●

●

●●●
●
●●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●
● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●●

●
●

●
●●

● ●

●
●

●

●

●

●●●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●●●

● ●●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●●

●
●

● ●

●●
●●

●

●●
●

●●●

●

●

●
●

●
●

●
●
●

●

●●●●
●● ●

●
●

●

●

●

●
●●

●● ●●
●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

● ●
●

●●●
●

●

●
●●
● ●●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●
●

●

●●
●

●
●

●
●

● ●
●●

●

●

●
● ●
●

● ●
●

●

●

●●
●

●
● ●
●

●

●

● ●●
●
● ●●

●

●●

●●
●

●

●●●

●

●
●

●

●
●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●●

●

●
●

● ●

●●

● ●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

● ●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●●

●
●

●●

●●
●●

●

●● ●
●● ●

●

●

●
●

●
●

●
●

●
●

●●●●
●●

●

●
●

●

●

●

●
●●

●●●●
●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

● ●
●

●●●
●

●

●
●●

●●●
●

●

●

●
●

●

●●

●

●

●

●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●●
●●

●

●

●
●

●

●

●●
●

●
●●●●

●
●●

●

●

●

● ●

●

●
●

●

●

●

●●

●●
●

●

●● ●

●

●
●

●

●
●

●●
●

●

●
●

●●● ●● ●
●●
●

●
● ●

●

●

●●

●
●

●●

●

●

●

●

●
●

●●●

●

●
●

●●

●●

●●

●
●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●
●●

● ●

●
●

●

●

●

●●●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●●●●

●●●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●
●

● ●

●
●

●●

● ●
● ●

●

● ●
●
●●●

●

●

●
●

●
●

●
●

●
●

●●●●
●● ●

●
●
●

●

●

●
● ●

●●●●
●

●

●
●

●
●

●

●

●
●
●

●
●●

●

●

● ●
●
●● ●

●
●

●
●●
●●●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●●
●●

●

●

●
●●
●

●●
●

●
●●● ●

●
●●

●

●

●

●● ●
●
●●●

●

● ●

●●
●

●

●● ●

●

●
●

●

●
●

●●
●

●

●
●

●●●● ● ●
●●

●
●

● ●
●

●

● ●

●
●

●●

●

●

●

●

●
●

●●●

●

●
●

●●

●●

●●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●

●

●

●
●
●

●
●

●

●

●

●

●●

●
●

●
● ●

●●

●
●

●

●

●

●●●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●●●●

●●●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●
●

● ●

●
●

●●

● ●
● ●

●

● ●
●
●●●

●

●

●
●

●
●

●
●

●
●

●●●●
●● ●

●
●
●

●

●

●
● ●

●●●●
●

●

●
●

●
●

●

●

●
●
●

●
●●

●

●

● ●
●
●● ●

●
●

●
●●
●●●

●

●

●

●
●

●

●●

●

●
●

●
●●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●
●
●

●

●
●

●●
●●

●

●

●
●●
●

●●
●

●
●●● ●

●
●●

●

●

●

●● ●
●
●●●

●

● ●

●●
●

●

●● ●

●

●
●

●

●
●

●●
●

●

●
●

●●●● ● ●
●●

●
●

● ●
●

●

● ●

●
●

●●

●

●

●

●

●
●

●●●

●

●
●

●●

●●

●●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●●
●

●

●

●
●
●

●
●

●

●

●

●

●●

●
●

●
● ●

●●

●
●

●

●− −−−−−−−
−−

0.00

0.25

0.50

0.75

1.00

Slin
gs

ho
t

PA
GA Tr

ee

SCORPIU
S

Fa
te

ID
PA

GA

TSCAN
Ang

le
M

ST

W
at

er
fal

l

Em
be

dd
r

Com
po

ne
nt

 1

STEM
NET

M
on

oc
le

DDRTr
ee

pC
re

od
e

SLI
CE

M
AT

CHER

M
on

oc
le

IC
A

ElP
iG

ra
ph

 lin
ea

r

ce
llT

re
e

m
ap

tp
x

Phe
no

Pat
h

ElP
iG

ra
ph

 cy
cle

to
ps

lam

SCUBA
M

FA

W
an

de
rlu

st

W
ish

bo
ne

DPT

ce
llT

re
e

VEM

Sinc
ell

M
pa

th

Rac
eI

D /
Ste

m
ID

ElP
iG

ra
ph

ou
ija

flo
w

Cell
Tra

ils

re
CAT

URD

FORKS

Cell
Rou

te
r

GPfat
es

Gra
nd

Prix

M
ERLo

T

SLI
CER

ps
eu

do
gp

ce
llT

re
e

Gibb
s

CALI
STA

SCOUP
ou

ija

SCIM
ITA

R

O
ve

ra
ll

sc
or

e

Dataset source ● ● ● ● ● ●real/gold real/silver synthetic/dyngen synthetic/dyntoy synthetic/prosstt synthetic/splatter

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

corr = 0.81

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

corr = 0.73

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

corr = 0.69

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

corr = 0.62

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●
●

●

corr = 0.53

real/silver synthetic/dyngen synthetic/splatter synthetic/dyntoy synthetic/prosstt

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Overall score on datasets from sourceO
ve

ra
ll

sc
or

e
on

 r
ea

l/g
ol

d
da

ta
se

ts

− −−−−−−−
−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

0.00

0.25

0.50

0.75

1.00

Slin
gs

ho
t

PA
GA Tr

ee

SCORPIU
S

Fa
te

ID
PA

GA

TSCAN
Ang

le
M

ST

W
at

er
fal

l

Em
be

dd
r

Com
po

ne
nt

 1

STEM
NET

M
on

oc
le

DDRTr
ee

pC
re

od
e

SLI
CE

M
AT

CHER

M
on

oc
le

IC
A

ElP
iG

ra
ph

 lin
ea

r

ce
llT

re
e

m
ap

tp
x

Phe
no

Pat
h

ElP
iG

ra
ph

 cy
cle

to
ps

lam

SCUBA
M

FA

W
an

de
rlu

st

W
ish

bo
ne

DPT

ce
llT

re
e

VEM

Sinc
ell

M
pa

th

Rac
eI

D /
Ste

m
ID

ElP
iG

ra
ph

ou
ija

flo
w

Cell
Tra

ils

re
CAT

URD

FORKS

Cell
Rou

te
r

GPfat
es

Gra
nd

Prix

M
ERLo

T

SLI
CER

ps
eu

do
gp

ce
llT

re
e

Gibb
s

CALI
STA

SCOUP
ou

ija

SCIM
ITA

R

O
ve

ra
ll

sc
or

e

Trajectory type Cycle Linear Convergence Bifurcation Multifurcation Tree Acyclic graph Connected graph Disconnected graph

Prediction too
simple

Prediction too
complex

PAGA Slingshot PAGA Tree Monocle DDRTree pCreode

−20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20
Cycle

Linear

Convergence

Bifurcation

Multifurcation

Tree

Acyclic graph

Connected graph

Disconnected graph

All trajectory types

Difference in topology size (= # milestones + # edges)
between prediction and reference

R
ef

er
en

ce
 tr

aj
ec

to
ry

 ty
pe

a

b

c

d

Figure caption on next page →

101

Figure 4.5: Accuracy of trajectory inference methods. a Overall score for all methods
across 339 datasets, colored by the source of the datasets. Black line indicates the mean. b
Similarity between the overall scores of all dataset sources, compared to real datasets with a
gold standard, across all methods (n = 46, after filtering out methods that errored too frequently).
Shown in the top left is the Pearson correlation. c Bias in the overall score towards trajectory
types for all methods across 339 datasets. Black line indicates the mean. d Distributions of the
difference in size between predicted and reference topologies. A positive difference means that
the topology predicted by the method is more complex than the one in the reference.

The performance of a method was strongly dependent on the type of trajectory
present in the data (Figure 4.4b). Slingshot typically performed better on datasets
containing more simple topologies, while PAGA, pCreode and RaceID/StemID had
higher scores on datasets with trees or more complex trajectories (Figure 4.5c). This
was reflected in the types of topologies detected by every method, as those predicted
by Slingshot tended to contain less branches, whereas those detected by PAGA,
pCreode and Monocle DDRTree gravitated towards more complex topologies (Fig-
ure 4.5d). This analysis therefore indicates that detecting the right topology is still
a difficult task for most of these methods, because methods tend to be either too
optimistic or too pessimistic regarding the complexity of the topology in the data.

The high variability between datasets, together with the diversity in detected topolo-
gies between methods, could indicate some complementarity between the different
methods. To test this, we calculated the likelihood of obtaining a top model when
using only a subset of all methods. A top model in this case was defined as a model
with an overall score of at least 95% as the best model. On all datasets, using one
method resulted in getting a top model about 27% of the time. This increased up to
74% with the addition of six other methods (Figure 4.6a). The result was a relatively
diverse set of methods, containing both strictly linear or cyclic methods, and meth-
ods with a broad trajectory type range such as PAGA. We found similar indications
of complementarity between the top methods on data containing only linear, bifur-
cation or multifurcating trajectories (Figure 4.6b), although in these cases less meth-
ods were necessary to obtain at least one top model for a given dataset. Altogether,
this shows that there is considerable complementarity between the different meth-
ods and that users should try out a diverse set of methods on their data, especially
when the topology is unclear a priori. Moreover, it also opens up the possibilities
for new ensemble methods that utilise this complementarity.

102 Chapter 4 - Comparing trajectory inference methods

Running on all datasets

Running both PAGA Tree and SCORPIUS

PAGA Tree, SCORPIUS and Slingshot

Add Angle

Add Monocle ICA

Add PAGA

Add cellTree maptpx

Add Embeddr

Add MERLoT

Add GrandPrix

Add reCAT

Add pCreode

PAGA Tree
will result in a top model 27% of the time

will result in at least one top model 45% of the time

↳ ≥ 1 top model 57% of the time

↳ 64%

↳ 70%

↳ 74%

↳ 78%

↳ 81%

↳ 84%

↳ 87%

↳ 90%

↳ 92%

other methodsWhile perform less well

All trajectory
types

Linear → tree

Cycle

Linear

Bifurcation

Multifurcation

Tree

Connected
graph

Disconnected
graph

PAGA Tree SCORPIUS Slingshot Angle Monocle
ICA

PAGA

Slingshot PAGA Tree SCORPIUSMonocle
ICA

MFA cellTree
maptpx

reCAT Angle

SCORPIUS Embeddr Monocle
ICA

Slingshot SLICE PAGA TreecellTree
maptpx

MFA

PAGA Tree Slingshot MERLoT

RaceID /
StemID

PAGA Tree Monocle
ICA

PAGA pCreode

PAGA RaceID /
StemID

PAGA RaceID /
StemID

1

2

3

4

5

6

7

8

9

10

11

12

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Likelihood of obtaining a top model Likelihood of obtaining a top model

N
u
m

b
e
r

o
f
m

e
th

o
d
s

Number of methods 1 2 3 4 5 6a b

Figure 4.6: Complementarity between different trajectory inference methods. a, We
assessed the likelihood for different combinations of methods to lead to a ‘top model’ (defined as
amodel with an overall score of at least 95% of the best model) when applied to all datasets. b,The
likelihood for different combinations of methods to lead to a ‘top model’ was assessed separately
on different trajectory types. For this figure, we did not include any methods requiring a cell
grouping or a time course as prior information.

Scalability

While early TI methods were developed at a time where profiling more than a thou-
sand cells was exceptional, methods now have to cope with hundreds of thousands
of cells, and perhaps soon with more than ten million [37]. Moreover, the recent
application of TI methods on multi-omics single-cell data also showcases the in-
creasing demands on the number of features [38]. To assess the scalability, we ran
each method on up- and downscaled versions of five distinct real datasets. We mod-
eled the running time andmemory usage using a Shape Constrained AdditiveModel
[39] (Figure 4.7a). As a control, we compared the predicted time (and memory) with
the actual time (respectively memory) on all benchmarking datasets, and found that
these were highly correlated overall (Spearman rank correlation >0.9, Supplemen-
tary Fig. 5), and moderately to highly correlated (Spearman rank correlation of 0.5–
0.9) for almost every method, depending to what extent the execution of a method
succeeded during the scalability experiments (Figure 4.4c and Supplementary Fig.
2a).

We found that the scalability of most methods was overall very poor, with most
graph and tree methods not finishing within an hour on a dataset with ten thou-
sand cells and ten thousand features (Figure 4.4c), which is around the size of a
typical droplet-based single-cell dataset [37]. Running times increased further with
increasing number of cells, with only a handful of graph/tree methods completing

103

10
100

1k
10k

100k
1M

fe

at
ur

es

1010
0 1k10

k
10

0k1M

cells

10
100

1k
10k

100k
1M

1010
0 1k10

k
10

0k1M
10

100
1k

10k
100k

1M

1010
0 1k10

k
10

0k1M
10

100
1k

10k
100k

1M

1010
0 1k10

k
10

0k1M
10

100
1k

10k
100k

1M

1010
0 1k10

k
10

0k1M
10

100
1k

10k
100k

1M

1010
0 1k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

10
100

1k
10k

100k
1M

1010
01k10

k
10

0k1M

1s

8m

2d

PAGA
Observed time

Slingshot
Observed time

ElPiGraph
Observed time

Monocle DDRTree
Observed time

ouija
Observed time

Predicted time Predicted time Predicted time Predicted time Predicted time Predicted time

MST
Observed time

 <1s

 42m

 4m

 26m

 46m

 8m

 2m

 <1s

 14s

 45s

 1m

 40s

 1m

 2m

 12s

 1h

 32m

 36s

 1h

 7m

 6m

 19m

 28m

 5s

23h

 1m

 41s

 49s

 2m

 3m

3d

 6m

 8m

>7d

 13s

 2h

 13m

 3m

 16m

 2m

 29s
 21s

 26m

 18s

 7m

 1m

 7s

 1m

 309MB

 1GB

 317MB

 2GB

 988MB

 532MB

 459MB

 340MB

 985MB

 569MB

 615MB

 583MB

 811MB

 6GB

 755MB

 474MB

 1GB

 2GB

 871MB

 2GB

 5GB

 3GB

 2GB

 356MB

 3GB

 643MB

 477MB

 486MB

 2GB

 832MB

 3GB

 2GB

 4GB

10GB

 512MB

 2GB

 542MB

15GB

 913MB

 2GB

 797MB
 600MB

 1GB

 482MB

 578MB

 425MB

 401MB

 423MB

1s 1m 1h 23h Cells Features 100MB 1GB 10GBCells Features

SCIMITAR
pseudogp

ouija
SCOUP

MERLoT
GPfates

cellTree Gibbs
CALISTA

GrandPrix
Mpath

topslam
CellTrails

Monocle ICA
SLICE

SCUBA
cellTree maptpx

reCAT
URD
MFA

RaceID / StemID
Monocle DDRTree

CellRouter
Sincell

PhenoPath
cellTree VEM

SLICER
pCreode

FateID
ElPiGraph
Embeddr

Wishbone
ouijaflow

Wanderlust
PAGA Tree

ElPiGraph cycle
PAGA

ElPiGraph linear
MATCHER

Slingshot
STEMNET

TSCAN
DPT

SCORPIUS
FORKS

Waterfall
MST

Angle
Component 1

SCIMITAR
pseudogp

ouija
SCOUP

MERLoT
GPfates

cellTree Gibbs
CALISTA

GrandPrix
Mpath

topslam
CellTrails

Monocle ICA
SLICE

SCUBA
cellTree maptpx

reCAT
URD
MFA

RaceID / StemID
Monocle DDRTree

CellRouter
Sincell

PhenoPath
cellTree VEM

SLICER
pCreode

FateID
ElPiGraph
Embeddr

Wishbone
ouijaflow

Wanderlust
PAGA Tree

ElPiGraph cycle
PAGA

ElPiGraph linear
MATCHER

Slingshot
STEMNET

TSCAN
DPT

SCORPIUS
FORKS

Waterfall
MST

Angle
Component 1

Average time Time scalability Average max memory Memory scalability

<linear linear quadratic >quadratic

a

b

Figure 4.7: Scalability of trajectory inference methods. a Three examples of average
observed running times across five datasets (left) and the predicted running time (right). b
Overview of the scalability results of all methods, ordered by their average predicted running
time from (a). We predicted execution times and memory usage for each method with increasing
number of features or cells, and used these values to classify each method into sublinear, linear,
quadratic and superquadratic based on the shape of the curve.

104 Chapter 4 - Comparing trajectory inference methods

within a day on a million cells (PAGA, PAGA Tree, Monocle DDRTree, Stemnet and
GrandPrix). Some methods, such as Monocle DDRTree and GrandPrix, also suffered
from unsatisfactory running times when given a high number of features.

Methods with a low running time typically had two defining aspects: they had a
linear time complexity with respect to the features and/or cells, and adding new
cells or features led to a relatively low increase in time (Figure 4.7b). We found that
more than half of all methods had a quadratic or superquadratic complexity with
respect to the number of cells, which would make it difficult to apply any of these
methods in a reasonable time frame on datasets with more than a thousand cells
(Figure 4.7b).

We also assessed the memory requirements of each method (Supplementary Fig.
2c). Most methods had reasonable memory requirements for modern workstations
or computer clusters (≤12 GB) with PAGA and STEMNET in particular having a
low memory usage with both a high number of cells or a high number of features.
Notably, the memory requirements were very high for several methods on datasets
with high numbers of cells (RaceID/StemID, pCreode and MATCHER) or features
(Monocle DDRTree, SLICE and MFA).

Altogether, the scalability analysis indicated that the dimensions of the data are an
important factor in the choice of method, and that method development should pay
more attention to maintaining reasonable running times and memory usage.

Stability

It is not only important that a method is able to infer an accurate model in a reason-
able time frame, but also that it produces a similar model when given very similar
input data. To test the stability of each method, we executed each method on ten
different subsamples of the datasets (95% of the cells, 95% of the features), and cal-
culated the average similarity between each pair of models using the same scores
used to assess the accuracy of a trajectory (Figure 4.4d).

Given that the trajectories of methods that fix the topology either algorithmically
or through a parameter are already very constrained, it is to be expected that
such methods tend to generate very stable results. Nonetheless, some fixed topol-
ogy methods still produced slightly more stable results, such as SCORPIUS and
MATCHER for linear methods and MFA for multifurcating methods. Stability was
much more diverse among methods with a free topology. Slingshot produced more
stable models than PAGA (Tree), which in turn produced more stable results than
pCreode and Monocle DDRTree.

105

Usability

While not directly related to the accuracy of the inferred trajectory, it is also impor-
tant to assess the quality of the implementation and how user-friendly it is for a bio-
logical user [40]. We scored each method using a transparent checklist of important
scientific and software development practices, including software packaging, doc-
umentation, automated code testing and publication into a peer-reviewed journal
(Table 4.1). It is important to note that there is a selection bias in the tools chosen for
this analysis, as we did not include a substantial set of tools due to issues with instal-
lation, code availability and executability on a freely available platform (which ex-
cludesMATLAB).The reasons for not including certain tools are all discussed on our
repository (https://github.com/dynverse/dynmethods/issues?q=label:unwrappable).
Installation issues seem to be quite general in bioinformatics [41] and the trajectory
inference field is no exception.

We found that most methods fulfilled the basic criteria, such as the availability of
a tutorial and elemental code quality criteria (Figure 4.4d and Supplementary Fig.
6). While recent methods had a slightly better quality score than older methods,
several quality aspects were consistently lacking for the majority of the methods
(Supplementary Fig. 6 right) andwe believe that these should receive extra attention
from developers. Although these outstanding issues covered all five categories, code
assurance and documentation in particularwere problematic areas, notwithstanding
several studies pinpointing these as good practices [42, 43]. Only two methods had
a nearly perfect usability score (Slingshot and Celltrails), and these could be used as
an inspiration for future methods. We observed no clear relation between usability
and method accuracy or usability (Figure 4.3b).

106 Chapter 4 - Comparing trajectory inference methods

Table 4.1: Scoring sheet for assessing usability of trajectory inferencemethods.
Each quality aspect was given a weight based on how many times it was mentioned in
a set of articles discussing best practices for tool development.

Aspect Items References

Availability
Open source (1) Method’s code is freely available (2) The

code can be run on a freely available platform
[44, 42, 40,
45, 43, 46,
47]

Version control The code is available on a public version con-
trolled repository, such as Github

[44, 42, 40,
45, 43, 46]

Packaging (1)The code is provided as a ”package”, expos-
ing functionality through functions or shell
commands (2) The code can be easily in-
stalled through a repository such as CRAN,
Bioconductor, PyPI, CPAN, debian packages,
…

[44, 45, 47,
46]

Dependencies (1) Dependencies are clearly stated in the tu-
torial or in the code (2) Dependencies are au-
tomatically installed

[40, 45, 43,
48]

Licence (1)The code is licensed (2) Licence allows aca-
demic use

[44, 40, 45,
43, 46, 47]

Interface (1) The tool can be run using a graphical user
interface, either locally or on a web server (2)
The tool can be run through the command
line or through a programming language

[46]

Code quality
Function and
object naming

(1) Functions/commands have well chosen
names (2) Arguments/parameters have well
chosen names

[42, 45]

Code style (1) Code has a consistent style (2) Code fol-
lows (basic) good practices in the program-
ming language of choice, for example PEP8
or the tidyverse style guide

[42, 45, 43]

Code duplica-
tion

Duplicated code is minimal [42, 45]

107

Self-contained
functions

The method is exposed to the user as self-
contained functions or commands

[49, 40, 46]

Plotting Plotting functions are provided for the final
and/or intermediate results

Dummy proof-
ing

Package contains dummy proofing, i.e. test-
ing whether the parameters and data sup-
plied by the user make sense and are useful

[44, 48]

Code assurance
Unit testing Method is tested using unit tests [44, 42, 49,

45, 46]
Unit testing Tests are run automatically using functional-

ity from the programming language
[44, 42, 49,
45, 46]

Continuous in-
tegration

The method uses continuous integration, for
example on Travis CI

[50, 45, 43,
46]

Code coverage (1) The code coverage of the repository is as-
sessed. (2) What is the percentage of code
coverage

108 Chapter 4 - Comparing trajectory inference methods

Documentation
Support (1) There is a support ticket system, for ex-

ample on Github (2) The authors respond to
tickets and issues are resolved within a rea-
sonable time frame

[42, 45, 43,
46, 47]

Development
model

(1)The repository separates the development
code from master code, for example using git
master en developer branches (2) The reposi-
tory has created releases, or several branches
corresponding to major releases. (3) The
repository has branches for the development
of separate features.

[51]

Tutorial (1) A tutorial or vignette is available (2) The
tutorial has example results (3) The tutorial
has real example data (4) The tutorial show-
cases the method on several datasets (1=0,
2=0.5, >2=1)

[45, 46, 47,
48, 52]

Function docu-
mentation

(1) The purpose and usage of functions/com-
mands is documented (2) The parameters
of functions/commands are documented (3)
The output of functions/commands is docu-
mented

[42, 40, 45,
46, 48]

Inline documen-
tation

Inline documentation is present in the code [42, 40, 45,
46, 48]

Parameter
transparency

All important parameters are exposed to the
user

[40]

Behaviour
Seed setting The method does not artificially become de-

terministic, for example by setting some (0.5)
or a lot (1) of seeds

[53]

Unexpected
output

(1) No unexpected output messages are gen-
erated by the method (2) No unexpected files,
folders or plots are generated (3) No unex-
pected warnings during runtime or compila-
tion are generated

[43]

Trajectory
format

The postprocessing necessary to extract the
relevant output from the method is minimal
(1), moderate (0.5) or extensive (0)

Prior informa-
tion

Prior information is required (0), optional (1)
or not required (1)

109

Paper
Publishing The method is published
Peer review The paper is published in a peer-reviewed

journal
[48, 54, 55]

Evaluation on
real data

(1) The paper shows the method’s usefulness
on several (1), one (0.25) or no real datasets.
(2) The paper quantifies the accuracy of the
method given a gold or silver standard trajec-
tory

[56, 57]

Evaluation of
robustness

The paper assessed method robustness (to eg.
noise, subsampling, parameter changes, sta-
bility) in one (0.5) or several (1) ways

[48, 56, 52,
57]

Discussion

In this study, we presented a large-scale evaluation of the performance of 45 TI
methods. By using a common trajectory representation and four metrics to com-
pare the methods’ outputs, we were able to assess the accuracy of the methods on
more than 200 datasets. We also assessed several other important quality measures,
such as the quality of the method’s implementation, the scalability to hundreds of
thousands of cells and the stability of the output on small variations of the datasets.

Based on the results of our benchmark, we propose a set of practical guidelines
for method users (Figure 4.8 and guidelines.dynverse.org). We postulate that, as a
method’s performance is heavily dependent on the trajectory type being studied,
the choice of method should currently be primarily driven by the anticipated tra-
jectory topology in the data. For most use cases, the user will know very little
about the expected trajectory, except perhaps whether the data is expected to con-
tain multiple disconnected trajectories, cycles or a complex tree structure. In each
of these use cases, our evaluation suggests a different set of optimal methods, as
shown in Figure 4.8. Several other factors will also impact the choice of methods,
such as the dimensions of the dataset and the prior information that is available.
These factors and several others can all be dynamically explored in our interactive
app (https://guidelines.dynverse.org). This app can also be used to query the results
of this evaluation, such as filtering the datasets or changing the importance of the
evaluation metrics for the final ranking.

When inferring a trajectory on a dataset of interest, it is important to take two fur-
ther points into account. First, it is critical that a trajectory, and the downstream
results and/or hypotheses originating from it, are confirmed bymultiple TI methods.
This is to make sure that the prediction is not biased due to the given parameter set-

http://guidelines.dynverse.org
https://guidelines.dynverse.org

110 Chapter 4 - Comparing trajectory inference methods

guidelines.dynverse.org

Do you expect
multiple

disconnected
trajectories?

≤ Disconnected

 ≤ Tree

Tree

Do you expect
a particular
topology?

Do you expect
cycles in the

topology?

Do you expect a
tree with two or

more bifurcations?

Linear

Bifurcation

Cycle

Multifurcation

Yes / I don't know

No

Yes

No /
I don't know

Yes / I don't know

Confirm
expectations

using a method
with free topology

Confirm results
using at least

2 methods

No
No

Yes

≤ Graph

Check out the
interactive

guidelines at

Free topology

Fixed topology

Figure 4.8: Practical guidelines for method users. As the performance of a method mostly
depends on the topology of the trajectory, the choice of TI method will be primarily influenced
by the user’s existing knowledge about the expected topology in the data. We therefore devised a
set of practical guidelines, which combines the method’s performance, user friendliness and the
number of assumptions a user is willing to make about the topology of the trajectory. Methods
to the right are ranked according to their performance on a particular (set of) trajectory type.
Further to the right are shown the accuracy (+: scaled performance ≥ 0.9, ±: >0.6), usability
scores (+:≥0.9, ± ≥0.6), estimated running times and required prior information. k, thousands; m,
millions.

ting or the particular algorithm underlying a TI method. The value of using different
methods is further supported by our analysis indicating substantial complementar-
ity between the different methods. Second, even if the expected topology is known,
it can be beneficial to also try out methods that make less assumptions about the
trajectory topology. When the expected topology is confirmed using such a method,
it provides additional evidence to the user. When a more complex topology is pro-
duced, this could indicate that the underlying biology is much more complex than
anticipated by the user.

