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Abstract—Time-variant beamforming (BF) and acoustic echo
cancellation (AEC) are two techniques that are frequently em-
ployed for improving the quality of hands-free speech commu-
nication. However, the combined application of both is quite
challenging as it either introduces high computational complexity
or insufficient tracking. We propose a new method to improve the
performance of the low-complexity beamformer first (BF-first)
structure, which we call change prediction (ChaP). ChaP gathers
information on several BF changes to predict the effective impulse
response seen by the AEC after the next BF change. To account
for uncertain data and convergence states in the predictions,
reliability measures are introduced to improve ChaP in realistic
scenarios.

Index Terms—combined beamforming and acoustic echo can-
cellation, low complexity, beamformer first, pseudo inverse

I. INTRODUCTION

For the realization of a hands-free speech communication
system, BF and AEC are usually needed to guarantee a
sufficient quality of the conversation. However, the combined
operation of AEC and BF at the same time causes problems.
One basic combination scheme is echo canceller first (AEC-
first), where AEC is performed before BF [1]. In AEC-first
one adaptive filter including its own adaptation control is
needed for each channel. Another basic combination scheme
is BF-first, where BF is performed before the AEC [2]. Only
one echo canceller is needed and hence the complexity can
be reduced by a factor Nmic compared to AEC-first, where
Nmic is the number of microphones. However, in BF-first the
adaptive filter of the AEC has to track the time-variant BF
weights in addition to the room impulse response (RIR). This
usually results in an unsatisfactory echo reduction, because
after every change of the BF weights, the AEC suffers from a
large misalignment and needs a long time to reconverge again.

Other schemes exist, besides the simple concatenation used
in AEC-first and BF-first. They incorporate the AEC after the
fixed BF or in the interference canceller of a Generalized-
Sidelobe-Canceller [1], or they jointly optimize the BF and
AEC filter coefficients [3]. Recent approaches try to reduce the
complexity of the AEC-first structure by exploiting similarities
across channels for the adaptation control and design of the
multi-microphone AEC [4], [5]. There also exist approaches
that focus on enhancing the AEC adaptation by BF rather than
reducing the complexity [6].

In this paper we focus on the low-complexity BF-first
structure and propose a method to alleviate its shortcomings
in tracking fast BF changes. Besides its lower complexity
compared to AEC-first, BF-first can be beneficial for the
adaptation of the AEC, because the echo-to-noise ratio can
enhanced by the BF [1], [5]. One straightforward approach to
ensure a quick reconvergence after the BF changes is to use
the knowledge about the time instants when the BF weights
are changed. At these times the AEC can be reinitialized by
setting the adaptation speed to maximum. This approach will
be termed rapid recovery (RR) in the following. However, one
drawback of this approach is that the misalignment of the AEC
is very high at each change of the BF weights. This results in
sudden drops of the echo reduction performance leading to an
annoying listening experience. Therefore, we propose a new
algorithm termed ChaP that maintains a high performance of
echo reduction. The outline of the paper is as follows. We first
introduce the signal model in Section II and describe the core
of the ChaP algorithm in Section III. In Section IV-B this
core algorithm is improved by using reliability information
on the result from the ChaP estimation in the AEC. Further
improvement is achieved by using reliability information from
the AEC in the ChaP estimation in Section IV-C. Finally, in
Section IV-D, time-variant RIRs are taken into account by
introducing a Markov model into ChaP. In Section V the
ChaP algorithm and its improved versions are evaluated and
the ChaP method is applied to a practical example.

