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Abstract
Background Previous studies suggest that obesity (OB) is associated with disrupted brain network organization; however, it
remains unclear whether these differences already exist during childhood. Moreover, it should be investigated whether
deviant network organization may be susceptible to treatment.
Methods Here, we compared the structural connectomes of children with OB with age-matched healthy weight (HW)
controls (aged 7–11 years). In addition, we examined the effect of a multidisciplinary treatment program, consisting of diet
restriction, cognitive behavioral therapy, and physical activity for children with OB on brain network organization. After
stringent quality assessment criteria, 40 (18 OB, 22 HW) data sets of the total sample of 51 participants (25 OB, 26 HW)
were included in further analyses. For all participants, anthropometric measurements were administered twice, with a
5-month interval between pre- and post tests. Pre- and post T1- and diffusion-weighted imaging scans were also acquired
and analyzed using a graph-theoretical approach and network-based statistics.
Results Global network analyses revealed a significantly increased normalized clustering coefficient and small-worldness in
children with OB compared with HW controls. In addition, regional analyses revealed increased betweenness centrality,
reduced clustering coefficient, and increased structural network strength in children with OB, mainly in the motor cortex and
reward network. Importantly, children with OB lost a considerable amount of their body mass after the treatment; however,
no changes were observed in the organization of their brain networks.
Conclusion This is the first study showing disrupted structural connectomes of children with OB, especially in the motor and
reward network. These results provide new insights into the pathophysiology underlying childhood obesity. The treatment
did result in a significant weight loss, which was however not associated with alterations in the brain networks. These
findings call for larger samples to examine the impact of short-term and long-term weight loss (treatment) on children’s brain
network organization.

Introduction

Childhood obesity (OB) is a challenging threat to global
health, because it is often associated with other health

diseases, such as type 2 diabetes and cardiovascular dis-
eases [1, 2]. Excessive eating behavior and reduced levels
of physical activity have shown to be the main causes of this
multifactorial health problem [1, 3, 4], and weight loss
programs are recommended to be multidisciplinary with
focus on eating and exercise behavior. Optimal regulation
of these behaviors relies on an integrated and efficient
information processing of the brain network [5, 6]. For
example, in a daily life context, the individual is challenged
to ignore or inhibit unhealthy stimuli (e.g., eating a cho-
colate bar) that would instantly trigger the reward center and
instead opt for the less “rewarding” bout of physical activity
[7]. Previous neuroimaging studies suggest that childhood
OB is associated with differences in gray matter density
[8, 9] and white matter organization [8, 10], mainly in
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frontal and temporal brain regions. Moreover, previous
work from our lab has shown that a multidisciplinary
treatment program at the Zeepreventorium (De Haan, Bel-
gium) resulted in a significant increase in total and cere-
bellar gray matter volume in children with OB, while no
change was observed in the healthy weight (HW) controls
[11]. These findings indicate that typical unhealthy behavior
in individuals with OB indeed may be related to altered
brain structures in specific regions. Nevertheless, to
understand the impact of childhood OB on the global
organization of brain networks, it is important to move
beyond isolated brain regions and evaluate the brain as a
large-scale network [12].

Graph theory is a mathematical framework which
represents the brain as a connectome consisting of nodes
(i.e., brain regions) and edges (i.e., functional or structural
connections between brain regions) [13]. Graph metrics can
be calculated to identify highly efficient brain networks,
known as small-world networks, which are characterized by
high local segregation (i.e., dense local clustering between
neighboring nodes) and high global integration (i.e., short
path lengths between any pair of nodes) [14]. Graph theory
enables to quantify interactions between brain regions,
rather than assuming that brain areas act as independent
processers. In this way, graph metrics can provide compli-
mentary characterization of brain development in childhood
OB and related behaviours [12, 15, 16]. Moreover, graph
theory has been useful for detecting disease-related differ-
ences and alterations in brain network organization across a
wide range of clinical populations (see Griffa et al. [17] for
a review).

