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Abstract: Transcatheter aortic valve implantation (TAVI) is associated with conduction abnormalities and the 

mechanical interaction between the prosthesis and the atrioventricular (AV) conduction path cause these 
life-threatening arrhythmias. Pre-operative assessment of the location of the AV conduction path can help to 
understand the risk of post-TAVI conduction abnormalities. As the AV conduction path is not visible on 
cardiac CT, the inferior border of the membranous septum can be used as an anatomical landmark. Detecting
this border automatically, accurately and efficiently would save operator time and thus benefit pre-operative 
planning. This preliminary study was performed to identify the feasibility of 3D landmark detection in 
cardiac CT images with curriculum deep Q-learning. In this study, curriculum learning was used to 
gradually teach an artificial agent to detect this crucial anatomical landmark from cardiac CT. This agent 
was equipped with a small field of view and burdened with a large action-space. Moreover, we introduced 
two novel action-selection strategies: α-decay and action-dropout. We compared these two strategies to the 
already established ε-decay strategy and saw that α-decay yielded the most accurate results. Limited 
computational resources were used to ensure reproducibility. In order to maximize the amount of patient 
data, the method was cross-validated with k-folding for all three action-selection strategies. An inter-
operator variability study was conducted to assess the accuracy of the method. 

1 INTRODUCTION

Transcatheter  aortic  valve implantation (TAVI)
has become the preferred treatment for patients with
aortic stenosis at high risk for surgical aortic valve
replacement  (SAVR)  (Smith,  2011).  Recently,
studies concluded that TAVI was similar to SAVR
for intermediate-risk patients concerning the primary
end-point of death or disabling stroke (Leon, 2016;
Reardon,  2017).  Very  recent  clinical  data  showed
that TAVI is at least as good as SAVR in low-risk
patients  (Popma,  2019;  Mack,  2019).  Although
TAVI is less-invasive than SAVR, it  is  associated
with  an  increased  incidence  of  higher  grade
atrioventricular (AV) block that requires permanent
pacemaker  implantation  (Reardon,  2017).  The
conduction abnormalities are due to the mechanical
interaction  between  the  prosthesis  and  the  AV
conduction path located near the aortic valve.  Pre-
operative  assessment  of  the  location  of  the  AV

conduction path and the expected contact pressure in
this region can help to understand the risk of post-
TAVI  conduction  abnormalities  (Rocatello,  2018;
Hamdan, 2015). As the AV conduction path itself is
not  visible on the cardiac  CT images,  the inferior
border of the membranous septum can be used as an
anatomical  landmark. Detecting the inferior border
of  the membranous septum can be a difficult  task
that  dependents  on  operator  experience,  image
quality,  and the patient's  anatomy.  Detecting  these
points  in  an  automatic,  accurate,  and  efficient
manner would save operator  time and thus benefit
pre-operative planning.

Advancements in deep learning have shown that
there  are  supervised  methods  that  can  detect
landmarks in medical images (Zheng, 2012; Zheng,
2015; Zhang, 2017; Payer, 2016; O’Neil, 2018; Al,
2018;  Litjens,  2017).  These  methods  analyse  a
delimited region of interest and thus share the same
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limitation because they require a region of interest
annotation.  In  this  study,  we  wished  to  overcome
this limitation and analyse medical images that range
from region-specific to full-body scans.

Recent  studies  have  shown  that  deep
reinforcement  learning  can  be  used  to  detect
landmarks  in  medical  images  regardless  of  their
dimensions  (Ghesu,  2016;  Ghesu,  2017a;  Ghesu,
2017b;  Alansary,  2019;  Sahiner,  2019).  In  these
studies,  accurate  results  were  obtained  using  a
cluster  of  computational  resources.  However,  the
following difficulties may arise when exploring their
methods.  Deep  reinforcement  learning  introduces
novel  hyper-parameters  on  top  of  the  already
existing hyper-parameters specific to deep learning
and  machine  learning.  When  a  cluster  of
computational  resources  is  unavailable,  the  hyper-
parameter search may require a considerable amount
of  time.  Moreover,  since  deep  reinforcement
learning is still developing, it is essential to look into
mechanisms that require additional research, e.g. in
the two studies (Ghesu, 2017b) and (Alansary, 2019)
the authors have a different opinion on the definition
of  the  halting  signal  for  the  artificial  agent.
Therefore,  novel  strategies  should  be  studied  and
evaluated in a reproducible manner.