Critical to the broad applicability of TI methods is the standardization of the in-
put and output interfaces of TI methods, so that users can effortlessly execute TI
methods on their dataset of interest, compare different predicted trajectories and
apply downstream analyses, such as finding genes important for the trajectory, net-
work inference [11] or finding modules of genes [58]. Our framework is an initial
attempt at tackling this problem, and we illustrate its usefulness here by compar-
ing the predicted trajectories of several top-performing methods on datasets con-
taining a linear, tree, cyclic and disconnected graph topology (Figure 4.9). Using
our framework, this figure can be recreated using only a couple of lines of R code

111

(https://methods.dynverse.org). In the future, this framework could be extended
to allow additional input data, such as spatial and RNA velocity information [59],
and easier downstream analyses. In addition, further discussion within the field is
required to arrive at a consensus concerning a common interface for trajectory mod-
els, which can include additional features such as uncertainty and gene importance.

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●
●

●●
●

●●
●

● ●

●
●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●● ●

●

●●

●

● ●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●
● ●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●
●
●

●

●
●

●
●● ●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
● ●●

●

●

●

●

●●

●

●

●

●

● ●
●

●
●

●

●● ●● ●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●●
●

●
●

●
●● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
● ●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●●
●

●

●●
●

●

● ● ●

●
●

●

●
●●●

●

●
●

●
●●●●

●

●

●
● ●●

●

●●

●

●

●●

●
●
●

●

●

●
●

●

●
●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●
●

● ●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●

●

●
●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●●●●

●

(consensus)

CDP MDP PreDC

Reference Component 1 TSCAN Waterfall Monocle ICA Slingshot PAGASCORPIUS

●
●

●

●
●

●

●
● ●

●
● ●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●
●●●●

●

●
● ●

●
●

●
●●

●●

●●

●

●
●

●
●

●● ●

●

●
●

●●●

●

●●
●
●

●
●●

●●
●

●

●
●●●●

●●
●

●● ●● ●●●●●●●●● ●●●●● ●
●●

●
●●●●●●● ●

●●●●●●●
●
●

●
● ●● ●●

●
●

●● ●●●●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●●

●
●

●
●

●●●
●●

●
●

●

●
●
●●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●●●

●

●

●

●●●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●●●
●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●●

●

●
●●

●

●● ●●
●
●

●

●

●
●●

●

●
●

●

● ●●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●●●●●

●

●●
●●●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

● ●

●

●

●
●

●●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

● ●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

● ●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●

●●●●

●

●
● ●

●

●

●
●●

●●

●
●

●

●
●

●
●

●
● ●

●

●

●
●●●

●

●●
●
●

●
●

●

●●
●

●

●

●●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●●
● ●●●●●●●●●●● ●

●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●●●

●

● ●

●

●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●

●
●

●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●

●●●●

●●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●

●

●●
●

●
●

●

●

●

●●
● ●● ●

●
●●●

●

●
● ●

●

●

●
●●

●●

●
● ●

●
●
●

●
●

●

●

●
●●

●

●●
●
●

●
●

●

●●
●

●

●●●

●●

●

●● ●●
●●

●
●●●●●● ●●●●● ●

● ●
●

●
●●●●
●
●

●
●●●●●●●

●
●

●
● ●● ●●

●
●

●● ●●● ●●●
●

● ●● ●●●●●●●●●●● ●
●

● ●

●● ●
●

●
●

●
●

●●●
●●

●
●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●●

●

●

●●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●●●

●

● ●
●

●
● ●

●

●

●
●●

●

●●
●●

●
●

●

●

●
●
●

●
●

● ●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●●
●●●

●

●●
●●

●●●
●● ●

●

●

●

●

●

●●●●

●

(consensus)

d2_induced d2_intermediate d5_earlyiN d5_intermediate MEF Myocyte Neuron

Reference pCreode PAGA Slingshot DPT SCUBA Monocle DDRTree RaceID / StemIDMST

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●●

●●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●
●●

●

●

● ●●
● ●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

● ●●●

●

●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

● ●● ●
●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●● ●

● ●

●

●

●
●
●

●

●● ●

●

●
●

●

● ●

●

●

●

●
● ●

●●

●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

● ●

●●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●
●
●
●

●●●●

●
●●

●●●●●
●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

● ●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●
●

●

●

●●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●
●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

● ●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●●
●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●
●

●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

● ●●
●● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●●

●

●

(consensus)

Reference RaceID / StemID PAGA MST

●
● ●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●
●●

●
●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

(consensus)

Reference Angle RaceID / StemID PAGA

c d

a

b

Figure 4.9: Demonstration of how a common framework for TI methods facilitates
broad applicability using some example datasets. Trajectories inferred by each method
were projected to a common dimensionality reduction using multidimensional scaling. For each
dataset, we also calculated a ‘consensus’ prediction, by calculating the cordist between each pair of
models and picking the model with the highest score on average. a, The top methods applied on
a dataset containing a linear trajectory of differentiation dendritic cells, going from MDP, CDP
to PreDC. b, The top methods applied on a dataset containing a bifurcating trajectory of repro-
grammed fibroblasts. c, A synthetic dataset generated by dyntoy, containing four disconnected
trajectories. d, A synthetic dataset generated by dyngen, containing a cyclic trajectory.

Our study indicates that the field of trajectory inference is maturing, primarily for
linear and bifurcating trajectories (Figure 4.9a,b). However, we also highlight sev-
eral ongoing challenges, which should be addressed before TI can be a reliable tool
for analysing single-cell omics datasets with complex trajectories. Foremost, new
methods should focus on improving the unbiased inference of tree, cyclic graph and
disconnected topologies, as we found that methods repeatedly overestimate or un-
derestimate the complexity of the underlying topology, even if the trajectory could
easily be identified using a dimensionality reduction method (Figure 4.9c,d). Fur-
thermore, higher standards for code assurance and documentation could help in
adopting these tools across the single-cell omics field. Finally, new tools should be

112 Chapter 4 - Comparing trajectory inference methods

designed to scale well with the increasing number of cells and features. We found
that only a handful of current methods can handle datasets with more than 10,000
cells within a reasonable time frame. To support the development of these new
tools, we provide a series of vignettes on how to wrap and evaluate a method on the
different measures proposed in this study at benchmark.dynverse.org.

We found that the performance of a method can be very variable between datasets,
and therefore included a large set of both real and synthetic data within our evalua-
tion, leading to a robust overall ranking of the different methods. However, ‘good-
yet-not-the-best’ methods [60] can still provide a very valuable contribution to the
field, especially if theymake use of novel algorithms, return a more scalable solution
or provide a unique insight in specific use cases. This is also supported by our anal-
ysis of method complementarity. Some examples for the latter include PhenoPath,
which can include additional covariates in its model, ouija, which returns a measure
of uncertainty of each cell’s position within the trajectory, and StemID, which can
infer the directionality of edges within the trajectory.

Methods

Trajectory inference methods

We gathered a list of 71 trajectory inference tools (Supplementary Table 1) by
searching the literature for ‘trajectory inference’ and ‘pseudotemporal order-
ing’, and based on two existing lists found online: https://github.com/seandavi/
awesome-single-cell [17] and https://github.com/agitter/single-cell-pseudotime
[61]. We welcome any contributions by creating an issue at https://methods.
dynverse.org.

Methods were excluded from the evaluation based on several criteria: (1) not freely
available; (2) no code available; (3) superseded by another method; (4) requires data
types other than expression; (5) no programming interface; (6) unresolved errors
during wrapping; (7) too slow (requires more than 1 h on a 100 × 100 dataset); (8)
does not return an ordering; and (9) requires additional user input during the algo-
rithm (other than prior information). The discussions on why these methods were
excluded can be found at https://github.com/dynverse/dynmethods/issues?q=label:
unwrappable. In the end, we included 45 methods in the evaluation.

Method wrappers

To make it easy to run each method in a reproducible manner, each method was
wrapped within Docker and singularity containers (available at https://methods.

https://benchmark.dynverse.org
https://github.com/seandavi/awesome-single-cell
https://github.com/seandavi/awesome-single-cell
https://github.com/agitter/single-cell-pseudotime
https://methods.dynverse.org
https://methods.dynverse.org
https://github.com/dynverse/dynmethods/issues?q=label:unwrappable
https://github.com/dynverse/dynmethods/issues?q=label:unwrappable
https://methods.dynverse.org

113

dynverse.org). These containers are automatically built and tested using Travis
continuous integration (https://travis-ci.org/dynverse) and can be ran using both
Docker and Singularity. For each method, we wrote a wrapper script based on ex-
ample scripts or tutorials provided by the authors (as mentioned in the respective
wrapper scripts). This script reads in the input data, runs the method and outputs
the files required to construct a trajectory. We also created a script to generate an
example dataset, which is used for automated testing.

We used the Github issues system to contact the authors of each method, and asked
for feedback on the wrappers, the metadata and the usability scores. About one-
third of the authors responded and we improved the wrappers based on their feed-
back. These discussions can be viewed on Github: https://github.com/dynverse/
dynmethods/issues?q=label:method_discussion

Method input

As input, we provided each method with either the raw count data (after cell and
gene filtering) or normalised expression values, based on the description in the
method documentation or from the study describing the method. A large portion
of the methods requires some form of prior information (for example, a start cell)
to be executable. Other methods optionally allow the exploitation of certain prior
information. Prior information can be supplied as a starting cell from which the
trajectory will originate, a set of important marker genes or even a grouping of cells
into cell states. Providing prior information to a TI method can be both a blessing
and a curse. In one way, prior information can help the method to find the correct
trajectory among many, equally likely, alternatives. On the other hand, incorrect or
noisy prior information can bias the trajectory towards current knowledge. More-
over, prior information is not always easily available, and its subjectivity can there-
fore lead to multiple equally plausible solutions, restricting the applicability of such
TI methods to well-studied systems.

The prior information was extracted from the reference trajectory as follows:

• Start cells: the identity of one or more start cells. For both real and synthetic
data, a cell was chosen that was the closest (in geodesic distance) to each
milestone with only outgoing edges. For ties, one random cell was chosen.
For cyclic datasets, a random cell was chosen.

• End cells: the identity of one or more end cells. This is similar to the start
cells, but now for every state with only incoming edges.

• No. of end states: number of terminal states, i.e., the number of milestones
with only incoming edges.

https://methods.dynverse.org
https://methods.dynverse.org
https://travis-ci.org/dynverse
https://github.com/dynverse/dynmethods/issues?q=label:method_discussion
https://github.com/dynverse/dynmethods/issues?q=label:method_discussion

114 Chapter 4 - Comparing trajectory inference methods

• Grouping: for each cell a label showingwhich state/cluster/branch it belongs
to. For real data, the states were from the gold/silver standard. For synthetic
data, each milestone was seen as one group and cells were assigned to their
closest milestone.

• No. of branches: number of branches/intermediate states. For real data, this
was the number of states in the gold/silver standard. For synthetic data, this
was the number of milestones.

• Discrete time course: for each cell a time point from which it was sampled.
If available, this was directly extracted from the reference trajectory; other-
wise the geodesic distance from the root milestone was used. For synthetic
data, the simulation time was uniformily discretised into four timepoints.

• Continuous time course: for each cell a time point from which it was sam-
pled. For real data, this was equal to the discrete time course. For synthetic
data, we used the internal simulation time of each simulator.

Common trajectory model

Due to the absence of a common format for trajectory models, most methods return
a unique set of output formats with few overlaps. We therefore post-processed the
output of each method into a common probabilistic trajectory model (Figure 4.2a).
Thismodel consisted of three parts. (1)Themilestone network represents the overall
network topology, and contains edges between different milestones and the length
of the edge between them. (2) The milestone percentages contain, for each cell,
its position between milestones and sums for each cell to one. (3) The regions of
delayed commitment define connections between three or more milestones. These
must be explicitly defined in the trajectorymodel and per region onemilestonemust
be directly connected to all other milestones of the region.

Depending on the output of a method, we used different strategies to convert the
output to our model (Figure 4.2b). Special conversions are denoted by an asterisk
and will be explained in more detail in the second list below.

• Type 1, direct: CALISTA*, DPT*, ElPiGraph, ElPiGraph cycle, ElPiGraph lin-
ear, MERLoT, PAGA, SLICE*, Slingshot, URD* and Wishbone. The wrapped
method directly returned a network of milestones, the regions of delayed com-
mitment and for each cell it is given to what extent it belongs to a milestone.
In some cases, this indicates that additional transformations were required
for the method, not covered by any of the following output formats. Some
methods returned a branch network instead of a milestone network and this
network was converted by calculating the line graph of the branch network.

115

• Type 2, linear pseudotime: Component 1, Embeddr, FORKS, MATCHER,
ouija, ouijaflow, PhenoPath, pseudogp, SCIMITAR, SCORPIUS, topslam,
TSCAN,Wanderlust andWaterfall. Themethod returned a pseudotime, which
is translated into a linear trajectory where the milestone network contains
two milestones and cells are positioned between these two milestones.

• Type 3, cyclical pseudotime: Angle and reCAT. The method returned a
pseudotime, which is translated into a cyclical trajectory where the milestone
network contains three milestones and cells are positioned between these
three milestones. These milestones were positioned at pseudotime 0, 1/3 and
2/3.

• Type 4, end state probability: FateID, GPfates, GrandPrix, MFA*, SCOUP
and STEMNET. The method returned a pseudotime and for each cell and end
state a probability (Pr) for how likely a cell will end up in a certain end state.
This was translated into a star-shaped milestone network, with one starting
milestone (M0) and several outer milestones (Mi), with regions of delayed
commitment between all milestones. The milestone percentage of a cell to
one of the outer milestones was equal to pseudotime×PrMi. The milestone
percentage to the starting milestone was equal to 1 − pseudotime.

• Type 5, cluster assignment: Mpath and SCUBA. The method returned a
milestone network and an assignment of each cell to a specific milestone.
Cells were positioned onto the milestones they are assigned to, with mile-
stone percentage equal to 1.

• Type 6, orthogonal projection: MST, pCreode and RaceID/StemID. The
method returned a milestone network, and a dimensionality reduction of the
cells and milestones. The cells were projected to the closest nearest segment,
thus determining the cells’ position along the milestone network. If a method
also returned a cluster assignment (type 5), we limited the projection of each
cell to the closest edge connecting to the milestone of a cell. For these meth-
ods, we usually wrote two wrappers, one which included the projection and
one without.

• Type 7, cell graph: CellRouter, CellTrails, cellTree Gibbs, cellTree maptpx,
cellTree VEM, Monocle DDRTree, Monocle ICA, Sincell* and SLICER. The
method returned a network of cells and which cell–cell transitions were part
of the ‘backbone’ structure. Backbone cells with degree ≠ 2 were regarded as
milestones and all other cells were placed on transitions between the mile-
stones. If a method did not return a distance between pairs of cells, the cells
were uniformly positioned between the two milestones. Otherwise, we first
calculated the distance between two milestones as the sum of the distances

116 Chapter 4 - Comparing trajectory inference methods

between the cells and then divided the distance of each pair of cells with the
total distance to get the milestone percentages.

Special conversions were necessary for certain methods:

• CALISTA: We assigned the cells to the branch at which the sum of the clus-
ter probabilities of two connected milestones was the highest. The cluster
probabilities of the two selected milestones were then used as milestone per-
centages. This was then processed as a type 1, direct, method.

• DPT: We projected the cells onto the cluster network, consisting of a central
milestone (this cluster contained the cells that were assigned to the ‘unknown’
branch) and three terminal milestones, each corresponding to a tip point. This
was then processed as a type 1, direct, method.

• Sincell: To constrain the number of milestones this method creates, we
merged two cell clusters iteratively until the percentage of leaf nodes was
below a certain cutoff, with the default cutoff set to 25%. This was then pro-
cessed as a type 7, cell graph, method.

• SLICE: As discussed in the vignette of SLICE (https://research.cchmc.org/
pbge/slice.html), we ran principal curves one by one for every edge detected
by SLICE. This was then processed as a type 1, direct, method.

• MFA: We used the branch assignment as state probabilities, which together
with the global pseudotime were processed as a type 4, end state probabilities,
method.

• URD: We extracted the pseudotime of a cell within each branch using the y
positions in the tree layout. This was then further processed as a type 1, direct,
method.

More information on how each method was wrapped can be found within the com-
ments of each wrapper script, listed at https://methods.dynverse.org.

Off-the-shelf methods

For baseline performance, we added several ‘off-the-shelf’ TI methods that can be
run using a few lines of code in R.

• Component 1: This method returns the first component of a principal com-
ponent analysis (PCA) dimensionality reduction as a linear trajectory. This
method is especially relevant as it has been used in a few studies already [62,
63].

https://research.cchmc.org/pbge/slice.html
https://research.cchmc.org/pbge/slice.html
https://methods.dynverse.org

117

• Angle: Similar to the previous method, this method computes the angle with
respect to the origin in a two-dimensional PCA and uses this angle as a pseu-
dotime for generating a cyclical trajectory.

• MST: This method performs PCA dimensionality reduction, followed by clus-
tering using the R mclust package, after which the clusters are connected
using a minimum spanning tree. The trees are orthogonally projected to the
nearest segment of the tree. This baseline is highly relevant as many methods
follow the same methodology: dimensionality reduction, clustering, topology
inference and project cells to topology.

Trajectory types

We classified all possible trajectory topologies into distinct trajectory types, based
on topological criteria (Figure 4.1c). These trajectory types start from the most gen-
eral trajectory type, a disconnected graph, andmove down (within a directed acyclic
graph structure), progressively becoming more simple until the two basic types are
reached: linear and cyclical. A disconnected graph is a graph inwhich only one edge
can exist between two nodes. A (connected) graph is a disconnected graph in which
all nodes are connected. An acyclic graph is a graph containing no cycles. A tree is
an acyclic graph containing no convergences (no nodes with in-degree higher than
1). A convergence is an acyclic graph in which only one node has a degree larger
than 1 and this same node has an in-degree of 1. A multifurcation is a tree in which
only one node has a degree larger than 1. A bifurcation is a multifurcation in which
only one node has a degree equal to 3. A linear topology is a graph in which no
node has a degree larger than 3. Finally, a cycle is a connected graph in which ev-
ery node has a degree equal to 2. In most cases, a method that was able to detect a
complex trajectory type was also able to detect less complex trajectory types, with
some exceptions shown in Figure 4.3a.

For simplicity, we merged the bifurcation and convergence trajectory type, and the
acyclic graph and connected graph trajectory type in the main figures of the paper.

Real datasets

We gathered real datasets by searching for ‘single-cell’ at the Gene Expression Om-
nibus and selecting those datasets in which the cells are sampled from different
stages in a dynamic process (Supplementary Table 2). The scripts to download and
process these datasets are available on our repository (https://benchmark.dynverse.
org/tree/master/scripts/01-datasets). Whenever possible, we preferred to start from
the raw counts data. These raw counts were all normalised and filtered using a com-

https://benchmark.dynverse.org/tree/master/scripts/01-datasets
https://benchmark.dynverse.org/tree/master/scripts/01-datasets

118 Chapter 4 - Comparing trajectory inference methods

mon pipeline, as discussed later. Some original datasets contained more than one
trajectory, in which case we split the dataset into its separate connected trajectory,
but also generated several combinations of connected trajectories to include some
datasets with disconnected trajectories in the evaluation. In the end, we included
110 datasets for this evaluation.

For each dataset, we extracted a reference trajectory, consisting of two parts: the
cellular grouping (milestones) and the connections between these groups (milestone
network). The cellular grouping was provided by the authors of the original study,
and we classified it as a gold standard when it was created independently from the
expression matrix (such as from cell sorting, the origin of the sample, the time it was
sampled or cellular mixing) or as a silver standard otherwise (usually by clustering
the expression values). To connect these cell groups, we used the original study
to determine the network that the authors validated or otherwise found to be the
most likely. In the end, each group of cells was placed on a milestone, having a
percentage of 1 for that particular milestone. The known connections between these
groups were used to construct the milestone network. If there was biological or
experimental time data available, we used this as the length of the edge; otherwise
we set all the lengths equal to one.

Synthetic datasets

To generate synthetic datasets, we used four different synthetic data simulators:

• dyngen: simulations of gene regulatory networks, available at https://github.
com/dynverse/dyngen

• dyntoy: random gradients of expression in the reduced space, available at
https://github.com/dynverse/dyntoy

• PROSSTT: expression is sampled from a linear model that depends on pseu-
dotime [64]

• Splatter: simulations of non-linear paths between different expression states
[36]

For every simulator, we took great care to make the datasets as realistic as possible.
To do this, we extracted several parameters from all real datasets. We calculated
the number of differentially expressed features within a trajectory using a two-way
Mann–Whitney U test between every pair of cell groups. These values were cor-
rected for multiple testing using the Benjamini-Hochberg procedure (FDR < 0.05)
and we required that a gene was expressed in at least 5% of cells, and had at least a
fold-change of 2. We also calculated several other parameters, such as drop-out rates
and library sizes using the Splatter package [36]. These parameters were then given

https://github.com/dynverse/dyngen
https://github.com/dynverse/dyngen
https://github.com/dynverse/dyntoy

119

to the simulators when applicable, as described for each simulator below. Not every
real dataset was selected to serve as a reference for a synthetic dataset. Instead, we
chose a set of ten distinct reference real datasets by clustering all the parameters
of each real dataset, and used the reference real datasets at the cluster centers from
a pam clustering (with k = 10, implemented in the R cluster package) to generate
synthetic data.

dyngen

The dyngen (https://github.com/dynverse/dyngen) workflow to generate synthetic
data is based on the well established workflow used in the evaluation of network
inference methods [35, 65] and consists of four main steps: network generation,
simulation, gold standard extraction and simulation of the scRNA-seq experiment.
At every step, we tried to mirror real regulatory networks, while keeping the model
simple and easily extendable. We simulated a total of 110 datasets, with 11 different
topologies.

Network generation

One of the main processes involved in cellular dynamic processes is gene regula-
tion, where regulatory cascades and feedback loops lead to progressive changes in
expression and decision making. The exact way a cell chooses a certain path during
its differentiation is still an active research field, although certain models have al-
ready emerged and been tested in vivo. One driver of bifurcation seems to bemutual
antagonism, where genes [66] strongly repress each other, forcing one of the two to
become inactive [67]. Such mutual antagonism can be modelled and simulated [68,
69]. Although such a two-gene model is simple and elegant, the reality is frequently
more complex, with multiple genes (grouped into modules) repressing each other
[70].

To simulate certain trajectory topologies, we therefore designed module networks
in which the cells follow a particular trajectory topology given certain parame-
ters. Two module networks generated linear trajectories (linear and linear long),
one generated a bifurcation, one generated a convergence, one generated a multi-
furcation (trifurcating), two generated a tree (consecutive bifurcating and binary
tree), one generated an acyclic graph (bifurcating and converging), one generated
a complex fork (trifurcating), one generated a rooted tree (consecutive bifurcating)
and two generated simple graph structures (bifurcating loop and bifurcating cycle).
The structure of these module networks is available at https://github.com/dynverse/
dyngen/tree/master/inst/ext_data/modulenetworks.

https://github.com/dynverse/dyngen
https://github.com/dynverse/dyngen/tree/master/inst/ext_data/modulenetworks
https://github.com/dynverse/dyngen/tree/master/inst/ext_data/modulenetworks

120 Chapter 4 - Comparing trajectory inference methods

From these module networks we generated gene regulatory networks in two steps:
the main regulatory network was first generated, and extra target genes from real
regulatory networks were added. For each dataset, we used the same number of
genes as were differentially expressed in the real datasets. 5% of the genes were
assigned to be part of the main regulatory network, and were randomly distributed
among all modules (with at least one gene per module). We sampled edges between
these individual genes (according to the module network) using a uniform distribu-
tion between 1 and the number of possible targets in eachmodule. To add additional
target genes to the network, we assigned every regulator from the network to a real
regulator in a real network (from regulatory circuits [71]), and extracted for every
regulator a local network around it using personalised pagerank (with damping fac-
tor set to 0.1), as implemented in the page_rank function of the igraph package.

Simulation of gene regulatory systems using thermodynamic models

To simulate the gene regulatory network, we used a system of differential equations
similar to those used in evaluations of gene regulatory network inference methods
[65]. In this model, the changes in gene expression (xi) and protein expression (yi)
are modeled using ordinary differential equations [35] (ODEs):

dxi
dt

= m× f(y1, y2, ...)︸ ︷︷ ︸
production

− λ× xi︸ ︷︷ ︸
degradation

dyi
dt

= r × xi︸ ︷︷ ︸
production

− Λ× yi︸ ︷︷ ︸
degradation

wherem, λ, r and Λ represent production and degradation rates, the ratio of which
determines the maximal gene and protein expression. The two types of equations
are coupled because the production of protein yi depends on the amount of gene
expression xi, which in turn depends on the amount of other proteins through the
activation function f(y1, y2, ...).

The activation function is inspired by a thermodynamic model of gene regulation,
in which the promoter of a gene can be bound or unbound by a set of transcription
factors, each representing a certain state of the promoter. Each state is linked with
a relative activation αj , a number between 0 and 1 representing the activity of the
promoter at this particular state. The production rate of the gene is calculated by
combining the probabilities of the promoter being in each state with the relative
activation:

121

f(y1, y2, ..., yn) =
∑

j∈{0,1,...,n2}

αj × Pj

The probability of being in a state is based on the thermodynamics of transcription
factor binding. When only one transcription factor is bound in a state:

Pj ∝ ν =
(y
k

)n

where the hill coefficient n represents the cooperativity of binding and k the tran-
scription factor concentration at half-maximal binding. When multiple regulators
are bound:

Pj ∝ ν = ρ×
∏
j

(
yj
kj

)nj

where ρ represents the cooperativity of binding between the different transcription
factors.

Pi is only proportional to ν because ν is normalised such that
∑

i Pi = 1.

To each differential equation, we added an additional stochastic term:

dxi
dt

= m× f(y1, y2, ...)− λ× xi + η ×
√
xi ×∆Wt

dyi
dt

= r × xi − Λ× yi + η ×√
yi ×∆Wt

with ∆Wt ∼ N (0, h).