To date, only a few studies have used graph theory to
examine brain network organization in relation to OB, albeit
in adults. Chao et al. [18] and Baek et al. [19], for example,
observed reduced small-world characteristics in brain net-
works of adults with OB (NChao= 20/NBaek= 40; 22–58
years old) compared with HW controls, using resting-state
functional magnetic resonance imaging (MRI). Specifically,
OB was associated with reduced local segregation char-
acterized by a lower normalized clustering coefficient and
altered (i.e., increased or decreased) global integration
characterized by a lower global efficiency, and normalized
characteristic path length in the global brain network. In
addition, network-based statistics (NBS) (i.e., edgewise
comparisons) revealed a decreased functional network
strength (i.e., lower functional connectivity) in the cortico-
striatal/cortico-thalamic network of adults with OB [19].
Finally, a diffusion MRI study showed reduced (structural)
node strength (i.e., sum of the weights of all the edges
connected to each node) and normalized the clustering
coefficient (i.e., segregation) in subjects with OB (N= 31,
12–39 years old) compared with HW controls, with more
pronounced results in the reward network [20]. Altogether,

these studies suggest that OB is associated with an imbal-
ance between local segregation and global integration, and
disrupted networks, which may lead to less efficient infor-
mation processing in the brain network. However, it
remains unclear whether these network differences also
exist in (young) children with OB, because graph theory
studies in relation to OB have only focused on adolescents
and adults so far. Moreover, no research is available on the
effect of a specialized multidisciplinary weight reduction
OB program on structural brain connectivity and network
organization. As previous neuroimaging studies in other
clinical populations (such as traumatic brain injury) have
shown that graph metrics and structural network strength
show promising validity as “biomarkers” to examine
training-induced alterations [21–25], examining the effect
of multidisciplinary treatment on structural brain con-
nectivity and network organization in children with OB can
provide greater insight into the structural neuroplasticity
underlying weight loss.

Therefore, this study set out to examine global and
regional brain network properties in children with OB,
using graph-theoretical analysis (i.e., graph metrics; node-
wise comparisons) and NBS (i.e., structural network
strength; edgewise comparisons) [26]. Our first aim was to
compare structural segregation, global integration, and
structural network strength between children with OB and
HW controls. The second aim of this study was to deter-
mine the effect of a specialized multidisciplinary weight
reduction OB program on structural brain connectivity and
network organization. Based on previous studies in adults
with OB [18–20], we expected that children with OB would
display a reduced clustering coefficient, characteristic path
length, and small-worldness compared with HW controls
and that these alterations would resolve following treatment.
At the regional level, significant differences in brain net-
work organization were expected to be most pronounced in
the reward network.

Methods

Participants

Fifty-one children (20 girls, 9.5 ± 1.0 years, range 7.8–11.6
years) participated in this study. The children with OB (N=
25, 12 girls, 9.6 ± 0.9 years) were recruited via a local
rehabilitation center, where they attended a multi-
disciplinary OB program. This group of children was
classified as obese according to the internationally accepted
age-specific and sex-specific cutoff points for children [27].
An age-matched (i.e., within 6 months) control group (N=
26, 8 girls, 9.5 ± 1.1 years) was recruited through local
primary schools. These participants were classified as HW
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according to the same cutoff points and were not involved
in any kind of treatment during the course of the study (see
Fig. S1 in Supplemental Material 1 for an overview of the
study sample). The protocol of the study was approved by
the Ethical Committee of the Ghent University Hospital
prior to data collection. The children and their parent(s) or
legal caretaker(s) were fully informed about the study, and
parents always discussed with their child if they were
willing to participate, before signing the informed consent.

Procedure

All participants were assessed on two occasions with a 5-
month time interval between the pre test and post test (OB:
147 ± 21 days; HW: 154 ± 12 days). For the children with
OB, measurements at the pretest were taken at the start of the
multidisciplinary OB program. A detailed description of the
program can be found in our previous work [28, 29]. Briefly,
children with OB followed a multidisciplinary OB program at
the rehabilitation center Zeepreventorium (De Haan, Bel-
gium). During the treatment, children were full-time residents
at the center and only went home (i.e., three times a month)
during weekends. The program focused on three central pil-
lars, including moderate diet restriction, cognitive behavioral
therapy, and regular physical activity. The duration of the
treatment program was 10 months in total; however, previous
studies from our lab observed a considerable amount of

weight loss after only 4 months of treatment with the Zee-
preventorium (i.e., 11.7 kg/17.9% on average; 28, 29). This
weight loss was further accompanied by significant
improvements in children’s gross and fine motor competence.
These findings, in combination with methodological (e.g.,
stability of the scanner) and practical issues (e.g., minimizing
the dropout rate, planning with the rehabilitation center),
motivated our decision to select a 5-month time interval
between pre-measurement (i.e., prior to the start of the treat-
ment program) and post-measurement.

MRI acquisition

In this study, T1-weighted and diffusion-weighted images
were acquired on a 3T Siemens Magnetom Trio MRI
scanner system (Siemens, Erlangen, Germany). All MRI
analyses were performed on the high-performance com-
puting infrastructure of Multi-modal Australian ScienceS
Imaging and Visualization Environment (MASSIVE) [30].
An overview of the processing pipeline is shown in Fig. 1.
Refer to Supplemental Material 2 for acquisition para-
meters, preprocessing, and tractography pipeline.