In this preliminary study, we aimed to identify
the feasibility of 3D landmark detection in cardiac
CT images with curriculum deep  Q-learning.  This
novel method of learning allowed us to use limited
computational  resources  and  tune  the  hyper-
parameters  accordingly.  It  also  enabled  us  to
evaluate  three  strategies  that  drive  the  exploring
character  of  the  artificial  agent:  the  already
established ε-decay strategy and two novel strategies
α-decay and action-dropout. Additionally, the agent
was equipped with a larger action-space and smaller
state-space  when  compared  to  the  state-of-the-art.
Each strategy was validated with k-folding; a cross-
validation method that allows the usage of the entire
dataset  for  validation  while  maintaining  a  strict
separation  between  the  training  and  validation
dataset.  An  inter-operator  variability  study  was
conducted to assess the accuracy of the method.

2 METHOD

2.1 Patient and imaging data

This  retrospective  study  used  the  anonymised
data of 278 patients from multiple centers. The mean
age of this cohort was 80.7 ± 6.6 years, and 56% of
the patients were female. The patient data consisted
of  volumetric  cardiac  CT  images,  which  were
acquired  during  the  pre-operative  planning  of  a
TAVI  procedure.  Therefore,  all  CT  images  were
contrast-enhanced and contained a certain degree of
aortic stenosis. The dimensions of the images ranged
from  regional  scans,  centered  around  the  aortic
valve, to scans of the entire body. 

An expert analysed all images and identified the
inferior  border  of  the  membranous  septum.  Three
3D points defined  this  inferior  border:  MS1,  MS2
and MS3 and were considered the ground truth in
our study (Figure 1).

Figure 1:  The 3D view (left)  and the coronal
view (right) of the aortic valve with the annotated
ground truth points: MS1, MS2 and MS3.

The volumetric CT images were preprocessed in
the following manner: first, they were resampled to
obtain a homogenous dataset. Next, each image was
interpolated to isotropic resolutions of 1.0, 2.0, 3.0
and 5.0 mm using cubic spline interpolation. Finally,
all images were normalised.



2.2 Landmark detection with 
reinforcement learning

The  task  of  detecting  landmarks  in  medical
images with reinforcement learning can be described
as  follows.  An  artificial  agent  is  positioned  in  an
environment (an image) where it can walk around in
search of the target landmark. Based on its current
position,  the  agent  has  a  limited  field  of  view,
causing it to see only a small image patch (the state).
From its current state s, the agent needs to choose an
action  a,  which will  move him closer  towards the
target  landmark.  After  performing  that  action,  the
agent will be at a new position in the image and thus
have a new state  s’. The reward  r for choosing an
action is  the delta  between  the  Euclidean  distance
from the previous- and current position to the target
landmark. The agent's experience is defined as  s, a,
s’ and r and needs to be stored (Figure 2). 

Figure 2: Overview of landmark detection in a
medical  image using reinforcement  learning.  The
agent will stop after a maximum number of steps or
when it has found the target landmark. The `select
action' box in the figure is annotated with a dashed
line  because  this  is  where  the  action-selection
strategies will occur.

In this study, the environment was a cardiac CT
image with multiple resolutions (1.0, 2.0, 3.0 and 5.0
mm).  The  agent  walked  around  in  the  CT image
with  resolution  1.0  mm  because  the  reward  was
computed on this position.  The states  in  the other
resolutions were obtained by translating the current
position  to  those  resolutions.  By  using  multiple
resolutions,  the  agent  had  additional  information
about  its  current  position  while  preserving  the
dimensions  of  the  agent's  state  (an  8x8x8  voxel
cube). Additionally, the agent could choose from 26
actions.  This  action-space  covered  all  the  possible
single-step directions in a 3D grid (except standing
still).  Both  studies  (Ghesu,  2017b)  and  (Alansary,

2019), described an action-space of six actions and
state  sizes  of  25x25x25  voxels  and  45x45x45
voxels. After each move, the experience of the agent
was  stored in prioritized experience replay memory
(Schaul,  2015).  This  type  of  memory  enabled  the
optimization process to train with experiences which
had a higher priority (or learning value) and resulted
in faster convergence

When  the  agent  selects  an  action,  it  needs  to
know which  action  will  maximize  the  cumulative
reward  over  time or,  to  put  it  in  other  terms;  the
agent needs to know policy π.  This policy defines
the agent’s behaviour and maps state to actions. The
optimal policy knows for every state which action to
choose in order to maximize the cumulative reward.

