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Abstract—Recent studies have demonstrated the importance
of neural networks in medical image processing and analysis.
However, their great efficiency in segmentation tasks is highly
dependent on the amount of training data. When these networks
are used on small datasets, the process of data augmentation
can be very significant. We propose a convolutional neural
network approach for the whole heart segmentation which is
based upon the 3D U-Net architecture and incorporates principle
component analysis as an additional data augmentation technique.
The network is trained end-to-end i.e. no pre-trained network
is required. Evaluation of the proposed approach is performed
on 20 3D CT images from MICCAI 2017 Multi-Modality Whole
Heart Segmentation Challenge dataset, divided into 15 training
and 5 validation images. Final segmentation results show a high
Dice coefficient overlap to ground truth, indicating that the
proposed approach is competitive to state-of-the-art. Additionally,
we provide the discussion of the influence of different learning
rates on the final segmentation results.
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I. INTRODUCTION

Cardiovascular diseases (CVDs) have been identified as one
of the most common causes of death in the world [1]. Timely
detection of CVDs allows physicians to set the correct treatment
plan that can significantly improve and often save the patients’
life. Continuous development and improvement of imaging
techniques like echocardiography, computerized tomography
(CT) and magnetic resonance makes such diagnosis possible.
Using those techniques in combination with powerful medi-
cal image processing methods allows three-dimensional visual
inspection of the heart and its substructures, consequently
improving the patients’ care. The main challenge of developing
such methods is in the complexity of extracting useful anatomi-
cal information from a large amount of highly dimensional data.
Often, the treatment for CVDs requires surgical interventions
and an accurate heart segmentation represents a valuable tool
for the pre-operative planning of such interventions. Accurate
model of the heart can be obtained either through manual
segmentation (an error prone, time-consuming and often sub-
jective process), or by using specialized image processing
methods for heart segmentation. The variations in anatomical
structures of the heart make the development of automatic
heart segmentation methods a challenging task. Various ap-
proaches are proposed to tackle this problem. Methods that
separately segment specific anatomic structures are often based
on deformable models [2]–[4]. Another commonly investigated

type of approach is based on multi-class segmentation, often
using atlas-based methods [5], [6]. Since cardiac images contain
a huge amount of anatomical variability and unclear bound-
aries that are often caused by lacks in acquisition procedures,
methods that incorporate prior knowledge and artificial neural
networks have recently commonly used [7], [8].

Nevertheless, today’s state-of-the-art methods in the field
of medical image segmentation are diverse combinations of
encoder and decoder neural network architecture. The main idea
behind encoder-decoder architecture is in skip connections. The
linkage of feature maps with high granularity from the decoder
with fine-granular feature maps from the encoder provides
segmentation masks with a precisely preserved details even on
highly noisy background. The Long et al. [19] introduced fully
convolutional neural network (FCN) where feature maps from
the encoder are accepting and summing up-sampled feature
maps. Similarly, U-Net [10] architecture links up-sampled
features and adds convolutions between each sampling step.
The importance of the skip connections is in their ability to
restore the spatial resolution at the network’s output. Zhou et al.
[11] further improved the segmentation accuracy by introducing
both dense and nested skip connections. This architecture
reduces the gaps between encoder feature maps and decoder
feature maps thus simplifying the optimization problem.

In this paper, we focus on the whole heart segmentation using
a 3D U-Net architecture [12]. The primary contribution of our
work is in the data augmentation process. Our augmentation
process adds the principal component analysis (PCA) to the
originally proposed on-the-fly elastic deformations and smooth
dense field deformation. The paper is structured as follows.
Used methods are described in Section 2. Implementation
details and description of a dataset is presented in Section 3.
Furthermore, quantitative analysis of conducted experiments as
well as segmentation results are provided in Section 4. Finally,
the conclusion is given in Section 5.

II. THE PROPOSED METHOD

In this section we explain the proposed network architecture
and the process of data augmentation – mainly the effects of
principal component analysis (PCA) on the input and output of
the network. The PCA-based data augmentation represents the
main scientific contribution of this paper.
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A. Network Architecture

The neural network architecture of the proposed method is
based on the 3D U-Net architecture and consists of the two
main parts: (1) a contracting encoder part whose main task
is the analysis of the whole image; and (2) the consecutive
expanding decoder that produces a full-resolution segmentation.