Similar to GeneNetWeaver [35], we sample the different parameters from random
distributions, defined as follows. e defines whether a transcription factor activates
(1) or represses (-1), as defined within the regulatory network network.

122 Chapter 4 - Comparing trajectory inference methods

r = U(10, 200)
d = U(2, 8)
p = U(2, 8)
q = U(1, 5)

a0 =

1 if |e| = 0

1 if ∀x ∈ e, x = −1

0 if ∀x ∈ e, x = 1

0.5 otherwise

ai =

{
0 if ∃x ∈ ei, x = −1

1 otherwise
s = U(1, 20)
k = ymax/(2 ∗ s),

where ymax = r/d× p/q

c = U(1, 4)

We converted each ODE to an SDE by adding a chemical Langevin equation, as
described in [35]. These SDEs were simulated using the Euler–Maruyama approx-
imation, with time-step h = 0.01 and noise strength η = 8. The total simulation
time varied between 5 for linear and bifurcating datasets, 10 for consecutive bifur-
cating, trifurcating and converging datasets, 15 for bifurcating converging datasets
and 30 for linear long, cycle and bifurcating loop datasets. The burn-in period was
for each simulation 2. Each network was simulated 32 times.

Simulation of the single-cell RNA-seq experiment

For each dataset we sampled the same number of cells as were present in the ref-
erence real dataset, limited to the simulation steps after burn-in. These cells were
sampled uniformly across the different steps of the 32 simulations. Next, we used
the Splatter package [36] to estimate the different characteristics of a real dataset,
such as the distributions of average gene expression, library sizes and dropout prob-
abilities. We used Splatter to simulate the expression levels λi,j of housekeeping
genes i (to match the number of genes in the reference dataset) in every cell j. These
were combined with the expression levels of the genes simulated within a trajectory.
Next, true counts were simulated using Y ′

i,j ∼ Poisson(λi,j). Finally, we simulated
dropouts by setting true counts to zero by sampling from a Bernoulli distribution
using a dropout probability πD

i,j = 1

1+e−k(ln(λi,j)−x0)
. Both x0 (the midpoint for the

123

dropout logistic function) and k (the shape of the dropout logistic function) were
estimated by Splatter.

This count matrix was then filtered and normalised using the pipeline described
below.

Gold standard extraction

Because each cellular simulation follows the trajectory at its own speed, knowing
the exact position of a cell within the trajectory topology is not straightforward. Fur-
thermore, the speed at which simulated cells make a decision between two or more
alternative paths is highly variable. We therefore first constructed a backbone ex-
pression profile for each branch within the trajectory. To do this, we first defined in
which order the expression of themodules is expected to change, and then generated
a backbone expression profile in which the expression of these modules increases
and decreases smoothly between 0 and 1. We also smoothed the expression in each
simulation using a rolling mean with a window of 50 time steps, and then calcu-
lated the average module expression along the simulation. We used dynamic time
warping, implemented in the dtw R package [72, 73], with an open end to align a sim-
ulation to all possible module progressions, and then picked the alignment which
minimised the normalised distance between the simulation and the backbone. In
case of cyclical trajectory topologies, the number of possible milestones a backbone
could progress through was limited to 20.

dyntoy

Formore simplistic data generation (”toy” datasets), we created the dyntoyworkflow
(https://github.com/dynverse/dyntoyhttps://github.com/dynverse/dyntoy) . We cre-
ated 12 topology generators (described below), and with 10 datasets per generator,
this lead to a total of 120 datasets.

We created a set of topology generators, were B(n, p) denotes a binomial distribu-
tion, and U(a, b) denotes a uniform distribution:

• Linear and cyclic, with number of milestones ∼ B(10, 0.25)

• Bifurcating and converging, with four milestones

• Binary tree, with number of branching points ∼ U(3, 6)

• Tree, with number of branching points ∼ U(3, 6) and maximal degree ∼
U(3, 6)

https://github.com/dynverse/dyntoy

124 Chapter 4 - Comparing trajectory inference methods

For more complex topologies we first calculated a random number of ”modifica-
tions” ∼ U(3, 6) and a degmax ∼ B(10, 0.25) + 1. For each type of topology, we de-
fined what kind of modifications are possible: divergences, loops, convergences and
divergence-convergence. We then iteratively constructed the topology by uniformly
sampling from the set of possible modifications, and adding this modification to the
existing topology. For a divergence, we connected an existingmilestone to a number
of a new milestones. Conversely, for a convergence we connected a number of new
nodes to an existing node. For a loop, we connected two existing milestones with
a number of milestones in between. Finally for a divergence-convergence we con-
nected an existing milestone to several new milestones which again converged on a
new milestone. The number of nodes was sampled from ∼ B(degmax − 3, 0.25) + 2

• Looping, allowed loop modifications

• Diverging-converging, allowed divergence and converging modifications

• Diverging with loops, allowed divergence and loop modifications

• Multiple looping, allowed looping modifications

• Connected, allowed looping, divergence and convergence modifications

• Disconnected, number of components sampled from ∼ B(5, 0.25) + 2, for
each component we randomly chose a topology from the ones listed above

After generating the topology, we sampled the length of each edge ∼ U(0.5, 1).
We added regions of delayed commitment to a divergence in a random half of the
cases. We then placed the number of cells (same number as from the reference
real dataset), on this topology uniformly, based on the length of the edges in the
milestone network.

For each gene (same number as from the reference real dataset), we calculated the
Kamada-Kawai layout in 2 dimensions, with edge weight equal to the length of the
edge. For this gene, we then extracted for each cell a density value using a bivari-
ate normal distribution with µ ∼ U(xmin, xmin) and σ ∼ U(xmin/10, xmin/8). We
used this density as input for a zero-inflated negative binomial distribution with
µ U(100, 1000)× density, k U(µ/10, µ/4) and pi from the parameters of the refer-
ence real dataset, to get the final count values.

This count matrix was then filtered and normalised using the pipeline described
below.

PROSSTT

PROSSTT is a recent data simulator [64], which simulates expression using linear
mixtures of expression programs and random walks through the trajectory. We

125

used 5 topology generators from dyntoy (linear, bifurcating, multifurcating, binary
tree and tree), and simulated for each topology generator 10 datasets using differ-
ent reference real datasets. However, due to frequent crashes of the tool, only 19
datasets created output and were thus used in the evaluation.

Using the simulate_lineage function, we simulated the lineage expression, with
parameters a ∼ U(0.01, 0.1), branch-tolintra ∼ U(0, 0.9) and branch-tolinter ∼
U(0, 0.9). These parameter distributions were chosen very broad so as to make sure
both easy and difficult datasets are simulated. After simulating base gene expression
with simulate_base_gene_exp, we used the sample_density function to finally sim-
ulate expression values of a number of cells (the same as from the reference real
dataset), with α ∼ Lognormal (µ = 0.3 and σ = 1.5) and β ∼ Lognormal (µ = 2
and σ = 1.5). Each of these parameters were centered around the default values of
PROSSTT, but with enough variability to ensure a varied set of datasets.

This count matrix was then filtered and normalised using the pipeline described
below.

Splatter

Splatter [36] simulates expression values by constructing non-linear paths between
different states, each having a distinct expression profile. We used 5 topology gener-
ators from dyntoy (linear, bifurcating, multifurcating, binary tree and tree), and sim-
ulated for each topology generator 10 datasets using different reference real datasets,
leading to a total of 50 datasets.

We used the splatSimulatePaths function from Splatter to simulate datasets, with
number of cells and genes equal to those in the reference real dataset, and with
parameters nonlinearProb, sigmaFac and skew all sampled from U(0, 1).

Dataset filtering and normalisation

We used a standard single-cell RNA-seq preprocessing pipeline that applies parts of
the scran and scater Bioconductor packages [74]. The advantages of this pipeline are
that it works both with and without spike-ins, and it includes a harsh cell filtering
that looks at abnormalities in library sizes, mitochondrial gene expression and the
number of genes expressed using median absolute deviations (which we set to 3).
We required that a gene was expressed in at least 5% of the cells and that it should
have an average expression higher than 0.02. Furthermore, we used the pipeline
to select the most highly variable genes, using a false discovery rate of 5% and a
biological component higher than 0.5. As a final filter, we removed both all-zero
genes and cells until convergence.

126 Chapter 4 - Comparing trajectory inference methods

Benchmark metrics

The importance of using multiple metrics to compare complex models has been
stated repeatedly [60]. Furthermore, a trajectory is a model with multiple layers
of complexity, which calls for several metrics each assessing a different layer. We
therefore defined several possible metrics for comparing trajectories, each investi-
gating different layers. These are all discussed in Supplementary Note 1 along with
examples and robustness analyses when appropriate.

Next, we created a set of rules to which we think a good trajectory metric should
conform, and tested this empirically for each metric by comparing scores before and
after perturbing a dataset (Supplementary Note 1). Based on this analysis, we chose
four metrics for the evaluation, each assessing a different aspect of the trajectory: (1)
the HIM measures the topological similarity; (2) the F1branches compares the branch
assignment; (3) the cordist assesses the similarity in pairwise cell–cell distances and
thus the cellular positions; and (4) thewcorfeatures looks at whether similar important
features (genes) are found in both the reference dataset and the prediction.

The Hamming–Ipsen–Mikhailov metric

The HIM metric [75] uses the two weighted adjacency matrices of the milestone
networks as input (weighted by edge length). It is a linear combination of the nor-
malised Hamming distance, which gives an indication of the differences in edge
lengths, and the normalised Ipsen–Mikhailov distance, which assesses the similar-
ity in degree distributions. The latter has a parameter γ, which was fixed at 0.1 to
make the scores comparable between datasets. We illustrate the metric and discuss
alternatives in Supplementary Note 1.

The F1 between branch assignments

To compare branch assignment, we used an F1 score, also used used for comparing
biclustering methods [58]. To calculate this metric, we first calculated the similar-
ity of all pairs of branches between the two trajectories using the Jaccard similar-
ity. Next, we defined the ‘Recovery’ (respectively ‘Relevance’) as the average maxi-
mal similarity of all branches in the reference dataset (respectively prediction). The
F1branches was then defined as the harmonic mean between Recovery and Relevance.
We illustrate this metric further in Supplementary Note 1.

127

Correlation between geodesic distances

When the position of a cell is the same in both the reference and the prediction, its
relative distances to all other cells in the trajectory should also be the same. This
observation is the basis for the cordist metric. To calculate the cordist, we first sampled
100 waypoint cells in both the prediction and the reference dataset, using stratified
sampling between the different milestones, edges and regions of delayed commit-
ment, weighted by the number of cells in each collection. We then calculated the
geodesic distances between the union of waypoint cells from both datasets and all
other cells. The calculation of the geodesic distance depended on the location of the
two cells within the trajectory, further discussed in Supplementary Note 1, and was
weighted by the length of the edge in the milestone network. Finally, the cordist was
defined as the Spearman rank correlation between the distances of both datasets.
We illustrate the metric and assess the effect of the number of waypoint cells in
Supplementary Note 1.

The correlation between important features

Thewcorfeatures assesses whether the same differentially expressed features are found
using the predicted trajectory as in the known trajectory. To calculate this metric,
we used Random Forest regression (implemented in the R ranger package [76]), to
predict expression values of each gene, based on the geodesic distances of a cell
to each milestone. We then extracted feature importance values for each feature
and calculated the similarity of the feature importances using a weighted Pearson
correlation, weighted by the feature importance in the reference dataset to givemore
weight to large differences. As hyperparameters we set the number of trees to 10,000
and the number of features on which to split to 1% of all available features. We
illustrate this metric and assess the effect of its hyperparameters in Supplementary
Note 1.

Score aggregation

To rank methods, we needed to aggregate the different scores on two levels: across
datasets and across different metrics. This aggregation strategy is explained in more
detail in Supplementary Note 1.

To ensure that easy and difficult datasets have equal influence on the final score, we
first normalised the scores on each dataset across the different methods. We shifted
and scaled the scores to σ = 1 and μ = 0, and then applied the unit probability density
function of a normal distribution on these values to get the scores back into the [0,1]
range.

128 Chapter 4 - Comparing trajectory inference methods

Since there is a bias in dataset source and trajectory type (for example, there are
many more linear datasets), we aggregated the scores per method and dataset in
multiple steps. We first aggregated the datasets with the same dataset source and
trajectory type using an arithmetic mean of their scores. Next, the scores were
averaged over different dataset sources, using an arithmetic mean that wasweighted
based on how much the synthetic and silver scores correlated with the real gold
scores. Finally, the scores were aggregated over the different trajectory types again
using an arithmetic mean.

Finally, to get an overall benchmarking score, we aggregated the different metrics
using a geometric mean.

Method execution

Each execution of a method on a dataset was performed in a separate task as part of
a gridengine job. Each task was allocated one CPU core of an Intel(R) Xeon(R) CPU
E5-2665 at 2.40 GHz, and one R session was started for each task. During the execu-
tion of a method on a dataset, if the time limit (>1 h) or memory limit (16 GB) was
exceeded, or an error was produced, a zero score was returned for that execution.

Complementarity

To assess the complementarity between different methods, we first calculated for ev-
ery method and dataset whether the overall score was equal to or higher than 95%
of the best overall score for that particular dataset. We then calculated for every
method the weighted percentage of datasets that fulfilled this rule, weighted simi-
larly as in the benchmark aggregation, and chose the best method. We iteratively
added new methods until all methods were selected. For this analysis, we did not
include any methods that require any strong prior information and only included
methods that could detect the trajectory types present in at least one of the datasets.

Scalability

To assess the scalability of each method, we started from five real datasets, selected
using the centers from a k-medoids as discussed before. We up- and downscaled
these datasets between 10 and 100,000 cells and 10 and 100,000 features, while never
going higher than 1,000,000 values in total. To generate new cells or features, we
first generated a 10-nearest-neighbour graph of both the cells and features from the
expression space. For every new cell or feature, we used a linear combination of

129

one to three existing cells or features, where each cell or feature was given a weight
sampled from a uniform distribution between 0 and 1.

We ran each method on each dataset for maximally 1 h and gave each process 10 GB
of memory. To determine the running time of each method, we started the timer
right after data loading and the loading of any packages, and stopped the clock be-
fore postprocessing and saving of the output. Pre- and postprocessing steps specific
to a method, such as dimensionality reduction and gene filtering, were included in
the time. To estimate the maximal memory usage, we used the max_vmem value
from the qacct command provided by a gridengine cluster. We acknowledge, how-
ever, that these memory estimates are very noisy and the averages provided in this
study are therefore only rough estimates.

The relationship between the dimensions of a dataset and the running time or max-
imal memory usage was modeled using shape constrained additive models [39],
with log10|cells| and log10|features| as predictor variables, and fitted this model us-
ing the scam function as implemented in the R scam package, with log10time (or
log10memory) as outcome.

To classify the time complexity of each method with respect to the number of cells,
we predicted the running time at 10,000 features with increasing number of cells
from 100 to 100,000, with steps of 100. We trained a generalised linear model with
the following function: y  ≊   logx  +  

√
x  +  x  +  x2   +  x3 with y as running time

and x as the number of cells or features. The time complexity of a method was then
classified using the weights w from this model:

superquadratic if wx3 > 0.25,

quadratic if wx2 > 0.25,

linear if wx > 0.25,

sublinear if wlog(x) > 0.25 or wsqrt(x) > 0.25,

case with highest weight else.

This process was repeated for classifying the time complexity with respect to the
number of features, and the memory complexity both with respect to the number
of cells and features.

Stability

In the ideal case, a method should produce a similar trajectory, even when the input
data is slightly different. However, running the method multiple times on the same
input data would not be the ideal approach to assess its stability, given that a lot

130 Chapter 4 - Comparing trajectory inference methods

of tools are artificially deterministic by internally resetting the pseudorandom num-
ber generator (for example, using the ‘set.seed‘ function in R or the ‘random.seed‘
function in numpy). To assess the stability of each method, we therefore selected a
number of datasets, which consisted of 25% of the datasets accounting for 15% of the
total runtime, chosen such that after aggregation the overall scores still has > 0.99
correlation with the original overall ranking. We subsampled each dataset 10 times
with 95% of the original cells and 95% of the original features. We ran every method
on each of the bootstraps, and assessed the stability by calculating the benchmark-
ing scores between each pair of subsequent models (run i is compared to run i+1).
For the cordist and F1branches, we only used the intersection between the cells of two
datasets, while the intersection of the features was used for the wcorfeatures.

Usability

We created a transparent scoring scheme to quantify the usability of each method
based on several existing tool quality and programming guidelines in the literature
and online (Table 4.1). The main goal of this quality control is to stimulate the im-
provement of current methods, and the development of user- and developer-friendly
new methods. The quality control assessed six categories, each looking at several
aspects, which are further divided into individual items. The availability category
checks whether the method is easily available, whether the code and dependencies
can be easily installed, and how the method can be used. The code quality assesses
the quality of the code both from a user perspective (function naming, dummy proof-
ing and availability of plotting functions) and a developer perspective (consistent
style and code duplication). The code assurance category is frequently overlooked,
and checks for code testing, continuous integration [50] and an active support sys-
tem. The documentation category checks the quality of the documentation, both
externally (tutorials and function documentation) and internally (inline documenta-
tion). The behavior category assesses the ease by which the method can be run, by
looking for unexpected output files and messages, prior information and how easy
the trajectory model can be extracted from the output. Finally, we also assessed
certain aspects of the study in which the method was proposed, such as publication
in a peer-reviewed journal, the number of datasets in which the usefulness of the
method was shown and the scope of method evaluation in the paper.

Each quality aspect received a weight depending on how frequently it was found
in several papers and online sources that discuss tool quality (Table 4.1). This was
to make sure that more important aspects, such as the open source availability of
the method, outweighed other less important aspects, such as the availability of a
graphical user interface. For each aspect, we also assigned a weight to the individual
questions being investigated (Table 4.1). For calculating the final score, we weighed
each of the six categories equally.

131

Guidelines

For each set of outcomes in the guidelines figure, we selected one to four methods,
by first filtering the methods on those that can detect all required trajectory types,
and ordering the methods according to their average accuracy score on datasets
containing these trajectory types (aggregated according to the scheme presented in
the section Accuracy).

We used the same approach for selecting the best set of methods in the guidelines
app (http://guidelines.dynverse.org), developed using the R shiny package. This app
will also filter themethods, among other things, depending on the predicted running
time and memory requirements, the prior information available and the preferred
execution environment (using the dynmethods package or standalone).

Reporting Summary

Further information on research design is available in the Nature Research Report-
ing Summary, available at https://www.nature.com/articles/s41587-019-0071-9#
MOESM2

Supplementary Note 1: Metrics to compare two trajecto-
ries

A trajectory, as defined in our evaluation, is a model with multiple abstractions. The
top abstraction is the topology which contains information about the paths each cell
can take from their starting point. Deeper abstractions involve the mapping of each
cell to a particular branch within this network, and the position (or ordering) of each
cells within these branches. Internally, the topology is represented by the milestone
network and regions of delayed commitment, the branch assignment and cellular
positions are represented by the milestone percentages (Figure 4.10).

Given the multilayered complexity of a trajectory model, it is not trivial to compare
the similarity of two trajectory models using only one metric. We therefore sought
to use different comparison metrics, each serving a different purpose:

• Specific metrics investigate one particular aspect of the trajectory. Such
metrics make it possible to find particular weak points for methods, e.g. that
a method is very good at ordering but does not frequently find the correct
topology. Moreover, having multiple individual metrics allow personalised
rankings of methods, for example for users which are primarily interested in
using the method correct topology.

http://guidelines.dynverse.org
https://www.nature.com/articles/s41587-019-0071-9#MOESM2
https://www.nature.com/articles/s41587-019-0071-9#MOESM2

132 Chapter 4 - Comparing trajectory inference methods

d e

b

a
W

X

Y Z

2

3 4
c

Milestone network

from
W
X
X

to
X
Y
Z

length
2
3
4

Branch assignment
Represented by the milestone percentages

cell
a
a
b
b
c
c
d
d
d
e
e
e

milestone
W
X
W
X
X
Z
X
Y
Z
X
Y
Z

percentage
0.9
0.1
0.2
0.8
0.8
0.2
0.2
0.7
0.1
0.3
0.2
0.5

Cell positionsRegions of delayed
commitment
region

XYZ
XYZ
XYZ

to
X
Y
Z

is_begin
TRUE
FALSE
FALSE

Figure 4.10: An example trajectory that will be used throughout this section. It contains
contains four milestones (W to Z) and five cells (a to e).

133

• Application metrics focus on the quality of a downstream analysis using
the trajectory. For example, it measures whether the trajectory can be used
to find accurate differentially expressed genes.

• Overall metrics should capture all the different abstractions, in other words
such metrics measure whether the resulting trajectory has a good topology,
that the cells belong to similar branches and that they are ordered correctly.

Here, we first describe and illustrate several possible specific, application and overall
metrics. Next, we test these metrics on several test cases, to make sure they robustly
identify ”wrong” trajectory predictions.

All metrics described here were implemented within the dyneval R package (https:
//github.com/dynverse/dyneval).

Metric characterisation and testing

isomorphic, edgeflip and HIM: Edit distance between two trajectory topolo-
gies

We used three different scores to assess the similarity in the topology between two
trajectories, irregardless of where the cells were positioned.

For all three scores, we first simplified the topology of the trajectory to make both
graph structures comparable:

• As we are only interested in the main structure of the topology without start
or end, the graph was made undirected.

• All milestones with degree 2 were removed. For example in the topology A
→ B → C → D, C → D, the B milestone was removed

• A linear topology was converted to A → B → C

• A cyclical topology such as A → B → C → D or A → B → A were all
simplified to A → B → C → A

• Duplicated edges such as A → B, A → B were decoupled to A → B, A → C
→ B

The isomorphic score returns 1 if two graphs are isomorphic, and 0 if they were not.
For this, we used the used the BLISS algorithm [77], as implemented in the R igraph
package.

The edgeflip score was defined as the minimal number of edges which should be
added or removed to convert one network into the other, divided by the total num-

https://github.com/dynverse/dyneval
https://github.com/dynverse/dyneval

134 Chapter 4 - Comparing trajectory inference methods

ber of edges in both networks. This problem is equivalent to the maximum com-
mon edge subgraph problem, a known NP-hard problem without a scalable solution
[78]. We implemented a branch and bound approach for this problem, using several
heuristics to speed up the search:

• First check all possible edge additions and removals corresponding to the num-
ber of different edges between the two graphs.

• For each possible solution, first check whether:

1. The maximal degree is the same

2. The minimal degree is the same

3. All degrees are the same after sorting

• Only then check if the two graphs are isomorphic as described earlier.

• If no solution is found, check all possible solutions with two extra edge addi-
tions/removals.

TheHIM metric (Hamming-Ipsen-Mikhailov distance) [75] which was adopted from
the R nettools package (https://github.com/filosi/nettools). It uses an adjacency ma-
trix which was weighted according to the lengths of each edges within themilestone
network. Conceptually, HIM is a linear combination of:

• The normalised Hamming distance [79], which calculates the distance be-
tween two graphs by matching individual edges in the adjacency matrix, but
disregards overall structural similarity.

• The normalised Ipsen-Mikhailov distance [80], which calculates the overall
distance of two graphs based on matches between its degree and adjacency
matrix, while disregarding local structural similarities. It requires a γ param-
eter, which is usually estimated based on the number of nodes in the graph,
but which we fixed at 0.1 so as to make the score comparable across different
graph sizes.

We compared the three scores on several common topologies (Figure 4.11a). While
conceptually very different, the edgeflip andHIM still produce similar scores (Figure
4.11b). The HIM tends to punish the detection of cycles, while the edgeflip is more
harsh for differences in the number of bifurcations (Figure 4.11b). The main differ-
ence however is that the HIM takes into account edge lengths when comparing two
trajectories, as illustrated in (Figure 4.11c). Short ”extra” edges in the topology are
less punished by the HIM than by the edgeflip.

To summarise, the different topology based scores are useful for different scenarios:

https://github.com/filosi/nettools

135

A

B

C

D

E

F

A

B

C D

E F

A

B

C

F

D E

A

B

C

E F

D

A

B

C

D

E A

B

D

E
C

A

B
C

D

E
F

linear bifurcation multifurcating tree cycle connected disconnected

1

0.67

0.5

0.4

0.67

0.5

0.5

0.67

1

0.8

0.67

0.5

0.8

0.4

0.5

0.8

1

0.57

0.4

0.67

0.33

0.4

0.67

0.57

1

0.33

0.57

0.57

0.67

0.5

0.4

0.33

1

0.8

0.8

0.5

0.8

0.67

0.57

0.8

1

0.67

0.5

0.4

0.33

0.57

0.8

0.67

1

1

0.6

0.39

0.38

0.32

0.48

0.46

0.6

1

0.72

0.6

0.32

0.55

0.43

0.39

0.72

1

0.71

0.25

0.51

0.28

0.38

0.6

0.71

1

0.33

0.62

0.49

0.32

0.32

0.25

0.33

1

0.59

0.43

0.48

0.55

0.51

0.62

0.59

1

0.61

0.46

0.43

0.28

0.49

0.43

0.61

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

edgeflip HIM isomorphic

Li
ne

ar

Bifu
rc

at
io
n

M
ul
tif
ur

ca
tin

g
Tr

ee

C
yc

le

C
on

ne
ct
ed

D
is
co

nn
ec

te
d

Li
ne

ar

Bifu
rc

at
io
n

M
ul
tif
ur

ca
tin

g
Tr

ee

C
yc

le

C
on

ne
ct
ed

D
is
co

nn
ec

te
d

Li
ne

ar

Bifu
rc

at
io
n

M
ul
tif
ur

ca
tin

g
Tr

ee

C
yc

le

C
on

ne
ct
ed

D
is
co

nn
ec

te
d

Disconnected

Connected

Cycle

Tree

Multifurcating

Bifurcation

Linear

0.00

0.25

0.50

0.75

1.00

Score

1

1

1

0.67

0.81

0

0.67

0.61

0

0.67

0.57

0

edgeflip

HIM

isomorphic

Reference Very short extra edges Short extra edges Long extra edges

a

b

c

Figure 4.11: Showcase of three metrics to evaluate topologies: isomorphic, edgeflip and
HIM (a) The used topologies. (b) The scores when comparing each pair of trajectory types. (c)
Four datasets in which aan extra edge is added and made progressively longer. This shows how
the HIM can take into account edge lengths.

136 Chapter 4 - Comparing trajectory inference methods

• If the two trajectories should only be compared when the topology is exactly
the same, the isomorphic should be used.

• If it is important that the topologies are similar, but not necessarily isomor-
phic, the edgeflip is most appropriate.