2.3 Landmark detection with 
deep Q-learning

Since it is not possible to map all possible states
from cardiac CT to actions, a function approximator
is required.  In our study, we used a convolutional
neural  network  (CNN)  to  approach  the  optimal
policy by learning the action-value function Q (s, a)
(Mnih, 2015).  This has  already been performed in
studies  where  a  deep  CNN  or  deep  Q-network
(DQN) was trained with the experiences of the agent
in order to learn this action-value function Q (Ghesu,
2017b; Alansary, 2019). 

In our work, a double duelling DQN method was
used to learn this Q function. Two identical models
were  used  to  reduce  the  overestimation  of  the  Q-
values. Before each training session, the weights of
the  first  model  were  randomly  initialized  (Saxe,
2013) and  copied to  the second model.  While the
first DQN model was used to retrieve the actions of
the  current  observations,  a  second  (frozen)  DQN
model  yielded  Q-values  during  the  optimization
process (Van Hasselt, 2016). The weights of the first
DQN were  transferred  to  the  frozen  DQN after  a
variable number of iterations (τ). ). 

In order to learn which states contained a higher
learning value regardless of the effect of the action
(Wang,  2015),  an  advantage  and  a  value  module
were introduced in the architecture (Figure 3). 



Figure 3: The architecture of the DQN model.
The  input  has  the  dimensions  of  the  state.  The
output of the encoder continues to an advantage-
and value module. The output of the model is the
combination  of  the  advantage-  and  value  output
signals.  The  channel  dimension  c of  the  model
stores  the  multiple  resolutions  of  the  state  at
position x, y and z.

Teaching a DQN to learn this Q function with
the experiences of the agent requires iterative trial-
and-error.  Based on its state,  the agent chooses an
action which is evaluated by measuring the reward.
Next,  the  DQN  is  updated  by  using  the  Bellman
equation (Bellman, 1954). This equation returns the
Q-value or the maximum future reward, which is the
immediate reward for a given state and action and
the maximum future reward for the next state.

The  size  of  the  output  of  the  DQN  model  is
equal  to  the size  of  the action-space.  The model's
output  yields  the Q-values  for  each  action  for  the
current state. In order to select the right action for a
current  state,  the  index  of  the  highest  Q-value  is
selected, which yields the maximum future reward
for the agent.

Initially,  the  agent  selects  random  actions  and
the established ε-decay strategy usually guides this
random  process;  however,  other  strategies  were
explored in this work.

2.4 The exploring agent

To learn the pathway towards the target  point,
the agent  needs  to  explore  and  exploit  paths.  The
exploration  is  required  at  the  beginning  of  the

training  to  discover  new  directions  towards  the
target  point.  The  exploitation  is  required  near  the
end of the training to establish discovered routes. In
this study, we compared three strategies to balance
exploration  and  exploitation:  the  established
exponential  ε-decay  and  two  novel  strategies:  α-
decay and action-dropout. 

Exponential  ε-decay  uses  a  value ε that  drives
the  decision  for  predicting  an  action  or  randomly
selecting an action. An ε value needs to be decayed
from 0.999 to 0.05 during training. When a random
value  is  smaller  than  the  current  ε  value,  random
action is chosen. Otherwise, the model predicts the
Q-values from the current state and the action with
the  highest  Q-value  is  selected  as  the  predicted
action (Figure 4).

Linear α-decay always uses the model to predict
the Q-values from the current state of the agent. An
α value needs to be linearly decayed from 1.0 to 0.0
during training. If a random value is smaller than the
current α value, the action with the highest Q-value
is  ignored,  and  a  random  action  between  the
remaining 25 actions is selected. When applied, this
strategy  ignores  the  highest  Q-value  on  purpose,
causing the agent to find other routes to the target
landmark. Otherwise, the action with the highest Q-
value is selected as the predicted action (Figure 4).

Similar  to  α-decay,  action-dropout  always uses
the model to predict the Q-values from the current
state  of  the  agent.  A  threshold  value  needs  to  be
linearly decayed from 1.0 to 0.0 during training. If a
random value is smaller than the current threshold
value, action-dropout is applied, which implies that a
percentage (p=0.5) of actions are removed from the
action-space, and a random action is selected from
the  reduced  action-space.  If  action-dropout  is  not
applied,  the  action  with  the  highest  Q-value  is
selected (Figure 4). 

