
Scalability evaluation of VPN technologies for secure container
networking

1st Tom Goethals
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

togoetha.goethals@UGent.be

2nd Dwight Kerkhove
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

dwight.kerkhove@UGent.be

3rd Bruno Volckaert
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

bruno.volckaert@UGent.be

4th Filip De Turck
Department of Information Technology

Ghent University - imec, IDLab
Gent, Belgium

filip.deturck@UGent.be

Abstract—For years, containers have been a popular choice
for lightweight virtualization in the cloud. With the rise of
more powerful and flexible edge devices, container deployment
strategies have arisen that leverage the computational power
of edge devices for optimal workload distribution. This move
from a secure data center network to heterogenous public and
private networks presents some issues in terms of security and
network topology that can be partially solved by using a Virtual
Private Network (VPN) to connect edge nodes to the cloud. In this
paper, the scalability of VPN software is evaluated to determine
if and how it can be used in large-scale clusters containing edge
nodes. Benchmarks are performed to determine the maximum
number of VPN-connected nodes and the influence of network
degradation on VPN performance, primarily using traffic typical
for edge devices generating IoT data. Some high level conclusions
are drawn from the results, indicating that WireGuard is an
excellent choice of VPN software to connect edge nodes in a
cluster. Analysis of the results also shows the strengths and
weaknesses of other VPN software.

Index Terms—Containers, Microservices, Virtual private net-
work, VPN, Edge network, Network security

I. INTRODUCTION

In recent years, containers have quickly gained popularity
as a lightweight virtualization alternative to virtual machines,
their main advantages being limited resource requirements
and fast spin-up times [2]. Lately, edge devices used in IoT
applications have become powerful enough to smoothly run
containers and microservices, while remaining small and flex-
ible enough to be used almost anywhere. This has triggered a
trend of deploying containerized applications to edge devices,
taking advantage of both centralized control and geographi-
cally widespread devices for a more efficient distribution of
workloads [4]. To aid with the deployment and operation of
containers on edge devices, a Virtual Private Network (VPN)
can be useful, for the following reasons:

• Securing communication between nodes becomes more
important when leaving the confines of the cloud. While
the connections between orchestrator nodes and service
endpoints are often secured in various ways by default,
it can not be assumed that this is always the case.

A VPN can provide a base layer of security for all
communications, ideally with little to no performance
overhead.

• Unlike cloud infrastructure, networks containing edge
devices are not usually well organized and homogeneous.
This means the network could be hidden behind a router,
node IP addresses are not predictable, existing port map-
pings could interfere with container requirements, etc.
While technologies such as UPnP [3] can solve some
of these problems, they can also introduce new security
problems. It would be better to avoid the problems with
edge networks altogether by using a VPN. In the cloud,
only the VPN server needs to be publicly available. This
makes it possible to hide critical services from public
scrutiny, while still allowing edge devices in the VPN
to access them over a secure connection. In short, a
VPN can ensure a homogeneous networking environment
in which both the container orchestrator and deployed
containers can allocate required ports, assign IP addresses
and modify routing tables without interference from other
devices or programs.

Modern clusters consist of thousands of nodes on which
containers can be deployed [1]. Therefore, in order to build a
cluster using a VPN, any suitable VPN software must be able
to handle a large number of simultaneous connections and
packets with minimal performance degradation. The goal of
this paper is to evaluate recent VPN software for its ability to
scale with the size of the cluster using it as an overlay network,
while also examining the effects of network degradation on
communication between nodes in a cluster connected through
a VPN. While some of the conclusions are valid for VPN
networks in general, the tests are primarily aimed at edge
networks, with a lot of devices generating IoT traffic consisting
of very small packets.

Section II presents existing research related to the topic of
this paper. Section III lists the different VPN software that is
benchmarked, while section IV details the test setup and test

©IFIP, (2019).
This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.

The definitive version was published in 15th International Conference on Network and Service Management,
CNSM 2019, Halifax, Canada, October 21-25, 2019, http://http://dl.ifip.org/db/conf/cnsm/cnsm2019/1570561814.pdf.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/275703839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


scenarios used to gauge scalability. The results are presented
and discussed in section V, with suggestions for future work
in section VI. Lastly, section VII summarizes the conclusions
and lists suggestions on which VPN to use.