Network construction

Connectivity matrices were weighted by the number of
reconstructed streamlines (NOS), which represents the total

DWI image (B0) FA map

T1 image parcellation 
(Desikan-Destrieux)

registration

whole-brain tractography connectivity matrices network strength 
& graph metrics

[A]

[B]

[C] ]E[]D[

Fig. 1 Overview of the processing pipeline. a and b First, the T1
image and diffusion-weighted images (DWI) were preprocessed using
FreeSurfer (http://surfer.nmr.mgh.harvard.edu) and FSL [62]. c Sec-
ond, the T1-weighted images were registered to the FA map and then
automated whole-brain tractography was performed using MRtrix3
[63]. d Symmetric N × N connectivity matrices were generated for

each subject and each time point, whereby N represents 84 cortical and
subcortical (including the cerebellum) regions (i.e., nodes) of the
Desikan–Killiany atlas [64]. e The network strength (structural) and
graph metrics were calculated and compared between groups (cross-
sectional) and across time points (longitudinal)
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number of interregional connections (i.e., edges) between
each pair of nodes. These NOS were calculated using a
probabilistic tractography algorithm, which can improve
sensitivity (i.e., low number of false negatives), but often
results in spurious connections known as false positives and
yields almost fully connected matrices with a connection
density of ~0.9–0.95 [31, 32]. Since fully connected struc-
tural networks are more than likely nonbiological plausible
(i.e., connection density > 0.5) [31, 33], the following
thresholding procedure was applied to eliminate spurious
and discarded connections: (i) on the one hand, an edge was
set to zero for connections with NOS lower than k (here:
k= 115), whereby k was the lowest NOS for which the
highest connection density did not exceed 0.5 [34] and the
lowest connection density did not result in fragmented
networks; (ii) on the other hand, a group threshold of 60%
was applied across all subjects and all time points, whereby
a connection needed to be present in at least 60% of the
subjects across time points to be included [35]. This resulted
in a mean connection density of 0.4. Since results can differ
across connection densities, this thresholding procedure was
repeated using group thresholds ranging from 30% to 90%
(interval 15%) to check the robustness of the results (density
range: ~0.3–0.5).

Anthropometric measurements

Body height (0.1 cm, Harpenden, Holtain, Ltd., Crymych,
UK), body weight (0.1 kg), and fat percentage (0.1%,
Tanita, BC420SMA, Weda B.V., Naarden, Holland) were
assessed in minimal clothing on the day of the MRI scan-
ning. Children were classified as being HW or obese by
calculating the body mass index (BMI, kg/m2) [27]. In
addition, children’s waist circumference (0.1 cm) was
measured using a flexible tape measure. Socioeconomic
status was self-assessed by the parents based on family
income level. In a pediatric sample, there may be a great
variation in maturity, which also affects brain development.
To control for these maturity effects, Tanner staging for
puberty was self-assessed by the children and their parents,
based on breast development in girls (stage 1–5) and testi-
cular size in boys (stage 1–5) [36].

Statistical analyses

Network-based statistical analysis

The NBS toolbox version 1.2 [26] was used to (i) test for
group differences in structural network strength at the
pretest; and (ii) test for time by group interaction effects in
connectivity strength of the structural brain networks. The
NBS toolbox is a validated method to deal with the multiple
comparisons problem by using a nonparametric statistical

approach [26]. The following multistep procedure was
performed: first, the hypothesis of interest was tested with a
single univariate test statistic for every connection in the
network. Second, a test statistic threshold was determined,
whereby a test statistic value exceeding the threshold of t=
2.5, 3, and 3.5 was admitted to a set of suprathreshold
connections. Third, connected components (i.e., subnet-
works) were identified, whereby a component was defined
as a group of suprathreshold connections for which a path
can be found between any pair of nodes. Finally, a p-value
was computed for each connected component, using per-
mutation testing (i.e., 5000 permutations) with a familywise
error rate (FWE) correction for multiple comparisons. For
each permutation testing, data of all subjects were randomly
assigned to the group of OB or HW. In addition to the NBS
analyses, repeated measures ANOVA (time by group
interaction effect) was performed to compare the global
network strength (i.e., total NOS; structural) between
groups and across time points. For all the analyses, age was
included as a nuisance covariate.