• If the topologies should be similar, but shorter edges should not be punished
as hard as longer edges, the HIM is most appropriate.

F1branches and F1milestones: Comparing how well the cells are clustered in the
trajectory

Perhaps one of the simplest ways to calculate the similarity between the cellular
positions of two topologies is by mapping each cell to its closest milestone or branch
4.12. These clusters of cells can then be compared using one of the many external
cluster evaluation measures [58]. When selecting a cluster evaluation metric, we
had two main conditions:

• Because we allow methods to filter cells in the trajectory, the metric should
be able to handle ”non-exhaustive assignment”, where some cells are not as-
signed to any cluster.

• The metric should give each cluster equal weight, so that rare cell stages are
equally important as large stages.

The F1 score between the Recovery and Relevance is a metric which conforms to both
these conditions. This metric will map two clustersets by using their shared mem-
bers based on the Jaccard similarity. It then calculates the Recovery as the average
maximal Jaccard for every cluster in the first set of clusters (in our case the reference
trajectory). Conversely, the Relevance is calculated based on the average maximal
similarity in the second set of clusters (in our case the prediction). Both the Recovery
and Relevance are then given equal weight in a harmonic mean (F1). Formally, if C
and C ′ are two cell clusters:

137

Jaccard(c, c′) =
|c ∩ c′|
|c ∪ c′|

Recovery =
1

|C|
∑
c∈C

max
c′∈C′

Jaccard(c, c’)

Relevance =
1

|C ′|
∑
c′∈C′

max
c∈C

Jaccard(c, c’)

F1 =
2

1
Recovery +

1
Relevance

M1

M2

M3

M4

M5

M6

grouping
M1

M2

M3

M4

M5

M6

grouping
M1->M3

M3->M2

M3->M5

M5->M4

M5->M6

Reference Cells mapped to milestones Cells mapped to branches

Figure 4.12: Mapping cells to their closest milestone or branch for the calculation of
the F1milestones and F1branches . To calculate the F1milestones, cells are mapped towards the nearest
milestone, i.e. the milestone with the highest milestone percentage. For the F1branches, the cells
are mapped to the closest edge.

cordist: Correlation between geodesic distances

When the position of a cell is the same in both the reference and the prediction, its
relative distances to all other cells in the trajectory should also be the same. This
observation is the basis for the cordist metric.

The geodesic distance is the distance a cell has to go through the trajectory space
to get from one position to another. The way this distance is calculated depends on
how two cells are positioned, showcased by an example in Figure 4.13:

• Both cells are on the same edge in the milestone network. In this case,
the geodesic distance is defined as the product of the difference in milestone

138 Chapter 4 - Comparing trajectory inference methods

d e

b

a
W

X

Y Z

2

3 4
c

Milestone network
from

W
X
X

to
X
Y
Z

length
2
3
4

Milestone percentages
cell
a
a
b
b
c
c
d
d
d
e
e
e

milestone
W
X
W
X
X
Z
X
Y
Z
X
Y
Z

percentage
0.9
0.1
0.2
0.8
0.8
0.2
0.2
0.7
0.1
0.3
0.2
0.5

Region of delayed
commitment
region

XYZ
XYZ
XYZ

to
X
Y
Z

is_begin
TRUE
FALSE
FALSE

a b

c d(a, b)
d(a, c)
d(b, c)
d(a, d)
d(b, d)
d(c, d)
d(a, e)
d(b, e)
d(c, e)
d(d, e)

a b c d e
a

b
c

d
e

d= 2 × (0.9 - 0.2) = 1.4
= 2 × 0.9 + 4 × 0.2 = 2.6
= 2 × 0.2 + 4 × 0.2 = 1.2
= 2 × 0.9 + 3 × 0.7 + 4 × 0.1 = 4.3
= 2 × 0.2 + 3 × 0.7 + 4 × 0.1 = 2.9
= 3 × (0.7 - 0) + 4 × (0.2 - 0.1) = 2.5
= 2 × 0.9 + 3 × 0.2 + 4 × 0.5 = 4.4
= 2 × 0.2 + 3 × 0.2 + 4 × 0.5 = 3.0
= 3 × (0.2 - 0) + 4 × (0.5 - 0.2) = 1.8
= 3 × (0.7 - 0.2) + 4 × (0.5 - 0.1) = 3.1 Geodesic distance

Figure 4.13: The calculation of geodesic distances on a small example trajectory. a) A
toy example containing four milestones (W to Z) and five cells (a to e). b) The corresponding
milestone network, milestone percentages and regions of delayed commitment, when the toy
trajectory is converted to the common trajectory model. c)The calculations made for calculating
the pairwise geodesic distances. d)A heatmap representation of the pairwise geodesic distances.

139

percentages and the length of their shared edge. For cells a and b in the ex-
ample, d(a, b) is equal to 1× (0.9− 0.2) = 0.7.

• Cells reside on different edges in the milestone network. First, the dis-
tance of the cell to all its nearby milestones is calculated, based on its percent-
agewithin the edge and the length of the edge. These distances in combination
with the milestone network are used to calculate the shortest path distance
between the two cells. For cells a and c in the example, d(a,X) = 1 × 0.9
and d(c,X) = 3× 0.2, and therefore d(a, c) = 1× 0.9 + 3× 0.2.

The geodesic distance can be easily extended towards cells within regions of delayed
commitment. When both cells are part of the same region of delayed commitment,
the geodesic distance was defined as themanhattan distances between themilestone
percentages weighted by the lengths from the milestone network. For cells d and e
in the example, d(d, e) is equal to 0 × (0.3 − 0.2) + 2 × (0.7 − 0.2) + 3 × (0.4 −
0.1) = 1.9. The distance between two cells where only one is part of a region
of delayed commitment is calculated similarly to the previous paragraph, by first
calculating the distance between the cells and their neighbouring milestones first,
then calculating the shortest path distances between the two.

Calculating the pairwise distances between cells scales quadratically with the num-
ber of cells, and would therefore not be scaleable for large datasets. For this reason,
a set of waypoint cells are defined a priori, and only the distances between the way-
point cells and all other cells is calculated, in order to calculate the correlation of
geodesic distances of two trajectories (Figure 4.14a). These cell waypoints are de-
termined by viewing each milestone, edge and region of delayed commitment as a
collection of cells. We do stratified sampling from each collection of cells by weigh-
ing them by the total number of cells within that collection. For calculating the
cordist between two trajectories, the distances between all cells and the union of
both waypoint sets is computed.

To select the number of cell waypoints, we need to find a trade-off between the
accuracy versus the time to calculate cordist. To select an optimal number of cell
waypoints, we used the synthetic dataset with the most complex topology, and
determined the cordist at different levels of both cell shuffling and number of cell
waypoints (Figure 4.14a). We found that using cell waypoints does not introduce
a systematic bias in the cordist, and that its variability was relatively minimal when
compared to the variability between different levels of cell shuffling when using 100
or more cell waypoints.

Although the cordist’s main characteristic is that it looks at the positions of the cells,
other features of the trajectory are also (partly) captured. To illustrate this, we used
the geodesic distances themselves as input for dimensionality reduction (Figure 4.15)

140 Chapter 4 - Comparing trajectory inference methods

grouping In divergence In milestone On edge

grouping Not waypoint Waypoint

Dataset

Cell positions

Waypoint cells

9s 8s 9s 9s 10s 13s 20s
58s

2m

6m

9

364

1.00

0.66

0.41

0.20

0.06

0.00

2 5 10 20 50 100 200 500 1000 all

cell waypoints

T
im

e
 (

se
c
o
n
d
s
)

co
r d

is
t

Shuffle %

0%

20%

40%

60%

80%

100%

a b

Figure 4.14: Determination of cell waypoints a) Illustration of the stratified cell sampling
using an example dataset (top). Each milestone, edge between two milestones and region of
delayed commitment is seen as a collection of cells (middle), and the number of waypoints (100
in this case) are divided over each of these collection of cells (bottom). b)Accuracy versus time to
calculate cordist. Shown are distributions over 100 random waypoint samples. The upper whisker
of the boxplot extends from the hinge (75% percentile) to the largest value, no further than 1.5×
the IQR of the hinge. The lower whisker extends from the hinge (25% percentile) to the smallest
value, at most 1.5× the IQR of the hinge.

141

with varying topologies. This reduced space captures the original trajectory struc-
ture quite well, including the overall topology and branch lengths.

Bifurcating Binary tree Connected Converging

Cyclic Disconnected Diverging converging Diverging with loops

Linear Looping Multifurcating Tree

Figure 4.15: Determination of cell waypoints. We generated different toy trajectory datasets
with varying topologies and calculated the geodesic distances between all cells within the trajec-
tory. We then used these distances as input for classical multidimensional scaling. This shows
that the geodesic distances do not only contain information regarding the cell’s positions, but
also information on the lengths and wiring of the topology.

NMSErf and NMSElm: Using the positions of the cells within one trajectory
to predict the cellular positions in the other trajectory

An alternative approach to detect whether the positions of cells are similar between
two trajectories, is to use the positions of one trajectory to predict the positions
within the other trajectory. If the cells are at similar positions in the trajectory
(relative to its nearby cells), the prediction error should be low.

Specifically, we implemented two metrics which predict the milestone percentages
from the reference by using the predicted milestone percentages as features (Figure
4.16). We did this with two regression methods, linear regression (lm, using the R
lm function) and Random Forest (rf, implemented in the ranger package [76]). In
both cases, the accuracy of the prediction was measured using the Mean Squared

142 Chapter 4 - Comparing trajectory inference methods

error (MSE), in the case of Random forest we used the out-of-bag mean-squared
error. Next, we calculatedMSEworst equal to theMSE when predicting all milestone
percentages as the average. We used this to calculate the normalised mean squared
error as NMSE = 1− MSE

MSEworst
. We created a regression model for every milestone in

the gold standard, and averaged the NMSE values to finally obtain the NMSErf and
NMSElm scores.

d e

b

a
W

X

Y Z

c

a
b
c
d
e

W
0.9
0.2
0
0
0

X
0.1
0.8
0.8
0.1
0.3

Milestone percentages (matrix)
Y
0
0
0

0.8
0.2

Z
0
0

0.2
0.1
0.5

d
e

b

a
M

N

O

c

a
b
c
d
e

M
0.9
0.2
0
0
0

N
0.1
0.8
0.8
0.5
0.2

O
0
0

0.2
0.5
0.8

Reference

Prediction

a
b
c
d
e

M
0.9
0.2
0
0
0

N
0.1
0.8
0.8
0.5
0.2

O
0
0

0.2
0.5
0.8

Linear regression
or

Random forest

Prediction
Z
0
0

0.2
0.1
0.5

Ẑ
0.1
0.1
0.2
0

0.4

0.1

MSE

Predictionworst

Ẑ
0.3
0.3
0.3
0.3
0.3

MSEworst

0.67

NMSE
1 - 0.1/0.67

Figure 4.16: The calculation of NMSElm distances on a small example trajectory. The
milestone percentages of the reference are predicted based on the milestone percentages of the
prediction, using regression models such as linear regression or random forests. The predicted
trajectory is then scored by comparing the mean-squared error (MSE) of this regression model
with the baseline MSE where the prediction is the average milestone percentage.

corfeatures and wcorfeatures: The accuracy of dynamical differentially ex-
pressed features/genes.

Although most metrics described above already assess some aspects directly rele-
vant to the user, such as whether the method is good at finding the right topol-
ogy, these metrics do not assess the quality of downstream analyses and hypotheses
which can be generated from these models.

Perhaps themain advantage of studying cellular dynamic processes using single-cell
-omics data is that the dynamics of gene expression can be studied for the whole tran-
scriptome. This can be used to construct other models such as dynamic regulatory
networks and gene expression modules. Such analyses rely on a ”good-enough” cel-
lular ordering, so that it can be used to identify dynamical differentially expressed
genes.

To calculate the corfeatures we used Random forest regression to rank all the features
according to their importance in predicting the positions of cells in the trajectory.

143

More specifically, we first calculated the geodesic distances for each cell to all mile-
stones in the trajectory. Next, we trained a Random Forest regression model (imple-
mented in the R ranger package [76], https://github.com/imbs-hl/ranger) to predict
these distances for each milestone, based on the expression of genes within each
cell. We then extracted feature importances using the Mean Decrease in Impurity
(importance = ’impurity’ parameter of the ranger function), as illustrated in Figure
4.17. The overall importance of a feature (gene) was then equal to the mean impor-
tance over all milestones. Finally, we compared the two rankings by calculating the
Pearson correlation, with values between -1 and 0 clipped to 0.

d2_induced

d2_intermediate

d5_earlyiN

d5_intermediate

MEF
Myocyte

Neuron

0.0 2.5 5.0 7.5 10.0

Ascl1 expression

0 2 4 6

Rabepk expression

0 2 4 6 8

Srr expression

0 2 4 6

Bmp7 expression

Ascl1 Rabepk Srr Bmp7

Genes

c

0.0

0.3

0.6

0.9

1.2

im
p
o
rt

a
n
c
e

a

Figure 4.17: An illustration of ranking features based on their importance in a trajec-
tory. (a) AMDS dimensionality reudction of a real dataset in whichmouse embryonic fibroblasts
(MEF) differentiate into Neurons and Myocytes. (b) The ranking of feature importances from
high to low. The majority of features have a very low importance. (c) Some examples, which
were also highlighted in b. Higher features in the ranking are clearly specific to certain parts of
the trajectory, while features lower on the ranking have a more dispersed expression pattern.

Random forest regression has two main hyperparameters. The number of trees to
be fitted (num_tree parameter) was fixed to 10000 to provide accurate and stable
estimates of the feature importance (Figure 4.18. The number of features on which
can be split (mtry parameter) was set to 1% of all available features (instead of the
default square-root of the number of features), as to make sure that predictive but

https://github.com/imbs-hl/ranger

144 Chapter 4 - Comparing trajectory inference methods

highly correlated features, omnipresent in transcriptomics data, are not suppressed
in the ranking.

10 trees 100 trees 1000 trees 10000 trees

0% 20% 40% 60% 80%100% 0% 20% 40% 60% 80%100% 0% 20% 40% 60% 80%100% 0% 20% 40% 60% 80%100%

0.99
0.97

0.89

0.59

0.27

0.16

Shuffle %

co
r f

e
a

tu
re

s

Shuffle %

0%

20%

40%

60%

80%

100%

Figure 4.18: Effect of the number of trees parameter on the accuracy and variability of
the corfeatures. We used the dataset from Figure 4.17 and calculated the corfeatures after shuffling a
percentage of cells.

For most datasets, only a limited number of features will be differentially expressed
in the trajectory. For example, in the dataset used in Figure 4.18 only the top 10%-
20% show a clear pattern of differential expression. The correlation will weight
each of these features equally, and will therefore give more weight to the bottom,
irrelevant features. To prioritise the top differentially expressed features, we also
implemented the wcorfeatures, which will weight the correlation using the feature im-
portance scores in the reference so that the top features have relatively more impact
on the score (Figure 4.19).

145

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Shuffle %

sc
o
re

metric_id

corfeatures

wcorfeatures

Figure 4.19: Effect of weighting the features based on their feature importance in the
reference. We used the same dataset as in Figure 4.17, and calculated the corfeatures after shuffling
a percentage of cells.

146 Chapter 4 - Comparing trajectory inference methods

Metric conformity

Althoughmost metrics described in the previous section make sense intuitively, this
does not necessarily mean that these metrics are robust andwill generate reasonable
results when used for benchmarking. This is because different methods and datasets
will all lead to a varied set of trajectory models:

• Real datasets have all cells grouped onto milestones

• Some methods place all cells in a region of delayed commitment, others never
generate a region of delayed commitment

• Somemethods always return a linear trajectory, even if a bifurcation is present
in the data

• Some methods filter cells

A good metric, especially a good overall metric, should work in all these circum-
stances. To test this, we designed a set of rules to which a good metric should
conform, and assessed empirically whether a metric conforms to these rules.

We generated a panel of toy datasets (using our dyntoy package, https://github.com/
dynverse/dyntoy) with all possible combinations of:

• # cells: 10, 20, 50, 100, 200, 500

• # features: 200

• topologies: linear, bifurcation, multifurcating, tree, cycle, connected graph
and disconnected graph

• Whether cells are placed on the milestones (as in real data) or on the edges/re-
gions of delayed commitment between the milestones (as in synthetic data)

We then perturbed the trajectories in these datasets in certain ways, and tested
whether the scores follow an expected pattern. An overview of the conformity
of every metric is first given in Table 4.2. The individual rules and metric be-
haviour are discussed in the Supplementary Material that can be found at https:
//www.nature.com/articles/s41587-019-0071-9#Sec34.

https://github.com/dynverse/dyntoy
https://github.com/dynverse/dyntoy
https://www.nature.com/articles/s41587-019-0071-9#Sec34
https://www.nature.com/articles/s41587-019-0071-9#Sec34

147

Table 4.2: Overview of whether a particular metric conforms to a particular rule

name co
r d
is
t

N
M
SE

rf

N
M
SE

lm

ed
ge
fli
p

H
IM iso
m
or

ph
ic

co
r fe

at
ur
es

w
co
r fe

at
ur
es

F1
br
an

ch
es

F1
m
ile
st
on
es

m
ea
n g

eo
m
et
ri
c

Same score on identity ✔ x ✔ ✔ ✔ ✔ ✔ x ✔ ✔ ✔
Local cell shuffling ✔ ✔ ✔ x x x ✔ ✔ x ✔ ✔
Edge shuffling ✔ ✔ ✔ x x x ✔ ✔ ✔ ✔ ✔
Local and global cell shuffling ✔ ✔ ✔ x x x ✔ ✔ ✔ ✔ ✔
Changing positions locally and/or
globally

✔ ✔ ✔ x x x ✔ ✔ x x ✔

Cell filtering ✔ ✔ ✔ x x x ✔ ✔ ✔ ✔ ✔
Removing divergence regions ✔ ✔ ✔ x x x ✔ ✔ x ✔ ✔
Move cells to start milestone ✔ ✔ ✔ x x x ✔ ✔ x ✔ ✔
Move cells to closest milestone ✔ ✔ ✔ x x x ✔ ✔ x ✔ ✔
Length shuffling ✔ x ✔ x ✔ x x x x ✔ ✔
Cells into small subedges x ✔ x ✔ ✔ ✔ ✔ x ✔ ✔ ✔
New leaf edges ✔ ✔ x ✔ ✔ ✔ x x ✔ ✔ ✔
New connecting edges ✔ ✔ x ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Changing topology and cell position x x x x x x x x x x ✔
Bifurcation merging ✔ x ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Bifurcation merging and changing
cell positions

✔ ✔ ✔ x x x ✔ ✔ ✔ ✔ ✔

Bifurcation concatentation ✔ x ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Cycle breaking ✔ x ✔ ✔ ✔ ✔ ✔ ✔ x ✔ ✔
Linear joining ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ x ✔ ✔
Linear splitting ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Change of topology ✔ x x ✔ ✔ ✔ ✔ ✔ x ✔ ✔
Cells on milestones vs edges ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

148 Chapter 4 - Comparing trajectory inference methods

Score aggregation

To rank themethods, we need to aggregate on two levels: across datasets and across
specific/application metrics to calculate an overall metric.

Aggregating over datasets

When combining different datasets, it is important that the biases in the datasets
does not influence the overall score. In our study, we define three such biases, al-
though there are potentially many more:

• Difficulty of the datasets Some datasets are more difficult than others. This
can have various reasons, such as the complexity of the topology, the amount
of biological and technical noise, or the dimensions of the data. It is important
that a small increase in performance on a more difficult dataset has an equal
impact on the final score as a large increase in performance on easier datasets.

• Dataset sources It is much easier to generate synthetic datasets than real
datasets, and this bias is reflected in our set of datasets. However, given their
higher biological relevance, real datasets should be given at least equal impor-
tance than synthetic datasets.

• Trajectory typesThere are many more linear and disconnected real datasets,
and only a limited number of tree or graph datasets. This imbalance is there
because historically most datasets have been linear datasets, and because it
is easy to create disconnected datasets by combining different datasets. How-
ever, this imbalance in trajectory types does not necessarily reflect the general
importance of that trajectory type.

We designed an aggregation scheme which tries to prevent these biases from influ-
encing the ranking of the methods.

The difficulty of a dataset can easily have an impact on howmuchweight the dataset
gets in an overall ranking. We illustrate this with a simple example in Figure 4.20.
One method consistently performs well on both the easy and the difficult datasets.
But because the differences are small in the difficult datasets, the mean would not
give this method a high score. Meanwhile, a variable method which does not per-
form well on the difficult dataset gets the highest score, because it scored so high
on the easier dataset.

To avoid this bias, we normalise the scores of each dataset by first scaling and cen-
tering to µ = 0 and σ = 1, and then moving the score values back to [0, 1] by
applying the unit normal density distribution function. This results in scores which
are comparable across different datasets (Figure 4.20). In contrast to other possible

149

normalisation techniques, this will still retain some information on the relative dif-
ference between the scores, which would have been lost when using the ranks for
normalisation. An example of this normalisation, which will also be used in the
subsequent aggregation steps, can be seen in Figure 4.21.

0.00

0.25

0.50

0.75

1.00

Easy Difficult Mean Easy
normalised

Difficult
normalised

Mean
normalised

sc
o
re

A decent method

A variable method

Another variable method

A bad method

Figure 4.20: An illustration of how the difficulty of a dataset can influence the overall
ranking. A decent method, which consistently ranks high on an easy and difficult dataset, does
not get a high score when averaging. On the other hand, a method which ranks high on the easy
dataset, but very low on the difficult dataset does get a high score on average. After normalising
the scores (right), this problem disappears.

0.00

0.05

0.05

0.08

0.10

0.10

0.10

0.15

0.150.20

0.20

0.20

0.25

0.25

0.30

0.35

0.40

0.40

0.40

0.50 0.60

0.70

0.80

0.80

0.80

0.85

0.90

0.90

0.95

1.00

a

a

a

a

a

A b

b

b

b

b

B

bifurcation

bifurcation

c

c

c

c

c

C

D

E

linear

linear

linear

real/gold

real/gold

real/gold

real/silver

real/silver

Normalise

0.14

0.14

0.14

0.14

0.14

0.16

0.19

0.190.21

0.28

0.28

0.37

0.41

0.41

0.50

0.55

0.55

0.55

0.57

0.60

0.80

0.82

0.82

0.82

0.82

0.84

0.86

0.860.87

0.88

a

a

a

a

a

A b

b

b

b

b

B

bifurcation

bifurcation

c

c

c

c

c

C

D

E

linear

linear

linear

real/gold

real/gold

real/gold

real/silver

real/silver

Dataset
id

Trajectory
type

Dataset
source

Method
id

Metric
X

Metric
Y

Dataset
id

Trajectory
type

Dataset
source

Method
id

Metric
X

normalised

Metric
Y

normalised

For each dataset Normalised

Figure 4.21: An example of the normalisation procedure. Shown are some results of a
benchmarking procedure, where every row contains the scores of a particular method (red shad-
ing) on a particular dataset (blue shading), with a trajectory type (green shading) and dataset
source (orange shading).

After normalisation, we aggregate step by step the scores from different datasets. We
first aggregate the datasets with the same dataset source and trajectory type using
an arithmetic mean of their scores (Figure 4.22a). Next, the scores are averaged
over different dataset sources, using a arithmetic mean which was weighted based
on how much the synthetic and silver scores correlated with the real gold scores
(Figure 4.22b). Finally, the scores are aggregated over the different trajectory types
again using a arithmetic mean (Figure 4.22c).

150 Chapter 4 - Comparing trajectory inference methods

0.14

0.14

0.14

0.14

0.14

0.16

0.19

0.190.21

0.28

0.28

0.37

0.41

0.41

0.50

0.55

0.55

0.55

0.57

0.60

0.80

0.82

0.82

0.82

0.82

0.84

0.86

0.860.87

0.88

a

a

a

a

a

A b

b

b

b

b

B

bifurcation

bifurcation

c

c

c

c

c

C

D

E

linear

linear

real/gold

real/gold

real/silver

real/silver

Arithmetic

mean

0.14

0.14 0.14

0.16

0.190.21

0.28

0.28

0.28

0.37

0.38

0.41

0.50

0.55

0.55 0.60

0.80

0.82

0.82

0.84

0.84

0.860.87

0.88

a

a

a

a

b

b

b

b

bifurcation

c

c

c

c

linear

real/gold

real/gold

real/silver

real/silver

Dataset
id

Trajectory
type

Dataset
source

Method
id

Metric
X

normalised

Metric
Y

normalised
Trajectory

type
Dataset
source

Method
id

Metric
X

normalised

Metric
Y

normalised

For each method, trajectory
type and dataset source Aggregated across datasets

0.14

0.14 0.14

0.16

0.190.21

0.28

0.28

0.28

0.37

0.38

0.41

0.50

0.55

0.55 0.60

0.80

0.82

0.82

0.84

0.84

0.860.87

0.88

a

a

a

a

b

b

b

b

bifurcation

c

c

c

c

linear

real/gold

real/gold

real/silver

real/silver

Weighted

arithmetic

mean

0.15

0.18

0.21

0.23

0.400.46

0.55

0.550.71

0.82

0.85 0.85

a

a

b

bbifurcation

c

c

linear

Trajectory
type

Dataset
source

Method
id

Metric
X

normalised

Metric
Y

normalised
Trajectory

type
Method

id

Metric
X

normalised

Metric
Y

normalised

For each method and
trajectory type

Aggregated across dataset
sources

0.15

0.18

0.21

0.23

0.400.46

0.55

0.550.71

0.82

0.85 0.85

a

a

b

bbifurcation

c

c

linear

Arithmetic

mean

0.190.20

0.470.59

0.70 0.84

a

b

c

Trajectory
type

Method
id

Metric
X

normalised

Metric
Y

normalised
Method

id

Metric
X

normalised

Metric
Y

normalised

For each method
Aggregated across trajectory

types

a

b

c

Figure 4.22: An example of the aggregation procedure. In consecutive steps we aggregated
across (a) different datasets with the same source and trajectory type, (b) different dataset sources
with the same trajectory type (weighted for the correlation of the dataset source with the real
gold dataset source) and (c) all trajectory types.