Figure 4: Overview of the three action-selection
strategies: ε-decay, α-decay and action-dropout.



In this study, we aimed to train a DQN model
with a larger action-space, a smaller state size and
less  computational  resources  than  the  state-of-the-
art. In order to overcome these challenges, we used
curriculum learning.

2.5 Landmark detection with 
curriculum deep Q-learning

Curriculum learning (Bengio, 2009) is  inspired
by the human education system, where students start
with a straightforward concept before learning more
advanced concepts. This multiple-concept approach
was  already  applied  to  object  detection,  where
straightforward networks were trained first (Zhang,
2016). In this study, curriculum learning was applied
to the linear distance between starting point S (the
center of the aortic root) and target point T (one of
the  three  landmarks:  MS1,  MS2  or  MS3).  The
distance between these points was split into ten sub-
starting  points.  The  first  and  most  straightforward
concept  was  defined  as  the  path  from the  closest
sub-starting  point  s1 to  T.  When  the  agent  had
learned  this  path,  the  next  starting  points  were
processed  until  the  model  had learned  the  longest
path from S to T (Figure 5). 

Figure  5:  Graphical  representation  of  the
curriculum learning approach. The final goal was
to learn an entire pathway from the starting point S
to the target point T.

2.6 Training

In order to train the models, the optimizer Adam
(Kingma,  2014)  was  used  with  a  learning  rate  of
0.5e-5.  This  optimizer  was  chosen  to  include
adaptive learning rates for different parameters. No
learning rate decay was introduced since the initial
learning rate was set to a small value. 

Each  time  the  agent  was  positioned  at  a  sub-
starting position, random uniform noise was added
to this position, which ensured a certain degree of
variation in order to make the agent more robust.

2.7 Validation

The  cohort  size  was  relatively  small  (278
patients), and k-folding cross-validation was used to
validate  the  method.  K-folding  (k=4)  divides  the
entire dataset randomly (with a fixed seed) into four
sub-sets, and the training and validation process is
repeated  four  times  or  folds.  Each  fold  uses  a
different  sub-set  as  the validation dataset,  and  the
remaining  three  subsets  are  used  as  the  training
dataset.  K-folding  enables  the  usage  of  the  entire
dataset as the validation dataset while preserving the
separation between training and validation dataset.

The validation process was similar to the training
process except that the threshold value (used in the
action-selection strategy) was set  to -1. This value
forced  the  agent  to  use  the  model  to  predict  the
action from the current state.

2.8 Statistical Analysis

The  accuracy  of  the  landmark  detection  was
assessed by measuring the Euclidean distance from
the predicted landmark to the ground truth landmark.
All  variables  were  reported  as  median  [lower
quartile (LQ) - upper quartile (UQ)]. The agreement
between ground truth and predicted landmarks were
evaluated using the non-parametric signed Wilcoxon
test (with a significant p-value <0.05). 

2.9 Implementation

All the computational work was performed on a
multi-core computer with a Titan X GPU (NVIDIA
Corporation,  Los  Alamitos,  CA).  The  models  and
deep learning pipeline were developed with PyTorch
v0.4.1 (Paszke, 2014).

3 RESULTS

In  this  section,  we  discuss  the  results  of  the
validation process, which were obtained by using the
trained  models  to  analyse  previously  unseen  data.
The  validation  process  was  applied  to  all  three
action-selection  strategies.  Cross-validation  was
applied to train and validate the method for all three
target landmarks: MS1, MS2 and MS3. We obtained



278 validated patients per target landmark as a result
of  using  k-folding.  The  action-selection  strategies
were compared to each other by grouping the results
of  the  three  target  landmarks  into  834  validated
patients  per  strategy.  A  total  of  24  models  were
trained in this study  (each training session used two
models),  and  12  trained  models  were  used  to
validate one action-selection strategy.

At the end of the curriculum learning algorithm,
the final path from starting point S to target point T
was learned. The Euclidean distance from the agent's
final position to the target point was measured and
was  considered  the  predicted  landmark  of  the
method.  The  ε-decay  and  action-dropout  strategy
yielded similar results, whereas the α-decay strategy
was slightly more accurate than the other strategies.
The  prediction  time  of  the  full  path  for  a  single
patient was below 1 second (Table 1). 