II. RELATED WORK

Many studies exist on the concept of shifting workloads
between the cloud and edge hardware. This trend began
with edge offloading [7] and cloud offloading [5], evolving
into osmotic computing [4]. Some studies focus particularly
on security for osmotic computing and end-to-end security
between the edge and the cloud [11, 13].

VPNs are an old and widely used technology. Recent
state of the art studies appear to be non-existent, but older
ones are still informative [17]. Some studies deal with the
security aspects of a VPN [20], while many others focus on
the throughput performance of VPNs [16, 14]. However, no
studies seem to compare OpenVPN [23] to newer VPNs such
as WireGuard [21].

While studies exist on using overlay networks in osmotic
computing [8], they deal mostly with container network over-
lays such as Flannel and Weave [12] which are integrated into
Kubernetes. Others present a custom framework, for example
Hybrid Fog and Cloud Interconnection Framework [18], which
also gives a good overview of the challenges of connecting
edge and cloud networks. To the best of our knowledge, no
work exists on explicitly using a VPN as an overlay network
to connect edge and cloud networks, nor is there existing work
on testing the scalability of a VPN to do so.

III. VPN SOFTWARE

In this section, an overview is given of all the VPN software
chosen for this paper. For each VPN solution, a Docker
container image was created so it could be launched from
a Kubernetes pod. As much default configuration was used as
possible. The code and configuration for the Docker container
images is made available on Github1.

A. OpenVPN

OpenVPN [23] is a widely used VPN solution, first released
in May 2001. It is still under active development, with version
2.4.7 being released as of February 2019. For the tests in
this study, version 2.4.6 was used. It uses open encryption
standards and offers a wide range of options, while being
able to use both UDP and TCP for its transport layer. A
weak point of OpenVPN is that it is single threaded and thus
entirely dependent on the speed of a single processor core, no
matter how powerful a system is. For the test, the standard
configuration is used. Traffic is encapsulated in UDP packets
over a TUN device.

1https://github.com/drake7707/secure-container-network

B. WireGuard

WireGuard [21] is a relatively new VPN solution. It does
not have an official stable release yet, and is still under heavy
development. Its current version is v0.0.20190406, but the
version used for the tests is 0.0.20180613. As of March 2019,
it has been sent out for review several times, aiming to be
mainlined into the Linux 5.2 kernel [15]. A main feature of
WireGuard is that it is designed to be non-chatty, only sending
messages when required. Note that in this paper WireGuard-go
[19] is used, which is a Golang implementation of WireGuard.
Performance may differ from the main WireGuard version,
especially if it is accepted into the Linux kernel.

For the test, the standard configuration is used. Some extra
work is required to set up interfaces and routing rules, which
is done by default in other software such as OpenVPN and
ZeroTier.

C. ZeroTier

ZeroTier [22] is an established VPN solution developed by
ZeroTier, Inc. First developed in 2011, it is currently at version
1.2.12, which is also used for the tests. ZeroTier is still under
active development, and has both paid and free solutions. The
“Zero” part of its name comes from the fact that it requires
zero configuration by default. This is achieved by having a
number of root servers, called the “Earth” and managed by
ZeroTier, that fulfill a similar role as DNS servers to the
ZeroTier network. However, users can also define their own
root servers using “Moons” in order to decrease dependency
on the ZeroTier cloud infrastructure and improve performance.
Its design also gives ZeroTier the advantage that no endpoints
need to be publicly available, as long as they are still accessible
through some public IP address via NAT.

For the test, a ZeroTier network controller was set up
using a script to simplify the creation of VPN clients through
scripts. While there is a minimal reliance on ZeroTier cloud
infrastructure, the Earth root servers are still used to look up
the address of the test network controller by its ZeroTier name.

D. Tinc

Tinc [24] is a VPN solution that predates even OpenVPN,
with an initial release in November 1998. The current version,
1.0.35, was released in October 2018, so it is still under
active development. Version 1.0.35 is also the one used for
the tests. Like OpenVPN, it relies heavily on open standards.
However, unlike OpenVPN, it has full mesh routing by default,
which can make it more efficient in large networks with large
amounts of client-to-client traffic.

