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Abstract—Stepping motors are well suited for open-loop po-
sitioning tasks at low-power. The rotor position of the machine
is simply controlled by the user. Every time the user sends a
next pulse, the stepping motor driver excites the correct stator
phases to rotate the rotor over a pre-defined discrete angular
position. In this way, counting the step command pulses enables
open-loop positioning. However, when the motor is overloaded
or stuck, the relation between the expected rotor position based
on the number of step command pulses and the actual rotor
position is lost. To avoid this, the bulk of the widely used full-
step open-loop stepping motor drive algorithms are driven at
maximum current. This non-optimal way of control leads to
low efficiency. To use stepping motors more optimally, closed-
loop control is needed. A previously described sensorless load
angle estimation algorithm, solely based on voltage and current
measurements, is used to provide sensorless feedback. A closed-
loop load angle controller adapts the current level to reach the
setpoint load angle to obtain the optimal torque/current ratio.
The difficulty is that the optimal load angle depends on the
mechanical dynamics. To avoid the requirement of knowledge
of the mechanical parameters, a practical learning algorithm
to determine the optimal load angle is presented in this paper.
Measurements validate the proposed approach.

Index Terms—stepping motor, intelligent sensorless drive, sen-
sorless control, load angle

The absence of an expensive position sensor makes stepping
motors very appealing for low-power positioning. The rotor
position of the machine is controlled by sending step command
pulses. Every time the user sends a step command pulse, the
rotor of the machine makes a discrete rotation. In this way, it
is easy to control the position without the explicit feedback of
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a mechanical position sensor. The two-phase hybrid stepping
motor principle is illustrated in Fig. 1(a-b). The stator is
equipped with concentrated windings while the multi-toothed
rotor is magnetized by means of axially oriented permanent
magnets. The north-stack and south-stack of the rotor each
have rotor teeth and are shifted with half a tooth pitch relative
to each other. By magnetising phase A, the excited stator phase
(A+ and A−) attracts the rotor teeth. When a new full-step
command pulse is given, the excitation of one phase is released
while the second phase is excited.

When the motor is overloaded due to too high load torque
or acceleration demands, the relation between the setpoint and
the actual rotor position is lost. In most cases, this step loss
will not be noticed by the stepper controller and will result
in malfunction of the application. Until today, to reduce the

A +

B

B

BB

A + A -

A -

(a) (b)
Fig. 1. Two-phase hybrid stepping motor with 50 rotor teeth per stack, front
view (a) and cross section (b)
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possibility of step loss, the motor is driven at limited velocity,
maximum current level or is over-dimensioned [1]. This means
that the bulk of the stepping motors are driven in a non-optimal
way with a low efficiency as a result [2].

The basic open-loop algorithms are unsatisfactory to drive
a stepper motor efficiently. For this purpose, vector-control al-
gorithms, as used in permanent-magnet synchronous machines
(PMSM) [3] and induction machines (IM) [4], are of interest.
The advanced stepping motor drive algorithms described in
[5] use control loops common for PMSM machines. However,
positioning by using step command pulses is impossible
when these methods described in [5] are implemented. This
incompatibility with classic stepping motor drive algorithms
hinders the implementation of these methods in industry.

Therefore, a previously described sensorless load angle
estimation algorithm, solely based on voltage and current
measurements, is used to provide sensorless feedback [6].
Based on this feedback a closed-loop load angle controller
adapts the current level to reach the setpoint load angle
to obtain the optimal torque/current ratio [7]. An essential
advantage of this approach is the fact that optimal performance
is obtained without a need to change the control architecture
for the stepping motor user. The latter means that the user
can still control the position by sending and counting step
command pulses while the load angle controller continuously
optimises the current level. A drawback is that the optimal load
angle greatly depends on the mechanical dynamics. Therefore,
to avoid the requirement of knowledge of the mechanical
parameters, a practical learning algorithm to determine the
optimal load angle is presented in this paper.

I. LOAD ANGLE

The equation describing the electromagnetic motor tor-
que is essential to have the necessary understanding of the
stepping motor drive principle. An expression describing the
electromagnetic motor torque can be quantified based on the
interaction between the stator flux linkage space vector Ψs

and the stator current space vector is ( [8]).