II. SIGNAL MODEL

Fig. 1 shows the block diagram of the BF-first structure.
The signal yn(k) at the n-th microphone is defined by

yn(k) = dn(k) + sn(k) + vn(k), (1)

where dn(k) is the echo signal, sn(k) is the near-end speech
and vn(k) is the near-end noise. k and n are the discrete
time and channel indices, respectively. In the BF-first structure
the AEC identifies the composed system consisting of the
acoustic transmission from the loudspeaker to the micro-
phones, modeled by the RIRs hn(k) of length Nh, and the
BF weights wn(k) of length Nw. For time-variant filters
hn(k) and wn(k), it is not mathematically accurate to describe
the combination with an impulse response. Nevertheless, the
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ŝ(k)

. . .

h1(k)

h2(k)

hNmic
(k)

. . .

v1(k) v2(k) vNmic
(k)
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Fig. 1. Block diagram of the BF-first structure, where a BF with weights wn

is followed by an AEC with impulse response ĥeff .

effective impulse response

heff(k0) =

Nmic∑
n=1

wn(k0) ∗ hn(k0) (2)

can serve as a simple yet sufficiently precise model for the
true system. The convolution operator ∗ used in (2) performs
a convolution over the entries of two vectors for a fixed time
k0. The result is thus again a vector. In this case heff(k) has
a length of Nheff

= Nh +Nw − 1. An increased filter length
is therefore required, to achieve a similar echo cancellation
performance. This in turn reduces the speed of convergence
of the AEC accordingly. Furthermore, the AEC has to track
the time-variance not only of hn(k) but also of wn(k), where
the latter can change very abruptly when the steering direction
of the BF is altered. The BF, the AEC and the proposed ChaP
algorithm work in the short-term Fourier domain. Therefore,
the discrete Fourier transform (DFT) domain equivalent of (2)
is now considered. Assuming a DFT length of M>Nheff

and
impulse responses h1(k), . . . ,hNmic

(k) that do not change at
least for the duration of one frame, the DFT of (2) is

Heff(µ, λ) =

Nmic∑
n=1

Wn(µ, λ) ·Hn(µ, λ), (3)

where µ and λ are the frequency bin index and the frame
index, respectively. With W = [W1,W2, . . . ,WNmic

]
T and

H = [H1, H2, . . . ,HNmic
]
T (3) can be compactly written as

Heff(µ, λ) = WT(µ, λ) ·H(µ, λ). (4)

For the identification of Heff we use the diagonalized Kalman
filter adaptation in the frequency domain with an overlap-save
framework [7], [8]. The fundamental concept of the Kalman
based AEC is to model Heff(µ, λ) as a first order Markov
model with forgetting factor A. For brevity only the time
update equations are recalled here (full derivation in [7], [8])

Ĥeff(µ, λ+ 1) = A · Ĥ+
eff(µ, λ) (5)

Pµµ(λ+ 1) = A2 · P+
µµ(λ) +M · Φ∆∆,µ, (6)

where Ĥeff is an estimate of Heff . Pµµ(λ) and Φ∆∆,µ

are the estimation error covariance and the process noise
covariance, respectively. The superscript + indicates an a-
posteriori estimate resulting from the Kalman equations. In
our experiments we use either a delay-and-sum (DS) BF
or a minimum variance distortionless response (MVDR) BF
with diffuse noise optimization to adjust the BF weights in
the frequency domain [1], [9]. However, ChaP is in general
independent of the specific BF principle.

III. CHANGE PREDICTION (CHAP)
As already pointed out, a simple reset of the AEC at each BF

change does not provide a sufficient echo reduction. Therefore,
starting with (4) and keeping in mind the block diagram in
Fig. 1, we investigate the effects of BF changes on Heff and
derive a solution to predict Heff for a better initialization of the
AEC after a change of the BF. Let λ1 denote the index of the
frame right before the BF weights W(µ, λ) are changed from
set 1 to set 2. As (4) holds for both λ = λ1 and λ = λ1 + 1,
the system of two equations

Heff(µ, λ1) = WT(µ, λ1) ·H(µ, λ1)

Heff(µ, λ1 + 1) = WT(µ, λ1 + 1) ·H(µ, λ1 + 1)

≈WT(µ, λ1 + 1) ·H(µ, λ1)

(7)

is obtained. The approximation results from the assumption
that the change of the RIRs in one frame can be neglected
compared to the change of the BF weights.

Now we would like to predict Heff(µ, λ1 + 1), but the
entries H(µ, λ1) are not known. Therefore, a total of Nmic +1
unknowns are present in these two equations and the prob-
lem is strongly ill-posed. Therefore, additional simplifying
assumptions must be made in order to obtain an estimate of
the new effective impulse response.