Each layer of the encoder have two 3 × 3 × 3 convolutions
followed by rectified linear unit (ReLu). After each of them,
2 × 2 × 2 max pooling layer is placed. Similarly, the decoder
part consist of two 2 × 2 × 2 upconvolutions that are also
followed by two 3 × 3 × 3 convolutions and ReLu. The last,
1×1×1, convolution layer reduces the output channels to match
the number of labels which is in our case 7. Furthermore, we
are avoiding bottlenecks in both, encoder and decoder part,
by using doubled values of the channels before each max
pooling [13]. Moreover, the network uses batch normalization
before every ReLu for faster convergence. The learning process
involves the generation of the dense volumetric segmentations
while only requiring two-dimensional annotated slices for train-
ing. This is possible because of the weighted softmax loss
function that sets weights of the unlabeled voxels to zero
consequently allowing learning from only labeled ones. An
illustration of the previously described 3D U-Net architecture
is presented in Figure 1.

B. Data Augmentation with PCA

The process of data augmentation is extensively used to
improve training performance due to limited size of the training
data, since the artificial neural networks require huge amounts
of annotated data for effective learning. Essentially, data aug-
mentation process increases the size of the training dataset
through a series of image transformations. This paper proposes
a modification to the data augmentation process of the U-
Net architecture by introducing an additional PCA-based image
transformation.

We can represent the transformations of the data augmen-
tation as a sequence of operations performed on the training
data. Let GT be the set of all training samples, where each data
sample consists of two 3D volumes with same dimensions: the
input CT volume I with voxel gray values in range [0, 4095]
and the corresponding labeled CT volume L with voxel gray
values in range [0, 7] (labels).

Originally, 3D U-Net architecture implements data augmen-
tation with rotation, scaling and smooth dense deformation
field techniques. Let θ be the set of the three mentioned
transformations. Transformations are iteratively applied to both
an input I volume and a labeled L volume, as follows:

h : X 7→ X,h ∈ θ,X ∈ {I, L} (1)

where transformation parameters for each h ∈ θ are chosen
randomly on-the-fly.

Thus, the entire process of data augmentation itself can be
described with the following mapping:

θ : GT 7→ AGT (2)

where GT represents original training dataset and AGT repre-
sents the augmented (transformed) dataset of GT . The inflated
training dataset is thus defined as:

GT ′ = GT ∪AGT, (3)

meaning that GT ′ contains both the original training dataset
GT and all the respective transformations defined with θ. This
final inflated dataset is used to train the network.

In order to further inflate the training dataset, we extend
the transformation set θ with an additional transformation that
performs principal component analysis using the singular value
decomposition. Let v ∈ Z3 denote the voxel position in an input
image. Let Pv denote a set of grayscale values representing the
vector of principal components after performing the singular
value decomposition of an input image X at position v. Our
proposed transformation hpca is defined with the following
mapping:

hpca : X 7→ X ′, X ∈ {I, L} (4)

where X ′ denotes the resulting image after transformation. The
proposed transformation modifies the grayscale values of every
voxel v in the input image in a following manner:

X ′(v) =
1

sp
Pv[α1λ1]T , (5)

where α1 denote random variable drawn from a Gaussian
with mean = 0 and σ = 0.1, λ1 denote ith eigenvalue
corresponding to the eigenvector P and sp denotes the scaling
parameter initialized to 5e6.

C. Adaptive Moment Optimization

In neural network problems, the optimization algorithms
aim to find optimal weights while simultaneously minimizing
error and maximizing accuracy. Instead of originally used
stochastic gradient descent for network weights updating, we
used Adaptive Moment Optimization (Adam) [14] which it-
eratively updates weights during training process. The weights
updated with stochastic gradient descent provide a single, fixed
learning rate during training. Contrary, the Adam maintains a
learning rate for each network weight as the learning unfolds.
Adam incorporates the strenghts of the two stochastic gradient
descent extensions [15]; the root mean square propagation
(RMSprop) and adaptive gradient algorithm (AdaGrad) con-
sequently providing an optimization algorithm that can handle
sparse gradients on noisy problems.

Update equations, for each weight wj can be defined as:

at = β1 ∗ at−1 − (1− β1) ∗ gt (6)

bt = β2 ∗ bt−1 − (1− β2) ∗ g2t (7)

∆wt = −ζ at√
bt + ε

∗ gt (8)

where β1 and β2 are hyperparameters, ζ represents the initial
learning rate, gt is the gradient at time t along wj , at and bt
represent exponential average of the gradients and squares of
gradients along wj respectively.
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Fig. 1. Illustration of the 3D U-Net architecture

The exponential average and the squares of the gradient of
each parameter is computed from Eq. 6 and Eq. 7 while deci-
sion of the learning step is calculated with Eq.8. Furthermore,
common values of the hyperparameters are β1 = 0.9, β2 = 0.99
while ε is chosen to be 1e−10 generally. In our implementation,
we also use mentioned hyperparameters values.