Distance from target landmark [mm]

ε-decay α-decay action-
dropout

MS1 2.4 [0.0-4.9] 1.2 [0.0-4.2] 2.3 [0.0-4.5]

MS2 3.0 [0.0-4.7] 0.0 [0.0-4.6] 2.0 [0.0-4.2]

MS3 2.2 [0.0-4.5] 1.4 [0.0-4.3] 1.0 [0.0-4.2]

All 2.4 [0.0-4.6] 0.0 [0.0-4.4] 2.0 [0.0-4.4]

Table 1: A summary of the Euclidean distances
from the predicted landmark to the target landmark
for  all  three  action-selection  strategies.  Distances
are reported as median [LQ - UQ].

The agent's  performance during the curriculum
learning  process  was  measured  by  validating  the
models before moving to the next sub-starting point.
This  inter-algorithmic-validation  resulted  in
Euclidean  distances  between  the  predicted  points
and T for each of the ten sub-starting points. In order
to compare action-selection strategies, the distances
for  each  starting  point  were  grouped per  strategy.
The  distances  to  the  target  landmarks  reduced
overtime  for  all  three  strategies.  The  α-decay
strategy  is  similar  to  the  other  strategies  until  the
final starting point S, where the median distance to
the target landmark was zero (Figure 6).

Figure 6: The evolution of the distances to the
target landmarks for each sub-starting point for all
three action-selection strategies.

An  inter-observer  variability  study  was
conducted on 20 patients to assess the accuracy of
the  method.  The  Euclidean  distances  between  the
landmarks annotated by the two observers were used
as  the  difference  between  both  observers.  These
differences  were  compared  to  the  predicted
landmarks of  the α-decay  strategy of  the same 20
patients. The differences between the predictions of
the model and observer  1 were overall  lower than
the differences between observer 1 and 2 (Table 2). 

α-decay vs
observer 1
(d1) [mm]

Observer 1
vs observer
2 (d2) [mm]

Paired
diff. (d2-

d2)

p

MS1 2.7 [0.0-5.1] 3.8 [2.8-5.6] 0.2 ± 7.9 0.1

MS2 0.0 [0.0-4.5] 3.4 [1.8-4.4] -1.3 ± 2.1 0.01

MS3 3.0 [0.0-4.3] 2.3 [1.4-4.8] -0.1 ± 3.0 1.0

All 2.6 [0.0-4.5] 3.1 [1.6-4.9] -0.4 ± 5.1 0.4

    Table 2: Comparison of the Euclidean distances
between  the  predicted  and  target  landmarks  (d1),
and  the  target  points  identified  by  the  two
observers (d2).

3.1 Q-landscapes

In  order  to  provide  additional  insight  into  the
agent's world view, we plotted Q-landscapes which
show  the  highest  Q-values  for  the  entire  image
(Figure 7). 



Figure 7: The path of the agent in the cardiac
CT image (top) and the Q-landscape (bottom) for
each of the target landmarks: MS1, MS2 and MS3.
The Q-values  are  depicted in a heatmap (red are
high and blue are low values)

The Q-landscapes were generated by convolving
a  state-sized  cube  over  the  entire  image  and
selecting  the  highest  Q-value.  This  operation
produced  a  volumetric  Q-landscape  where  each
voxel  represented  the  highest  Q-value  of  that
particular position. In order to depict the 3D path of
the agent,  the path was projected on a plane. This
plane was defined by the starting point,  the target
point and the center of those two. Low Q-values can
be observed around the target landmarks.

3.2 Multiple resolutions

The  effect  of  using  multiple  resolutions  was
measured on the ε-decay strategy. This strategy was
chosen because it is an already established strategy.
In  order  to  measure  the  effect,  three  experiments
were  conducted,  each  time  repeating  the  entire
cross-validation  process.  The  first  experiment
contained only one resolution (1.0 mm), the second
experiment  contained two resolutions (1.0  and 2.0
mm),  and  the  final  experiment  contained  all
available  resolutions.  The  distances  from  the
predicted  landmarks  to  the  target  landmarks  are
summarised in Figure 8. From this plot, it  is clear
that the first experiment is the least accurate and that
the  accuracy  improves  when  the  number  of
resolutions increases.  This trend clearly shows that
the  usage  of  multiple  resolutions  improves  the
accuracy of the method.

Figure  8:  Comparison  of  the  Euclidean
distances  between  the  predicted  and  target
landmarks  of  experiments  with  different
resolutions.  Only  the  upper  quartile  values  are
plotted for brevity reasons.