In the following, it is studied how a solution for the problem
at hand can be obtained when the assumption is made that the
RIRs h1(k), . . . ,hNmic(k) do not change for the duration of
N∆ changes of the BF filters. In Section IV-D we discuss
how this restriction can be alleviated. For now, H(µ, λ) =
H(µ). From each change of the BF filters, which occurs after
the frame with index λi (i = 1, . . . , N∆), one observation is
obtained according to (4). Combining all yields the system of
linear equations

Heff(µ, λ1)
Heff(µ, λ2)

...
Heff(µ, λN∆

)

 =


WT(µ, λ1)

WT(µ, λ2)
...

WT(µ, λN∆)

 ·H(µ). (8)

This is written in a compact form as

Heff(µ,λN∆) = W(µ,λN∆) ·H(µ), (9)

where Heff(µ,λN∆
) is a (N∆ × 1)-vector, W(µ,λN∆

) is a
matrix of size (N∆ ×Nmic) and the N∆ entries of the vector
λN∆ identify the frames right after which a change of the BF
occurs. While the exact entries of the vector Heff(µ,λN∆

) are
not known, estimates thereof are provided by the AEC. These
estimates can be considered sufficiently accurate as long as the
time between two consecutive changes of the BF weights is not
too short for the AEC to converge. How inaccurate estimates of
Heff can be handled will be shown in Section IV-C. Replacing
Heff(µ,λN∆

) in (9) by its estimate yields

Ĥeff(µ,λN∆) = W(µ,λN∆) · Ĥ(µ). (10)

In the special case of N∆ = Nmic, (10) can be solved by

Ĥ(µ) = W−1(µ,λN∆
) · Ĥeff(µ,λN∆

), (11)

if the matrix W(µ,λN∆) has full rank. In the general case,
where N∆ is arbitrary and W(µ,λN∆

) might not have full



rank, a least-squares (LS) estimate

Ĥ(µ) = W†(µ,λN∆) · Ĥeff(µ,λN∆) (12)

can be obtained from (10) when the Moore-Penrose pseudoin-
verse (MPP) (†) is used instead of the inverse.This expression
can now be inserted back into (4).The result

Ĥ−eff(µ, λN∆
+ 1) =

= WT(µ, λN∆
+ 1) · Ĥ(µ)

= WT(µ, λN∆
+ 1) ·W†(µ,λN∆

) · Ĥeff(µ,λN∆
) (13)

is the predicted µ-th DFT bin of the effective impulse response
after the N∆-th change of the BF filters. If this is done for
each frequency bin, the desired full estimate of the effective
impulse response is obtained which serves the AEC as an
initial estimate after the change of the BF. As indicated by
the superscript of Ĥ−eff(µ, λN∆

+1), this is merely the a-priori
estimate for the following frame prior to the regular adaptation
iteration.

This newly proposed algorithm is called change prediction
(ChaP) in the following. ChaP is independent of RR introduced
in Section I, but it can certainly be used in conjunction with
it. This is done by reinitializing the weight vector with the
ChaP estimate and the error covariance matrix P=diag {Pµµ}
of the Kalman algorithm with the identity matrix. The latter
initializes the AEC with maximum adaptation speed. This
configuration will be referred to as change prediction with
rapid recovery (ChaP/RR).

IV. IMPROVEMENTS OF CHAP
To improve the ChaP algorithm and make it applicable

to practical situations, several extensions are proposed in the
following. We first improve the robustness of the calculation
of the MPP used in (12) with the use of the effective rank in
Section IV-A. After that we incorporate reliability information
from the ChaP estimation to guide the adaptation of the
AEC in Section IV-B. To handle erroneous estimates of a
non-converged AEC, we use reliability information from the
AEC to improve the robustness of the ChaP algorithm in
Section IV-C. Finally, we propose a way to handle a moderate
time-variance of the RIR in Section IV-D.