Tem = Ψs × is (1)

By neglecting saturation and splitting the stator flux linkage
to a dq-reference frame which is fixed to the rotor flux, the
electromagnetic torque is written as:

Tem = (Ψr + id.Ld + iq.Lq) × is (2)

Elaboration of the vector products leads to an equation
describing the electromagnetic torque as a function of the
current amplitude is and the load angle δ, defined as the angle
between is and the rotor flux Ψr (Fig. 3):

Tem = ψr.is.sin (δ) +
Ld − Lq

2
.i2s.sin (2δ) (3)

The first term in (3) describes the torque generated by
the interaction between the permanent magnet rotor flux Ψr

and the stator current is. This term depends on the sine of
the load angle δ. Because of the multi-toothed rotor and
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Fig. 3. Vector diagram and load angle δ

stator construction of a hybrid stepping motor, the reluctance
effect will increase the maximum electromagnetic torque. This
reluctance effect is represented by the second term in (3) and
varies sinusoidally with twice the load angle δ. To quantify
both effects, the motor torque is measured in [6] at different
positions while the rotor is blocked. The load angle δ is
modified by changing the phase current setpoints i∗a and i∗b . For
a current amplitude of 60 and 100% of the nominal current,
measurement results are given in Fig. 2. The dominant torque
component, which varies with the sine of the load angle δ is
the component generated by the permanent magnet effect.

A. Load angle estimation

The load angle δ can be used to identify the quality of
the torque generation because it contains information of the
torque/current ratio. The load angle is therefore interesting to
estimate. The load angle δ equals to β - θ (Fig. 3). Unless an
encoder is used, the location θ of the rotor flux vector Ψr is
unknown. Therefore to estimate the load angle, the back-EMF
is considered. Based on Lenz’s law the resultant back-EMF
vector es induced in the stator windings by the rotor flux Ψr

can be written as:

es = C
dΨr

dt
(4)

428



ia*

ib*
Current

Controller

ia

ib

Transformation
_

+ |is|
*δ*

A

B

N

Z

is

δ

Tlast

ω β

θ

is

β

β∗
ia

ib

va

vb

Load angle
Estimator

δ

Micro-step

^

δ^

NZ

1

3

8
7

0

2
45

6

10

9

11 12 13
14

15

NXT t

controller

imax

ΨrΨ

Load angle

nmax

...

n∗ δ∗

...
... δimax ...

Selection δ*

^

^

Safety mode

Fig. 4. Typical stepper motor drive principle where current vector is position β is determined by step command NXT pulses sent by the user and current
level is adapted by a load angle controller

As a result, es leads the Ψr by π
2 . Therefore, the load angle

can be redefined as:

δ =
π

2
− (∠es − ∠is) (5)

This means that the load angle can be estimated based on
the vectors es and is. To obtain these vectors, phase back-
EMF ea and eb and phase currents ia and ib have to be
known. In equation (5), the location of the current and the
back-EMF vectors ∠is and ∠es are unknown. Because the
phase currents ia and ibcan be easily measured, the problem of
estimating the load angle is reduced to a problem of estimating
the position of the back-EMF es. The back-EMF can be
estimated based on the voltage equation of the stator windings.
There is no interaction between the two phases because they
are perpendicular to each other [9]. Therefore, the mutual
inductance is neglected, and the back-EMF can be written as:

es(t) = us(t) −Rs.is(t) − Ls
dis
dt

(6)

The derivative in eq. (6) will cause problems if the measured
current contains noise. Determining the derivative of noisy
signals would result in distorted estimations. Therefore [6]
suggests to write (6) in the frequency domain, where ω
represents the signal pulsation:

Es(jω) = Us(jω) +RsIs(jω) + jω.LsIs(jω) (7)

According to this method, only electrical parameters such as
the stator resistance and inductance and the complex represen-
tation of the phase current and voltage are needed to estimate
the load angle. In stepping motor applications the position
and speed setpoints are determined by step command pulses
sent by the user as long as no step loss occurs. This means
that the speed and consequently also the instantaneous signal
pulsation ω are always known. The complex components
Ua(jω) and Ia(jω) of the measured voltage and current signals
are determined via transformation of the signals from the time
to the angular domain. [10] describes a load angle estimator
based on Transfer function analyzer which can determine the
complex components even during speed transients.