151

Overall metrics

Undoubtedly, a single optimal overall metric does not exist for trajectories, as differ-
ent users may have different priorities:

• A user may be primarily interested in defining the correct topology, and only
use the cellular ordering when the topology is correct

• A user may be less interested in how the cells are ordered within a branch,
but primarily in which cells are in which branches

• A user may already know the topology, and may be primarily interested in
finding good features related to a particular branching point

• …

Each of these scenarios would require a combinations of specific and application
metrics with different weights. To provide an ”overall” ranking of themetrics, which
is impartial for the scenarios described above, we therefore chose a metric which
weighs every aspect of the trajectory equally:

• Its ordering, using the cordist
• Its branch assignment, using the F1branches
• Its topology, using the HIM

• The accuracy of differentially expressed features, using the wcorfeatures
Next, we considered three different ways of averaging different scores: the arith-
metic mean, geometric mean and harmonic mean. Each of these types of mean
have different use cases. The harmonic mean is most appropriate when the scores
would all have a common denominator (as is the case for the Recovery and Relevance
described earlier). The arithmetic mean would be most appropriate when all the
metrics have the same range. For our use case, the geometric mean is the most ap-
propriate, because it is low if one of the values is low. For example, this means that
if a method is not good at inferring the correct topology, it will get a low overall
score, even if it performs better at all other scores. This ensures that a high score will
only be reached if a prediction has a good ordering, branch assignment, topology,
and set of differentially expressed features.

The final overall score (Figure 4.23) for a method was thus defined as:

Overall = meangeometric = 4
√
cordist × F1branches × HIM× wcorfeatures

We do however want to stress that different use cases will require a different overall

152 Chapter 4 - Comparing trajectory inference methods

0.190.20

0.470.59

0.70 0.84

a

b

c

Geometric

mean

0.19 0.190.20

0.47 0.530.59

0.70 0.760.84

a

b

c

Method
id

Metric
X

normalised

Metric
Y

normalised
Method

id

Metric
X

normalised

Metric
Y

normalised
Overall
score

Specific scores Overall score

Figure 4.23: An example of the averaging procedure. For each method, we calculated the
geometric mean between its normalised and aggregated scores

score to order the methods. Such a context-dependent ranking of all methods is
provided through the dynguidelines app (http://guidelines.dynverse.org).

http://guidelines.dynverse.org

153

Update

Our study has already had some impact on the field. Several studies use our method
wrappers [81], use our synthetic data generator [82], or were inspired by our figure
design [83, 82, 84].

Is this the final answer to which trajectory method is best? Not at all. There are
still many challenges left to resolve, scalability being only one of them. As my col-
leagues at the institute found out multiple times: even if the trajectory is obvious
when looking at a dimensionality reduction, that does not mean that the trajectory
is rapidly detected by the method. The TI field might follow a similar course as bi-
clustering: an initial burst, followed by a slow but steady continuous improvement
of the methods. RNA velocity emerged right after we were finishing the benchmark
study [59], and might be a powerful tool to better define the trajectories in the data.

One of the goals of the benchmark was to support development of new, better tools.
We will therefore soon organise a competition in collaboration with the Laboratory
for Innovation Science at Harvard. The competition will reuse parts of the existing
benchmark, but updated in some aspects to reflect recent developments. I’m really
excited about this opportunity, because it could bring a completely new set of ideas
within the trajectory inference field.

This study really convinced me of the power of using preprints. It made it pos-
sible for us to disseminate our results almost as soon as we were confident with
them. Moreover, because several method users were already aware of our study,
they were more inclined to answer and address our feedback on their method. For
us, publishing the preprint also provided some time to improve the paper and code.
This allowed us to migrate each method wrapper inside dockers, add a guidelines
app, and improve the metrics [85].

At the same time, it also highlights some of the ongoing challenges of using
preprints. Several of the methods that we evaluated were only published in preprint,
and were as of May 2019 never published in a peer-reviewed journal. It might be
possible that methods which performed lower in our benchmark had more difficul-
ties with getting published, because they were already deemed obsolete. In a world
where science is progressing ever faster thanks to the internet, might it become even
harder to establish yourself in a quickly evolving field?

154 Chapter 4 - Comparing trajectory inference methods

References

[1] Amos Tanay and Aviv Regev. “Scaling Single-Cell Genomics from Phenomenology to Mech-
anism”. In: Nature 541.7637 (Jan. 18, 2017), nature21350. issn: 1476-4687. doi: 10 . 1038 /
nature21350.

[2] Martin Etzrodt, Max Endele, and Timm Schroeder. “Quantitative Single-Cell Approaches to
Stem Cell Research”. In: Cell Stem Cell 15.5 (Nov. 6, 2014), pp. 546–558. issn: 1934-5909. doi:
10.1016/j.stem.2014.10.015.

[3] Cole Trapnell. “Defining Cell Types and States with Single-Cell Genomics”. In: Genome Re-
search 25.10 (Jan. 10, 2015), pp. 1491–1498. issn: 1088-9051, 1549-5469. doi: 10.1101/gr.190595.
115.

[4] Robrecht Cannoodt, Wouter Saelens, and Yvan Saeys. “Computational Methods for Trajectory
Inference from Single-Cell Transcriptomics”. In: European Journal of Immunology 46.11 (Nov.
2016), pp. 2496–2506. issn: 1521-4141. doi: 10.1002/eji.201646347.

[5] Kevin R. Moon et al. “Manifold Learning-Based Methods for Analyzing Single-Cell RNA-
Sequencing Data”. In: Current Opinion in Systems Biology. • Future of Systems Biology• Ge-
nomics and Epigenomics 7 (Feb. 1, 2018), pp. 36–46. issn: 2452-3100. doi: 10.1016/j.coisb.2017.
12.008.

[6] Zehua Liu et al. “Reconstructing Cell Cycle Pseudo Time-Series via Single-Cell Transcriptome
Data”. In: Nature Communications 8.1 (June 19, 2017), p. 22. issn: 2041-1723. doi: 10 . 1038 /
s41467-017-00039-z.

[7] F. Alexander Wolf et al. “Graph Abstraction Reconciles Clustering with Trajectory Inference
through a Topology Preserving Map of Single Cells”. In: bioRxiv (Oct. 25, 2017), p. 208819. doi:
10.1101/208819.

[8] Andreas Schlitzer et al. “Identification of cDC1- and cDC2-Committed DC Progenitors Reveals
Early Lineage Priming at the Common DC Progenitor Stage in the Bone Marrow”. In: Nature
Immunology 16.7 (July 2015), pp. 718–728. issn: 1529-2916. doi: 10.1038/ni.3200.

[9] Lars Velten et al. “Human Haematopoietic Stem Cell Lineage Commitment Is a Continuous
Process”. In: Nature Cell Biology 19.4 (Apr. 2017), pp. 271–281. issn: 1476-4679. doi: 10.1038/
ncb3493.

[10] Peter See et al. “Mapping the Human DC Lineage through the Integration of High-
Dimensional Techniques”. In: Science 356.6342 (June 9, 2017), eaag3009. issn: 0036-8075, 1095-
9203. doi: 10.1126/science.aag3009.

[11] Sara Aibar et al. “SCENIC: Single-Cell Regulatory Network Inference and Clustering”. In: Na-
ture Methods 14.11 (Nov. 2017), pp. 1083–1086. issn: 1548-7105. doi: 10.1038/nmeth.4463.

[12] Aviv Regev et al. “Science Forum: The Human Cell Atlas”. In: eLife 6 (Dec. 5, 2017), e27041.
issn: 2050-084X. doi: 10.7554/eLife.27041.

[13] Xiaoping Han et al. “Mapping the Mouse Cell Atlas by Microwell-Seq”. In: Cell 172.5 (Feb. 22,
2018), 1091–1107.e17. issn: 1097-4172. doi: 10.1016/j.cell.2018.02.001.

[14] Nicholas Schaum et al. “Single-Cell Transcriptomics of 20 Mouse Organs Creates a Tabula
Muris”. In: Nature 562.7727 (Oct. 1, 2018), pp. 367–372. issn: 1476-4687. doi: 10.1038/s41586-
018-0590-4.

[15] Philipp Angerer et al. “Single Cells Make Big Data: New Challenges and Opportunities in
Transcriptomics”. In: Current Opinion in Systems Biology. Big Data Acquisition and Analysis •
Pharmacology and Drug Discovery 4 (Aug. 1, 2017), pp. 85–91. issn: 2452-3100. doi: 10.1016/
j.coisb.2017.07.004.

[16] Vincent J. Henry et al. “OMICtools: An Informative Directory for Multi-Omic Data Analysis”.
In: Database: The Journal of Biological Databases and Curation 2014 (July 14, 2014). issn: 1758-
0463. doi: 10.1093/database/bau069.

https://doi.org/10.1038/nature21350
https://doi.org/10.1038/nature21350
https://doi.org/10.1016/j.stem.2014.10.015
https://doi.org/10.1101/gr.190595.115
https://doi.org/10.1101/gr.190595.115
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1016/j.coisb.2017.12.008
https://doi.org/10.1016/j.coisb.2017.12.008
https://doi.org/10.1038/s41467-017-00039-z
https://doi.org/10.1038/s41467-017-00039-z
https://doi.org/10.1101/208819
https://doi.org/10.1038/ni.3200
https://doi.org/10.1038/ncb3493
https://doi.org/10.1038/ncb3493
https://doi.org/10.1126/science.aag3009
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1016/j.coisb.2017.07.004
https://doi.org/10.1016/j.coisb.2017.07.004
https://doi.org/10.1093/database/bau069

155

[17] Sean Davis et al. https://github.com/seandavi/awesome-single-cell. Zenodo, June 20, 2018. doi:
10.5281/zenodo.1294021.

[18] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Exploring the Single-Cell RNA-Seq Anal-
ysis Landscape with the scRNA-Tools Database”. In: bioRxiv (Oct. 20, 2017), p. 206573. doi:
10.1101/206573.

[19] Sean C. Bendall et al. “Single-Cell Trajectory Detection Uncovers Progression and Regulatory
Coordination in Human B Cell Development”. In: Cell 157.3 (Apr. 24, 2014), pp. 714–725. issn:
0092-8674. doi: 10.1016/j.cell.2014.04.005.

[20] Jaehoon Shin et al. “Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades Under-
lying Adult Neurogenesis”. In: Cell Stem Cell 17.3 (Sept. 3, 2015), pp. 360–372. issn: 1875-9777.
doi: 10.1016/j.stem.2015.07.013.

[21] Kieran Campbell and Christopher Yau. “Bayesian Gaussian Process Latent Variable Models
for Pseudotime Inference in Single-Cell RNA-Seq Data”. In: bioRxiv (Sept. 15, 2015), p. 026872.
doi: 10.1101/026872.

[22] Laleh Haghverdi et al. “Diffusion Pseudotime Robustly Reconstructs Lineage Branching”. In:
Nature Methods 13.10 (Oct. 2016), pp. 845–848. issn: 1548-7105. doi: 10.1038/nmeth.3971.

[23] Manu Setty et al. “Wishbone Identifies Bifurcating Developmental Trajectories from Single-
Cell Data”. In: Nature Biotechnology 34.6 (June 2016), pp. 637–645. issn: 1546-1696. doi: 10 .
1038/nbt.3569.

[24] Cole Trapnell et al. “TheDynamics and Regulators of Cell Fate Decisions Are Revealed by Pseu-
dotemporal Ordering of Single Cells”. In: Nature Biotechnology 32.4 (Mar. 23, 2014), nbt.2859.
issn: 1546-1696. doi: 10.1038/nbt.2859.

[25] Hirotaka Matsumoto and Hisanori Kiryu. “SCOUP: A Probabilistic Model Based on the
Ornstein–Uhlenbeck Process to Analyze Single-Cell Expression Data during Differentiation”.
In: BMC Bioinformatics 17 (June 8, 2016), p. 232. issn: 1471-2105. doi: 10.1186/s12859- 016-
1109-3.

[26] Xiaojie Qiu et al. “Reversed Graph Embedding Resolves Complex Single-Cell Trajectories”. In:
Nature Methods 14.10 (Oct. 2017), pp. 979–982. issn: 1548-7105. doi: 10.1038/nmeth.4402.

[27] Kelly Street et al. “Slingshot: Cell Lineage and Pseudotime Inference for Single-Cell Transcrip-
tomics”. In: BMC Genomics 19.1 (June 19, 2018), p. 477. issn: 1471-2164. doi: 10.1186/s12864-
018-4772-0.

[28] Zhicheng Ji and Hongkai Ji. “TSCAN: Pseudo-Time Reconstruction and Evaluation in Single-
Cell RNA-Seq Analysis”. In: Nucleic Acids Research 44.13 (July 27, 2016), e117–e117. issn: 0305-
1048. doi: 10.1093/nar/gkw430.

[29] Joshua D. Welch, Alexander J. Hartemink, and Jan F. Prins. “SLICER: Inferring Branched, Non-
linear Cellular Trajectories from Single Cell RNA-Seq Data”. In: Genome Biology 17 (May 23,
2016), p. 106. issn: 1474-760X. doi: 10.1186/s13059-016-0975-3.

[30] David A. duVerle et al. “CellTree: An R/Bioconductor Package to Infer the Hierarchical Struc-
ture of Cell Populations from Single-Cell RNA-Seq Data”. In: BMC Bioinformatics 17 (Sept. 13,
2016), p. 363. issn: 1471-2105. doi: 10.1186/s12859-016-1175-6.

[31] Robrecht Cannoodt et al. “SCORPIUS Improves Trajectory Inference and Identifies NovelMod-
ules in Dendritic Cell Development”. In: bioRxiv (Oct. 7, 2016), p. 079509. doi: 10.1101/079509.

[32] Tapio Lönnberg et al. “Single-Cell RNA-Seq and Computational Analysis Using Temporal Mix-
ture Modeling Resolves TH1/TFH Fate Bifurcation in Malaria”. In: Science Immunology 2.9
(Mar. 3, 2017), eaal2192. issn: 2470-9468. doi: 10.1126/sciimmunol.aal2192.

[33] Kieran R Campbell and Christopher Yau. “Probabilistic Modeling of Bifurcations in Single-
Cell Gene Expression Data Using a Bayesian Mixture of Factor Analyzers”. In:Wellcome Open
Research 2 (Mar. 15, 2017), p. 19. issn: 2398-502X. doi: 10.12688/wellcomeopenres.11087.1.

[34] Luyi Tian et al. “scRNA-Seq Mixology: Towards Better Benchmarking of Single Cell RNA-Seq
Protocols and Analysis Methods”. In: bioRxiv (Oct. 3, 2018), p. 433102. doi: 10.1101/433102.

https://doi.org/10.5281/zenodo.1294021
https://doi.org/10.1101/206573
https://doi.org/10.1016/j.cell.2014.04.005
https://doi.org/10.1016/j.stem.2015.07.013
https://doi.org/10.1101/026872
https://doi.org/10.1038/nmeth.3971
https://doi.org/10.1038/nbt.3569
https://doi.org/10.1038/nbt.3569
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1186/s12859-016-1109-3
https://doi.org/10.1186/s12859-016-1109-3
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1093/nar/gkw430
https://doi.org/10.1186/s13059-016-0975-3
https://doi.org/10.1186/s12859-016-1175-6
https://doi.org/10.1101/079509
https://doi.org/10.1126/sciimmunol.aal2192
https://doi.org/10.12688/wellcomeopenres.11087.1
https://doi.org/10.1101/433102

156 Chapter 4 - Comparing trajectory inference methods

[35] Thomas Schaffter, Daniel Marbach, and Dario Floreano. “GeneNetWeaver: In Silico Bench-
mark Generation and Performance Profiling of Network Inference Methods”. In: Bioinformat-
ics (Oxford, England) 27.16 (Aug. 15, 2011), pp. 2263–2270. issn: 1367-4811. doi: 10 . 1093 /
bioinformatics/btr373.

[36] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Splatter: Simulation of Single-Cell RNA
Sequencing Data”. In: Genome Biology 18 (Sept. 12, 2017), p. 174. issn: 1474-760X. doi: 10.1186/
s13059-017-1305-0.

[37] Valentine Svensson, Roser Vento-Tormo, and Sarah A. Teichmann. “Exponential Scaling of
Single-Cell RNA-Seq in the Past Decade”. In: Nature Protocols 13.4 (Apr. 2018), pp. 599–604.
issn: 1750-2799. doi: 10.1038/nprot.2017.149.

[38] Junyue Cao et al. “Joint Profiling of Chromatin Accessibility and Gene Expression in Thou-
sands of Single Cells”. In: Science (Aug. 30, 2018), eaau0730. issn: 0036-8075, 1095-9203. doi:
10.1126/science.aau0730.

[39] Natalya Pya and Simon N.Wood. “Shape Constrained Additive Models”. In: Statistics and Com-
puting 25.3 (May 1, 2015), pp. 543–559. issn: 1573-1375. doi: 10.1007/s11222-013-9448-7.

[40] Morgan Taschuk and Greg Wilson. “Ten Simple Rules for Making Research Software More
Robust”. In: PLOS Computational Biology 13.4 (Apr. 13, 2017), e1005412. issn: 1553-7358. doi:
10.1371/journal.pcbi.1005412.

[41] Serghei Mangul et al. “A Comprehensive Analysis of the Usability and Archival Stability of
Omics Computational Tools and Resources”. In: bioRxiv (Oct. 25, 2018), p. 452532. doi: 10.1101/
452532.

[42] Greg Wilson et al. “Best Practices for Scientific Computing”. In: PLOS Biology 12.1 (Jan. 7,
2014), e1001745. issn: 1545-7885. doi: 10.1371/journal.pbio.1001745.

[43] Haydee Artaza et al. “Top 10 Metrics for Life Science Software Good Practices”. In:
F1000Research 5 (Aug. 16, 2016), p. 2000. issn: 2046-1402. doi: 10.12688/f1000research.9206.1.

[44] Jeff Lee. Rpackages: R Package Development - the Leek Group Way! Dec. 27, 2017.
[45] HadleyWickham. R Packages: Organize, Test, Document, and Share Your Code. ”O’Reilly Media,

Inc.”, Mar. 26, 2015. 201 pp. isbn: 978-1-4919-1056-6.
[46] Luis Bastiao Silva et al. “General Guidelines for Biomedical Software Development”. In:

F1000Research 6 (July 12, 2017). issn: 2046-1402. doi: 10.12688/f1000research.10750.2.
[47] Rafael C. Jiménez et al. “Four Simple Recommendations to Encourage Best Practices in

Research Software”. In: F1000Research 6 (June 13, 2017). issn: 2046-1402. doi: 10 . 12688 /
f1000research.11407.1.

[48] Mehran Karimzadeh and Michael M. Hoffman. “Top Considerations for Creating Bioinformat-
ics Software Documentation”. In: Briefings in Bioinformatics (). doi: 10.1093/bib/bbw134.

[49] Alex Anderson. Writing Great Scientific Code. Oct. 12, 2016.
[50] Brett K. Beaulieu-Jones and Casey S. Greene. “Reproducibility of Computational Workflows Is

Automated Using ContinuousAnalysis”. In:Nature Biotechnology 35.4 (Mar. 13, 2017), nbt.3780.
issn: 1546-1696. doi: 10.1038/nbt.3780.

[51] Vincent Driessen. A Successful Git Branching Model. Jan. 5, 2010. url: http://nvie.com/posts/a-
successful-git-branching-model/ (visited on 03/28/2018).

[52] Anne-Laure Boulesteix. “Ten Simple Rules for Reducing Overoptimistic Reporting in Method-
ological Computational Research”. In: PLOS Computational Biology 11.4 (Apr. 23, 2015),
e1004191. issn: 1553-7358. doi: 10.1371/journal.pcbi.1004191.

[53] Jean Francois Puget. Green Dice Are Loaded (Welcome to p-Hacking). Mar. 22, 2016.
[54] Frank Gannon. “The Essential Role of Peer Review”. In: EMBO Reports 2.9 (Sept. 15, 2001),

p. 743. issn: 1469-221X. doi: 10.1093/embo-reports/kve188.
[55] Melinda Baldwin. “In Referees We Trust?” In: Physics Today 70.2 (Feb. 1, 2017), pp. 44–49. issn:

0031-9228. doi: 10.1063/PT.3.3463.

https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1126/science.aau0730
https://doi.org/10.1007/s11222-013-9448-7
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1101/452532
https://doi.org/10.1101/452532
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.12688/f1000research.9206.1
https://doi.org/10.12688/f1000research.10750.2
https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.1093/bib/bbw134
https://doi.org/10.1038/nbt.3780
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://doi.org/10.1371/journal.pcbi.1004191
https://doi.org/10.1093/embo-reports/kve188
https://doi.org/10.1063/PT.3.3463

157

[56] Mohamed Radhouene Aniba, Olivier Poch, and Julie D. Thompson. “Issues in Bioinformatics
Benchmarking: The Case Study of Multiple Sequence Alignment”. In: Nucleic Acids Research
38.21 (Nov. 2010), pp. 7353–7363. issn: 0305-1048. doi: 10.1093/nar/gkq625.

[57] Monika Jelizarow et al. “Over-Optimism in Bioinformatics: An Illustration”. In: Bioinformatics
26.16 (Aug. 15, 2010), pp. 1990–1998. issn: 1367-4803. doi: 10.1093/bioinformatics/btq323.

[58] Wouter Saelens, Robrecht Cannoodt, and Yvan Saeys. “A Comprehensive Evaluation of Mod-
ule Detection Methods for Gene Expression Data”. In: Nature Communications 9.1 (Mar. 15,
2018), p. 1090. issn: 2041-1723. doi: 10.1038/s41467-018-03424-4.

[59] Gioele LaManno et al. “RNAVelocity of Single Cells”. In:Nature 560.7719 (Aug. 2018), pp. 494–
498. issn: 1476-4687. doi: 10.1038/s41586-018-0414-6.

[60] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. “The Self‐assessment Trap: Can We
All Be Better than Average?” In:Molecular Systems Biology 7.1 (Jan. 1, 2011), p. 537. issn: 1744-
4292, 1744-4292. doi: 10.1038/msb.2011.70.

[61] Anthony Gitter. https://github.com/agitter/single-cell-pseudotime. June 25, 2018. doi: 10.5281/
zenodo.1297423.

[62] Tsukasa Kouno et al. “Temporal Dynamics and Transcriptional Control Using Single-Cell Gene
Expression Analysis”. In: Genome Biology 14 (Dec. 10, 2013), R118. issn: 1474-760X. doi: 10.
1186/gb-2013-14-10-r118.

[63] Chun Zeng et al. “Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Post-
natal β Cell Proliferation”. In: Cell Metabolism 25.5 (May 2017), 1160–1175.e11. issn: 15504131.
doi: 10.1016/j.cmet.2017.04.014.

[64] Nikolaos Papadopoulos, Rodrigo Gonzalo Parra, and Johannes Soeding. “PROSSTT: Proba-
bilistic Simulation of Single-Cell RNA-Seq Data for Complex Differentiation Processes”. In:
bioRxiv (Jan. 31, 2018), p. 256941. doi: 10.1101/256941.

[65] Daniel Marbach et al. “Wisdom of Crowds for Robust Gene Network Inference”. In: Nature
methods 9.8 (July 15, 2012), pp. 796–804. issn: 1548-7091. doi: 10.1038/nmeth.2016.

[66] HepingXu et al. “Regulation of Bifurcating BCell Trajectories byMutual Antagonism between
Transcription Factors IRF4 and IRF8”. In: Nature Immunology 16.12 (Dec. 2015), pp. 1274–1281.
issn: 1529-2916. doi: 10.1038/ni.3287.

[67] Thomas Graf and Tariq Enver. “Forcing Cells to Change Lineages”. In: Nature 462.7273 (Dec.
2009), p. 587. issn: 1476-4687. doi: 10.1038/nature08533.

[68] JinWang et al. “Quantifying theWaddington Landscape and Biological Paths for Development
and Differentiation”. In: Proceedings of the National Academy of Sciences 108.20 (May 17, 2011),
pp. 8257–8262. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.1017017108.

[69] James E. Ferrell. “Bistability, Bifurcations, and Waddington’s Epigenetic Landscape”. In: Cur-
rent Biology 22.11 (June 5, 2012), R458–R466. issn: 0960-9822. doi: 10.1016/j.cub.2012.03.045.

[70] Nir Yosef et al. “Dynamic Regulatory Network Controlling TH17 Cell Differentiation”. In: Na-
ture 496.7446 (Apr. 25, 2013), pp. 461–468. issn: 1476-4687. doi: 10.1038/nature11981.

[71] Daniel Marbach et al. “Tissue-Specific Regulatory Circuits Reveal Variable Modular Perturba-
tions across Complex Diseases”. In: Nature Methods 13.4 (Apr. 2016), pp. 366–370. issn: 1548-
7105. doi: 10.1038/nmeth.3799.

[72] Toni Giorgino. “Computing andVisualizingDynamic TimeWarpingAlignments in R:TheDtw
Package”. In: Journal of Statistical Software 31.7 (Sept. 30, 2009). doi: 10.18637/jss.v031.i07.

[73] Paolo Tormene et al. “Matching Incomplete Time Series with Dynamic Time Warping: An Al-
gorithm and anApplication to Post-Stroke Rehabilitation”. In:Artificial Intelligence inMedicine
45.1 (Jan. 1, 2009), pp. 11–34. issn: 0933-3657. doi: 10.1016/j.artmed.2008.11.007.

[74] Aaron T.L. Lun, Davis J. McCarthy, and John C. Marioni. “A Step-by-Step Workflow for Low-
Level Analysis of Single-Cell RNA-Seq Data with Bioconductor”. In: F1000Research 5 (Oct. 31,
2016), p. 2122. issn: 2046-1402. doi: 10.12688/f1000research.9501.2.

[75] G. Jurman et al. “The HIM Glocal Metric and Kernel for Network Comparison and Classifica-
tion”. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

https://doi.org/10.1093/nar/gkq625
https://doi.org/10.1093/bioinformatics/btq323
https://doi.org/10.1038/s41467-018-03424-4
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/msb.2011.70
https://doi.org/10.5281/zenodo.1297423
https://doi.org/10.5281/zenodo.1297423
https://doi.org/10.1186/gb-2013-14-10-r118
https://doi.org/10.1186/gb-2013-14-10-r118
https://doi.org/10.1016/j.cmet.2017.04.014
https://doi.org/10.1101/256941
https://doi.org/10.1038/nmeth.2016
https://doi.org/10.1038/ni.3287
https://doi.org/10.1038/nature08533
https://doi.org/10.1073/pnas.1017017108
https://doi.org/10.1016/j.cub.2012.03.045
https://doi.org/10.1038/nature11981
https://doi.org/10.1038/nmeth.3799
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.1016/j.artmed.2008.11.007
https://doi.org/10.12688/f1000research.9501.2

158 Chapter 4 - Comparing trajectory inference methods

2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). Oct.
2015, pp. 1–10. doi: 10.1109/DSAA.2015.7344816.

[76] Marvin N. Wright and Andreas Ziegler. “Ranger: A Fast Implementation of Random Forests
for High Dimensional Data in C++ and R | Wright | Journal of Statistical Software”. In: Journal
of Statistical Software 77.1 (Mar. 31, 2017). doi: 10.18637/jss.v077.i01.