A. Regularization

If the BF weights of different observations are very similar,
the matrix W(µ,λN∆) usually has singular values close to
zero. Then, the calculation of the MPP will amplify the noise
at these frequencies. To circumvent this, the effective rank
measure is applied to calculate the number of singular values
that are used for the inversion [10], [11]. The effective rank
of a matrix A is defined as

Reff(A) = exp

(
−

q∑
i=1

pi · ln (pi)

)
(14)

where pi = σi∑q
i=1 σi

, i = 1, . . . , q are the normalized singular
values of the matrix A with singular values σ1 ≥ σ2 ≥ · · · ≥
σq > 0. The MPP is then calculated on the basis of a truncated
singular value decomposition (SVD) where the largest
imax = Round [Reff(W(µ,λN∆))] singular values are used.

B. Directed Recovery
If the new vector of BF weights W(µ, λN∆

+ 1) has been
seen before, ChaP will generally provide a good estimate for
the effective impulse response after the change. However, if
the BF weights are very different from what has been observed
before, the estimation of ChaP might not be accurate. We take
this phenomenon into account by deriving an empiric relia-
bility measure of the ChaP estimate and using this reliability
measure to control the adaptation behavior of the AEC. To
measure how much new information is introduced by the new
BF weight vector, we calculate the difference of the effective
rank of the BF weight matrix with and without the new weight
vector as

∆Reff(µ,λN∆
) =

= Reff

([
W(µ,λN∆

)

WT(µ, λN∆ + 1)

])
−Reff (W(µ,λN∆

)) (15)

= Reff (W(µ,λN∆+1))−Reff (W(µ,λN∆)) . (16)

If ∆Reff is zero, no new information was added by the
new weight vector. If the new weight vector provides new
information, independent of the previous observations, ∆Reff

will be one. Because ChaP estimates can be assumed more
reliable when the new weight vector has been seen before, we
map ∆Reff to the effective rank difference (ERD) reliability
measure with ERD = max {1−∆Reff , 0}. The ERD measure
is now used to adjust the initialization of the estimation error
covariance matrix P of the Kalman algorithm according to

P−µµ(λN∆
+ 1) = min

i=1,...,N∆

(Pµµ(λi)) · ERD(µ,λN∆
)

+1 · (1− ERD(µ,λN∆)) , (17)

where the minimum is calculated over all observed error
covariances. If ChaP is very sure about its estimate, the
effective rank difference (ERD) measure is 1 and the Kalman
algorithm uses a small Pµµ to adapt the AEC to a small system
distance. If the ChaP estimate is potentionally erroneous, the
effective rank difference (ERD) measure is 0 and the error
covariance is set to 1 ensuring a fast convergence of the
Kalman algorithm. This extension of the ChaP algorithm will
be called directed recovery (DR) and the resulting combination
with the core algorithm is termed change prediction with
directed recovery (ChaP/DR).

C. Directed ChaP
Up to now the ChaP algorithm assumes that the estimates

of Heff from the AEC are correct. However, if the AEC is not
yet converged, due to frequent changes of the BF weights or
a high time-variance of the RIR, the estimates of Heff might
be more erroneous. To account for this varying reliability of
the observations, we modify (13) to a weighted least-squares
(WLS) solution with weighting matrix Ψ according to

Ĥ−eff = WT (ΨW)
†
ΨĤeff . (18)

The same weighting is also applied to W in (15). The
weighting matrix Ψ is chosen as a diagonal matrix according
to Ψ = diag {ψ1, . . . , ψN∆} with entries

ψi(µ) = 1−
√
Pµµ(λi), i = 1, . . . , N∆. (19)



The ChaP estimate Ĥ−eff in (18) now results from a WLS solu-
tion, where reliable observations have a larger impact on Ĥ−eff

than unreliable ones. This extension of the ChaP algorithm will
be called directed change prediction (dChaP) and the resulting
combinations with the core ChaP algorithm is termed directed
change prediction with directed recovery (dChaP/DR) and
directed change prediction with rapid recovery (dChaP/RR).