For the test, standard configuration was used. Like Open-
VPN, transport uses UDP via a TUN device.

E. SoftEther VPN

SoftEther VPN [25] is a relatively new VPN solution. Its
first release dates from January 2014, with the latest release
being version 4.29 as of February 2019.

SoftEther is a multi-protocol VPN, with modules for Open-
VPN, L2TP/IPSec, MS-SSTP and its own SoftEther VPN



protocol. By default it uses the SoftEther VPN protocol,
which emulates Ethernet over HTTPS. The advantage of using
HTTPS to tunnel VPN traffic is that it makes it easier to bypass
firewalls, since HTTPS ports are often freely accessible.

Other than being multi-protocol, SoftEther has a wide range
of features, including a high availability setup for its server
endpoints.

IV. BENCHMARKING SETUP

The tests are performed on the IDLab Virtual Wall instal-
lation, reserving machines with identical hardware and in the
same geographical location for each test. Each machine has
two Quad core Intel E5520 processors at 2.2GHz and 12GiB
RAM.

A total of 8 machines are provisioned with Ubuntu 16.04
and Docker 18.06. Using these machines, a Kubernetes v1.11
cluster is created with 1 master node and 7 worker nodes as
a basis for each test. Kubernetes is used to easily distribute a
large number of VPN client containers over the entire cluster
to simulate a VPN network with many independent clients.
The Kubernetes version should not have any impact on the
results up to and including v1.14. Observations during testing
showed that deploying over 120 VPN client containers on a
single node results in errors because the container processes
fail to allocate all required resources. However, when using
Kubernetes this is not a problem, since it has a built-in limit of
110 pods per node by default. Therefore, the VPN containers
deployed by Kubernetes for the tests will not run into the
observed problems with overdeployment.

All tests follow the same basic premise, using pods that
contain a single container with a VPN client and a configurable
script. A number of pods are deployed to the nodes in the clus-
ter by creating a new deployment in Kubernetes, as shown in
Fig. 1. The actual number of deployed pods varies depending
on the test. Once a VPN connection is established, the script
in the pod starts calling a REST service located on the master
node using curl, every 250ms for 15 minutes. The REST
request has no body, it is an empty GET request. The response
is a simple “OK” with a 200 HTTP code. Using these short and
static request/response messages ensures that the connectivity
of all VPNs is tested rather than network throughput. This
approach also has the advantage that it closely emulates IoT
sensor traffic usually present in edge networks, where short
bursts of sensor data are pushed to a central broker. The pods
do not perform any processing of the results, rather they simply
log the start timestamp, end timestamp and curl exit code of
each REST call to a pod-named output file on a host-mounted
network share to be processed later.

Because the goal of the tests is to measure VPN scalability
with no other factors involved, the VPN server and REST
service containers on the master node are started outside
Kubernetes. This ensures that none of the VPN traffic goes
through the Kubernetes pod network, but rather that it travels
directly between VPN endpoints.

To ensure only valid data was processed, the data was
filtered both at the start and the end of each test:

Fig. 1. Overview of the test setup with m nodes and n pods per node. All of
the traffic goes via the VPN, none via the pod network (cni0).

• To remove data generated before all pods were running,
only data recorded after the latest first timestamp of all
pod output files is used.

• To remove data generated after the test is shut down, the
last string of failures at the end of each pod output file is
removed. In theory, this could remove some valid failures,
but the total number of calls for each pod is large enough
that it should not make any meaningful difference.

A. Scalability test

The scalability test aims to determine how well VPN
software can handle large amounts of connections and service
calls. To achieve this, a number of pods are deployed via
Kubernetes that perform REST calls as described above. The
number of deployed pods varies from 50 to 750, in steps of
100. The results from the test are aggregated and analyzed
to determine how the response times and failure rates (error
codes) vary with an increasing amount of pods.

B. Network degradation test

In the real world there is always some amount of packet loss
and latency, especially when dealing with the edge and IoT
devices. Therefore, it is important that any VPN can remain
functional despite significant network degradation.

To determine the resilience of VPN software against net-
work degradation, both packet loss and latency are examined
independently. Both conditions are imposed through NetEM
on the host network interface. Because the degradation affects
all traffic including VPN control messages, this method gives
a good indication of how well a VPN can keep working under
any set of network conditions.