4 DISCUSSION 

 In this feasibility study, a curriculum deep Q-
learning method was proposed to detect the inferior
border  of  the  membranous  septum.  We  compared
three  action-selection  strategies:  ε-decay,  α-decay
and action-dropout, and it was shown that α-decay
yielded slightly more accurate results. The decaying
nature  of  this  strategy  can  explain  this:  α-decay,
when applied, deliberately omits the best action and
chooses a random action from the remaining action-
space. The other strategies, when applied, choose a
random  action  from  the  (reduced)  action-space,
which may include the best action. The method was
efficient  since  the  prediction  time per  patient  was
below 1 second. The inter-observer variability study
confirmed the accuracy of the method.

Previous  studies  (Ghesu,  2016;  Ghesu,  2017b;
Alansary,  2019)  presented  accurate  and  efficient
landmark  detection  methods  from  medical  images
using deep Q-learning. The authors used clusters of
computational  resources.  In  this  study,  the
computational  resources  were  limited  to  a  single
graphics processing unit (GPU). Additionally, these
studies  used  larger  state  sizes  and  smaller  action-
spaces.  In  this study, a  state size of 8x8x8 voxels
and 26 actions were used, which is, to the best of our
knowledge, the first time such a small state size and



large  action-space  was  used  to  detect  landmarks
from volumetric (medical) images. We expected that
a  smaller  state  and  a  larger  action-space  would
prolong  or  hamper  with  the  convergence  of  the
models.  It  is  our  opinion  that  the  incremental
character  of  curriculum learning  is  responsible for
this speed-up.

Although this preliminary study has proven to be
promising, there are a few limitations to be noted.
First, the model only learns the path from the center
of  the  aortic  annular  plane  (with  small  random
oscillations) to the target landmarks. When the agent
enters  areas  outside  the  trained  area  or  discovers
image artefacts, it can get lost. This limitation will
be handled in future work, wherein the agent will be
put  on  the  surface  of  a  sphere  around  the  target
landmark with a gradually increasing radius. Next,
the cohort size was relatively small, which prevented
the  introduction  of  an  independent  test-dataset.
Adding more  patients  to  the cohort  can  overcome
this limitation and will increase the robustness of the
method.  This  limitation can partially  be addressed
by applying a proper data-augmentation strategy. 

There  are  a  couple  of  recommendations  for
future  work.  First,  a  halting  signal  should  be
included.  This  mechanism  can  be  obtained  by
adding a stopping action or measure oscillations in
Q-values (as described in (Ghesu, 2017b; Alansary,
2019)).  Next,  searching  for  landmarks  by  using
multiple agents  could be considered (Mnih, 2016;
Espeholt,  2018).  Finally,  the  task  of  detecting
landmarks  with  curriculum  deep  Q-learning  in
volumetric  images  is  computationally  cheap  yet
difficult enough to serve as a baseline to experiment
with novel deep reinforcement learning techniques.

5 CONCLUSION

In conclusion, curriculum deep Q-learning was
applied  to  detect  the  inferior  border  of  the
membranous  septum.  The  output  of  this  study  is
four-fold:  first,  the  predicted  landmarks  were
detected  accurately  and  efficiently.  Next,  we have
proposed  and  validated  two novel  action-selection
strategies: α-decay and action-dropout and compared

it  to  the  already  established  ε-decay  strategy.
Thirdly, the agent was equipped with a small state
size and burdened with a large action-space yet still
managed to detect landmarks accurately. Finally, the
incremental character of curriculum learning enabled
the research into novel mechanisms and strategies in
the domain of deep reinforcement learning.
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APPENDIX

Algorithmic details

The pseudo-code of the used curriculum deep Q-
learning algorithm is presented in Algorithm 1. The
model learns the paths from starting point s1 to s10 or
S. In this section; we explain a few parameters. The
maximum number of steps that the agent could make
was initially set to 15 to avoid the agent getting lost
at  the  beginning  of  the  algorithm.  The  algorithm
gradually increased the maximum number of steps to
ensure that the agent had enough time to reach the
target point. The number of iterations τ).  triggered the
weight  transfer  from  the  first  DQN to  the  frozen
DQN  and  was  initially  set  to  a  small  value.
Therefore, numerous patients would pass before the
weight  transfer.  We observed  that  transferring  the
weights too quickly resulted in models which were
not  able  to  find  the  target  point.  The  algorithm
increased the parameter  τ).  when the starting points
were set further away from the target points.

Figure 1: Pseudo code of the curriculum deep
Q-learning algorithm.
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