III. IMPLEMENTATION DETAILS

A. Dataset Description

Data provided in the MICCAI 2017 Multi-Modality Whole
Heart Segmentation Challenge is acquired from the everyday
clinical environment, using cardiac CT angiography and dif-
ferent scanner types. This resulted in images with varying
voxel sizes and resolutions with the aim of providing imperfect
training data to encourage the development of more robust
algorithms. The slices were acquired in the axial view with the
pixel resolution of 512× 512. The average in-plane resolution
is about 0.78 × 0.78 mm and the average slice thickness is
1.60 mm which leads to volumetric data consisting of 350
to 500 two-dimensional slices. Furthermore, the labeled data
contains the whole heart i.e. all heart substructures from the
upper abdomen to the aortic arch including the left ventricle
(LV), the myocardium of the left ventricle (Myo), the left
atrium (LA), the right ventricle (RV), the right atrium (RA)
the pulmonary artery (PA) and the ascending aorta (AA).

B. Input Preprocessing

With the objective of simplifying the further process of
the network training and reducing the computational time, all
volumes used for training were preprocessed i.e. we normalize
the intensity applying a following linear transformation:

outp = (inp − inmin) · outmax − outmin

inmax − inmin
+ outmin (9)

where outp represents wanted, output pixel values, inp are
all input pixel values while outmin and outmax are user defined
parameters. We used values outmin = 0 and outmax = 20000.
Therefore, all volumes are resampled, and the network takes
three-dimensional volumes of the voxel size 144 × 144 × 144
as input and returns the voxels of the same size at the final layer
in x, y, and z directions respectively. Thus obtained volumes
are then used and forwarded to the first convolutional layer at
the network input.

C. Localization and Segmentation

The proposed approach consists of two architectures; one
used for the whole heart localization while second used for its
segmentation. It is important to emphasize that used ground-
truth bounding box represents the whole heart rather than its
specific substructures such as the left atrium or the pulmonary
artery that are strongly connected together. The purpose of
the segmentation network is to contain the only necessary
information for the spatial regions of the interest from the
whole volume consequently simplifying prediction process. The
illustration of the used framework is shown in Figure 2.

IV. EXPERIMENTS AND RESULTS

For the implementation, we use Keras and Tensorflow. Since
training of the huge 3D networks requires high computational
power, we use the cuDNN convolution layer implementation to
increase memory efficiency. Data augmentation is done on-the-
fly, which results in as many different artificial training images
as the training iterations. We ran in total 120000 training



Fig. 2. The illustration of the proposed framework

TABLE I
DICE COEFFICIENT IN % FOR THE ORIGINAL 3D U-NET ARCHITECTURE

TESTED ON FIVE VOLUMETRIC DATASETS.

Dataset DSC of obtained results [%]
LV RV LA RA PA Myo Aorta WH

1001 94.9 89.8 90.7 88.3 88.2 87.7 93.5 90.5

1002 93.3 89.5 91.3 88.1 85.5 87.3 91.7 89.5

1010 91.9 87.7 90.4 87.6 84.2 85.7 92.1 88.5

1019 87.9 83.6 86.4 83.3 79.9 81.5 87.7 84.3

1020 90.6 86.8 88.7 84.6 82.7 81.6 89.9 86.4

Average 91.72 87.48 89.5 86.38 84.1 84.76 91.06 87.8

iterations, simultaneously on two NVidia Geforce Titan V
GPUs, which took approximately 25 hours. Furthermore, the
segmentation of the new dataset took on average only 6.8
seconds on the same hardware.

A. Results

For the evaluation purposes, we use 20 CT volumes with
the corresponding manually labeled ground-truths used in
the MICCAI 2017 Multi-Modality Whole Heart Segmentation
Challenge. We divided data into two sets. The training set
consist of 15 CT volumes, while the validation set consist of
the remaining 5 CT volumes. The quantitatively model perfor-
mance during training is measured with the dice coefficient.
The similarity of the predicted segmentation and the ground-
truth label is calculated with the following formula:

TABLE II
DICE COEFFICIENT IN % FOR THE 3D U-NET ARCHITECTURE WITH

IMPROVED DATA AUGMENTATION TESTED ON FIVE VOLUMETRIC DATASETS

Dataset DSC of obtained results [%]
LV RV LA RA PA Myo Aorta WH

1001 95.5 90.7 91.5 88.8 89.7 88.4 94.8 91.3

1002 94.6 89.9 91.8 88.9 86.9 88.3 93.8 90.6

1010 93.2 89.5 91.1 88.1 84.5 87.7 93.5 89.6

1019 89.9 85.1 87.7 83.5 80.1 81.6 89.7 85.3

1020 91.2 88.4 90.4 87.6 84.5 83.2 92.1 88.2

Average 92.88 88.72 90.5 85.14 85.14 85.84 92.78 89.00

dice(Y,Z) =
2× |Y ∩ Z|
|Y |+ |Z|

(10)

In this manner, we obtained an overall average score for the
whole heart segmentation of 89%. The table-like representation
of the all obtained results for the original 3D U-Net architecture
is shown in Table I while the original 3D U-Net architecture
with data augmentation improvement is shown in Table II. An
example of the best-segmented dataset, precisely dataset 1001,
is shown in Figure 3.

We compared our result of the proposed method to the three
similar whole heart segmentation approaches that use convolu-
tional neural-networks. Payer et al. [17] obtained average dice
score of 88.9% by combining landmark localization with a U-
Net like CNN using heatmap regression and SpatialConfigura-



TABLE III
DIFFERENT INITIAL LEARNING RATES AND OBTAINED HEART SEGMENTATION RESULTS.

Initial Learning DSC of obtained results [%]
Rate Dataset LV RV LA RA PA Myo Aorta WH

0.0001 1001 91.5 87.2 88.1 86.1 85.1 86.4 91.2 87.4
1002 90.2 86.3 87.9 85.9 83.3 85.1 90.8 86.8
1010 89.6 85.6 88.1 85.2 81.4 84.2 89.7 85.9
1019 86.4 82.3 84.8 85.1 78.1 78.2 86.5 85.1
1020 87.1 85.1 86.5 79.8 82.4 80.3 88.9 86.7

Average 88.96 85.3 87.08 84.42 82.06 82.84 89.96 86.38

0.001 1001 93.7 89.1 90.3 87.4 87.3 87.2 93.5 90.1
1002 93.2 88.0 90.8 86.3 84.2 86.9 92.5 88.5
1010 91.5 87.3 90.5 87.3 82.9 85.8 91.3 87.3
1019 87.3 83.5 86.3 81.6 79.5 79.9 87.9 86.1
1020 89.7 86.7 88.8 86.1 83.2 81.2 90.3 87.1

Average 91.08 86.92 89.34 85.74 83.42 84.2 91.1 87.82

0.005 1001 95.5 90.7 91.5 88.8 89.7 88.4 94.8 91.3
1002 94.6 89.9 91.8 88.9 86.9 88.3 93.8 90.6
1010 93.2 89.5 91.1 88.1 84.5 87.7 93.5 89.6
1019 89.9 85.1 87.7 83.5 80.1 81.6 89.7 85.3
1020 91.2 88.4 90.4 87.6 84.5 83.2 92.1 88.2

Average 92.88 88.72 90.5 85.14 85.14 85.84 92.78 89.00

tion-Net architecture [18]. Wang et al. [19] developed a
framework consisting of the 2.5D segmentation with orthogonal
2D U-nets, shape context estimation and refining segmentation
with U-net and shape context. Furthermore, Xu, Wu and Feng
[20] used the combination of Faster R-CNN and U-net network
obtaining the overall average dice score of the 85, 9%. It is
important to point out that these three approaches, as well as
ours, used the same validation dataset. This gives a reliable
segmentation comparison that indicates competitiveness of our
method to the state-of-the-art. Furthermore, for experimental
purposes, we performed training with different initial learning
rates and found the optimal learning rate of 0.005 to give best
segmentation results as shown in Table III.

Fig. 3. The example of the segmentation result. From the upper left to the right:
original 2D slice; 2D slice of the ground-truth; 2D slice of the segmentation
result; 3D visualization of the ground-truth; 3D visualization of the predicted
heart

V. CONCLUSION

We have presented an approach for automatic heart lo-
calization and segmentation from CT images. The proposed

framework consists of two 3D U-Net neural network architec-
tures, first used for localization of the bounding box around
the heart and second used for the segmentation. The results
were evaluated on the five CT volumes from the MICCAI
2017 Multi-Modality Whole Heart Segmentation challenge.
We achieved an average dice score of 89% with additionally
improved data augmentation process. Therefore, this approach
offers a competitive and accurate segmentation method for the
highly variable structures of the heart.
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