This test is performed with 100 pods distributed evenly over
the 7 worker nodes. Latency is varied from 0 to 5000ms in
1000ms jumps. Out of practical considerations, any requests
taking longer than 10 seconds are terminated and considered
a failure. This influences the failure rate to some degree, but



since the same rule is applied across all tested VPNs, the
comparison is still valid. Packet loss is varied from 0% to
100%. While this range may seem extreme, it is interesting to
see how VPNs react to the full spectrum of packet loss.

V. RESULTS

In this section the results from the tests are presented. To
keep this section organized, the results for the scalability tests
have been divided into subsections for response time and
failure rate. Similarly, the network degradation tests have been
split into subsections for latency and packet loss.

Note that for all charts with whiskers, the whiskers indicate
the 25th and 75th percentiles of the results, while the data
points represent the median cases. The 75th percentile is used
for practical reasons; higher percentiles produce extremely
large whisker ranges, making it harder to interpret the charts.
The 25th percentile is chosen for symmetry; the difference
between the 1st and 25th percentile is far less significant than
between the 75th and 100th.

A. Scalability - response time

Fig. 2 shows the response times of the scalability test on a
logarithmic scale. For the same reason, both charts have been
truncated at 650 pods instead of 750. A striking observation is
that the response times of both Tinc and SoftEther increase by
an order of magnitude between 250 and 350 clients, making
them over 50 times higher than those of other VPNs. At less
than 350 clients, Tinc is already being outpaced by OpenVPN,
but is still in the same order of magnitude. SoftEther starts
out with response times twice as high as those of OpenVPN,
and ends up with response times almost 150 times higher
than those of OpenVPN at 650 clients. It is likely that some
common feature or design decision of Tinc and SoftEther is
causing this performance problem.

OpenVPN, WireGuard and ZeroTier are evenly matched for
450 VPN clients or less. Even the 25th to 75th percentile
ranges are similar, though the highest ZeroTier response times
start to go up quickly around 250 clients. For more than 450
clients, a few trends become clear that are useful for large
scale edge networks. First, increasing VPN traffic does not
seem to affect WireGuard response times at all. Even the
results at 650 clients are still in line with those at 50 clients.
OpenVPN response times shift from a slow, linear increase to
a quadratic curve. ZeroTier is on a solid quadratic curve from
the start, while the slowest responses quickly escape the chart
altogether. In short, WireGuard is the clear winner of this test,
while OpenVPN is a close second. However, if the test were
to continue to thousands of clients, WireGuard may become
the only useful choice.

B. Scalability - failure rate

Fig. 3 shows the failure rates of the scalability test. The
results are strikingly similar to the REST response times.

Tinc failure rates are an order of magnitude above those
of other VPNs, but the curve is more pronounced than in
the response times chart. Even with 50 clients, Tinc failure

50 150 250 350 450 550 650

101

102

VPN clients

R
es

po
ns

e
tim

e
(m

s,
lo

g
sc

al
e)

OpenVPN WireGuard ZeroTier Tinc SoftEther

Fig. 2. Evolution of response time for an increasing number of VPN clients,
represented on a logarithmic scale.

rate is 10 times higher than that of OpenVPN and ZeroTier.
It is possible that Tinc is more suited to high throughput
applications in smaller networks, but that topic is outside
the scope of this paper. SoftEther, while not having excellent
results, stays close to OpenVPN performance until its failure
rates start to increase quickly around 450 clients.

As the rest of the VPNs go, WireGuard has the best results,
showing little to no increase in failed requests as VPN traffic
and the number of clients increases. OpenVPN appears to
follow a linear trend, with ZeroTier following closely until
its performance once again degrades according to a quadratic
curve around 450 deployed clients.

C. Network degradation - packet loss

Fig. 4 shows the response time for REST requests under
each VPN, for increasing amounts of packet loss. All the
results in this chart are very closely matched, with even the
25th to 75th percentile ranges lining up in most cases. The
results only start to differentiate for 70% packet loss or more.
WireGuard performance degrades heavily when going from
90% to 100% packet loss, seemingly making it the slowest
VPN in this test. Tinc appears to win this test, with the lowest
median time and a relatively small range for its results.