II. LOAD ANGLE CONTROLLER

The large majority of the stepping motors in the industry
are driven in open-loop using a full, half or micro-stepping
algorithm. These algorithms impose a stator current vector is.
In these typical stepping motor drives, the angular position
of the stator current vector is determined by step command
pulses. Many commercial stepping motor drives allow to adjust
the current vector amplitude, labelled is in Fig. 4. Based
on is and the step command pulses sent by the user, the
transformation to the two-phase system is made, and the
current controller injects the desired currents in the motor as
indicated in Fig. 4. By doing so, the position of the rotor can be
controlled in open-loop. The advantage of this method is that
the position of the rotor is directly imposed. The disadvantage
is that the position of the permanent rotor flux Ψr has not
been taken into account to inject the two phase currents in
order to achieve optimal torque generation.

[7] suggest a closed-loop load angle controller which is
complementary to the conventional stepping motor drives or
to the controller tested on BLDC motor platform [11]. A
PI controller adjusts the current level to obtain the setpoint
load angle. In other words, the controller determines the
amplitude of the stator current vector while the step commands
determines the position of this vector. The controller reduces
the current from the nominal level to the minimum current
necessary to drive the motor at a specific speed and load torque
setpoint. Information of the load angle estimator is used as an
input for the control of stepping motor in an energy-efficient
way. This principle implemented on a BLDC motor is This
approach is challenging as the optimal load angle depends on
the operating point of the motor.

III. OPTIMAL LOAD ANGLE δopt

Before the current level can be optimized based on the
difference between the setpoint load angle δ∗ and the estimated
load angle δ̂, the setpoint load angle δ∗ has to be chosen
carefully. By reducing the current step-wise until step loss
occurs, as indicated in figure 5, the optimal load angle δopt
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can be determined based on the feedback of the load angle
estimator.
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Fig. 5. Step-wise reduce of the current level to determine the optimal load
angle δopt

By measuring the optimal load angle δopt for the entire
machine’s operating area, figure 6 is obtained. The outcome
clearly shows that the optimal load angle δopt varies greatly
and can deviate strongly from the optimal load angle values
based on the measured static torque - load angle relation
(Figure 2). Optimal load angle of π

2 or higher are totally not
achieved when the loaded machine is driven at a certain speed,
as shown in figure 6.
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Fig. 6. Optimal load angle [rad] for the entire operating area of the stepping
motor

This can be theoretically explained by the study of the
system dynamics of a hybrid stepping motor. In [7], a linear
model of the dynamics of a stepping motor is described where
a certain current is results in a load angle δ with J the inertia,
b the damping and CT the torque constant:

δ(s)

I(s)
=

−CT .sin(δ∗)

b.ω∗ + T ∗
load

tan(δ∗)
+ b.s+ J.s2

(8)

In this way, linear control theory in the s-domain can be
used to examine the dynamic system behaviour. The process
dynamics are characterized by the location of its poles being
the roots of the denominator. [7] and (9) describe the location
of the system poles and shows that the linearized dynamics
clearly are dependent on the operating point (T ∗

load, ω
∗, δ∗).

J.s2 + b.s+
b.ω∗ + T ∗

load

tan(δ∗)
= 0 (9)

First, the load impact on the process dynamics is examined.
As indicated by (9), the process dynamics depend on i.a. the
sum of the friction torque b.ω∗ and the load torque T ∗

load

which can be seen as the total load. With the motor and test
bench data (J=6.28e-5 kgm2, b=0.02 Ns/m) the characteristic
equation is written as:

1 + (0, 02.ω∗ + T ∗
load) .