D. Markov model for ChaP

In the current version, the influence of old observations
collected by the ChaP algorithm remains the same for all
times. However, as the RIRs are time-variant, old observations
should have a smaller impact on the final ChaP estimate. To
account for this time-variance the same Markov model used
in the Kalman algorithm is also used for the weighting matrix
Ψ applied to W in (15) and (18). Each entry ψi is updated
according to

ψi(µ, λ) = 1−
√
PChaP
i,µµ (λ), i = 1, . . . , N∆ (20)

PChaP
i,µµ (λ) = A2 · PChaP

i,µµ (λ− 1) +M · Φ∆∆,µ. (21)

An estimate of the process noise covariance Φ∆∆,µ is provided
by the AEC [7] and the initial value PChaP

i,µµ (λ) =Pµµ(λi) is
used.

V. EVALUATION

For evaluating the ChaP algorithm and its extension a
simulation is carried out. A circular array of 13 microphones
is placed on the top of a rigid cylindrical mockup. The
microphone signals are generated with a RIR simulator using
the image source method and measured device-specific shad-
owing. The room dimensions are 5.5 m × 4.5 m × 2.7 m and
the microphone array is located in the center of the room.
The echo (far-end) source is located 0.6 m away from the
array at an angle of ϕecho =−20°. The near-end source is
located relative to the array at a constant distance of 0.6 m
but at a varying azimuth angle that is identical to the steering
direction ϕBF of the BF. The frame size and DFT size are
both set to M=1024 and the frame shift is R=256. The BF
filter length is Nw =64. The AEC filter length is restricted to
Nh = 704. This guarantees a resulting length of the effective
impulse response of Nheff

=Nh+Nw−1≤M−R+1, which
prevents artifacts caused by cyclic convolution. To exclude
effects of undermodelling in the evaluation, the simulated RIRs
are truncated to Nh taps. For both, the desired near-end signal
and the far-end signal, white Gaussian noise is used. For the
near-end disturbance white Gaussian noise is used, too. All
signals are sampled at fs = 16 kHz. In the first scenario we
investigate the performance of ChaP and its extensions for a
time-invariant RIR. The reverberation time is set to T60 =0.6 s.
The forgetting factor is set to A=0.998 for both, the Kalman
algorithm and the ChaP extension in (21). The echo-to-signal-
plus-noise ratio (ESNR) was set to 30 dB and the signal-to-
noise ratio (SNR) was set to 0 dB at the input of the BF. As
a quality metric the system distance (SysDis) calculated via
SysDis(k)[dB] = 10 log10(||heff(k)− ĥeff(k)||2/||heff(k)||2)
is used. Fig. 2 shows the results for ChaP and its extension
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Fig. 2. SysDis for BF-first, RR and ChaP with its extensions in combination
with a DS BF (top). At the bottom, the BF steering directions and the direction
of the echo signal are shown. The RIRs are time-invariant.

for a DS BF. The bottom plot shows ϕBF and ϕecho over
time. With the conventional BF-first approach ( ) the AEC
barely converges between two changes of the BF steering
direction and shows a high misalignment (SysDis). For RR
( ) the AEC converges to the ESNR of 30 dB. However, at
each change of the BF, the misalignment of the AEC becomes
very large resulting in an insufficient echo reduction. If the
core ChaP algorithm is used ( ), the SysDis is lower at points
of BF changes compared to RR. However, the reconvergence
is slow and prevents a complete convergence between most
BF changes. This drawback is alleviated when ChaP/RR ( )
is used. Further improvements can be achieved with ChaP/DR
( ), because it takes into the accuracy of the ChaP estimates
and adjusts the stepsize of the AEC accordingly. However,
if ChaP/DR has received unreliable estimates from the AEC
before, a small stepsize set by ChaP/DR can deteriorate the
performance as can be seen at t=11 s. This case is correctly
handled by dChaP/DR ( ). By taking into account reliability
information from the AEC, the reconvergence is fast and
the misalignment of the AEC at BF changes can be further
reduced. All in all, dChaP/DR significantly improves the BF-
first structure by maintaining a system distance below −17 dB
for t > 8 s, irrespective of changes of the BF.