Graph-theoretical network analysis

Complementary to NBS analyses (i.e., edgewise compar-
ison), network properties were compared using the cross-
sectional batch (group differences) and longitudinal pipeline
(time by group interaction effects) of the graph analysis
toolbox (GAT) [34]. First, 20 null networks were generated
for network normalization by comparing each edge weight
with the mean edge weight across the network. Then, the
following graph metrics were extracted using the brain
connectivity toolbox [13]: normalized characteristic path
length, normalized clustering coefficient, and small-
worldness (see Table 1 for a detailed description of these
graph metrics). Subsequently, a nonparametric permutation
test with 5000 repetitions was used to test for statistically
significant between-group differences (in changes) of graph
metrics (slope). For each permutation, regional data of each
participant (at both time points) were randomly allocated to
one of two groups, with the same number of subjects as the
initial groups. The differences in slope between randomized
groups were then calculated and compared with the actual
differences in the slope between the original groups to
obtain a p-value. The same permutation procedure was
applied to test for regional differences in the clustering
coefficient. For these regional analyses, the false discovery
rate or FDR-corrected p-values were obtained to control for
multiple comparisons. The significance threshold was set at
p < 0.05. Finally, network hubs, which are the most
important regions in the brain, were defined based on
betweenness centrality (mean+ two standard deviations).
Since the longitudinal plugin of the GAT toolbox does not
include network hub analysis, the network hubs were only
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identified at the pretest. To check the robustness of sig-
nificant results across all group thresholds (30–90%), the
area under the curve (AUC) was calculated by summing the
value of the graph measures at each threshold. In addition,
one-way and/or repeated measures ANCOVAs, with age as
a covariate, were performed to test for between-group dif-
ferences (in changes) of graph metrics across thresholds.

Anthropometric measurements

Statistical analyses were performed using SPSS Statistics
(Version 22.0). Before analysis, data were checked for
normality. Changes in anthropometric measurements were
evaluated using a 2 (group) × 2 (time) repeated measures
ANOVA. In addition, partial correlations (controlling for
age) were performed between (1) structural network
strength or graph metrics and anthropometric measurements
at the pretest; (2) structural network strength and/or graph
metrics at the pretest and changes in weight-related mea-
sures (post�pre

post � 100%); (3) changes in brain network
strength (structural) and/or graph metrics (post–pre) and
changes in weight-related measures. FDR corrections were
made to control for multiple comparisons. The significance
threshold was set at p < 0.05.

Results

Participants

From the initial sample of 25 children with OB, MRI data of
seven participants (3 girls, 9.9 ± 0.8) had to be excluded due
to claustrophobia, scanner/motion artifacts, or low quality
of the image registration. This resulted in a final OB sample
of 18 children (9 girls, 9.4 ± 1.0 years) with good-quality
pre-MRI and post-MRI data. Of the 26 children with a HW,
two children (1 girl, 8.5 ± 0.3 years) dropped out during the
course of the study and MRI data of two children (2 boys,
9.1 ± 0.4) had to be excluded due to scanner artifacts or low
quality of the image registration. This left us with a final
control sample of 22 children with a HW (7 girls, 9.6 ± 1.2
years). As shown in Table 2, children with OB had sig-
nificantly lower socioeconomic status compared with HW
controls. No significant group differences were observed for
height, age, and pubertal status at the pretest (p > 0.05).

Network-based statistical analysis

At the pretest, the NBS (t= 3.5) revealed a significantly
higher connected subnetwork in children with OB

Table 1 Description of graph
metrics

Measure Description

Connection density The proportion of possible connections in the brain network that are actual
connections (number of connections/total number of possible connections)

Global network strength Level of connectivity (defined here as the number of reconstructed
streamlines) of the entire brain network

Network strength Level of connectivity (defined here as the number of reconstructed
streamlines) between node i and node j

Measures of global integration

Clustering coefficient The number of edges that exist between the nearest neighbors of a node
proportionally to the maximum number of possible connections

Normalized clustering
coefficient (γ)

The clustering coefficient was normalized by comparing this parameter
with the mean clustering coefficient of 5000 random networks with the
same density

Measures of local segregation

Characteristic path length Mean of shortest paths (L) between all nodes in the network

Normalized characteristic path
length (λ)

The characteristic path length was normalized by comparing this
parameter with the mean path length of 5000 random networks with the
same density

Betweenness centrality The fraction of all shortest paths in the network that pass through a
given node

Hubs (betweenness centrality) Central and highly connected regions in the brain characterized by a
betweenness centrality that is two standard deviations higher than the
mean network betweenness centrality