1

1, 61.10−4s2 + 0, 051s
= 0 (10)

Fig. 7 shows the root locus describing the load angle
dynamics ranging from an unloaded machine at low speed
(n∗ = 50tr/min) up to full load (n∗ = 500tr/min,
T ∗
load = 0, 49Nm). Fig. 7 shows that the load angle responds

faster on current level changes for a more loaded machine at
higher speeds. In this case, the load angle response is 12.5
times faster for the fully loaded machine (n∗ = 500tr/min,
T ∗
load = 0, 49Nm) compared to the unloaded machine at low

speed (n∗ = 50tr/min). This will make the control more
robust at high speeds so that the optimal load angle δ∗ can be
set higher at higher speeds.
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Fig. 7. Root locus describing the load angle dynamics as a function of the
load b.ω∗ + T ∗

load

Also the choice of the setpoint load angle δ∗ influences the
stability of the load angle control. Therefore, the impact of
the setpoint load angle and the load are examined together.
The load (b.ω∗ + T ∗

load) may vary strongly and is difficult
to estimate. However, if steady-state is assumed, the electro-
magnetic motor torque based on (3) neglecting the reluctance
effect equals the sum of the load T ∗

load and friction b.ω:

CT .is. sin(δ) = b.ω∗ + T ∗
load (11)

430



Each time prior to the current reduction, the total load of the
motor is estimated by estimating the load angle at maximum
current level. The load of the motor is described in function
of the load angle at maximum current δimax

. This value is
determined merely using feedback of the load angle estimator.

b.ω∗ + T ∗
load = CT .Imax.sin(δimax

) (12)

Therefore, the characteristic equation can be written as follow:

Js2 + bs+ CT .Imax.
sin(δimax

)

tan(δ∗)
= 0 (13)

The location of the system poles can be considered as a
function of the ratio of the load angle at maximum current
δimax

to the setpoint load angle δ∗. The characteristic equation
is therefore rewritten as:

1 +
sin(δimax

)

tan(δ∗)
.
CT .Imax

Js2 + bs
= 0 (14)

The ratio of the load angle at maximum current δimax to the

setpoint load angle δ∗ is thus written as
sin(δimax

)

tan(δ∗)
. As long

as this ratio is equal or bigger than 1, the setpoint load angle
δ∗ will always be smaller than the load angle at maximum
current δimax

. In such a case the setpoint load angle δ∗ cannot
be reached and controlling the current level is not possible.
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Fig. 8. System dynamics as a function of the setpoint load angle δ∗ and the
load δimax

When the setpoint load angle δ∗ is bigger than the load
angle at maximum current δimax , the dominant system pole
will move to the right, causing a slower response of the system
on current level changes and the system becomes possibly
unstable. The location of the system poles based on equation
(14) are shown in Figure 8. When the load angle at maximum
current δimax

is 0.2 rad, and the controller wants to increase the
setpoint load angle δ∗ to 1.5 rad, the dominant system pole will
move to the right such that the settling time increase to a high
value of 5.86 s. Even at low speed (5 % nnom or 35 rpm) this
corresponds to 3.4 full rotor rotations. Therefore, the setting
of δ∗ made by the user is essential to have a stable system.
The setpoint load angle δ∗ should not be much larger than the
load angle at maximum current δimax . When the difference

between the setpoint and real load angle becomes too high,
the load angle control may become unstable.

To use these insights to determine the setpoint load angle
δ∗, knowledge about the relationship between the optimal load
angle δopt and the current level is based on the mechanical dy-
namics is required. However, this depends on the load inertia J
and damping b. Therefore, using the above insights in practice
is impossible for unknown mechanical loads parameters. A
more practical learning algorithm is discussed in the next
section.

IV. LEARNING ALGORITHM FOR SELECTING THE
OPTIMAL LOAD ANGLE δopt

Both theoretical insights (Fig. 7 and 8) and practical mea-
surements (Fig. 5) show that the optimal load angle (Fig. 2)
characterized by the statically measured torque - load angle
relation characteristics cannot be used as setpoint value δ∗

for controlling the load angle during motor operation. The
relationship between the current level and the reluctance effect
initially ensures that the optimal load angle increases for
higher current levels. A larger mechanical load requires a
higher current level. As a result of its impact on the optimal
current, the load also influences the optimum load angle.
Besides, the setpoint speed also has an impact on the optimum
achievable load angle δ. Therefore, a method for determining
the setpoint load angle δ∗ as a function of the operating point
is required. That operating point can always be determined.
The user imposes the speed by sending next pulses. The
load angle at maximum current δimax

is proportional to the
mechanical load (12) and can be determined by the load angle
estimator. The optimal setpoint load angle in function of speed
and mechanical load or δimax which is proportional to the
mechanical load can be stored in a table, as indicated in Figure
4.