[77] T. Junttila and P. Kaski. “Engineering an Efficient Canonical Labeling Tool for Large and Sparse
Graphs”. In: 2007 Proceedings of the NinthWorkshop on Algorithm Engineering and Experiments
(ALENEX). 0 vols. Proceedings. Society for Industrial and Applied Mathematics, Jan. 6, 2007,
pp. 135–149. doi: 10.1137/1.9781611972870.13.

[78] Laura Bahiense et al. “The Maximum Common Edge Subgraph Problem: A Polyhedral Inves-
tigation”. In: Discrete Applied Mathematics. V Latin American Algorithms, Graphs, and Op-
timization Symposium — Gramado, Brazil, 2009 160.18 (Dec. 1, 2012), pp. 2523–2541. issn:
0166-218X. doi: 10.1016/j.dam.2012.01.026.

[79] Edward R. Dougherty. “Validation of Gene Regulatory Networks: Scientific and Inferential”.
In: Briefings in Bioinformatics 12.3 (May 2011), pp. 245–252. issn: 1477-4054. doi: 10.1093/bib/
bbq078.

[80] Mads Ipsen and Alexander S. Mikhailov. “Evolutionary Reconstruction of Networks”. In: Phys-
ical Review. E, Statistical, Nonlinear, and SoftMatter Physics 66 (4 Pt 2 Oct. 2002), p. 046109. issn:
1539-3755. doi: 10.1103/PhysRevE.66.046109.

[81] Xiuwei Zhang, Chenling Xu, and Nir Yosef. “Simulating Multiple Faceted Variability in Single
Cell RNA Sequencing”. In: Nature Communications 10.1 (June 13, 2019), p. 2611. issn: 2041-
1723. doi: 10.1038/s41467-019-10500-w.

[82] Aditya Pratapa et al. “Benchmarking Algorithms for Gene Regulatory Network Inference from
Single-Cell Transcriptomic Data”. In: bioRxiv (June 4, 2019), p. 642926. doi: 10.1101/642926.

[83] Shiquan Sun et al. “Accuracy, Robustness and Scalability of Dimensionality Reduction Meth-
ods for Single Cell RNAseq Analysis”. In: bioRxiv (May 17, 2019), p. 641142. doi: 10 . 1101 /
641142.

[84] Saskia Freytag et al. “Comparison of Clustering Tools in R for Medium-Sized 10x Genomics
Single-Cell RNA-SequencingData”. In: F1000Research 7 (Dec. 19, 2018), p. 1297. issn: 2046-1402.
doi: 10.12688/f1000research.15809.2.

[85] Wouter Saelens et al. “A Comparison of Single-Cell Trajectory Inference Methods: Towards
More Accurate and Robust Tools”. In: bioRxiv (Mar. 5, 2018), p. 276907. doi: 10.1101/276907.

https://doi.org/10.1109/DSAA.2015.7344816
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1016/j.dam.2012.01.026
https://doi.org/10.1093/bib/bbq078
https://doi.org/10.1093/bib/bbq078
https://doi.org/10.1103/PhysRevE.66.046109
https://doi.org/10.1038/s41467-019-10500-w
https://doi.org/10.1101/642926
https://doi.org/10.1101/641142
https://doi.org/10.1101/641142
https://doi.org/10.12688/f1000research.15809.2
https://doi.org/10.1101/276907

5 | Conclusion

In this thesis, I highlighted my three main contributions to the analysis of transcrip-
tomics data. I first described a tool to analyse the transcriptome and functional
diversity of three biological conditions. I then presented our benchmark of module
detection methods, where I highlight several guidelines for users and developers. I
concluded with another benchmark, this time on methods that can infer trajecto-
ries from single-cell transcriptomics data. Here too we end with several guidelines,
along with a set of tools that can be reused to run and evaluate trajectory inference
methods. These tools are briefly highlighted in a future perspective chapter (Chapter
6), where I highlight some ongoing work, and my vision on where the field should
(or will) move.

The main topic of this thesis - transcriptomics - changed considerably throughout
this thesis. At first a technology to assess the transcriptional effect of some pertur-
bation on a sample or cell population, it has now become a technology to profile
a whole tissue or organism in an unbiased way. And as can be observed through-
out the thesis, more ’samples’ mean that new powerful analyses, such as trajectory
inference, become a possibility. These in turn need to be increasingly scalable to
handle the increasingly large datasets.

As a cheap and broadly applicable technology, transcriptomics is here to stay. Fur-
thermore, many recent technological advances are broadening its usefulness as we
speak. These include long-read sequencing, spatial transcriptomics and combina-
tion with other omics technologies. As these techniques mature, so will the analy-
sis of transcriptomics data have to evolve. This will require new, accurate, scalable,
user-friendly and robust tools. As we have seen, this often results in an explosion
of many tools within a couple of years, highlighting the need for thorough bench-
marks. These can be used for developers to explore new algorithmic avenues and
compare them with the state of the art. Users on the other hand get a clear picture
of what tools are available, what they can do, and how they are expected to perform
on their use case.

Overall, both benchmarking studies presented in this thesis reveal the importance of

160 Chapter 5 - Conclusion

such objective comparisons for the community. In both studies, the best performing
methods were often not the most popular ones. In this sense, benchmarking may
make these methods more approachable by users, speeding up their analysis while
making it more powerful. On the other hand, benchmarks also show that good
ideas or novel algorithms do not necessarily lead to good performance. In both
benchmarks, quite simple methods were often the top performing. In the module
detection case, these concerned methods such as independent component analysis,
which have existed long before transcriptomics data analysis. For trajectory infer-
ence, methods that perform clustering together with some basic preprocessing, such
as PAGA and Slingshot, outperform those with complex Bayesian models. This indi-
cates that developers of methods should avoid overcomplicating things, and should
instead focus more on making their method scalable, usable and robust.

As benchmarks presented in this thesis and elsewhere show, some methods do per-
form worse than others. One may wonder though: how is this possible, if most of
these methods were developed by competent scientists and checked through peer-
review? The studies in this thesis provide some possible reaons for this. For one,
performance can be very variable across datasets, while most methods are only opti-
mised during development on a couple of datasets. Datasets also change as the field
develops, and some aspects such as scalability may only become important after a
methods publication. Finally, the quality of the implementation also has a large im-
pact on the benchmarking score. Good documentation allows the benchmarker to
write a good wrapper for the method, and sane error checking allows it to be run
on most if not all datasets. These criteria are not met for a substantial number of
methods, with a lower performance as a consequence.

Nonetheless, the usefulness of benchmarking is still relatively limited for both target
audiences. Especially in a fast moving field such as single-cell transcriptomics, new
methods are published every month. This renders the benchmark paper rapidly
obsolete, which brings us back to the question: ”Which tool to use, the old state-of-
the-art or the new tools?”. For developers, the usefulness of the benchmark hinges
on how easy it is to compare a new tool with the state-of-the-art. But what we
observe is that benchmarks are often (partly) re-implemented. This is often not
the fault of the developer, because new tools typically include new functionality
that was not tested by older benchmarks. In both cases, this makes it clear that
benchmarks have to evolve together with the tools that are developed. I propose a
plan on how to do this in another future perspectives chapter (Chapter 7).

As a final critical note: is benchmarking really necessary? Wouldn’t you expect a
researcher to easily spot wrong models made by a method, e.g. through visualisa-
tion? It’s true that in some cases, an inaccurate model may simply cause a minor
annoyance and a waste of time/money, without any long-term effects on the study.
In this case, a benchmarking study may seem excessive. But at the other hand of

161

the spectrum, wrong models or hypotheses may lead to long-term futile search to
confirm the hypothesis, or a fruitless development of new drugs that are bound to
be ineffective. The importance of a benchmark thus depends on what is done with
a resulting model. If it is just seen as a hypothesis, that is still checked through
independent methods, then benchmarks may not be so useful. If the model is seen
as evidence, then it is critical that the validity of the underlying methods is checked
thoroughly.

6 | Future perspectives -
The next milestones of tra-
jectory inference

While it may not immediately visible when reading the paper, a proper benchmark-
ing study involves the development of a lot of auxiliary code to make all parts fit to-
gether. For the trajectory inference benchmark, we created several R packages that
preprocess data, wrap methods, visualise their output, and compare different output
models. These are all functionalities that would also be very useful for method users
and developers. That’s whywe’re now integrating these packages into a streamlined
toolkit (called dyno) to infer trajectories from single-cell data.

Despite limited advertisement, this toolkit is already being used by several re-
searchers according to activity on our github (https://github.com/dynverse/dyno).
The basic functionality of dyno is presented in the vignette in Appendix B. However,
I still have many ideas on how to improve the toolkit further, which are highlighted
in this future perspectives chapter. The further we get into the chapter, the more
I discuss long-term plans, which probably also necessitate technological improve-
ments to go along with the computational ones.

Selecting the most optimal set of methods

The first step within the toolkit is to select a set of methods that need to be run, for
which we provide an interactive app that was developed within the context of the
TI benchmarking study (http://guidelines.dynverse.org/). The app provides users
with several questions regarding the expected topology in the data, the dimensions
of the data, the computational resources a user has to their disposal, and the prior
information that may be present (Figure 6.1). Based on the answers to these ques-
tions, we provide context-specific guidelines. The most optimal set of methods is se-

https://github.com/dynverse/dyno
http://guidelines.dynverse.org/

164
Chapter 6 - Future perspectives -

The next milestones of trajectory inference

lected based on their accuracy on the datasets with particular topologies, and based
on whether the user has sufficient computational resources. A user is warned if
a method often fails to run, or when its output may be unstable. In this way, the
guidelines app makes sure that a user always use the most appropriate methods for
their use case, and prepares the user for unwanted failure, stability and scalability
issues.

Figure 6.1: A screenshot of guidelines.dynverse.org. Depending on answers to questions
(left), the selection of methods is changed (right). The user also gets extra information for each
method, such as expected running time, whether it errors often, and whether its results are
unstable.

The app was developed in a modular way, such that the content (the questions, an-
swers and benchmarking results) is strictly separated from the back-end (the sorting
and filtering of methods based on questions). This makes it possible to reuse the app
for other benchmarking studies, such as evaluations of clustering methods [1] (in-
cluding the one presented in this thesis) or normalisation methods [2]. This still
requires some trivial separation of the back-end into a separate package, with its
own clear tutorials, documentation and publication. There are also opportunities
here to make the app more interactive, for example by allowing users to post feed-
back about a particular tool.

guidelines.dynverse.org

165

Running any method without difficulties

To run one method, a user typically has to spend more than half a day with instal-
lation, format conversion and debugging. In some cases, this is further complicated
because of dependency conflicts or system-dependent installation problems. To cir-
cumvent this within our benchmark, we installed each method within a container.
These containers also contain awrapper script thatmakes it possible to call amethod
from the command line, and run each method within a common input and output in-
terface. Running many methods thus becomes as simple as changing one parameter
in the code (as long as the container environment is installed):

trajectory <- infer_trajectory(dataset, "slingshot")

to

trajectory <- infer_trajectory(dataset, "paga")

Containerisation also makes it easier for developers to add a method within our
framework, provided they make use of the same input and output formats. They
are no longer restricted to particular programming languages, and are free to do
anything inside the container environment. This may however be a curse as well,
as it could promote bad code practices, and may even allow malicious code to be
executed if the container is ran without proper input/output control. Although con-
tainers were therefore of tremendous value within our evaluation, it may not be the
ideal solution for bio-informatics tools in general (and biomedical bio-informatics
in particular). Perhaps an intermediate solution such as conda [3], or creating or-
ganisations that manage containers (such as bioboxes or biocontainers [4]), may be
necessary.

Adapting and post-processing the trajectory

A trajectory is only a model of the data, and often needs some post-processing to
make it biologically interpretable. This can involve annotating particular milestones,
and orienting the edges of the trajectory in a biologically meaningful way. At the
moment, our toolkit contains manual methods to adapt the trajectory. This may in-
volve labelling based on the expression of a certain marker, or orienting a trajectory
based on a given start cell. However, ideally these steps should be automated as
much as possible, so that the analysis becomes more objective.

With large-scale cell atlases from different organises on the horizon, automated cell
annotation of single-cell data is becoming realistic. This is exemplified by the many

166
Chapter 6 - Future perspectives -

The next milestones of trajectory inference

annotation tools that have recently been published 1 [5, 6, 7]. Cell annotation tools
often look for enrichment of certain markers within a cell cluster, and how this
translates in a trajectory setting still has to be investigated. Annotation of mile-
stones at the leaves of the trajectory resemble the typical use case quite well. But
what if some cell types were not assigned a milestone by the TI method, should
an annotation tool then ”create” an intermediate milestone? Further complicating
this is that distinct cellular states may be difficult to define during complex differ-
entiations such as hematopoiesis [8]. Whether annotation tools can be useful for
trajectories should therefore still be investigated. The best way to tackle this may
be to start slowly, with datasets where the differentiation stages are well known and
validated, such as cerebral cortex development [9] or gut organoids [10].

Most TI methods have no idea about the orientation of cell differentiation. Although
there is often a biologically plausibile orientation, it can still be useful to have this
confirmed in a data-driven way. The best way to do this may be by orienting the tra-
jectory with RNA velocity vectors of nearby cells. I have done some initial tests on
this (Figure 6.2) which look promising. But it has also highlighted some challenges.
RNA velocity vectors can be very noisy and parameter-dependent when only lim-
ited number of cells are present. Moreover, what if the velocity vector switches its
orientation in the middle of a trajectory edge, should the tool then ”create” an in-
termediate milestone? Some datasets, for example those coming from plants, have
a very low number of intronic reads and here alternative approaches will also be
necessary. An integration with lineage tracing [11] may be necessary in such cases.

Visualising the trajectory

Visualisation is of utmost importance when interpreting and sharing research.
Within our toolkit, a minimal set of plotting is already implemented, which make
it possible to recreate plots such as Figure 4.8. However, from the many comments
that we received at conferences or through Github, we have found that our plotting
library is insufficient for many current use cases. There are countless ways in which
single-cell data (and trajectory data in particular) can be plotted, four of which are
presented in Figure 6.2. Creating these plots using monolithic functions (such as the
ones in our package, but also in popular interpretation packages such as Seurat [13]
and scanpy [14]) results in either an overly complex or an overly restricted function.

Instead, our idea is to design a plotting library that heavily uses ideas from the
”grammar of graphics” [15], as implemented in the ggplot2 package [16]. This is a
more modular system to describe visualisation, in which data points are mapped to

1You might say that annotation tools are now in a ”boom” phase, just like trajectory inference in
2017-2018

167

Figure 6.2: Different visualisations of the same trajectory on a dataset of mouse brain
macrophages [12]: dural MHC-II low macrophages (Dlow BAM), dural MHC-II high
macrophages (Dhigh BAM), monocyte derived cells (MdO) and monocytes.

certain geometrical objects: circles, points along a line, arrows, … Parts of these
geometrical objects can vary depending on the data: the position may depend on
the dimensionality reduction, the colour may depend on the annotation, … In this
way, a plot is built from the bottom up using separate elements. As exemplified by
ggplot2, it makes plotting also more easy to extend. This might prove useful in the
future when new data types such as the spatial location [17] and RNA acceleration
[18] come available.

Comparing trajectories

One trajectory describes how a cell changes, but multiple trajectories can tell you
something about how the trajectory itself changes. Comparing similar trajectories
between patients, genotypes or after perturbation might in the long run be the most
useful application of TI methods. This would provide some mechanistic insights
into how these factors impact cellular dynamics, and could give some ideas about
how to influence these trajectories to cure or improve differentiation. One might

168
Chapter 6 - Future perspectives -

The next milestones of trajectory inference

imagine many ways in which trajectories could be different (Figure 6.3); the flux
towards particular branches may change, there may be a blockade at some point, the
expression of a branch may shift at some points, or a combination of any of these.
Better understanding such trajectory changes could be relevant to better understand
diseases such as primary immunodeficiencies [19], or could improve the efficiency
of cellular reprogramming [20].

Figure 6.3: Different possible scenarios that can change a cellular trajectory. Compared
to the ”normal” trajectory, the flux towards particular branches may change (flux change), cell
may no longer choose for a particular branch (branch loss), a branch may stop prematurely
(premature stop), the expression in a branch may change (differential expression) or the speed
by which the cells progress may change (differential speed).

Before one can compare trajectories, they first need to be aligned. This is straightfor-
ward for linear trajectories, where the problem boils down to classical linear align-
ment, with many proven dynamic programming techniques [21]. Aligning trees or
more complex trajectories might prove a bit more tricky, given the combinatorial
complexity by which trajectories could be aligned. An alternative way might be to
integrate the alignment within the TI methods itself, as has already been done for
linear trajectories [22]. This is an approach that is often used for clustering popula-
tions, although appropriate batch correction [23] or cell hashing [24, 25] techniques
may be necessary.

After alignment, statistics will be necessary to define what is actually different be-
tween the trajectories [26]. It might be useful to use concepts from clustering here,
for example those that try to find both differential abundance and differential ex-
pression [27].

Multi-omics trajectories

TI methods have also been applied on other data types than transcriptomics, includ-
ing ATAC-seq [28, 29] and cytometry [30]. Single-cell multi-omics techniques are
now becoming mainstream, measuring both the transcriptome with protein expres-
sion [31, 32] or chromatin accessibility [33] of the same set of cells. This provides
new opportunities for studying the dynamics of cells, for example to delineate the
earliest stages at which a cell makes a fate decision. Simply using existing methods

169

on the concatenated dataset might not be the best approach, given the differences
in distribution and relationships between individual features. A better alternative is
probably to infer trajectories on separate data types, and then integrate it through
alignment as described earlier [34]. An even more powerful approach might be to
first integrate all data types [35, 36], and apply existing or new TI methods on this
joint representation.

Validating a trajectory

All TI methods have, as far as we know, a common fundamental problem: they find
a trajectory even if the data does not support this. Some methods, such as ouija [37]
do provide some cell-wise uncertainty measures, but these values cannot be used to
validate the full trajectory without a reference. Currently, a quality check therefore
occurs by a manual validation of the trajectory, for example through visualisation.
Clustering has a similar problem, and there it is alleviated by using either internal
quality measures or by including external information. How these would translate
to trajectory models is still unclear.

An internal measure for TI methods might be whether the trajectory always follows
the most dense parts of the dataset. Alternatively, one might look at the stability
of the trajectory [38], as is often done in clustering [39]. The tricky part for these
measures is the definition of a ”null” value and ”positive” value. The more the actual
value lies towards the positive value, the better the trajectory is supported. These
reference values might be estimated from datasets that are known to contain one or
no trajectories [40].

The most promising way to externally validate a trajectory might be the inclusion
of RNA velocity information. A measure could for example quantify whether the
RNA velocity vector of each cell is perpendicular with nearby trajectory edges.

In the end, a trajectory remains one of many possible models of the data. Actual
proof of cell differentiation should be sought by experimental means, such as lineage
tracing or live cell imaging. The use case of these methods is typically still limited to
in vitro or primary tissue samples, although some data types might be useful to do
tracing in vivo [41]. Promising in this regard are combinations of the two approaches
[11], although it has to be seen how easy such technologies can be deployed in vivo.

Conclusion

In the summer of 2016, I wrote in our review on TI methods that ”[…] current
studies have only explored the tip of the iceberg of what TI can offer.” Three years

170
Chapter 6 - Future perspectives -

The next milestones of trajectory inference

later, and with more than 60 new methods available, this still applies. There are
clear opportunities for using trajectories to study or improve biological systems. But
some technological (batch effects) and computational (lack of user friendly tools and
powerful algorithms) limitations still hold us back.

At the technological side, batch effects make it difficult to distinguish relevant vari-
ation from irrelevant biological or technical variation. Cell hashing techniques [24],
or computational alignment techniques [42, 23], may mitigate this issue.

At the computational side, there is a clear lack of tools that make it easier to explore,
visualise and interpret trajectories. A lot of effort has been done in developing new
methods, but only a handful of tools also provide the essentials for interpretation [28,
43]. Moreover, new methods will have to be developed to cope with more complex
use cases, such as trajectory comparisons and multi-omics trajectories. It might be
useful to borrow some concepts here from (single-cell) clustering.

The goal with our toolkit is to unite these different tools into a streamlined pipeline,
with as little data conversion as possible. Our current toolkit (https://github.com/
dynverse/dyno) already provides the essentials, but there is still a lot of work to be
done (and people to be convinced) to make this work. One approach that really
excites me is to use the toolkit within a crowdsourcing framework, so that state-of-
the-art tools are immediately available for potential users. We are currentlyworking
together with the Laboratory for Innovation Science at Harvard tomake this happen
(https://www.topcoder.com/challenges/30092303).

https://github.com/dynverse/dyno
https://github.com/dynverse/dyno
https://www.topcoder.com/challenges/30092303

171

References

[1] Angelo Duò, Mark D. Robinson, and Charlotte Soneson. “A Systematic Performance Evalua-
tion of Clustering Methods for Single-Cell RNA-Seq Data”. In: F1000Research 7 (Sept. 10, 2018),
p. 1141. issn: 2046-1402. doi: 10.12688/f1000research.15666.2.

[2] Beate Vieth et al. “A Systematic Evaluation of Single Cell RNA-Seq Analysis Pipelines: Li-
brary Preparation and Normalisation Methods Have the Biggest Impact on the Performance
of scRNA-Seq Studies”. In: bioRxiv (Mar. 19, 2019), p. 583013. doi: 10.1101/583013.

[3] Björn Grüning et al. “Bioconda: Sustainable and Comprehensive Software Distribution for the
Life Sciences”. In:Nature Methods 15.7 (July 2018), p. 475. issn: 1548-7105. doi: 10.1038/s41592-
018-0046-7.

[4] Felipe da Veiga Leprevost et al. “BioContainers: An Open-Source and Community-Driven
Framework for Software Standardization”. In: Bioinformatics 33.16 (Aug. 15, 2017), pp. 2580–
2582. issn: 1367-4803. doi: 10.1093/bioinformatics/btx192.

[5] Genevieve L. Stein-O’Brien et al. “Decomposing Cell Identity for Transfer Learning across
Cellular Measurements, Platforms, Tissues, and Species”. In: Cell Systems 8.5 (May 22, 2019),
395–411.e8. issn: 2405-4720. doi: 10.1016/j.cels.2019.04.004.

[6] Chenling Xu et al. “Harmonization and Annotation of Single-Cell Transcriptomics Data with
Deep Generative Models”. In: bioRxiv (Jan. 29, 2019), p. 532895. doi: 10.1101/532895.

[7] Dvir Aran et al. “Reference-Based Analysis of Lung Single-Cell Sequencing Reveals a Transi-
tional Profibrotic Macrophage”. In:Nature Immunology 20.2 (Feb. 2019), p. 163. issn: 1529-2916.
doi: 10.1038/s41590-018-0276-y.

[8] Amir Giladi et al. “Single-Cell Characterization of Haematopoietic Progenitors and Their Tra-
jectories in Homeostasis and Perturbed Haematopoiesis”. In: Nature Cell Biology 20.7 (July
2018), p. 836. issn: 1476-4679. doi: 10.1038/s41556-018-0121-4.

[9] Silvia Velasco et al. “Individual Brain Organoids Reproducibly Form Cell Diversity of the Hu-
man Cerebral Cortex”. In: Nature (June 5, 2019), p. 1. issn: 1476-4687. doi: 10.1038/s41586-019-
1289-x.

[10] Adam L. Haber et al. “A Single-Cell Survey of the Small Intestinal Epithelium”. In: Nature
551.7680 (Nov. 16, 2017), pp. 333–339. issn: 0028-0836. doi: 10.1038/nature24489.

[11] Lennart Kester and Alexander van Oudenaarden. “Single-Cell Transcriptomics Meets Lineage
Tracing”. In: Cell Stem Cell 23.2 (Aug. 2, 2018), pp. 166–179. issn: 1934-5909. doi: 10.1016/j.
stem.2018.04.014.

[12] Hannah Van Hove et al. “A Single-Cell Atlas of Mouse Brain Macrophages Reveals Unique
Transcriptional Identities Shaped by Ontogeny and Tissue Environment”. In: Nature Neuro-
science 22.6 (June 2019), p. 1021. issn: 1546-1726. doi: 10.1038/s41593-019-0393-4.

[13] Andrew Butler et al. “Integrating Single-Cell Transcriptomic Data across Different Conditions,
Technologies, and Species”. In: Nature Biotechnology 36.5 (May 2018), pp. 411–420. issn: 1546-
1696. doi: 10.1038/nbt.4096.

[14] F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. “SCANPY: Large-Scale Single-Cell
Gene Expression Data Analysis”. In: Genome Biology 19.1 (Feb. 6, 2018), p. 15. issn: 1474-760X.
doi: 10.1186/s13059-017-1382-0.

[15] LelandWilkinson.TheGrammar of Graphics. Springer Science & Business Media, Jan. 28, 2006.
693 pp. isbn: 978-0-387-28695-2.

[16] Hadley Wickham. Ggplot2: Elegant Graphics for Data Analysis. Use R! New York: Springer-
Verlag, 2009. isbn: 978-0-387-98141-3.

[17] Samuel G. Rodriques et al. “Slide-Seq: A Scalable Technology for Measuring Genome-Wide
Expression at High Spatial Resolution”. In: Science 363.6434 (Mar. 29, 2019), pp. 1463–1467.
issn: 0036-8075, 1095-9203. doi: 10.1126/science.aaw1219.

https://doi.org/10.12688/f1000research.15666.2
https://doi.org/10.1101/583013
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1093/bioinformatics/btx192
https://doi.org/10.1016/j.cels.2019.04.004
https://doi.org/10.1101/532895
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41556-018-0121-4
https://doi.org/10.1038/s41586-019-1289-x
https://doi.org/10.1038/s41586-019-1289-x
https://doi.org/10.1038/nature24489
https://doi.org/10.1016/j.stem.2018.04.014
https://doi.org/10.1016/j.stem.2018.04.014
https://doi.org/10.1038/s41593-019-0393-4
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1126/science.aaw1219

172
Chapter 6 - Future perspectives -

The next milestones of trajectory inference

[18] Gennady Gorin, Valentine Svensson, and Lior Pachter. “RNA Velocity and Protein Acceler-
ation from Single-Cell Multiomics Experiments”. In: bioRxiv (June 6, 2019), p. 658401. doi:
10.1101/658401.

[19] Nikita Raje and Chitra Dinakar. “Overview of Immunodeficiency Disorders”. In: Immunology
and allergy clinics of North America 35.4 (Nov. 2015), pp. 599–623. issn: 0889-8561. doi: 10 .
1016/j.iac.2015.07.001.