Small-world network

Small-worldness Small-worldness (σ= γ/λ > 1) was characterized by a high local
interconnectivity of the nodes (γ » 1) and an equivalent shortest path
length (λ ≈ 1) compared with the random networks

Structural connectivity and weight loss in children with obesity: a study of the. . . 2313



compared with the HW control group (p= 0.046; see Fig.
S2 in Supplemental Material 3 for results with a t-statistic
threshold of t= 3 and t= 2.5). Specifically, this subnetwork
consisted of three edges connecting four nodes, including
the right accumbens area, right putamen, and bilateral
caudate (see Fig. 2b, c). This higher connected subnetwork
remained significant for all group thresholds considered
(p’s: 0.0354–0.0492, FWE-corrected), except for a group
threshold of 30% (p= 0.0568). The results from the long-
itudinal NBS analysis revealed no significant time by group
interaction effects in structural network strength (p > 0.05),
indicating that the between-group difference in structural
network strength did not change after OB treatment. In
addition, the repeated measures ANOVA revealed that the
total NOS did not differ between both groups across time
points (p > 0.05; see Fig. 2a). The analyses were repeated
with sex as a fixed factor. No significant group by sex
interaction effects was observed. We can tentatively

conclude that sex did not significantly influence the
observed group differences in structural connectivity.

Graph-theoretical network analysis

Global network properties

Small-worldness (σ= normalized clustering coefficient (γ)/
normalized characteristic path length (λ) > 1) was observed
in all children, indicating that all participants had high local
interconnectivity of the nodes (γ » 1) and an equivalent
shortest path length (λ ≈ 1) compared with the random net-
works at both time points (pre test and post test). At the
pretest, small-worldness (p= 0.0028) was higher in the
children with OB compared with HW controls, because of
the higher normalized clustering coefficient (p= 0.0022;
see Fig. 3a). These between-group differences remained
significant across different group thresholds (pAUC= 0.002;

Table 2 Descriptive statistics (mean ± standard deviation) for the group of children with obesity and children with a healthy weight at the pre and
post test (5-months’ time interval between pre and post)

Time 1 (pre) Chi-
square

T-testa Time 2 (post) Repeated measures ANOVA

OB (N= 18) HW (N= 22) χ2 t OB (N= 18) HW (N= 22) FTIME FGROUP FTIME*GROUP

Demographics

Sex 9♂, 9♀ 15♂, 7♀ 1.364 9♂, 9♀ 15♂, 7♀
Age (years) 9.5 ± 1.0 9.6 ± 1.2 –0.380 9.9 ± 1.0 10.0 ± 1.2 2 944.006** 0.164 1.336

Pubertal statusb 2.129

Stage 1 11 (61.2%) 18 (81.8%)

Stage 2 4 (22.2%) 3 (13.6%)

Stage 3 3 (16.7%) 1 (4.5%)

Stage 4 0 0

Stage 5 0 0

Income level (SES) 11.810*

Missing 1 (5.6%) 1 (4.5%)

<20.000/year 7 (38.9%) 1 (4.5%)

20,000–30,000/year 6 (33.3%) 4 (18.2%)

>30,000/year 4 (22.2%) 16 (72.7%)

Anthropometric measurements

Body height (cm) 142.0 ± 6.8 139.9 ± 9.2 0.823 144.5 ± 7.3 142.8 ± 9.4 385.201** 0.533 2.281

Body weight (kg) 64.1 ± 11.3 33.3 ± 5.8 10.470** 53.7 ± 9.4 34.8 ± 6.1 129.699** 91.529** 236.554**

Body fat (%) 45.4 ± 6.0 17.6 ± 4.5 16.818** 33.6 ± 6.5 17.6 ± 4.2 83.121** 201.014** 85.077**

Total fat mass (kg) 29.3 ± 7.6 5.8 ± 1.7 12.833** 18.3 ± 6.3 6.2 ± 2.0 112.015** 148.369** 127.880**

Total fat-free mass (kg) 34.7 ± 5.8 27.5 ± 5.2 4.197** 35.4 ± 5.6 28.6 ± 5.0 13.973** 17.216** 1.100

Waist circumference (cm) 94.5 ± 8.4 61.3 ± 4.3 15.228** 82.1 ± 6.4 60.1 ± 8.8 264.211** 178.146** 277.096**

Body mass index (kg/m2) 31.64 ± 4.35 16.85 ± 1.15 14.030** 25.66 ± 3.68 16.93 ± 1.19 30.076** 208.810** 20.444**