Considering the invariance of the results at normal amounts
of packet loss, 0% to 20%, it stands to reason that increasing
the number of clients within this range will yield the exact
same results as Fig. ?? through Fig. 3 have shown. However,
more tests are required to properly confirm this.

OpenVPN and SoftEther results cannot be shown beyond
the 80% packet loss category, the reason for which becomes
clear when looking at Fig. 5. This chart shows the failure rates
for the same packet loss test, and also suggests an alternate
interpretation for some of the apparent effects in Fig. 4. While



50 150 250 350 450 550 650 750

10−1

100

101

VPN clients

Fa
ilu

re
ra

te
(%

,l
ow

er
is

be
tte

r)

OpenVPN WireGuard ZeroTier Tinc SoftEther

Fig. 3. Evolution of failure rate for an increasing number of VPN clients.

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

Packet loss (%)

R
es

po
ns

e
tim

e
(s

,l
ow

er
is

be
tte

r)

OpenVPN WireGuard ZeroTier Tinc SoftEther

Fig. 4. Response time of REST calls from 100 VPN clients for increasing
packet loss

ZeroTier and WireGuard manage to keep pushing at least some
traffic through until packet loss hits 100%, Tinc, SoftEther and
OpenVPN failure rates increase much faster. Starting around
90% packet loss, OpenVPN and SoftEther both have a 100%
failure rate. Tinc on the other hand, still has a 0.004% success
rate, but the extremely low sample size makes the response
time shown in Fig. 4 very unreliable. WireGuard and ZeroTier
still have a success rate of about 10% to 20%, so that data is
reliable.

While there is a lot of nuance in the results for 70% to
100% packet loss, the results for the lower end of 0% to 20%

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Packet loss (%)

Fa
ilu

re
ra

te
(%

,l
ow

er
is

be
tte

r)

OpenVPN WireGuard ZeroTier Tinc SoftEther

Fig. 5. Failure rate of REST calls from 100 VPN clients for increasing packet
loss

are easier to interpret. There is little difference between the
different VPNs in this range, save for Tinc, which is known
to have a higher failure rate from the results of the previous
tests. There is no clear winner in this test; both WireGuard and
ZeroTier are good options, with WireGuard having slightly
higher response times but lower failure rates.

D. Network degradation - latency

Fig. 6 shows the failure rate for each VPN for increasing
amounts of network latency.

WireGuard has the best failure rate, showing only a slow
increase in failure rates as latency goes up. Even at 5000ms
latency, still only around 3% of the requests fail. Note that
due to the way the test was set up, WireGuard failure rate
is 100% as soon as latency goes over 5000ms. ZeroTier and
SoftEther are very close in performance. Their failure rates
start out almost equal to those of WireGuard, but they increase
faster as latency goes up. SoftEther failure rates shoot up to
almost 50% at 4000ms, while ZeroTier manages to stay around
18%. Tinc, which by now has firmly established a somewhat
high failure rate, degrades quickly once latency is higher than
1000ms, with a failure rate of 83% at 2000ms latency.

OpenVPN holds the middle ground between ZeroTier and
Tinc, with error rates over twice as high as those of ZeroTier.
OpenVPN shows slightly better performance than SoftEther at
4000ms latency, but at that point almost half of all requests
fail under both OpenVPN and SoftEther.

As with the packet loss test, WireGuard comes out on top
with very low failure rates, while ZeroTier is a close second.

VI. FUTURE WORK

While the results in this paper provide a glimpse into the
scalability of VPNs to connect edge nodes to a cluster, many



0 1,000 2,000 3,000 4,000 5,000
0

20

40

60

80

100

Latency (ms)

Fa
ilu

re
ra

te
(%

,l
ow

er
is

be
tte

r)

OpenVPN WireGuard ZeroTier Tinc SoftEther

Fig. 6. Failure rate of REST calls from 100 VPN clients for increasing latency

more topics are open for research.

For starters, much more VPN software exists than has been
benchmarked. Adventurous researchers could attempt to map
the scalability of all known VPN software, though this work
will be hampered by a quickly changing landscape of possible
candidates and versions.