[20] Geoffrey Schiebinger et al. “Optimal-Transport Analysis of Single-Cell Gene Expression Iden-
tifies Developmental Trajectories in Reprogramming”. In:Cell 176.4 (Feb. 7, 2019), 928–943.e22.
issn: 0092-8674. doi: 10.1016/j.cell.2019.01.006.

[21] Ayelet Alpert et al. “Alignment of Single-Cell Trajectories to Compare Cellular Expression
Dynamics”. In: Nature Methods 15.4 (Apr. 2018), pp. 267–270. issn: 1548-7105. doi: 10.1038/
nmeth.4628.

[22] Kieran R. Campbell and Christopher Yau. “Uncovering Pseudotemporal Trajectories with Co-
variates from Single Cell and Bulk Expression Data”. In: Nature Communications 9.1 (June 22,
2018), p. 2442. issn: 2041-1723. doi: 10.1038/s41467-018-04696-6.

[23] Tim Stuart et al. “Comprehensive Integration of Single-Cell Data”. In: Cell 0.0 (June 6, 2019).
issn: 0092-8674, 1097-4172. doi: 10.1016/j.cell.2019.05.031.

[24] Marlon Stoeckius et al. “Cell Hashing with Barcoded Antibodies Enables Multiplexing and
Doublet Detection for Single Cell Genomics”. In: Genome Biology 19.1 (Dec. 19, 2018), p. 224.
issn: 1474-760X. doi: 10.1186/s13059-018-1603-1.

[25] Christopher S. McGinnis et al. “MULTI-Seq: Sample Multiplexing for Single-Cell RNA Se-
quencing Using Lipid-Tagged Indices”. In:Nature Methods (June 17, 2019), p. 1. issn: 1548-7105.
doi: 10.1038/s41592-019-0433-8.

[26] Koen Van den Berge et al. “Trajectory-Based Differential Expression Analysis for Single-Cell
Sequencing Data”. In: bioRxiv (May 2, 2019), p. 623397. doi: 10.1101/623397.

[27] Lukas M. Weber et al. “Diffcyt: Differential Discovery in High-Dimensional Cytometry via
High-Resolution Clustering”. In: Communications Biology 2.1 (May 14, 2019), p. 183. issn: 2399-
3642. doi: 10.1038/s42003-019-0415-5.

[28] Huidong Chen et al. “Single-Cell Trajectories Reconstruction, Exploration and Mapping of
Omics Data with STREAM”. In: Nature Communications 10.1 (Apr. 23, 2019), p. 1903. issn:
2041-1723. doi: 10.1038/s41467-019-09670-4.

[29] Hannah A. Pliner et al. “Cicero Predicts Cis-Regulatory DNA Interactions from Single-Cell
Chromatin Accessibility Data”. In: Molecular Cell 71.5 (June 9, 2018), 858–871.e8. issn: 1097-
4164. doi: 10.1016/j.molcel.2018.06.044.

[30] Manu Setty et al. “Wishbone Identifies Bifurcating Developmental Trajectories from Single-
Cell Data”. In: Nature Biotechnology 34.6 (June 2016), pp. 637–645. issn: 1546-1696. doi: 10 .
1038/nbt.3569.

[31] Vanessa M. Peterson et al. “Multiplexed Quantification of Proteins and Transcripts in Single
Cells”. In: Nature Biotechnology 35.10 (Oct. 2017), pp. 936–939. issn: 1546-1696. doi: 10.1038/
nbt.3973.

[32] Marlon Stoeckius et al. “Simultaneous Epitope and Transcriptome Measurement in Single
Cells”. In: Nature Methods 14.9 (Sept. 2017), pp. 865–868. issn: 1548-7105. doi: 10.1038/nmeth.
4380.

[33] Longqi Liu et al. “Deconvolution of Single-Cell Multi-Omics Layers Reveals Regulatory Het-
erogeneity”. In: Nature Communications 10.1 (Jan. 28, 2019), p. 470. issn: 2041-1723. doi: 10.
1038/s41467-018-08205-7.

[34] Joshua D. Welch, Alexander J. Hartemink, and Jan F. Prins. “MATCHER: Manifold Alignment
Reveals Correspondence between Single Cell Transcriptome and Epigenome Dynamics”. In:
Genome Biology 18.1 (July 24, 2017), p. 138. issn: 1474-760X. doi: 10.1186/s13059-017-1269-0.

https://doi.org/10.1101/658401
https://doi.org/10.1016/j.iac.2015.07.001
https://doi.org/10.1016/j.iac.2015.07.001
https://doi.org/10.1016/j.cell.2019.01.006
https://doi.org/10.1038/nmeth.4628
https://doi.org/10.1038/nmeth.4628
https://doi.org/10.1038/s41467-018-04696-6
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1186/s13059-018-1603-1
https://doi.org/10.1038/s41592-019-0433-8
https://doi.org/10.1101/623397
https://doi.org/10.1038/s42003-019-0415-5
https://doi.org/10.1038/s41467-019-09670-4
https://doi.org/10.1016/j.molcel.2018.06.044
https://doi.org/10.1038/nbt.3569
https://doi.org/10.1038/nbt.3569
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/s41467-018-08205-7
https://doi.org/10.1038/s41467-018-08205-7
https://doi.org/10.1186/s13059-017-1269-0

173

[35] Ricard Argelaguet et al. “Multi‐Omics Factor Analysis—a Framework for Unsupervised Inte-
gration of Multi‐omics Data Sets”. In: Molecular Systems Biology 14.6 (June 1, 2018), e8124.
issn: 1744-4292, 1744-4292. doi: 10.15252/msb.20178124.

[36] M. Colomé-Tatché and F. J. Theis. “Statistical Single Cell Multi-Omics Integration”. In: Current
Opinion in Systems Biology. • Future of Systems Biology• Genomics and Epigenomics 7 (Feb. 1,
2018), pp. 54–59. issn: 2452-3100. doi: 10.1016/j.coisb.2018.01.003.

[37] Kieran R. Campbell and Christopher Yau. “A Descriptive Marker Gene Approach to Single-
Cell Pseudotime Inference”. In: Bioinformatics (Oxford, England) 35.1 (Jan. 1, 2019), pp. 28–35.
issn: 1367-4811. doi: 10.1093/bioinformatics/bty498.

[38] Robrecht Cannoodt et al. “SCORPIUS Improves Trajectory Inference and Identifies NovelMod-
ules in Dendritic Cell Development”. In: bioRxiv (Oct. 7, 2016), p. 079509. doi: 10.1101/079509.

[39] Vladimir Yu Kiselev et al. “SC3: Consensus Clustering of Single-Cell RNA-Seq Data”. In:Nature
Methods 14.5 (May 2017), pp. 483–486. issn: 1548-7105. doi: 10.1038/nmeth.4236.

[40] Luyi Tian et al. “Benchmarking Single Cell RNA-Sequencing Analysis Pipelines UsingMixture
Control Experiments”. In: Nature Methods 16.6 (June 2019), p. 479. issn: 1548-7105. doi: 10 .
1038/s41592-019-0425-8.

[41] Jin Xu et al. “Single-Cell Lineage Tracing by Endogenous Mutations Enriched in Transposase
Accessible Mitochondrial DNA”. In: eLife 8 (Apr. 9, 2019). issn: 2050-084X. doi: 10.7554/eLife.
45105.

[42] Ilya Korsunsky et al. “Fast, Sensitive, and Accurate Integration of Single Cell Data with Har-
mony”. In: bioRxiv (Nov. 5, 2018), p. 461954. doi: 10.1101/461954.

[43] Xiaojie Qiu et al. “Reversed Graph Embedding Resolves Complex Single-Cell Trajectories”. In:
Nature Methods 14.10 (Oct. 2017), pp. 979–982. issn: 1548-7105. doi: 10.1038/nmeth.4402.

https://doi.org/10.15252/msb.20178124
https://doi.org/10.1016/j.coisb.2018.01.003
https://doi.org/10.1093/bioinformatics/bty498
https://doi.org/10.1101/079509
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/s41592-019-0425-8
https://doi.org/10.1038/s41592-019-0425-8
https://doi.org/10.7554/eLife.45105
https://doi.org/10.7554/eLife.45105
https://doi.org/10.1101/461954
https://doi.org/10.1038/nmeth.4402

7 | Future perspectives -
A roadmap for continuous
and collaborative bench-
marking

In this future perspectives chapter, I describe a workflow for making benchmark-
ing more continuous and collaborative. This was developed from my experience of
being involved in two benchmarking studies, and from intensive discussions with
bioinformatics researchers from Ghent and Zürich. In brief, the workflow uses sev-
eral tools available frommodern software development and applies them for design-
ing a benchmarking study. The actual implementation of this workflow will still
require some time to make all components fit well together, and to write detailed
documentation for potential participants.

Introduction

Evaluating the performance of a new method, and comparing it to the state-of-the-
art, is a critical step in the development of bioinformatics methods. The breadth of
a benchmark is influenced by its purpose. In some studies, the goal is to review the
methods available in the field, and highlight current challenges. Such independent
benchmarks are usually very comprehensive, involving many datasets and different
metrics ranging assessing the accuracy, scalability and robustness of a method. A
special case of such a benchmark are competitions, where the focus lies on promot-
ing the development of new methods within the field, while using existing methods
as baseline. Other benchmarks are used as a companion to a study proposing a new
method, which aim at demonstrating its improvements and usefulness.

176
Chapter 7 - Future perspectives -

A roadmap for continuous and collaborative benchmarking

While benchmarks are clearly important, the way benchmarking is usually done has
some limitations:

• Benchmarks are quickly outdated when new methods come along. This is es-
pecially problematic in fast moving fields, such as single-cell transcriptomics;
our TI benchmarking study is now already outdated given some recently pub-
lished methods [1]. Benchmarks also need to evolve with the methods that
are being published; a benchmark of TI methods in 2016 would have evaluated
only on linear and bifurcating datasets, while methodological developments
now require the evaluation of tree and disconnected graphs as well.

• Benchmarks are difficult to extend, as this is usually only added as an af-
terthought. The use of containerisation and code availability already partially
alleviates this issue.

• Benchmarks often reach different conclusions and these are difficult to com-
pare, because of (unclear) differences in datasets, method parameters, metric
implementation and aggregation.

• Independent benchmarks and competitions tend to be authoritative, with only
a small group of people deciding on how methods should be compared.

• Independent benchmarks are usually published quite late, only after a lot of
methods are already available.

• Companion benchmarks represent considerable wasted effort, because
datasets are often reanalysed, metrics reimplemented, and methods
rewrapped.

To resolve these issues, we propose a workflow for benchmarking that centers
around the following three core concepts:

• Modular: It should be possible to extend the benchmark simply by adding
a self-contained ”module”. Such a module could be: a dataset generator, a
method, a set of metrics, or a report generator that interprets the results and
produces a report. Several tools exist already for making benchmarks mod-
ular: SummarizedBenchmark [2], Dynamic Statistical Comparisons (https:
//github.com/stephens999/dscr) and iCOBRA [3].

• Collaborative: Anyone with a computer and an internet connection should
be able to run and contribute to the benchmark. This can range from contribut-
ing a module, to changing the structure of the benchmark itself. Discussions
on the benchmark or any of the reports should also be open. The collabora-
tive aspect of benchmarking has usually focused on the level of methods, with
countless competitions and challenges, such as those organised by DREAM

https://github.com/stephens999/dscr
https://github.com/stephens999/dscr

177

(http://dreamchallenges.org/), kaggle (https://www.kaggle.com/) or topcoder
(https://www.topcoder.com/).

• Continuous: A benchmark should be continuously updated when new mod-
ules are added. This has quite a long history in bioinformatics, particularly in
structure prediction [4], but also in other fields such as transcriptomics [5].

To construct a workflow that fulfills these three concepts, we consolidated several
ideas and tools coming from modern software development, such as continuous
integration, containerisation and workflow management.

In brief, our workflow is structured as follows. We define several types ofmodules
(Figure 7.1a): dataset generators that can generate datasets and optionally use an-
other dataset as input; methods that use a dataset to generate some model; metrics
which calculate some scores using the model and optionally also parts of the dataset;
and finally a report generator that summarise the datasets, models and scores. Each
type of module can generate a set of files which are constrained to a particular set
of formats (Figure 7.1b). Each format has an unambiguous description, example
data, and includes a validator that verifies the output files generated by each mod-
ule. While each format is defined beforehand, new formats can be added over time
as the field progresses. A module (Figure 7.1c) is a set of scripts and packages,
which are run inside a portable environment. This module is put under version con-
trol, shared on a code sharing platform, and tested automatically. When all tests
of a module are successful, these modules can be integrated into the actual bench-
marking workflow (Figure 7.1d). Within this workflow, modules are connected
through a particular design, which is executed using a workflow manager. The out-
put of the benchmark are a set of reports and apps, which aremade available through
a publishing platform. To add a new module, a pull request is created to integrate
the module within the benchmarking workflow, after which the contribution is re-
viewed openly. When accepted, the module is automatically integrated within the
workflow, and the necessary parts of the workflow are re-executed. Finally, in reg-
ular time intervals (e.g. monthly), the full set of reports and apps are gathered and
versioned.

We will further discuss each element of the workflow in detail, with some possible
tools that can be used to implement it. It is important to acknowledge that this is
only one possible implementation, and that other tools, some of which still have to
be developed, could better fit the benchmarking use-case. What is the most impor-
tant is not the way our workflow is implemented, but the open philosophy behind
its implementation.

http://dreamchallenges.org/
https://www.kaggle.com/
https://www.topcoder.com/

178
Chapter 7 - Future perspectives -

A roadmap for continuous and collaborative benchmarking

Figure 7.1: The proposed workflow for collaborative and continuous benchmark. a A
good set of data formats should have an unambiguous description, good and bad examples, and
automatic validators. b We define several types of modules that load in some data, such as a
dataset, and produce a result, such as a model. c A module is more than just code: it also defines
an environment and metadata, is placed under version control and automatically tested using
continuous integration. dModules from different labs or persons are connected through the use
of a pipeline framework. Amodule can be added to theworkflow by creating a pull request on the
main github repository, followed by review and continuous integration within the framework.
The benchmark is executed in parallel and reports are automatically generated from these results.

179

Data formats

The basis of any collaborative effort in computational biology is agreeing on how
data will be interchanged, and benchmarking is no exception. Sometimes, the differ-
ences between data formats can be minor, for example whether the samples within
a gene expression matrix are put in the rows or in the column. In other cases, dif-
ferent data formats can have a significant impact on storage and/or the speed by
which the data can be processed.

In the benchmarking workflow presented here, a format represents how a particular
part of a dataset, model, score or report should be represented on disk.

What a format entails

For a format to be useful, it should have an unambiguous description. In this way,
someone developing a module can be sure how the inputs look like, even if these
inputs do not exist yet, and can also be sure that the outputs will be useful as input
for other modules.

While a description is meant to be readable by humans, this description should also
be translated into a language computers can understand, so that each data file pro-
duced by a module can be validated. In this way, developers of a module can get im-
mediate feedback on whether their output matches the format description. To make
a format validatable, it is one possibility to use one of the many ”schemas” avail-
able, such as json-schema (http://json-schema.org/), XML schemas or Apache Ar-
row Schemas. Often, there are already validators available for these schemas (json-
schemas for example: https://json-schema.org/implementations.html#validators).
On the other hand, for more custom file formats or complex behaviour, validators
will need to be implemented.

Finally, connecting the human-readable description with the computational valida-
tion can be done with providing good and bad examples of the data format. These
examples serve a double purpose, because they provide the module contributors sev-
eral examples to understand the description, but can also be used as test cases for
the format validators.

Formats change as the field progresses

Usually, the optimal representation of a dataset or the output of a method only be-
comes apparent when several methods have been developed already. This means
that any effort to make a benchmark collaborative and continuous should strive to
make its data formats flexible. Flexibility can take several forms. New features could

http://json-schema.org/
https://json-schema.org/implementations.html#validators

180
Chapter 7 - Future perspectives -

A roadmap for continuous and collaborative benchmarking

be added to the format, without invalidating the old data and modules. When this
is not an option, new formats could be added alongside the old. When applicable,
converters should then be written which convert the old formats into the new, so
that old modules keep on functioning. Finally, in extreme cases, old formats could
be invalidated and replaced with new formats, which would require some version-
ing system to make sure modules are run on the version of the formats they were
developed.

It is inevitable that disagreements about data representation will emerge in a collab-
orative effort. But in any case, having a common format, even if they are suboptimal
for certain use cases, is usually better than having many disparate formats.

Module types

In the benchmarking workflow, we define four types of modules. In our experience,
these four modules are enough to construct a fully comprehensive benchmark of a
group of methods.

Dataset generators

This module will generate a dataset, which can from very simple ”toy” data, syn-
thetic data which try to mimic the characteristics of real data as best as possible, or
real datasets. Optionally, a dataset generator can use another dataset as input, for
example when generating asynthetic dataset based on a real dataset. Only rarely
will a dataset generator contain the primary data itself. Rather, data should be gath-
ered directly from primary sources, for example using APIs from the database or by
downloading the data directly from data management systems such as Zenodo or
Figshare.

Methods

A method module reads in (part) of a dataset, and uses this to generate a model.
Some special types of methods can be helpful to include at the start of a benchmark.
Positive controls, for example a method that simply return the reference model of
the dataset, and negative controls, for example a method that generate a random
model, could be useful to make sure the metrics work correctly. Off-the-shelf meth-
ods or baseline methods that can be easily implemented with just a few lines of code
could be helpful as a reference point to other methods and to assess the difficulty of
particular datasets.

181

A common issue when benchmarking is the selection of algorithm parameters. It is
not uncommon that the authors of a method disagree on what parameter settings
were used for benchmarking [6]. In our workflow, method authors are required to
define for each parameter a default value, but also a distribution of values that can
be used for parameter tuning.

Metrics

Metric modules score the output of a model. Some metrics assess the accuracy of
a model by comparing it with some reference model present in the dataset. Others
will look at the resources consumed by the method, such as CPU time and memory,
to assess its scalability. Models can also be compared to other models, for example
to examine the stability of a method. Finally, some qualitative metrics can also be
defined here, for example those that look at the usability of a method.

Report generators

In the end, the scores are aggregated and interpreted using a report generator. This
modules generates a report, which can be static, such as amarkdown document with
figures, or dynamic in the form of a web application. By crowdsourcing the bench-
mark interpretation, it would become much less authoritative and instead promotes
open discussion in the field [7]. It might certainly happen that different reports
would contain contradicting results, but because each reports starts from the same
set of data, it would be traceable why the conclusions differ. For example, there
might be subtle differences in how the scores have been averaged. Or, a report may
only have focused on only a subset of the dataset that the authors found the most
relevant for their method.

Modules

Scripts, a portable environment and metadata

A module needs to contain at least one command, which will run some code that
reads in the input data, process it in some way, and ultimately write the output data
in the correct format.

Given the large diversity of programming languages used in computation biology,
a collaborative benchmarking effort should avoid imposing restrictions on the pro-
gramming language used. As an example, the single-cell analysis field is split be-
tween tools written for R and Python [8], and choosing one of these two would

182
Chapter 7 - Future perspectives -

A roadmap for continuous and collaborative benchmarking

therefore alienate a significant part of the field. Moreover, a collaborative effort
should be open for new languages, such as Julia [9], which could be more powerful
and developer friendly for certain use cases.

Apart from being language agnostic, the execution of a module should also happen
on any computer in exactly the same way. To make the execution reproducible,
we therefore require that a module defines a portable environment, which contains
the necessary operating system, language interpreters and other packages to exe-
cute the code within the module. An environment can be portable on many levels:
within one programming language such as virtualenv for python or packrat for R or
across languages using package managers such as Conda. The most complete level
of reproducibility can be obtained by working at the level of the operating system,
through container systems such as docker or singularity. Finally, to be able exe-
cute stochastic algorithms in a reproducible manner, it is also necessary to fix the
pseudo-random number generator in some way, we do this by always setting an a
priori defined seed through R or numpy.

A module also contains metadata, which lists the requirements to run the method
such as the inputs, outputs and the name of the portable environment. Within our
workflow, we also require data for organisational purposes, such as a list of authors
with their contributions, and the licence of the code within the module.

Version control and code sharing

We require that the complete module, including the portable environment and meta-
data, is placed under version control so that any changes are tracked. The module
is then shared on a code sharing platform, which makes it possible for other mod-
ule authors and maintainers of the benchmark to file issues on the module, request
some changes to the code through pull requests, and create a modifications if the
licence allows it. In our workflow, we use git for version control and GitHub as the
platform to share modules, although it should be noted that powerful variants of
the latter exist, including self-hosted ones.

Continuous testing and validation

To keep the development of a module and benchmark maintainable, it is important
that each element of the module is automatically tested and validated. In this way,
many errors are caught early, before they can impact other modules in the bench-
mark. Including automated testing also reduces the burden for those reviewing the
modules. This crosstalk between automated testing andmanual reviewing is already
commonplace in many package repositories, such as CRAN and Bioconductor.

183

In our proposed workflow, we automatically trigger a new test on (https://www.
travis-ci.com), which is cost-free for open-source projects. We test each module on
several levels. We first check whether it contains all required content, and whether
the metadata is complete. Next, we activate the portable environment, run the mod-
ule on some small input data, and validate the produced output. If any of these steps
fail, the author is notified. Only when tests are successful can the new module be
integrated into the whole benchmark procedure.

Combining modules within a benchmark

To make the benchmark as inclusive as possible, it should be possible for anyone to
extend or adapt the benchmark for their own purposes. At the same time, it would
also be useful to have a central place that lists all the modules and provides the most
up-to-date set of reports for interested readers. To reconcile these two criteria, our
benchmarking workflow has one ”main” repository, which lists the location of the
different modules and how they are combined in the benchmark. Anyone can create
a fork of this repository, adapt the modules or benchmarking design in any way, and
run it using their own infrastructure.

Executing the benchmark

For the execution of the modules, a pipeline manager such as snakemake [10] or
nextflow [11] is almost indispensable. These tools make sure the modules are ex-
ecuted in the correct order and within a reproducible environment. Moreover, to
make the benchmark scalable, a pipeline manager will only rerun those executions
for which inputs have changed, including changes to scripts or packages inside the
portable environment. Within our benchmarking workflow, we created a custom
pipeline manager for this, which provided us with features that are lacking in most
current pipeline managers, such as incrementality at the level of the portable envi-
ronment, output validation and fixation of the pseudo-random number generator.

Adding or updating a module

While anyone is able to fork and modify the benchmark repository, modifications
to the main repository, such as additions or updates of a module, still requires some
form of control by a group of maintainers. This group of maintainers, which would
primarily consist of authors of other modules, are responsible for checking whether
the module has passed all automated checks. and give feedback regarding data for-
mats and testing results. Notably, reviewing happens in a completely open fashion,

https://www.travis-ci.com
https://www.travis-ci.com

184
Chapter 7 - Future perspectives -

A roadmap for continuous and collaborative benchmarking

similar as to what is done in open-source communities, such as Bioconductor and
ropensci (https://github.com/ropensci/onboarding).

We expect many different researchers to contribute to the benchmark. Some may
just want to contribute some data, and can thus create a very light-weight dataset
generator module. Developers may just want to integrate their own method, but
may make use of the existing datasets, metrics and reports. Researchers who are
interested in benchmarking may contribute some (synthetic) dataset generators,
metrics and a report summarizing their main findings. Such reports may also be
generated by a group of people who met at a workshop or conference.

In our workflow, adding or updating a module can be done by cloning the repository,
making the necessary changes, and then creating a pull request on Github.

Continuous benchmarking and versioning

Every time the main repository is updated, for example with a new version of a mod-
ule, an update of the whole benchmark workflow is triggered. Only those modules
with outdated input, because the code, environment or some input files changed,
are rerun.

The end results of the benchmark are one or more reports, which are freely accessi-
ble online. At regular time intervals, such asmonthly, all the reports can be gathered
and released as a new ”version”, which includes a changelog of updates to any of the
modules made before the last release. This release is given a digital object identifier
and registered at an open-access repository such as zenodo or figshare.

Possible issues

A continuous and collaborative benchmarking effort may sound great in theory, but
it will undoubtedly come across many issues. These are mainly centred around
having correct incentives, because if nobody has to gain something by joining the
benchmark, it will die just like many efforts before it.

There are many reasons why someone that creates a method would have no (or even
negative) incentives to participate in a community-wide benchmark. It might be too
much hassle to comply with the standards of the project, including data formats and
continuous integration. Containers already solve part of this problem, because they
allow the developer to have a ”sandbox” in their own module. Furthermore, clear
documentation and sufficient automation should make it very easy for a developer
to include a new module.

https://github.com/ropensci/onboarding

185

Another negative incentive may be that the developer is scared that their method
won’t come out on top, and will therefore be obsolete even before it is published.
The problem here is not the developer, but rather the field-wide focus (or sometimes
obsession) with being on top of the ranking in a benchmarking study. Creating
objective metrics and aggregating the scores is very difficult, and small changes can
easily (slightly) change the ranking. What is most important is not that the method
is the new overall best (even if the performance increase is negligible), but that it
outperforms other methods for some use cases or metrics, such as finding the right
topology in the case of trajectory inference. Allowing the developer to create their
own metrics and reports might partially mitigate this issue. But the best way to
resolve this might be to change the mindset in the bio-informatics community away
from obsessions with rankings, and towards a more gentle context-dependent view
on method performance.

In the end, the best way to overcome these negative incentives is to create a large
positive incentive: saving the precious time of developers and giving them a venue
to publicize their method to the bio-informatics community. To get to this point, the
benchmark would need to reach a critical mass, containing some datasets, metrics
and the current state-of-the-art methods.

Another issue with a continuous benchmarking effort will be the long-term sustain-
ability. Often, there is no incentive to further support a bio-informatics tool after
it was published 1. But as the field changes, so should the benchmark, and thus its
metrics, datasets, data formats and reports. After a while, some ”code rot” 2 may be
accumulating, with report generators or methods no longer working correctly. Re-
solving this issue will be difficult, and it is hard to estimate its impact beforehand.

Conclusion and outlook

Continuous and collaborative benchmarking provides an alternative and powerful
way to evaluate methods in computational biology. It relies heavily on modular-
isation and tools from software development, which make it possible to design a
benchmarking strategy that can be easily extended by anyone, while still allow-
ing for open discussion to exist in a field. Because less effort is spent developing
new benchmarking pipelines for every new method, this workflow would speed up
method development in bioinformatics. Because the result of the benchmark can
be easily interpreted by anyone, it would also avoid other issues, such as the self-
assessment trap [12].