OB obesity, HW healthy weight, SES socioeconomic status

*p < 0.05; **p ≤ 0.001
aIndependent sample t-test
bTanner staging for puberty was based on breast development in girls (stage 1–5) and testicular size in boys (stage 1–5). For analysis purposes,
stages 2–5 were combined into a larger group (0= stage 1, 1= stages 2–5)
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F=10.437, p=0.003*, η2=0.220 η2

Fig. 3 The a panel represents time (pre test vs. post test) by group
(obesity (OB) vs. healthy weight (HW)) interaction effects of the
global and regional graph analyses. The b panel shows group differ-
ences in graph metrics between children with OB and HW controls at
the pretest across different group thresholds (30–90%, interval of 15%)

by calculating the area under the curve (AUC). Results of the one-way
ANCOVAs, with age as a covariate, are presented (mean ± standard
deviation, F, p, and eta squared (η2)). Significant group differences at
the pretest are represented by an asterisk (p < 0.05, FDR corrected)
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see Fig. 3b). No differences were observed for normalized
path length (p= 0.2318). The results of the longitudinal
plugin of the GAT toolbox revealed no significant time by
group interaction effects (p > 0.05). In other words, the
differences in graph metrics between both groups did not
change after OB treatment. The analyses were repeated with
sex as a fixed factor. No significant group by sex interaction
effects was observed. We can tentatively conclude that sex
did not significantly influence the observed group differ-
ences in structural connectivity.

Regional network properties

At the pretest, a significantly reduced clustering coefficient
of the left hippocampus was observed in children with OB
compared with HW controls (p= 0.0168, FDR corrected;
see Fig. 3a). The clustering coefficient in this node
remained significant for the other group thresholds (pAUC=
0.003; see Fig. 3b). The longitudinal analysis did not reveal
significant time by group interaction effects for the clus-
tering coefficient at the nodal level (p > 0.05, FDR cor-
rected). The analyses were repeated with sex as a fixed
factor. No significant group by sex interaction effects was
observed. We can tentatively conclude that sex did not
significantly influence the observed group differences in
structural connectivity.

Hubs

The hub network analyses revealed that both groups
exhibited hubs at the pretest. Specifically, increased
betweenness centrality (i.e., mean+ two standard

deviations) was observed in the bilateral superior frontal
gyrus and the right lateral orbitofrontal cortex. In addition,
two regions, including the left lateral orbitofrontal cortex
and the left precentral gyrus, could be identified as hubs in
the children with OB but not in the HW controls. These
results indicate a different hub distribution at the pretest in
children with OB compared with HW controls.

Changes in weight-related measures

The repeated measures ANOVA showed significant time by
group interaction effects for body weight, percentage of
body fat, waist circumference, and BMI (p’s ≤ 0.001). Post
hoc analysis revealed a significant decrease in each of the
weight-related measures in children with OB (p ≤ 0.001)
after the program. In the HW control group, no significant
changes in these measures (p > 0.05) were observed
between the pre test and post test, except for a small
increase in body weight (p= 0.005). Children with OB lost,
on average, 18.8% (±4.4%) of their baseline BMI and 5 out
of 18 children could be identified as overweight instead of
obese after the intervention.

Partial correlations

No significant correlations were observed between (changes
in) graph metrics or total strength and (changes in)
anthropometric measurements (p > 0.05; FDR corrected).
Using an exploratory uncorrected threshold of p < 0.05 [37],
significant positive correlations were observed between
graph metrics and weight-related measures at the pretest
(see Fig. 4). Specifically, in the group of children with OB,
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are uncorrected (i.e., p < 0.05). It is important to note that the corre-
lation coefficients represented are based on partial correlations, cor-
rected for age

2316 M. J. C. M. Augustijn et al.



a higher percentage of body fat at the start of the program
was associated with higher network segregation (i.e., nor-
malized clustering coefficient; r= 0.515, p= 0.034). In
addition, higher total fat mass was associated with a higher
normalized clustering coefficient (r= 0.523, p= 0.031) and
small-worldness (r= 0.509, p= 0.037). In children with a
HW, a higher body weight and BMI at the pretest were
associated with a higher normalized clustering coefficient
(r’s: 0.480–0.498; p’s: 0.028–0.022) and higher small-
worldness (r’s: 0.522–0.521; p’s: 0.015–0.015). Since an
outlier was detected for a normalized clustering coefficient
and higher small-worldness in the HW control group (see
Fig. 4), the analyses were repeated without this outlier. The
previously observed positive correlations between a nor-
malized clustering coefficient/small-worldness and body
weight/BMI remained significant (r’s: 0.461–0.614; p’s:
0.004–0.041), except for the correlation between a nor-
malized clustering coefficient and body weight (r= 0.403,
p= 0.078).