A too large setpoint load angle δ∗ results in an unstable
controlled system. The estimated load angle δ̂ will then
violently oscillate which results in exceeding a well-chosen
threshold which is followed by activating the safety mode. In
this mode, the stepping motor is controlled again at maximum
current. When the safety mode is triggered, this means that the
selected setpoint load angle δ∗ was too large and should be
adjusted downwards, as illustrated in Figure 9. In this way, the
contents of the table (Fig. 4) is changed systematically. The
threshold value and the step size that determines how much
the load angle δ∗ must be adjusted downwards is set by the
user and is is described in [12]. Here, a threshold of 120 %
of the setpoint load angle δ∗ is chosen. For each operating
point, a rather large setpoint load angle is chosen first. The
activation of the safe mode results in a downward adjustment
of the setpoint load angle.

The controller sets the current level at maximum if the load
torque increases to such an extent that the estimated load angle
δ̂ exceeds 120 % of the setpoint load angle δ∗ . The load angle
δimax at maximum current will be higher as a result of the
increased load torque. In this way, the load angle controller is
informed about a change in the operating point. The setpoint
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load angle δ∗ is requested from the table, indicated in Figure
10.
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The optimal load angle becomes smaller if a lower current
level is required. Since a smaller load requires a lower current
level, the achievable setpoint load angle will also decrease
when the load torque drops. Figure 11 shows that the load
angle oscillates violently when the load torque is suddenly
reduced. The setpoint load angle δ∗ is too large for this low
load torque. The oscillation exceeds the level of 120 % of
δ∗ [12] which is followed by deactivation of the load angle
controller. The motor is driven again at maximum current.
Then it becomes clear that the load angle at maximum current
δimax has dropped which has as a consequence that the setpoint
load angle δ∗ is adjusted downwards.

The extended sensorless load angle controller is shown in
figure 4. The load angle is determined during motor operation
at maximum current to have an indication of the total load
of the motor. The user imposes the speed by sending next
pulses. In this way, the operating point is known and the
corresponding optimal setpoint load angle δ∗ is requested from
the look-up table. As long as the estimated load angle does not
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Fig. 11. Decrease of the setpoint load angle δ∗ after load torque drop from
0.4Nm to no load at 375 rpm

exceed 120 % δ∗, the control is stable and the setpoint load
angle δ∗ is chosen well. When the load angle exceeds this
level, the controller sets the current level at maximum. This
happens when a change in load occurs. Also when a speed
change is imposed by the user, the current is automatically
set at maximum level. In these cases, the estimation algorithm
indicates a different load angle δimax

at maximum current. As
a result, the setpoint load angle δ∗ is adjusted as illustrated in
Figure 4.

V. CONCLUSIONS
The bulk of the stepping motor applications are driven in

open-loop at the maximum current to avoid step loss. To
use stepping motors more optimally, closed-loop control is
needed. A previously described sensorless load angle estima-
tion algorithm is used to provide the necessary feedback. The
load angle is an indication for the torque/current ratio of the
stepper motor drive. The closed-loop load angle controller
adapts the current level to reach the setpoint load angle to
obtain the optimal torque/current ratio. An essential advantage
of this approach is the fact that optimal performance is
obtained without changing the control architecture for the
stepping motor user. A drawback is that the optimal load angle
depends on the mechanical dynamics. Therefore, to avoid the
requirement of knowledge of the mechanical parameters, a
practical selection learning algorithm to determine the optimal
load angle is presented in this paper. The setpoint load angle
δ∗ is determined during motor operation at maximum current.
The estimated load angle δimax

at this operating point is an
indication of the mechanical load. In this way, the operating
point is known and the corresponding setpoint load angle δ∗

is requested from a look-up table. As long as the estimated
load angle does not exceed the threshold, the control is stable
and the setpoint load angle δ∗ is chosen well. When the load
angle exceeds this level, the controller sets the current level at
maximum and the selection learning algorithm is re-iterated.
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