1Perhaps one of the reasons why only 30% of the authors responded to our feedback within the
trajectory inference benchmark

2A term from software development describing the tendency of software to slowly stop working
if it is not updated due to changes in dependencies and the operating system

186
Chapter 7 - Future perspectives -

A roadmap for continuous and collaborative benchmarking

As in every collaborative effort, a benchmarking workflow like this will have to find
a balance between quantity and quality. On the one hand do we want to include
anyone willing to make an effort to add something to the benchmark. At the same
time do we not want to be overloaded with support requests. One way to find this
balance is to look at similar projects outside of benchmarking, at vibrant package
repositories (CRAN, pypi, bioconductor, ropensci, npm). These projects make the
entrance barrier low through in-depth documentation and ”skeletons”, by which a
developer can quickly get going and test things out. skeletons and documentation.
Their long-term success depends on the strict enforcements community standards
(such as automated testing), which is semi-automated to keep the need for human
reviewers low.

In the ideal case, a continuous benchmarking project should be supported by a larger
consortium, such as the Human Cell Atlas, which would not only assure its conti-
nuity, but would also provide infrastructural support. In particular, services that
have strong requirements on the side of storage and/or computing power would
benefit from this, such as continuous integration, the code sharing platform and
execution environment. If supported by these organisations, continuous and collab-
orative benchmarking might have a tremendous impact on the speed by which new
methods are developed in bioinformatics, and as a result on our understanding of
biology.

187

References

[1] Junyue Cao et al. “The Single-Cell Transcriptional Landscape of Mammalian Organogenesis”.
In: Nature 566.7745 (Feb. 2019), p. 496. issn: 1476-4687. doi: 10.1038/s41586-019-0969-x.

[2] Patrick K. Kimes and Alejandro Reyes. “Reproducible and Replicable Comparisons Using Sum-
marizedBenchmark”. In: Bioinformatics 35.1 (Jan. 1, 2019), pp. 137–139. issn: 1367-4803. doi:
10.1093/bioinformatics/bty627.

[3] Charlotte Soneson and Mark D. Robinson. “iCOBRA: Open, Reproducible, Standardized and
Live Method Benchmarking”. In: Nature Methods 13.4 (Apr. 2016), p. 283. issn: 1548-7105. doi:
10.1038/nmeth.3805.

[4] John Moult et al. “Critical Assessment of Methods of Protein Structure Prediction (CASP)—
Round XII”. In: Proteins: Structure, Function, and Bioinformatics 86.S1 (2018), pp. 7–15. issn:
1097-0134. doi: 10.1002/prot.25415.

[5] Mingxiang Teng et al. “A Benchmark for RNA-Seq Quantification Pipelines”. In: Genome Biol-
ogy 17.1 (Apr. 23, 2016), p. 74. issn: 1474-760X. doi: 10.1186/s13059-016-0940-1.

[6] Qiwen Hu and Casey S. Greene. “Parameter Tuning Is a Key Part of Dimensionality Reduction
via Deep Variational Autoencoders for Single Cell RNA Transcriptomics”. In: bioRxiv (Sept. 20,
2018), p. 385534. doi: 10.1101/385534.

[7] Raphael Silberzahn and Eric L. Uhlmann. “Crowdsourced Research: Many Hands Make Tight
Work”. In: Nature 526.7572 (Oct. 8, 2015), pp. 189–191. issn: 1476-4687. doi: 10.1038/526189a.

[8] Luke Zappia, Belinda Phipson, and Alicia Oshlack. “Exploring the Single-Cell RNA-Seq Anal-
ysis Landscape with the scRNA-Tools Database”. In: bioRxiv (Oct. 20, 2017), p. 206573. doi:
10.1101/206573.

[9] Jeff Bezanson et al. “Julia: A Fresh Approach to Numerical Computing”. In: (Nov. 6, 2014).
[10] Johannes Köster and Sven Rahmann. “Snakemake—a Scalable Bioinformatics Workflow En-

gine”. In: Bioinformatics 28.19 (Oct. 1, 2012), pp. 2520–2522. issn: 1367-4803. doi: 10 . 1093 /
bioinformatics/bts480.

[11] Paolo Di Tommaso et al. “Nextflow Enables Reproducible Computational Workflows”. In: Na-
ture Biotechnology 35.4 (Apr. 2017), p. 316. issn: 1546-1696. doi: 10.1038/nbt.3820.

[12] Raquel Norel, John Jeremy Rice, and Gustavo Stolovitzky. “The Self-Assessment Trap: Can
We All Be Better than Average?” In: Molecular Systems Biology 7 (Oct. 11, 2011), p. 537. issn:
1744-4292. doi: 10.1038/msb.2011.70.

https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1093/bioinformatics/bty627
https://doi.org/10.1038/nmeth.3805
https://doi.org/10.1002/prot.25415
https://doi.org/10.1186/s13059-016-0940-1
https://doi.org/10.1101/385534
https://doi.org/10.1038/526189a
https://doi.org/10.1101/206573
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/msb.2011.70

Appendices

A | CV

This appendix contains my scientific curriculum vitae.

192 Appendix A - CV

Wouter Saelens
PHD STUDENT

Inflammation Research Center, a VIB-UGent Department, Technologiepark-Zwijnaarde 71, 9052 Zwijnaarde, Belgium
 +32 485 81 40 59 | wouter.saelens@gmail.com | zouter | zouters

Education
Ghent University
M.SC. BIOCHEMISTRY & BIOTECHNOLOGY 2012-2014

• Major bioinformatics and systems biology
• Minor plant biotechnology
• Thesis: Lokale celtype-specifieke genexpressie in het myeloïde transcriptoom
• Thesis advisors: Bart N. Lambrecht and Yvan Saeys
VIB - Ghent University
DOCTOR OF SCIENCE: BIOINFORMATICS 2014-2019

• Developing and benchmarking methods for analysing transcriptomics data
• Promoters: Yvan Saeys (VIB - UGent) and Bart N. Lambrecht (VIB - UGent)
• Defending October 24

Grants
2014-2015 BOF PhD grant
2015-2019 FWO Aspirant (extended in 2017)

2018 FWO Travel grant: 3 month visit to the Mark Robinson lab, University of Zürich

Research
PRIMARY RESEARCH
Robin, B., Saelens, W.*, Saeys, Y.*, Accepted. NicheNet: Modeling intercellular communication by linking ligands to target genes. Nature
Methods. * Co-supervised the work

Weber, L.M.,Saelens,W., Cannoodt, R., Soneson, C., Hapfelmeier, A., Gardner, P.P., Boulesteix, A.-L., Saeys, Y., Robinson,M.D., 2019. Essential
guidelines for computational method benchmarking. Genome Biology 20. https://doi.org/10.1186/s13059-019-1738-8

Saelens, W.*, Cannoodt, R.*, Todorov, H., Saeys, Y., 2019. A comparison of single-cell trajectory inferencemethods. Nature Biotechnology 37,
547–554. * Shared first author https://doi.org/10.1038/s41587-019-0071-9

Saelens, W., Cannoodt, R., Saeys, Y., 2018. A comprehensive evaluation of module detection methods for gene expression data. Nature
Communications 9. https://doi.org/10.1038/s41467-018-03424-4

Scott, C.L., T’Jonck, W., Martens, L., Todorov, H., Sichien, D., Soen, B., Bonnardel, J., De Prijck, S., Vandamme, N., Cannoodt, R., Saelens, W.,
Vanneste, B., Toussaint, W., De Bleser, P., Takahashi, N., Vandenabeele, P., Henri, S., Pridans, C., Hume, D.A., Lambrecht, B.N., De Baetselier,
P., Milling, S.W.F., Van Ginderachter, J.A., Malissen, B., Berx, G., Beschin, A., Saeys, Y., Guilliams, M., 2018. The Transcription Factor ZEB2 Is
Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity 49, 312–325.e5. https://doi.org/10.1016/j.immuni.2018.07.004

Scott, C.L., Soen, B., Martens, L., Skrypek, N., Saelens, W., Taminau, J., Blancke, G., Van Isterdael, G., Huylebroeck, D., Haigh, J., Saeys, Y.,
Guilliams, M., Lambrecht, B.N., Berx, G., 2016. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs
by repressing Id2. The Journal of Experimental Medicine 213, 897–911. https://doi.org/10.1084/jem.20151715

Van de Laar, L., Saelens, W., De Prijck, S., Martens, L., Scott, C.L., Van Isterdael, G., Hoffmann, E., Beyaert, R., Saeys, Y., Lambrecht, B.N.,
Guilliams, M., 2016. Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional
Tissue-Resident Macrophages. Immunity 44, 755–768. https://doi.org/10.1016/j.immuni.2016.02.017

PREPRINTS
VandenBerge, K., de Bézieux, H.R., Street, K., Saelens,W., Cannoodt, R., Saeys, Y., Dudoit, S., Clement, L., 2019. Trajectory-baseddifferential
expression analysis for single-cell sequencing data. https://doi.org/10.1101/623397

Saelens, W.*, Cannoodt, R.*, Todorov, H., Saeys, Y., 2018. A comparison of single-cell trajectory inference methods: towards more accurate
and robust tools. * Shared first author https://doi.org/10.1101/276907

Cannoodt, R., Saelens, W., Sichien, D., Tavernier, S., Janssens, S., Guilliams, M., Lambrecht, B.N., De Preter, K., Saeys, Y., 2016. SCORPIUS
improves trajectory inference and identifies novel modules in dendritic cell development. https://doi.org/10.1101/079509

REVIEW ARTICLES
Cannoodt, R.*, Saelens, W.*, Saeys, Y., 2016. Computational methods for trajectory inference from single-cell transcriptomics. European
Journal of Immunology 46, 2496–2506. * Shared first author https://doi.org/10.1002/eji.201646347

BOOK CHAPTERS

SEPTEMBER 2019 WOUTER SAELENS · CURRICULUM VITAE 1

193

Todorov, H., Cannoodt, R., Saelens, W., Saeys, Y., 2018. Network Inference from Single-Cell Transcriptomic Data. Gene Regulatory Networks
235–249. https://doi.org/10.1007/978-1-4939-8882-2_10

Teaching
TEACHING ASSISTANT
COURSE ‘PROGRAMMING’ 2016, 2017, 2018
• Helping Biology and Biochemistry & Biotechnology students to learn basic programming
BACHELOR’S PROJECT 2015, 2016, 2017, 2018
• Guiding groups of 3 Biochemistry & Biotechnology students do a research project within one week

MASTER THESIS GUIDANCE
2014-2015 Alexander Reinartz: Zoektocht naar de drijvende krachten achter macrofaag- en Kupffercel-identiteit
2016-2017 Robin Browaeys: Linking extracellular signals to target genes by data integration
2017-2018 Chloë Guidi: Improving regulatory network inference based on single-cell pseudotime data

MASTER PROJECTS AND INTERNSHIP GUIDANCE
2015 Charlotte De Vogelaere
2015 Solène Boutin
2016 Annelies Emmaneel

Conferences and workshops
INVITED TALKS

2019 Single-cell analysis SIB - SciLifeLab Autumn School Leysin, CH

2019 SincellTE, 5 day single-cell analysis course Station Biologique
Roscoff, FR

2019 EPFL Single-cell mini symposium EPFL Lausanne, CH

ACCEPTED TALKS

2019 Keystone Single-cell biology: Infering trajectories using dyno Breckenridge, CO,
US

2015 Benelux bioinformatics conference: A comprehensive comparison of module detection methods Antwerp, BE

ACCEPTED POSTERS

2019 Keystone Single-cell biology: Infering trajectories using dyno Breckenridge, CO,
US

2018 Single-cell genomics: Evaluating single-cell trajectory inference methods using simulated data Hinxton, UK

2017 Keystone Single-cell -omics: Simulation of realistic single-cell data to promote the development of new
modelling methods Stockholm, SE

2016 Single-cell genomics: Inferring trajectories using SCORPIUS Hinxton, UK
2016 Benelearn: A comprehensive evaluation of module detection methods for gene expression data Kortrijk, BE

2016 Keystone Systems immunology: Inferring branched trajectories from single cell data reveals novel insights
into immune cell differentiation Big Sky, MT, US

2015 Benelux Bioinformatics conference: A comprehensive evaluation of module detection methods for gene
expression data Antwerp, BE

2014 Benelux BIoinformatics conference: Biclustering by taking into account the relationships between
conditions and application on immunological expression data Luxembourg, LU

Awards
2015 Best oral presentation at Benelux Bioinformatics conference Antwerp, BE
2014 Bayer prize meritorious student (Bayer prijs voor verdienstelijke student)

Service
PUBLIC OUTREACH
WETENSCHAP OP STAP 2016, 2017, 2018, 2019
• One day of teaching and doing experiments with school children in 6th grade about biology and bioinformatics
WEGOSTEM 2018
• One day of teaching and doing experiments with school children in 5-6th grade about robotics

REVIEWED FOR
Bioinformatics
Frontiers in Immunology
Nucleic Acids Research

SEPTEMBER 2019 WOUTER SAELENS · CURRICULUM VITAE 2

B | Vignette of dyno, A toolkit
for inferring trajectories

This appendix contains the user guide for the dyno package, which groups several
other packages useful for inferring and interpreting trajectories. This documenta-
tion is also available at https://dynverse.org/users/3-user-guide/.

https://dynverse.org/users/3-user-guide/

196 Appendix B - Vignette of dyno, A toolkit for inferring trajectories

library(dyno)
library(tidyverse)

Preparing the data

Gene expression data

As input, dynwrap requires raw counts and normalised (log2) expression data. Cells with low expression,
doublets and other “bad” cells should already be filtered from this matrix. Features (i.e. genes) may already
be filtered, but this is not required. Some methods internally include a feature filtering step, while others
can handle a lot of features just fine.

Internally, dynwrap works with a sparse matrix (dgCMatrix) which reduces the memory footprint.
dataset <- wrap_expression(

expression = example_dataset$expression,
counts = example_dataset$counts

)

Prior information

Some methods require prior information to be specified. You can add this prior information to the dataset
using dynwrap::add_prior_information:
dataset <- add_prior_information(

dataset,
start_id = "Cell1"

)

Optional information

Grouping / clustering

You can add a grouping or clustering to the data using dynwrap::add_grouping:
dataset <- add_grouping(

dataset,
example_dataset$grouping

)

Dimensionality reduction

You can add a grouping or clustering to the data using dynwrap::add_dimred. The dimensionality reduction
should be a matrix with the same rownames as the original expression matrix.
dataset <- add_dimred(

dataset,
example_dataset$dimred

)

197

Current limitations

Currently, alternative input data such as ATAC-Seq or cytometry data are not yet supported, although it is
possible to simply include this data as expression and counts.

In the near future, we will also add the ability to include RNA velocity as input. See the discussion at
https://github.com/dynverse/dynwrap/issues/112

Selecting the best methods for a dataset

Within our evaluation study, we compared 45 methods on four aspects:

• Accuracy: How similar is the inferred trajectory to the “true” (or “expected”) trajectory in the data.
We used several metrics for this, comparing the cellular ordering and topology, and compared against
both real datasets, for which a gold standard is not always so well defined, and synthetic data, which
are not necessarily as biologically relevant as real data.

• Scalability: How long the method takes to run and how much memory it consumes. This mainly
depends on the dimensions of the input data, i.e. the number of cells and features.

• Stability: How stable the results are when rerunning the method with different seeds or slightly
different input data.

• Usability: The quality of the documentation and tutorials, how easy it is to run the method, whether
the method is well tested, … We created a transparent scoresheet to assess each of these aspects in a
more or less objective way.

Perhaps not surprisingly, we found a high diversity in method performance, and that not many methods
perform well across the board. The performance of a method depended on many factors, mainly the dimen-
sions of the data and the kind of trajectory present in the data. Based on this, we developed an interactive
shiny app which you can use to explore the results and select an optimal set of methods for your analysis.

This app can be opened using dynguidelines::guidelines_shiny(). It is recommended to give this
function your dataset, so that it will precalculate some fields for you:
dataset <- example_dataset
guidelines_shiny(dataset = dataset)

The app includes a tutorial, which will guide you through the user interface. Once finished, it is highly
recommended to copy over the code that generates the guidelines to your script, so that your analysis
remains reproducible, for example:
dataset <- example_dataset
guidelines <- guidelines(

dataset,
answers = answer_questions(

dataset,
multiple_disconnected = FALSE,
expect_topology = TRUE,
expected_topology = "linear"

)
)

Loading required namespace: akima

This guidelines object contains:

• Information on the selected methods: guidelines$methods
• The names of the selected methods: guidelines$methods_selected
• The answers given in the app (or their defaults): guidelines$answers

198 Appendix B - Vignette of dyno, A toolkit for inferring trajectories

Inferring trajectories

dynwrap::infer_trajectory is the main function to infer a trajectory. It requires two things:

• A dataset, wrapped using dynwrap::wrap_expression
• A TI method. This can be one of the 59 TI method from dynmethods, or a name of a method in which

case it will retrieve the relevant method from dynmethods.
dataset <- wrap_expression(

counts = example_dataset$counts,
expression = example_dataset$expression

)
model <- infer_trajectory(dataset, ti_comp1())

Loading required namespace: hdf5r

This model now contains the main information on the trajectory, i.e. the milestone_network and
progressions:
model$milestone_network

from to length directed
1 milestone_begin milestone_end 1 FALSE
head(model$progressions, 10)

cell_id from to percentage
1 Cell1 milestone_begin milestone_end 0.25088041
2 Cell2 milestone_begin milestone_end 0.36976202
3 Cell3 milestone_begin milestone_end 0.56873343
4 Cell4 milestone_begin milestone_end 0.91506325
5 Cell5 milestone_begin milestone_end 0.21259337
6 Cell6 milestone_begin milestone_end 0.91000325
7 Cell7 milestone_begin milestone_end 0.90920327
8 Cell8 milestone_begin milestone_end 0.64542720
9 Cell9 milestone_begin milestone_end 0.60957610
10 Cell10 milestone_begin milestone_end 0.06369673

While running methods inside a docker or singularity container reduces problems with dependencies and
makes an analysis more reproducible, it can also create a considerable overhead. We plan to wrap wrap
some more “popular” methods directly into R. See https://github.com/dynverse/dynmethods/issues/152
for an overview.

Parameters

Optionally, you can also give it some parameters. These are all documented within the relevant functions in
dynmethods (also available in the reference section):
?ti_comp1

Component 1
##
Description:
##
Will generate a trajectory using Component 1.
##
This method was wrapped inside a container.

199

##
Usage:
##
ti_comp1(dimred = "pca", ndim = 2L, component = 1L)
##
Arguments:
##
dimred: Which dimensionality reduction method to use. Domain: pca,
mds, tsne, ica, lle, landmark_mds, mds_sammon, mds_isomds,
mds_smacof, umap, dm_diffusionMap. Default: pca. Format:
character.
##
ndim: . Domain: U(2, 30). Default: 2. Format: integer.
##
component: . Domain: U(1, 10). Default: 1. Format: integer.
##
Value:
##
A TI method wrapper to be used together with 'infer_trajectory'

Visualisng a trajectory

The main functions for plotting a trajectory are included in the dynplot package.

We’ll use an example toy dataset
set.seed(1)
dataset <- dyntoy::generate_dataset(model = "bifurcating", num_cells = 200)

To visualise a trajectory, you have to take into acount two things:

• Where will I place the trajectory and cells in my 2D space
• What do I want to visualise along the trajectory based on color

Depending on the answer on these two questions, you will need different visualisations:

200 Appendix B - Vignette of dyno, A toolkit for inferring trajectories

Color

Position

Ordering Cell grouping Feature expression Pseudotime

Dendrogram

Onedim

| | | | | | | |

Graph

Dimensionality reduction

Adapting the trajectory

Simplifying

Intermediate milestones can be removed by simplyfing the trajectory:
model <- dyntoy::generate_dataset(model = dyntoy::model_linear(num_milestones = 10))
simplified <- simplify_trajectory(model)

|

M2 M3 M4 M5 M6 M7 M8 M9 M10M1

|

M10M1

Original Simplified

201

Rooting

TI methods often do not have an idea where the root of a trajectory is. We provide two ways of rooting a
trajectory. After rooting, all other edges will point away from the root.
set.seed(1)
model <- dyntoy::generate_dataset(model = dyntoy::model_bifurcating())

Manually

If you know the milestone (or cell) that is at the start of the trajectory, you can directly call add_root:
model_rooted <- model %>% add_root(root_milestone_id = "M4")

M3

M4

M1

M2

M4

M3

M1

M2

Original Rooted at M4

Using marker genes

If you know some marker genes that are highly expressed at the start of the trajectory, rooting can be done
implicitely:
model_rooted <- model %>% add_root_using_expression("G1", expression_source = model)

202 Appendix B - Vignette of dyno, A toolkit for inferring trajectories

M3

M4

M1

M2 M2

M3

M4

M1

0.0 2.5 5.0 7.5 10.0
G1 expression

0.0 2.5 5.0 7.5 10.0
G1 expression

Original Rooted using G1 expression

Rooting a trajectory based on RNA velocity is on our todo list. See https://github.com/dynverse/dynwrap/
issues/115

Annotating

Annotating/labelling milestones is still experimental

Similarly as with rooting, there are also two ways to annotate the milestones within a trajectory:

Manually

model_labelled <- model %>%
label_milestones(c(M1 = "start", M2 = "end1", M3 = "decision", M4 = "end2"))

203

decision

end2

start

end1

Labelled

Using marker genes

model_labelled <- label_milestones_markers(
model,
markers = list(

G1high = c("G1"),
G5high = c("G5"),
G3high = c("G3"),
G8high = c("G8")

)
)

204 Appendix B - Vignette of dyno, A toolkit for inferring trajectories

G5high

G8high

G3high

G1high

0.0 2.5 5.0 7.5 10.0
G1 expression

Labelled

Annotating milestones based on external information is on our todo list.

Limitations

Splitting a trajectory and adding intermediate milestones is on our todo list.

Trajectory differential expression

Compared to differential expression between clusters of cells, defining differential expression on trajectories
is not so straightforward. What constitutes a trajectory differentially expressed gene?

• A gene that is uniquely expressed in a particular branch?
• A gene that changes at a branching point?
• A gene that changes along pseudotime?
• …?

dynfeature is a package that allows you to find these different kinds of differential expression in a trajectory.
It first defines a particular variable that needs to be predicted (for example, whether a cell is present in a
branch or not), and tries to predict this variable based on the expression in different cells. It then ranks each
feature based on their predictive capability, and based on this ranking you can select differentially expressed
genes.

205

Depending on what variable is predicted, you get a different ranking. This simply depends on what kind of
features you are interested in:

A global overview of the most predictive genes

If you just want to see features that change anywhere in the trajectory, you can use ‘dynfeature::
model <- dyntoy::generate_dataset(model = dyntoy::model_bifurcating(), num_features = 500)

overall_feature_importances <- dynfeature::calculate_overall_feature_importance(model)
features <- overall_feature_importances %>%

top_n(40, importance) %>%
pull(feature_id)

| |
M3 M4 M2M1

G221
G216
G162
G156
G434
G332
G456
G246
G481
G139
G487
G236
G466
G285

G26
G173
G424
G149
G461

G12
G454
G317

G78
G260
G222
G422
G270
G209
G468
G347
G128
G206

G84
G327
G391
G296
G146

G71
G474

G4

Overall important features

Lineage/branch markers

We can also extract features that are specifically upregulated or downregulated in a specific branch:
branch_feature_importance <- calculate_branch_feature_importance(model)
features <- branch_feature_importance %>%

filter(to == "M4") %>%
top_n(20, importance) %>%
pull(feature_id)

206 Appendix B - Vignette of dyno, A toolkit for inferring trajectories

| |
M3 M4 M2M1

G482

G149

G249

G433

G204

G366

G384

G339

G367

G67

G90

G120

G48

G63

G115

G412

G185

G41

G228

G255

Features important for branch to M4

Genes important at bifurcation points

We can also extract features which change at the branching point
branching_milestone <- "M3"
branch_feature_importance <- calculate_branching_point_feature_importance(

model,
milestones_oi = branching_milestone
)

features <- branch_feature_importance %>% top_n(20, importance) %>% pull(feature_id)

207

| |
M3 M4 M2M1

G13

G161

G167

G347

G206

G296

G146

G144

G126

G104

G109

G370

G84

G431

G457

G440

G294

G60

G169

G448

Features important at branching point M3

Current limitations

While dynfeature is useful to rank the features according to the strength of trajectory differential expression,
they do not provide a statistical ground to find features which are significantly differentially expressed.

	Introduction
	mRNA production and gene regulation
	Technologies to determine the transcriptome
	Determining the transcriptome of many cells
	Determining the transcriptome of a single cell

	Computational methods to analyse the transcriptome
	Preprocessing and normalisation
	Differential expression
	Dimensionality reduction
	Grouping samples, cells and genes
	Trajectory inference
	Network inference
	Other methods
	On the horizon

	Benchmarking methods in computational biology
	Goals and problem setting
	References

	Analysing the transcriptome of three biological conditions
	Introduction
	Triwise methodology
	Applying triwise to analyse macrophage progenitors before and after adoptive transfer
	A brief introduction to macrophage biology
	Experimental approach
	Triwise application
	Implications

	Other applications
	Understanding CD103+CD11b+ dendritic cell development in the gut

	Discussion
	References

	Comparing module detection methods
	Introduction
	Results
	Evaluation workflow
	Overall performance
	Parameter tuning
	Sensitivity to number of samples and noise

	Discussion
	Methods
	Regulatory networks and module definitions
	Gene expression data
	Module detection methods
	Parameter tuning
	Evaluation metrics
	Influence of overlap
	Automatic parameter estimation
	Similarity measures
	Code availability

	Supplementary Note 1: Measures for comparing overlapping modules
	Update
	References

	Comparing trajectory inference methods
	Introduction
	Results
	Trajectory inference methods
	Accuracy
	Scalability
	Stability
	Usability

	Discussion
	Methods
	Trajectory inference methods
	Method wrappers
	Trajectory types
	Real datasets
	Synthetic datasets
	Dataset filtering and normalisation
	Benchmark metrics
	Method execution
	Complementarity
	Scalability
	Stability
	Usability
	Guidelines
	Reporting Summary

	Supplementary Note 1: Metrics to compare two trajectories
	Metric characterisation and testing
	Metric conformity
	Score aggregation

	Update
	References

	Conclusion
	Future perspectives - The next milestones of trajectory inference
	Selecting the most optimal set of methods
	Running any method without difficulties
	Adapting and post-processing the trajectory
	Visualising the trajectory
	Comparing trajectories
	Multi-omics trajectories
	Validating a trajectory
	Conclusion
	References

	Future perspectives - A roadmap for continuous and collaborative benchmarking
	Introduction
	Data formats
	Module types
	Modules
	Combining modules within a benchmark

	Possible issues
	Conclusion and outlook
	References

	Appendices
	CV
	Vignette of dyno, A toolkit for inferring trajectories