In the second scenario we investigate the performance of
dChaP/DR under more challenging conditions with a time-
variant RIR. For the near-end and far-end source a speech
signal is used. Diffuse white noise is used for the near-end
noise. The microphone array and the loudspeaker are moving
together at a constant speed of 1 cm/s through the room.
The near-end source, and hence the steering directions of the
BF, switches between three directions, ϕBF ={30°, 60°, 90°},
around the microphone array. At the bottom of Fig. 3 the
azimuth ϕBF and elevation angle θBF of the near-end source
(the BF) as well as the azimuth angle of the echo source
ϕecho are shown over time. For this scenario the forgetting
factor is set to A = 0.997. The reverberation time is set to
T60 = 0.3 s. The ESNR is set to 30 dB at the input of an
MVDR BF and the SNR is set to 5 dB. In addition to the
SysDis, we also measure the performance in terms of the
echo return loss enhancement (ERLE). It is more related to
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an MVDR BF for a time-variant scenario and speech as far-end signal.

the subjective quality of the echo reduction and is calculated
by ERLE(k)[dB] = 10 log10(E{d2

1(k)}/E{d̃2(k)}), where
d̃(k) is the residual echo signal after BF and AEC. The
expectation E {·} is estimated by recursive averaging [12].
The evaluation of the ERLE and SysDis in Fig. 3 shows that
dChaP/DR consistently outperforms RR. Especially when the
BF is steered to directions that have been seen before (e.g.
t = {6, 8, 10} s), dChaP/DR improves both, the ERLE and
SysDis, by approx. 10 dB. Furthermore, dChaP/DR approaches
the performance of AEC-first, which can be regarded as an
upper bound.

We motivated the use of the BF-first structure with its
lower complexity compared to the AEC-first structure, because
only one AEC is needed instead of Nmic ones. However, the
proposed dChaP/DR algorithm adds complexity to the BF-
first structure. This is mainly caused by the calculation of the
MPP of the N∆(λ) × Nmic matrix in (12), where N∆(λ) is
the number of stored changes up to frame λ. This calculation
can be done in O(mn2), where m=max(N∆(λ), Nmic) and
n= min(N∆(λ), Nmic) [13]. The number of stored changes
N∆(λ) is implicitly limited by the Markov model in (21),
because the corresponding row of ΨW will become very
small after some time determined by the forgetting factor
A. In addition, we replace an old observation by a new
one, if the distance between the corresponding BF weights
is sufficiently small. It has to be noted that the MPP only has
to be calculated in frames with changes of the BF. There-
fore, the ratio between the number of frames with changes
N∆(λ) and the total number of frames Nframes determines the
complexity introduced by dChaP/DR. In addition one single
channel diagonalized Kalman algorithm is used in the BF-
first structure. Its complexity per frame can be approximated
with CKalman = O(M) + O(M log2M) [14]. With these
considerations the complexity per frame of dChaP/DR CChaP

and of AEC-first CAEC−first can be approximated by

CChaP = (M/2 + 1) · O(mn2) ·N∆(λ)/Nframes + CKalman

CAEC−first = Nmic · CKalman.

For the scenario presented in Fig. 3 we used Nmic = 13,
Nframes = 1250 and M = 1024. Because only three different
BF directions are occurring, N∆(λ) ≤ 3 is used. This results
in a relative complexity of CChaP/CAEC−first≈10 %.

VI. CONCLUSION

In this contribution we proposed a new system for com-
bined BF and AEC. Starting from the low-complexity BF-first
structure we introduced ChaP to prevent a large misalignment
of the AEC at each change of the BF. With this the BF-first
structure becomes applicable to realistic scenarios, where the
BF typically is changed very abruptly. By extending ChaP
to dChaP/DR we introduced reliability information for and
from the AEC to better guide its adaptation. Furthermore,
we used a first-order Markov model to account for time-
variant RIRs in dChaP/DR. Finally we showed that the BF-first
method, including the computational overhead for dChaP/DR,
significantly reduces the complexity compared to AEC-first.
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