While the results of this study provide insight on the high-
level behavior of VPN software, a lot of the parameter space
was deliberately not examined. Evaluating the full parameter
space would be prohibitively time-consuming. However, there
may still be interesting behavior to discover. For example,
there is no way to predict how the results from the packet
loss and latency tests would change with a varying number of
VPN clients.

Furthermore, no attempt has been made to optimize the con-
figuration of each VPN to improve performance. A technical
study which analyses VPN designs and configuration options
could yield important insight into making a VPN that is ideal
for use with mixed cloud-edge clusters.

It is possible that network topology and the number of VPN
clients per node has a significant influence on the scalability
of a VPN network. To confirm this, the tests would have to
be repeated using hundreds of physical machines.

Another interesting topic is to see how a VPN network could
be extended by using multiple VPN servers in a cluster. For
example, SoftEther has a clustering function [26] that could be
combined with a Kubernetes high availability setup to provide
a suitable VPN network topology for a fault tolerant cluster.

Lastly, the results showed that up to 750 VPN clients is not a
problem for WireGuard. Studies focusing on one specific VPN
solution could be useful to determine its scalability limits.

VII. CONCLUSION

The goal of this paper is to provide insight on the scalability
of using VPNs to connect nodes in edge and IoT clusters,
and to examine the effects of network degradation on VPNs
used for this purpose. To that end, a number of benchmarks
are described. OpenVPN, WireGuard, ZeroTier, Tinc and
SoftEther are set up with a default configuration and subjected
to the described benchmarks.

The results for WireGuard are the best across all tests.
In some cases the results are remarkable, such as an almost
unchanging response time and failure rate for REST requests
with an increasing number of clients, where other VPN
solutions tend to have quadratic scaling. In other cases, the
difference is less pronounced. In the packet loss tests for
example, the response times for requests over WireGuard are
mostly on par with other VPN setups, but the failure rates are
about 10% to 30% lower than those for ZeroTier, which holds
the second place in that scenario.

Tinc seems to be the least suited to the kind of setup used
for the tests, having the slowest response time and highest
failure rate with a large amount of clients, while also being
most susceptible to network degradation.

The other solutions have varying results in all of the tests.
In the scalability tests, OpenVPN holds second place, while
ZeroTier comes in third. SoftEther is usually near Tinc in
terms of performance. Looking at the network degradation
tests, SoftEther and OpenVPN switch places while ZeroTier
remains in second place.

Some topics for future work are discussed that could lead to
further insight into the scalability and performance of VPNs.
Further research into these topics could assist development of
a VPN optimized for use with edge and IoT clusters.

VIII. ACKNOWLEDGMENT

The research in this paper has been funded by Vlaio by
means of the FLEXNET research project.

REFERENCES

[1] Kubernetes - Building large clusters,
https://kubernetes.io/docs/setup/cluster-large/

[2] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy and Y. C. Tay,
Containers and Virtual Machines at Scale: A Comparative Study, Mid-
dleware ’16 Proceedings of the 17th International Middleware Confer-
ence, DOI: 10.1145/2988336.2988337

[3] Abul Ahsan and Mahmudul Haque, UPnP Net-
working: Architecture and Security Issues,
https://www.researchgate.net/publication/242305803 UPnP Networking
Architecture and Security Issues

[4] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana and
Rajiv Ranjan, Osmotic Computing: A New Paradigm for Edge/Cloud
Integration, IEEE Cloud Computing (Volume: 3, Issue: 6, Nov.-Dec.
2016), DOI: 10.1109/MCC.2016.124

[5] Karthik Kumar and Yung-Hsiang Lu, Cloud Computing for Mobile
Users: Can Offloading Computation Save Energy?, Computer April
2010, pp. 51-56, vol. 43, DOI: 10.1109/MC.2010.98

[6] Ahsan Morshed, Prem Prakash Jayaraman, Timos Sellis, Dimitrios
Georgakopoulos, Massimo Villari and Rajiv Ranjan, Deep Osmosis:
Holistic Distributed Deep Learning in Osmotic Computing, IEEE Cloud
Computing (Volume: 4, Issue: 6, November/December 2017), DOI:
10.1109/MCC.2018.1081070