Discussion

To the best of our knowledge, this is the first study
exploring differences between the structural connectomes of
children with OB and those of HW controls using a GAT
and NBS approach. Our results demonstrated an altered
whole-brain network organization in children with OB
compared with HW controls. Moreover, regional analyses
revealed that regions and pathways of the motor cortex and
reward network were affected in children with OB. No
changes were observed in their structural connectomes after
following a standard 5-month multidisciplinary OB treat-
ment program.

Global network analyses revealed that both groups (OB
and HW) exhibited a small-world organization, reflecting an
optimal balance between local segregation and global
integration [14]. The structural connectomes of children
with OB, however, showed a significantly higher normal-
ized clustering coefficient compared with the HW controls.
Moreover, partial correlations showed that a higher BMI
was significantly associated with a more segregated brain
network in the HW controls, albeit using an uncorrected
p-value (p < 0.05). Overall, these findings suggest that the
structural connectomes of children with a higher BMI are
more segregated into local clusters of connections. Previous
neuroimaging studies reported a reduced normalized clus-
tering coefficient in adolescents and adults with OB com-
pared with HW controls [18–20], whereby the majority of
participants reached the pubertal stage. The different find-
ings between child and adult studies may be due to the
effects of brain maturation [38, 39]. Studies in the field of
growth connectomics reported that brain networks mature

from a “local” to a more “distributed” network organization
during late childhood (7–11 years) [40]. This process is
characterized by a decrease in local segregation and an
increase in global integration [38]. In addition, previous
network studies have shown that children with develop-
mental disorders, such as attention-deficit hyperactivity
disorder and autism spectrum disorder, have higher local
segregation compared with typically developing children
[41–43]. Thus, our results may suggest delayed network
development in children with OB compared with HW
controls, even though no significant group differences in
pubertal status were observed.

The hub network analyses revealed an increased central
role of key frontal regions in children with OB. Although
hubs were identified in both groups, a difference in the
distribution of hub regions with high betweenness centrality
was observed between children with OB and HW controls.
Specifically, the left precentral gyrus and the left orbito-
frontal cortex acted as hubs in the children with OB but not
in the HW controls. The precentral gyrus, corresponding to
the primary motor cortex (BA4), receives sensory-motor
information from (sub-)cortical brain regions and sends this
information to lower body parts. Thus, this region plays an
important role in controlling the execution of movements
[44]. Our recent studies have shown that childhood OB is
associated with reduced gross and fine motor skills [45–47],
which hampers their successful participation in physical
activities [4]. Moreover, neuroimaging studies have sug-
gested that these motor deficits in children with OB are
accompanied with gray and white matter alterations in
motor-related regions in the brain [8, 10]. Since hub regions
are thought to play a crucial role in the coordination of
information flow [48], the increased importance of the left
precentral gyrus in children with OB may be related to their
reduced motor skills. However, further research is needed to
understand the precise biophysical processes underlying this
potential association.

The other hub region found in the OB group but not in
the HW group was the left lateral orbitofrontal cortex. This
region receives connections from parts of the limbic system
and sensory modalities, and is involved in behavior-related
decision-making (e.g., choice between healthy and unheal-
thy food, or active and inactive behavior) [49]. Moreover,
this region has shown to be a key structure in the reward
network, which is a subnetwork in the brain that is
responsible for the hedonic (“liking”) or incentive (“want-
ing”) salience of behavior [20, 50]. Interestingly, the
regional network analyses using both approaches (GAT and
NBS) strengthened this result, with altered local segregation
and structural network strength, mainly in regions and
pathways of the reward system. Specifically, children with
OB demonstrated lower nodal clustering in the hippo-
campus and higher structural network strength of edges
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connecting regions of the striatum. Moreover, previous
studies using structural or task-related functional MRI have
suggested that excessive eating behavior and/or physical
inactivity in children and adolescents with OB is associated
with alterations in the reward network [6, 9, 51–53]. Human
behavior often involves decision-making, such as choosing
between healthy and unhealthy foods or between physical
activities and sedentary behaviors [8, 20, 37]. These choices
can be driven by reward-seeking processes (“drive”) or
executive functions (“control”) [37]. Reward-seeking pro-
cesses are responsible for automatic, impulsive decisions
driven in favor of perceived immediate rewards (e.g., feel-
ings, taste, and aroma) and are regulated by limbic and
paralimbic brain regions. Since these reward-seeking pro-
cesses often drive choices that may have negative health
consequences, executive functions are needed to override
automatic, impulsive responses in order to make health-
related decisions [54]. Executive functions facilitate goal-
directed behavior (e.g., being more physically active) by
suppressing impulsive responses (e.g., watching a movie),
changing habits (e.g., sedentary behavior), or planning
(future) behaviors in new or changing situations (e.g.,
learning a new motor skill) [5]. This control system is
regulated by the prefrontal cortex, which is among the last
brain regions to mature (i.e., mid-1920s [55–57]). Given
that limbic brain regions mature in an earlier stage of
development, children and adolescents are particularly
susceptible to make unhealthy, reward-driven decisions,
especially in the current “obesogenic” environment that
fosters unhealthy eating behavior and sedentary behavior. In
this respect, it might be that children with OB, who have
reduced structural connectivity in the reward network, are
more likely to choose for rewarding, but unhealthy, beha-
viors (e.g., physical inactivity, sedentary behavior, excess,
and high-caloric food intake) compared with children with
an adequate level of cognitive control, which in turn
increases their risk of developing OB. Taken together, our
findings suggest that the brain structure of the reward net-
work is affected in children with OB, which further
emphasizes the role of the reward system in this multi-
factorial health problem.

Consistent with previous research, the multidisciplinary
OB program resulted in a considerable amount of weight
loss (Δ17.9–21.7%) [28, 29]. Although this program has
shown to increase levels of physical activity [58], enhance
healthy eating habits [59], and induce local changes in brain
structure [11], no significant training-induced changes in the
structural connectomes of children with OB were observed
after a period of 5 months. These findings indicate that a
multidisciplinary OB program consisting of diet restriction,
cognitive behavioral therapy, and physical activity has no
immediate impact on the structural network organization of
children with OB. The absence of significant alterations

after treatment in this study may be due to several factors.
First, it could be that the observed differences at baseline
relate to genetic factors that are not amenable to behavioral
intervention. High heritability estimates (ranging from 21%
to 82%) have been observed for network organization,
particularly in the cerebellum (79–82%) and subcortical
structures, including the putamen (71%) and accumbens
area (65%), which both showed increased structural net-
work strength in children with OB compared with HW
peers [60]. Second, the treatment duration may have been
insufficient to induce network-level changes in the brain.
Alternatively, neuroplasticity could conceivably be delayed
for weeks or months post treatment. Thus, follow-up studies
are needed to serially test neural responses and long-term
network effects following treatment [37, 61]. Third, the
absence of significant alterations could simply reflect a lack
of power, due to the relatively small sample size. Therefore,
future longitudinal studies with larger data sets could further
elucidate the impact of treatment on children’s brain
structure.

This study has some limitations that need to be addres-
sed. First, data of developmental and/or medical factors
(such as number of years being obese, physical activity,
socioeconomic status, and comorbidities) were lacking, and
therefore, it was not possible to control for these potential
confounders. Second, the structural connectomes of chil-
dren with OB who followed a multidisciplinary OB pro-
gram were compared with those of HW controls who were
not involved in any kind of treatment. It would be inter-
esting to compare this intervention group with a control
group of children with OB who are not involved in a spe-
cific treatment program. This would make it a randomized
controlled trial, instead of a pre-experimental study, on the
assumption that children with OB are randomly assigned to
either the intervention or the control group. Third, due to the
absence of a field map or a reverse-phase encoding image, it
was not possible to correct for EPI distortions during the
preprocessing of the DWI images. To be comprehensive,
scans were visually inspected for artifacts, during which
DWI scans were removed from the analysis (four OB, one
HW) due to poor image quality (movement artifacts,
ghosting, and signal drops). Finally, the results of the partial
correlations were interpreted using an exploratory uncor-
rected threshold of p < 0.05. Although reporting these
results is important to help motivate future studies, inter-
pretation of these results should be done with caution [37].

Despite these limitations, this is the first study that pro-
vides evidence for an affected global network organization
in children with OB compared with HW controls. More-
over, regional analyses revealed significant alterations in
local segregation and structural network strength of brain
regions and connections involved in motor and reward
control, suggesting that these brain regions play an
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important role in this multifactorial health problem and
related behaviors. Although we did not examine children’s
motor and reward control directly in this study, our findings
suggest that clinicians should not only focus on weight loss,
but also improve children’s motor competence and execu-
tive functioning, which is in line with previous studies
[9, 11, 52]. Finally, the absence of significant alterations in
the structural connectome of children with OB after a 5-
month multidisciplinary OB program may call for larger
data sets to examine the impact of short-term and long-term
weight loss on children’s brain network organization.
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