[7] Pavel Mach and Zdenek Becvar, Mobile Edge Computing: A Survey
on Architecture and Computation Offloading, IEEE Communications
Surveys & Tutorials (Volume: 19 ,Issue: 3 ,third quarter 2017), DOI:
10.1109/COMST.2017.2682318

[8] Alina Buzachis, Antonino Galletta, Lorenzo Carnevale, Antonio Ce-
lesti, Maria Fazio and Massimo Villari, Towards Osmotic Computing:
Analyzing Overlay Network Solutions to Optimize the Deployment of
Container-Based Microservices in Fog, Edge and IoT Environments,
2018 IEEE 2nd International Conference on Fog and Edge Computing
(ICFEC), DOI: 10.1109/CFEC.2018.8358729

[9] Jose Santos, Tim Wauters, Bruno Volckaert and Filip De Turck, Resource
Provisioning in Fog Computing: From Theory to Practice, Sensors
19(10):2238 DOI: 10.3390/s19102238

[10] Daniele Santoro, Daniel Zozin, Daniele Pizzolli, Francesco De Pellegrini
and Silvio Cretti, Foggy: a platform for workload orchestration in a Fog
Computing environment, 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), DOI: 10.1109/Cloud-
Com.2017.62

[11] Deepak Puthal, Surya Nepal, Rajiv Ranjan and Jinjun Chen, Threats
to Networking Cloud and Edge Datacenters in the Internet of Things,
IEEE Cloud Computing (Volume: 3, Issue: 3, May-June 2016), DOI:
10.1109/MCC.2016.63

[12] Cluster networking, https://kubernetes.io/docs/concepts/cluster-
administration/networking/

[13] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, Lydia
Chen and Rajiv Ranjan, Software Defined Membrane: Policy-Driven
Edge and Internet of Things Security, IEEE Cloud Computing (Volume:
4, Issue: 4, July/August 2017), DOI: 10.1109/MCC.2017.3791014

[14] I. Kotuliak, P. Rybr and P. Trchly, Performance comparison of IPsec
and TLS based VPN technologies, 2011 9th International Conference
on Emerging eLearning Technologies and Applications (ICETA), DOI:
10.1109/ICETA.2011.6112567

[15] WireGuard Sent Out Again For Review,
Might Make It Into Linux 5.2 Kernel,
https://www.phoronix.com/scan.php?page=news item&px=WireGuard-
V9-Maybe-Linux-5.2

[16] Frederic Pohl and Hans Dieter Schotten, Secure and Scalable Remote
Access Tunnels for the IIoT: An Assessment of openVPN and IPsec
Performance, ESOCC 2017: Service-Oriented and Cloud Computing pp
83-90

[17] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba, Network
virtualization: state of the art and research challenges, IEEE Com-
munications Magazine (Volume: 47, Issue: 7, July 2009), DOI:
10.1109/MCOM.2009.5183468

[18] Rafael Moreno-Vozmediano, Ruben S. Montero, Eduardo Huedo and
Ignacio M. Llorente, Cross-Site Virtual Network in Cloud and Fog
Computing, IEEE Cloud Computing (Volume: 4, Issue: 2, March-April
2017), DOI: 10.1109/MCC.2017.28

[19] About WireGuard-go, https://git.zx2c4.com/wireguard-go/about/
[20] H. Hamed, E. Al-Shaer and W. Marrero, Modeling and verification of

IPSec and VPN security policies, 13TH IEEE International Conference
on Network Protocols (ICNP’05), DOI: 10.1109/ICNP.2005.25

[21] Jason A. Donenfeld, WireGuard: Next Generation Kernel Network
Tunnel, https://www.wireguard.com/papers/wireguard.pdf

[22] ZeroTier manual, https://www.zerotier.com/manual.shtml
[23] Jason A. Donenfeld, Securing Remote Access Using VPN,

https://openvpn.net/whitepaper/
[24] Ivo Timmermans and Guus Sliepen, Setting up a Virtual Private Network

with tinc, https://www.tinc-vpn.org/documentation/tinc.pdf
[25] Daiyuu Nobori, Design and Implementation of SoftEther VPN,

https://www.softether.org/@api/deki/files/399/=SoftEtherVPN.pdf
[26] SoftEther clustering, https://www.softether.org/4-docs/1-

manual/3. SoftEther VPN Server Manual/3.9 Clustering


